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Appendix: Convex functions

Lecturer: Haim Permuter Scribe: Koby Todros and Assaf Levan

I. NOTATION

o R: The set of real numbers.

o R,: The set of nonnegative real numbers.

o R, : The set of positive real numbers.

« SF: The set of symmetrié x k£ matrices.

. Si: The set of symmetric positive semi-definktex k& matrices.

« S : The set of symmetric positive definifex k matrices.

« domf: The domain of the functiorf. Let f : R® — R™, thendomf £ {z € R™ : f (z) exists}. For

exampledomlog = R,

II. DEFINITIONS

Definition 1 (Convex set.A setC' € R™ is convex if the line segment between any two point£ities

in C, i.e.Vx1,25 € C and any0 < 0 <1 we havefz, + (1 —0) x5 € C.

Definition 2 (Convex function.) : R™ — R is convex ifdomf is a convex set and Wz,y € domf and
any0 <60 <1

fz+(1=0)y) <Of(x)+(1—-0)f(y). )

Geometrically, this means that the line segment betweetrf (x)) and (y, f (y)) lies above the graph of

f. An illustration of convex function is given in Fig. 1.

Definition 3 (Strictly convex function.Y : R® — R is strictly convex ifdomf is a convex set and if

Vz,y € domf and any0 < 0 <1

FlOz+(1—0)y) <0f (x)+(1—0)f(y). 2)
Definition 4 (Concave function.Y : R™ — R is concave if—f is convex.
Definition 5 (Strictly concave function.f : R™ — R is strictly concave if—f is strictly convex.

Definition 6 (Sublevel set.)et f : R™ — R. The a-sublevel set off is defined as

Co 2 {z €domf: f(x)<a}. 3)
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Fig. 1. Graph of a convex function. The chord between any teiotp on the graph lies above the graph.

Sublevel sets of convex functions are convex (converselsg)fa
Definition 7 (Epigraph.)Let f : R™ — R. The epigraph off is defined as

epif £ {(z,t) e R"" 1z € dom, f(z) <t}. (4)
The functionf is convex iffepif is a convex set.

Definition 8 (Jensen’s inequality.let f : R — R, and letz € R™ denote a random variable, such that

Pr{z e domf} = 1. If f is convex, then

f(Ez) <Ef(2). ©)
Proof: Convexity of f implies that it is the upper envelope of the set of linear fioms lying below
it, i.e.,
f(z)=supL(z), (6)
LeL
where
LE{L:L(z)=az+b, Yoo <z < o0}. (7)
Thus,
Bl ()] =B [suwp L) ®
LeL
Sincesup L (z) > L (z), then by monotonicity of the expectation operator,
LeL
E [sup L (z)] >E[L(2)]. (©)
Lec

Taking supremum on both sides of (9) w.ft(z) implies that

E [sup L (Z):| > supE[L(2)]. (10)
LeL LeLl
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Therefore, according to (8) and (10)

E[f(2)] > supE[L(z)] (11)
LeL
= sup L (E[2]) (12)
LeLl
= [f(E[]), (13)
where the equalities in (12) and (12) stem from the lineasfty () and (6), respectively. [ |

The basic inequality in (1) is a special case of (5), whenevee {z,y}, Pr(z=2) = 6 and
Pr(z=y)=1-6.
[1l. EXAMPLES
A. Examples ofR

« Convex functions:

Affine: f (x) = ax +bonR, for anya,b € R.

Exponential:f (z) = exp (ax) on R, for anya € R.

Powers:f (z) = z* onR; 4, fora > 1 or a <0.

Powers of absolute valueg:|” on R, for p > 1.

Negative entropyzlogxz on R, 4.

« Cocave functions
— Affine: f () =ax +bonR, for anya,b € R.
— Powers:f (z) =2 onRyy, for0 < a < 1.

— Logarithm:logz on R, .

B. Examples oR™ and R"**"™

Affine functions are both concave and convex. All norms aneveg.
« Examples orR™
— Affine: f (x) = a”x + b, wherea, b,z € R™,
— Norms:
p 1/p
I norm: ||z, = ngl |z |” , forp > 1.
* oo NOrM ||z|| = m;‘:mx|:cz|
« Examples orR™*™
— Affine function: f (X) = tr [ATX] +b = f: Xn: A; X, ; + b, wheretr [-] denotes the trace
operator,A, X € R™*™ andb € R. e
— Spectral normyf (X) = | X[, = (Amax (XTX))l/Q, where,ax (A) is the maximum eigenvalue
of A, andX € R™*",
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IV. VERIFYING CONVEXITY OF A FUNCTION

Convexity of a function can be verified via the following manst
« Using the definition of convex function (refer to definitioln 2
« Applying some special criteria.

— Restriction of a convex function to a line.

— First order conditions.

— Second order conditions.

« Showing that the function under inspection is obtainedugtooperations that preserve convexity.

A. Restriction of a convex function to a line
The functionf : R — R is convex iff the functiony : R — R,
g(t)=f(x+tv), domg={t €R:x+tv € domf}, (14)

is convex int for anyz € domf andv € R™. Therefore, checking convexity of multivariate functicren

be carried out by checking convexity of univariate function

Example 1Let f : S™ — R with

f(X)=—logdet X, domf =S . (15)
Then
g(t) = —logdet (X +1V) = —logdetX — logdet (I + tX‘l/QVX_l/Q) (16)
= —logdet X — zn:log(l +tN),
=1
wherelT is the identity matrix and\;, i = 1, ...,n are the eigenvalues of the matik—'/2V X ~1/2, Since

g is convex int for any choice ofl/ and anyX € domf, then f is convex.

B. First order condition

Let f: R™ — R denote a differentiable function, i.domf is open and/x € domf the gradient vector

T
Vf(z) 2 agéf),...,aafT(f) (17)

exists. Thenf is convex iffdomf is convex andvx,y € domf

F) = f@)+ V@) (y-a). (18)
The r.h.s. of (18) is the first order taylor approximationfofy) in the vicinity of z. According to (18),
the first order taylor approximation in case whefds convex, is a global underestimate f6f This is

a very important property used in algorithm designs andgperince analysis. The inequality in (18) is

illustrated in Fig. 2.
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F)+V1) (rx)

Fig. 2. If f is convex and differentiable, thefi(y) > f (z) + Vf (z)T (y — «) for all 2,y € dom .

C. Second order condition

Let f : R — R denote a twice differentiable function, i.€om f is open andvz € domf the Hessian

matrix, V2 f (z) € S™,
2
V2 (a),, 2 2L (19)

bJ 81181] ’

exists. Thenf is convex iff domf is convex andv?f (z) = 0, Vo € domf.

Examples for the use of the second order condition:

o Quadratic function: Leff : R™ — R, such that

1
f(z) = amTPac +q'z+r, (20)
g, € R" and P € S™. Since
Vf(z)=Px+q, (21)
then
V2 f (x)=P. (22)

Therefore, if P = 0 then f is convex.

« Least-squares objective function: LEt R™ — R, such that
f(2) = || Az = b3, (23)
x €R™ be R™and A € R™*", Since

Vf(z) =2AT (Az —b), (24)



1-6

then

V2f (x) = 24T A. (25)

Therefore,f is convex for any4d € R™*",

« Quadratic-over-linear function: Let : R> — R, such that

2

flay) == (26)
)
Then
Vi == ¢ T (27)
Y —r %

Therefore,f is convex for anyy > 0.

V. OPERATIONS THAT PRESERVE CONVEXITY

« Positive scaling

e Sum

« Composition with affine functions
o Pointwise maximum

« Pointwise supremum

« Composition with scalar functions
« Composition with vector functions
o Minimization

« Perspective

A. Positive scaling

Let f: R™ — R be convex, then\f is convexv\ > 0.

B. Sum

Let f1, fo : R™ — R be convex, therf; + f> is convex. This property can be extended to infinite sums

and integrals.

C. Composition with affine function

Let f : R™ — R be convex, and leg : R™ — R be affine, i.eg () = Az + b, wherexz € R™, b € R"

and A € R"*™, The composition

(fog)(z)=f(Az+D) (28)
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is convex. For example, using the sum, and composition wifiheafunction properties, along with the

fact that— log (+) is convex, it is concluded that
fx)= —zn:log(b,- —aiTm), domf = {x calr < bi}, t1=1,...,n, (29)
i=1
is convex. In addition, convexity of the norm implies tha¢mhany norm of affine function is convex, i.e.
f(x) = || Az +b]| (30)

iS convex.

D. Pointwise maximum

Let f1,..., fm : R* — R be convex. Then

P(e)= max {fi (@) fo (@)} domF = ) domf (31)

i=1,...,
=1
iS convex.

Examples:
« Piecewise-linear fucntionf (z) = max (af'z + b;) is convex.
i=1,....m

o Sum ofr largest components of a vectore R™:
f (x) = + Z[2] +...+ Z[r] (32)
is convex, wherer(; is thei-th largest component of. Proof:

fr)= max {x;, +... 42}, (33)

'L.17~~~17;7‘EI7‘

wherel, £ {(i1,...,ip) 1i1 < ...,ip4; € {1,...,m},i=1,...,n}.

E. Pointwise supremum

Let A CRP and f : R” x R? — R. Let f (z,y) be convex inz for eachy € A. Then the supremum

function over the se# is convex, i.e.

g(z) = sup f (z,y) (34)
yeA
is convex.
Examples:
« Support function of a set":
Sc (z) = supy’ z. (35)
yeC

« Distance to farthest point in a sét

f (@) =sup|lz—yl. (36)
yeC
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o Maximum eigenvalue of symmetric matrix: fof € S™,

Amax (X) = sup ' Xy. (37)
lyll,=1

F. Composition with scalar functions

Letg: R® - R, h: R — R with domg = R™ anddomh = R. Then
f(@)=h(g(x)) (38)

is convex if

1) ¢ is convex,h is nondecreasing and convex. For exampla (g (x)) is convex ifg is convex.

2) g is concavef is nonincreasing and convex. For exam% is convex ifg is concave and positive.

G. Composition with vector functions

Let g: R®™ — RP, h: RP — R with domg = R™ anddomh = RP. Then

f(x)=h(g(x)) =h(g(x),.. . 9 ()) (39)

is convex if

m

1) Eachg; is convex,h is nondecreasing and convex in each argument. For examplexp (g; (z))
i=1
is convex ifg;, i = 1,...,m, are convex.

m
2) Eachy; is concavep is nonincreasing and convex in each argument. For examplg, log g; (x)
=1
is convex ifg;, : = 1,...,m, are concave and positive.

H. Minimization

Let C C R™ x RP be a nonempty convex set,: R” x RP — R be convex (in(z,y € R™ x RP)). Then
= inf 40
g(z) = inf f(2,y) (40)

is convex inz. For example, for a nonempty convex s€t,C R™, sincef (z,y) = ||z — y|| is convex in

(z,y) then

inf ||z — 41
inf o —y] (41)

is convex inx.
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I. Perspective

The perspective of a functiofi: R™ — R is the functiong : R™ x R — R, such that
a4r (% — N
g(m,t)—tf(t),domg—{(x,t).tedomf,t>0}. (42)

Hence,g is convex in(z,t) if f is convex.

Example 2Since f (z) = 2Tz is convex, thery (z,t) = é is convex in(z,t).

VI. CONVEXITY AND INFORMATION MEASURES

In this section, the properties of convex functions, shotvova are used for proving convexity/convavity

of information measures such as entropy and relative eyitrop

A. Concavity of entropy of discrete random variable

Let px (x) denote probability mass functions of a discrete randomatbséeiX with alphabetY’. Let

d;f > 0. Hence by the second-order condition for

[ (px (z)) = px (z)logpx (z). Sincepx > 0, then 5 r
verification of convexity it is implied thaf (px) is convex inpx. Now, since convexity is sum invariant,
then the negative entropy; H (p) = 3 px (2)log px (), is convex inpx. Thus, H (px) is concave in

pPx-

B. Convexity of relative entropy

Letpx (), ¢x (z) denote probability mass functions of a random variableith alphabett’. The neg-
ative logarithm f (px (z)) = —log px (x) is convex. Hence, the perspective functipfvx (z), gx (x)) =

gx (z) log Z);—Eﬁ; is convex in(p, ¢). Since convexity is sum invariant, then the relative entréj(q||p) =

> gx (z)log ;18 is convex in(p, q).
reX
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