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I. NOTATION

• R: The set of real numbers.

• R+: The set of nonnegative real numbers.

• R++: The set of positive real numbers.

• S
k: The set of symmetrick × k matrices.

• S
k
+: The set of symmetric positive semi-definitek × k matrices.

• S
k
++: The set of symmetric positive definitek × k matrices.

• domf : The domain of the functionf . Let f : R
n → R

m, thendomf , {x ∈ R
n : f (x) exists}. For

example,dom log = R++

II. D EFINITIONS

Definition 1 (Convex set.)A set C ∈ R
n is convex if the line segment between any two points inC lies

in C, i.e. ∀x1, x2 ∈ C and any0 ≤ θ ≤ 1 we haveθx1 + (1 − θ) x2 ∈ C.

Definition 2 (Convex function.)f : R
n → R is convex ifdomf is a convex set and if∀x, y ∈ domf and

any 0 ≤ θ ≤ 1

f (θx + (1 − θ) y) ≤ θf (x) + (1 − θ) f (y) . (1)

Geometrically, this means that the line segment between(x, f (x)) and (y, f (y)) lies above the graph of

f . An illustration of convex function is given in Fig. 1.

Definition 3 (Strictly convex function.)f : R
n → R is strictly convex if domf is a convex set and if

∀x, y ∈ domf and any0 ≤ θ ≤ 1

f (θx + (1 − θ) y) < θf (x) + (1 − θ) f (y) . (2)

Definition 4 (Concave function.)f : R
n → R is concave if−f is convex.

Definition 5 (Strictly concave function.)f : R
n → R is strictly concave if−f is strictly convex.

Definition 6 (Sublevel set.)Let f : R
n → R. Theα-sublevel set off is defined as

Cα , {x ∈ domf : f (x) ≤ α} . (3)
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(x,f(x))

(y,f(y))

Fig. 1. Graph of a convex function. The chord between any two points on the graph lies above the graph.

Sublevel sets of convex functions are convex (converse is false).

Definition 7 (Epigraph.)Let f : R
n → R. The epigraph off is defined as

epif ,
{

(x, t) ∈ R
n+1 : x ∈ dom, f (x) ≤ t

}

. (4)

The functionf is convex iff epif is a convex set.

Definition 8 (Jensen’s inequality.)Let f : R
n → R, and letz ∈ R

n denote a random variable, such that

Pr {z ∈ domf} = 1. If f is convex, then

f (Ez) ≤ Ef (z) . (5)

Proof: Convexity off implies that it is the upper envelope of the set of linear functions lying below

it, i.e.,

f (z) = sup
L∈L

L (z) , (6)

where

L , {L : L (z) = az + b, ∀∞ < z < ∞} . (7)

Thus,

E [f (z)] = E

[

sup
L∈L

L (z)

]

. (8)

Since sup
L∈L

L (z) ≥ L (z), then by monotonicity of the expectation operator,

E

[

sup
L∈L

L (z)

]

≥ E [L (z)] . (9)

Taking supremum on both sides of (9) w.r.t.L (z) implies that

E

[

sup
L∈L

L (z)

]

≥ sup
L∈L

E [L (z)] . (10)
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Therefore, according to (8) and (10)

E [f (z)] ≥ sup
L∈L

E [L (z)] (11)

= sup
L∈L

L (E [z]) (12)

= f (E [z]) , (13)

where the equalities in (12) and (12) stem from the linearityof L () and (6), respectively.

The basic inequality in (1) is a special case of (5), wheneverz ∈ {x, y}, Pr (z = x) = θ and

Pr (z = y) = 1 − θ.

III. E XAMPLES

A. Examples onR

• Convex functions:

– Affine: f (x) = ax + b on R, for anya, b ∈ R.

– Exponential:f (x) = exp (ax) on R, for anya ∈ R.

– Powers:f (x) = xα on R++, for α ≥ 1 or α ≤ 0.

– Powers of absolute values:|x|p on R, for p ≥ 1.

– Negative entropy:x log x on R++.

• Cocave functions

– Affine: f (x) = ax + b on R, for anya, b ∈ R.

– Powers:f (x) = xα on R++, for 0 ≤ α ≤ 1.

– Logarithm: log x on R++.

B. Examples onRn and R
m×n

Affine functions are both concave and convex. All norms are convex.

• Examples onRn

– Affine: f (x) = aT x + b, wherea, b, x ∈ R
n.

– Norms:

∗ lp norm: ‖x‖p =

(

p
∑

n=1
|xi|

p

)1/p

, for p ≥ 1.

∗ l∞ norm ‖x‖∞ = max
i

|xi|.

• Examples onRm×n

– Affine function: f (X) = tr
[

AT X
]

+ b =
m
∑

i=1

n
∑

i=1

Ai,jXi,j + b, wheretr [·] denotes the trace

operator,A, X ∈ R
m×n andb ∈ R.

– Spectral norm:f (X) = ‖X‖2 =
(

λmax

(

XT X
))1/2

, whereλmax (A) is the maximum eigenvalue

of A, andX ∈ R
m×n.
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IV. V ERIFYING CONVEXITY OF A FUNCTION

Convexity of a function can be verified via the following manners:

• Using the definition of convex function (refer to definition 2).

• Applying some special criteria.

– Restriction of a convex function to a line.

– First order conditions.

– Second order conditions.

• Showing that the function under inspection is obtained through operations that preserve convexity.

A. Restriction of a convex function to a line

The functionf : R
n → R is convex iff the functiong : R → R,

g (t) = f (x + tv) , domg = {t ∈ R : x + tv ∈ domf} , (14)

is convex int for anyx ∈ domf andv ∈ R
n. Therefore, checking convexity of multivariate functionscan

be carried out by checking convexity of univariate functions.

Example 1Let f : S
n → R with

f (X) = − log det X, domf = S
n
++. (15)

Then

g (t) = − log det (X + tV ) = − log detX − log det
(

I + tX−1/2V X−1/2
)

(16)

= − log detX −

n
∑

i=1

log (1 + tλi) ,

whereI is the identity matrix andλi, i = 1, . . . , n are the eigenvalues of the matrixX−1/2V X−1/2. Since

g is convex int for any choice ofV and anyX ∈ domf, thenf is convex.

B. First order condition

Let f : R
n → R denote a differentiable function, i.e.domf is open and∀x ∈ domf the gradient vector

∇f (x) ,

[

∂f (x)

∂x1
, . . . ,

∂f (x)

∂xn

]T

(17)

exists. Thenf is convex iff domf is convex and∀x, y ∈ domf

f (y) ≥ f (x) + ∇f (x)
T

(y − x) . (18)

The r.h.s. of (18) is the first order taylor approximation off (y) in the vicinity of x. According to (18),

the first order taylor approximation in case wheref is convex, is a global underestimate off . This is

a very important property used in algorithm designs and performance analysis. The inequality in (18) is

illustrated in Fig. 2.
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Fig. 2. If f is convex and differentiable, thenf (y) ≥ f (x) + ∇f (x)T (y − x) for all x, y ∈ domf .

C. Second order condition

Let f : R
n → R denote a twice differentiable function, i.e.domf is open and∀x ∈ domf the Hessian

matrix, ∇2f (x) ∈ S
n,

∇2f (x)i,j ,
∂2f (x)

∂xi∂xj
, (19)

exists. Thenf is convex iff domf is convex and∇2f (x) < 0, ∀x ∈ domf .

Examples for the use of the second order condition:

• Quadratic function: Letf : R
n → R, such that

f (x) =
1

2
xT Px + qT x + r, (20)

q, r ∈ R
n andP ∈ S

n. Since

∇f (x) = Px + q, (21)

then

∇2f (x) = P. (22)

Therefore, ifP < 0 thenf is convex.

• Least-squares objective function: Letf : R
n → R, such that

f (x) = ‖Ax − b‖
2
2 , (23)

x ∈ R
n, b ∈ R

m andA ∈ R
m×n. Since

∇f (x) = 2AT (Ax − b) , (24)
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then

∇2f (x) = 2AT A. (25)

Therefore,f is convex for anyA ∈ R
m×n.

• Quadratic-over-linear function: Letf : R
2 → R, such that

f (x, y) =
x2

y
. (26)

Then

∇2f (x, y) =
2

y2





y −x

−x x2

y



. (27)

Therefore,f is convex for anyy > 0.

V. OPERATIONS THAT PRESERVE CONVEXITY

• Positive scaling

• Sum

• Composition with affine functions

• Pointwise maximum

• Pointwise supremum

• Composition with scalar functions

• Composition with vector functions

• Minimization

• Perspective

A. Positive scaling

Let f : R
n → R be convex, thenλf is convex∀λ > 0.

B. Sum

Let f1, f2 : R
n → R be convex, thenf1 + f2 is convex. This property can be extended to infinite sums

and integrals.

C. Composition with affine function

Let f : R
n → R be convex, and letg : R

m → R be affine, i.e.g (x) = Ax + b, wherex ∈ R
m, b ∈ R

n

andA ∈ R
n×m. The composition

(f ◦ g) (x) = f (Ax + b) (28)
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is convex. For example, using the sum, and composition with affine function properties, along with the

fact that− log (·) is convex, it is concluded that

f (x) = −

n
∑

i=1

log
(

bi − aT
i x

)

, domf =
{

x : aT
i x < bi

}

, i = 1, . . . , n, (29)

is convex. In addition, convexity of the norm implies that then any norm of affine function is convex, i.e.

f (x) = ‖Ax + b‖ (30)

is convex.

D. Pointwise maximum

Let f1, . . . , fm : R
n → R be convex. Then

F (x) = max
i=1,...,m

{f1 (x) , . . . , fm (x)} , domF =

m
⋂

i=1

domfi, (31)

is convex.

Examples:

• Piecewise-linear fucntion:f (x) = max
i=1,...,m

(

aT
i x + bi

)

is convex.

• Sum ofr largest components of a vectorx ∈ R
n:

f (x) = x[1] + x[2] + . . . + x[r] (32)

is convex, wherex[i] is the i-th largest component ofx. Proof:

f (x) = max
i1,...,ir∈Ir

{xi1 + . . . + xir
} , (33)

whereIr , {(i1, . . . , ir) : i1 < . . . , ir, ij ∈ {1, . . . , m} , j = 1, . . . , n}.

E. Pointwise supremum

Let A ⊆ R
p andf : R

n × R
p → R. Let f (x, y) be convex inx for eachy ∈ A. Then the supremum

function over the setA is convex, i.e.

g (x) = sup
y∈A

f (x, y) (34)

is convex.

Examples:

• Support function of a setC:

SC (x) = sup
y∈C

yT x. (35)

• Distance to farthest point in a setC:

f (x) = sup
y∈C

‖x − y‖ . (36)
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• Maximum eigenvalue of symmetric matrix: forX ∈ S
n,

λmax (X) = sup
‖y‖

2
=1

yT Xy. (37)

F. Composition with scalar functions

Let g : R
n → R, h : R → R with domg = R

n anddomh = R. Then

f (x) = h (g (x)) (38)

is convex if

1) g is convex,h is nondecreasing and convex. For example,exp (g (x)) is convex ifg is convex.

2) g is concave,h is nonincreasing and convex. For example,1
g(x) is convex ifg is concave and positive.

G. Composition with vector functions

Let g : R
n → R

p, h : R
p → R with domg = R

n anddomh = R
p. Then

f (x) = h (g (x)) = h (g1 (x) , . . . , gp (x)) (39)

is convex if

1) Eachgi is convex,h is nondecreasing and convex in each argument. For example,
m
∑

i=1

exp (gi (x))

is convex ifgi, i = 1, . . . , m, are convex.

2) Eachgi is concave,h is nonincreasing and convex in each argument. For example,−
m
∑

i=1

log gi (x)

is convex ifgi, i = 1, . . . , m, are concave and positive.

H. Minimization

Let C ⊆ R
n ×R

p be a nonempty convex set,f : R
n ×R

p → R be convex (in(x, y ∈ R
n × R

p)). Then

g (x) = inf
y∈C

f (x, y) (40)

is convex inx. For example, for a nonempty convex set,C ⊂ R
n, sincef (x, y) = ‖x − y‖ is convex in

(x, y) then

inf
y∈C

‖x − y‖ (41)

is convex inx.
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I. Perspective

The perspective of a functionf : R
n → R is the functiong : R

n × R → R, such that

g (x, t) ,tf
(x

t

)

, domg =
{

(x, t) :
x

t
∈ domf, t > 0

}

. (42)

Hence,g is convex in(x, t) if f is convex.

Example 2Sincef (x) = xT x is convex, theng (x, t) = xT x
t is convex in(x, t).

VI. CONVEXITY AND INFORMATION MEASURES

In this section, the properties of convex functions, shown above are used for proving convexity/convavity

of information measures such as entropy and relative entropy:

A. Concavity of entropy of discrete random variable

Let pX (x) denote probability mass functions of a discrete random variable X with alphabetX . Let

f (pX (x)) = pX (x) log pX (x). SincepX ≥ 0, then d2f
dp2

X

≥ 0. Hence by the second-order condition for

verification of convexity it is implied thatf (pX) is convex inpX . Now, since convexity is sum invariant,

then the negative entropy,−H (p) ,
∑

x
pX (x) log pX (x), is convex inpX . Thus,H (pX) is concave in

pX .

B. Convexity of relative entropy

Let pX (x) , qX (x) denote probability mass functions of a random variableX with alphabetX . The neg-

ative logarithm,f (pX (x)) = − log pX (x) is convex. Hence, the perspective functiong (pX (x) , qX (x)) =

qX (x) log qX (x)
pX (x) is convex in(p, q). Since convexity is sum invariant, then the relative entropy D (q||p) ,

∑

x∈X

qX (x) log qX (x)
pX (x) is convex in(p, q).
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