Mathematical methods in communication

July 5th, 2009

Appendix: Convex functions

Lecturer: Haim Permuter

Scribe: Koby Todros and Assaf Levanon

I. NOTATION

- \mathbb{R} : The set of real numbers.
- \mathbb{R}_+ : The set of nonnegative real numbers.
- \mathbb{R}_{++} : The set of positive real numbers.
- \mathbb{S}^k : The set of symmetric $k \times k$ matrices.
- \mathbb{S}_{+}^{k} : The set of symmetric positive semi-definite $k \times k$ matrices.
- \mathbb{S}_{++}^k : The set of symmetric positive definite $k \times k$ matrices.
- dom f: The domain of the function f. Let $f: \mathbb{R}^n \to \mathbb{R}^m$, then dom $f \triangleq \{x \in \mathbb{R}^n : f(x) \text{ exists}\}$. For example, dom $\log = \mathbb{R}_{++}$

II. DEFINITIONS

Definition 1 (Convex set.) A set $C \in \mathbb{R}^n$ is convex if the line segment between any two points in C lies in C, i.e. $\forall x_1, x_2 \in C$ and any $0 \le \theta \le 1$ we have $\theta x_1 + (1 - \theta) x_2 \in C$.

Definition 2 (Convex function.) $f: \mathbb{R}^n \to \mathbb{R}$ is convex if $\mathrm{dom} f$ is a convex set and if $\forall x,y \in \mathrm{dom} f$ and any $0 \le \theta \le 1$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y). \tag{1}$$

Geometrically, this means that the line segment between (x, f(x)) and (y, f(y)) lies above the graph of f. An illustration of convex function is given in Fig. 1.

Definition 3 (Strictly convex function.) $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex if $\mathrm{dom} f$ is a convex set and if $\forall x,y \in \mathrm{dom} f$ and any $0 \le \theta \le 1$

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y). \tag{2}$$

Definition 4 (Concave function.) $f: \mathbb{R}^n \to \mathbb{R}$ is concave if -f is convex.

Definition 5 (Strictly concave function.) $f: \mathbb{R}^n \to \mathbb{R}$ is strictly concave if -f is strictly convex.

Definition 6 (Sublevel set.) Let $f: \mathbb{R}^n \to \mathbb{R}$. The α -sublevel set of f is defined as

$$C_{\alpha} \triangleq \{ x \in \text{dom} f : f(x) \le \alpha \}. \tag{3}$$

Fig. 1. Graph of a convex function. The chord between any two points on the graph lies above the graph.

Sublevel sets of convex functions are convex (converse is false).

Definition 7 (Epigraph.) Let $f: \mathbb{R}^n \to \mathbb{R}$. The epigraph of f is defined as

$$\operatorname{epi} f \triangleq \left\{ (x, t) \in \mathbb{R}^{n+1} : x \in \operatorname{dom}, \ f(x) \le t \right\}. \tag{4}$$

The function f is convex iff epif is a convex set.

Definition 8 (Jensen's inequality.) Let $f: \mathbb{R}^n \to \mathbb{R}$, and let $z \in \mathbb{R}^n$ denote a random variable, such that $\Pr\{z \in \text{dom} f\} = 1$. If f is convex, then

$$f\left(\mathbb{E}z\right) \le \mathbb{E}f\left(z\right). \tag{5}$$

Proof: Convexity of f implies that it is the upper envelope of the set of linear functions lying below it, i.e.,

$$f(z) = \sup_{L \in \mathcal{L}} L(z), \tag{6}$$

where

$$\mathcal{L} \triangleq \{ L : L(z) = az + b, \ \forall \infty < z < \infty \}. \tag{7}$$

Thus,

$$\mathbb{E}\left[f\left(z\right)\right] = \mathbb{E}\left[\sup_{L \in \mathcal{L}} L\left(z\right)\right]. \tag{8}$$

Since $\sup_{L\in\mathcal{L}}L\left(z\right)\geq L\left(z\right)$, then by monotonicity of the expectation operator,

$$\mathbb{E}\left[\sup_{L\in\mathcal{L}}L\left(z\right)\right]\geq\mathbb{E}\left[L\left(z\right)\right].\tag{9}$$

Taking supremum on both sides of (9) w.r.t. L(z) implies that

$$\mathbb{E}\left[\sup_{L\in\mathcal{L}}L\left(z\right)\right]\geq\sup_{L\in\mathcal{L}}\mathbb{E}\left[L\left(z\right)\right].\tag{10}$$

Therefore, according to (8) and (10)

$$\mathbb{E}\left[f\left(z\right)\right] \geq \sup_{L \in \mathcal{L}} \mathbb{E}\left[L\left(z\right)\right]$$

$$= \sup_{L \in \mathcal{L}} L\left(\mathbb{E}\left[z\right]\right)$$
(11)

$$= \sup_{L \in \mathcal{C}} L\left(\mathbb{E}\left[z\right]\right) \tag{12}$$

$$= f(\mathbb{E}[z]), \tag{13}$$

where the equalities in (12) and (12) stem from the linearity of L() and (6), respectively.

The basic inequality in (1) is a special case of (5), whenever $z \in \{x,y\}$, $\Pr(z=x) = \theta$ and $\Pr\left(z=y\right)=1-\theta.$

III. EXAMPLES

A. Examples on \mathbb{R}

- Convex functions:
 - Affine: f(x) = ax + b on \mathbb{R} , for any $a, b \in \mathbb{R}$.
 - Exponential: $f(x) = \exp(ax)$ on \mathbb{R} , for any $a \in \mathbb{R}$.
 - Powers: $f(x) = x^{\alpha}$ on \mathbb{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$.
 - Powers of absolute values: $|x|^p$ on \mathbb{R} , for p > 1.
 - Negative entropy: $x \log x$ on \mathbb{R}_{++} .
- Cocave functions
 - Affine: f(x) = ax + b on \mathbb{R} , for any $a, b \in \mathbb{R}$.
 - Powers: $f(x) = x^{\alpha}$ on \mathbb{R}_{++} , for $0 \le \alpha \le 1$.
 - Logarithm: $\log x$ on \mathbb{R}_{++} .

B. Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

Affine functions are both concave and convex. All norms are convex.

- Examples on \mathbb{R}^n
 - Affine: $f(x) = a^T x + b$, where $a, b, x \in \mathbb{R}^n$.
 - - $\begin{array}{l} * \ l_p \ \text{norm:} \ \left\|x\right\|_p = \left(\sum\limits_{n=1}^p \left|x_i\right|^p\right)^{1/p}, \ \text{for} \ p \geq 1. \\ * \ l_\infty \ \text{norm} \ \left\|x\right\|_\infty = \max\limits_i \left|x_i\right|. \end{array}$
- Examples on $\mathbb{R}^{m \times n}$
 - Affine function: $f(X) = \operatorname{tr} \left[A^T X \right] + b = \sum_{i=1}^m \sum_{j=1}^n A_{i,j} X_{i,j} + b$, where $\operatorname{tr} \left[\cdot \right]$ denotes the trace operator, $A, X \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}$.
 - Spectral norm: $f\left(X\right) = \left\|X\right\|_2 = \left(\lambda_{\max}\left(X^TX\right)\right)^{1/2}$, where $\lambda_{\max}\left(A\right)$ is the maximum eigenvalue of A, and $X \in \mathbb{R}^{m \times n}$.

IV. VERIFYING CONVEXITY OF A FUNCTION

Convexity of a function can be verified via the following manners:

- Using the definition of convex function (refer to definition 2).
- Applying some special criteria.
 - Restriction of a convex function to a line.
 - First order conditions.
 - Second order conditions.
- Showing that the function under inspection is obtained through operations that preserve convexity.

A. Restriction of a convex function to a line

The function $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff the function $g: \mathbb{R} \to \mathbb{R}$,

$$g(t) = f(x+tv), \operatorname{dom} g = \{t \in \mathbb{R} : x+tv \in \operatorname{dom} f\},$$
(14)

is convex in t for any $x \in \text{dom} f$ and $v \in \mathbb{R}^n$. Therefore, checking convexity of multivariate functions can be carried out by checking convexity of univariate functions.

Example 1 Let $f: \mathbb{S}^n \to \mathbb{R}$ with

$$f(X) = -\log \det X, \ \operatorname{dom} f = \mathbb{S}_{++}^{n}. \tag{15}$$

Then

$$g(t) = -\log \det (X + tV) = -\log \det X - \log \det \left(I + tX^{-1/2}VX^{-1/2}\right)$$

$$= -\log \det X - \sum_{i=1}^{n} \log \left(1 + t\lambda_{i}\right),$$
(16)

where I is the identity matrix and λ_i , $i=1,\ldots,n$ are the eigenvalues of the matrix $X^{-1/2}VX^{-1/2}$. Since g is convex in t for any choice of V and any $X \in \text{domf}$, then f is convex.

B. First order condition

Let $f: \mathbb{R}^n \to \mathbb{R}$ denote a differentiable function, i.e. dom f is open and $\forall x \in \text{dom } f$ the gradient vector

$$\nabla f(x) \triangleq \left[\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right]^T$$
 (17)

exists. Then f is convex iff dom f is convex and $\forall x, y \in \text{dom } f$

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x). \tag{18}$$

The r.h.s. of (18) is the first order taylor approximation of f(y) in the vicinity of x. According to (18), the first order taylor approximation in case where f is convex, is a global underestimate of f. This is a very important property used in algorithm designs and performance analysis. The inequality in (18) is illustrated in Fig. 2.

Fig. 2. If f is convex and differentiable, then $f\left(y\right)\geq f\left(x\right)+\nabla f\left(x\right)^{T}\left(y-x\right)$ for all $x,y\in\mathrm{dom}f$.

C. Second order condition

Let $f: \mathbb{R}^n \to \mathbb{R}$ denote a twice differentiable function, i.e. $\mathrm{dom} f$ is open and $\forall x \in \mathrm{dom} f$ the Hessian matrix, $\nabla^2 f(x) \in \mathbb{S}^n$,

$$\nabla^{2} f\left(x\right)_{i,j} \triangleq \frac{\partial^{2} f\left(x\right)}{\partial x_{i} \partial x_{j}},\tag{19}$$

exists. Then f is convex iff dom f is convex and $\nabla^{2} f(x) \geq 0$, $\forall x \in dom f$.

Examples for the use of the second order condition:

• Quadratic function: Let $f: \mathbb{R}^n \to \mathbb{R}$, such that

$$f(x) = \frac{1}{2}x^{T}Px + q^{T}x + r,$$
(20)

 $q, r \in \mathbb{R}^n$ and $P \in \mathbb{S}^n$. Since

$$\nabla f(x) = Px + q,\tag{21}$$

then

$$\nabla^2 f(x) = P. \tag{22}$$

Therefore, if $P \geq 0$ then f is convex.

• Least-squares objective function: Let $f: \mathbb{R}^n \to \mathbb{R}$, such that

$$f(x) = ||Ax - b||_{2}^{2},$$
 (23)

 $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$. Since

$$\nabla f(x) = 2A^T (Ax - b), \qquad (24)$$

then

$$\nabla^2 f(x) = 2A^T A. \tag{25}$$

Therefore, f is convex for any $A \in \mathbb{R}^{m \times n}$.

• Quadratic-over-linear function: Let $f: \mathbb{R}^2 \to \mathbb{R}$, such that

$$f(x,y) = \frac{x^2}{y}. (26)$$

Then

$$\nabla^2 f(x,y) = \frac{2}{y^2} \begin{bmatrix} y & -x \\ -x & \frac{x^2}{y} \end{bmatrix}. \tag{27}$$

Therefore, f is convex for any y > 0.

V. OPERATIONS THAT PRESERVE CONVEXITY

- Positive scaling
- Sum
- Composition with affine functions
- Pointwise maximum
- Pointwise supremum
- Composition with scalar functions
- Composition with vector functions
- Minimization
- Perspective

A. Positive scaling

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex, then λf is convex $\forall \lambda > 0$.

B. Sum

Let $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ be convex, then $f_1 + f_2$ is convex. This property can be extended to infinite sums and integrals.

C. Composition with affine function

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex, and let $g: \mathbb{R}^m \to \mathbb{R}$ be affine, i.e. g(x) = Ax + b, where $x \in \mathbb{R}^m$, $b \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times m}$. The composition

$$(f \circ g)(x) = f(Ax + b) \tag{28}$$

is convex. For example, using the sum, and composition with affine function properties, along with the fact that $-\log(\cdot)$ is convex, it is concluded that

$$f(x) = -\sum_{i=1}^{n} \log (b_i - a_i^T x), \text{ dom} f = \{x : a_i^T x < b_i\}, i = 1, \dots, n,$$
(29)

is convex. In addition, convexity of the norm implies that then any norm of affine function is convex, i.e.

$$f(x) = ||Ax + b|| (30)$$

is convex.

D. Pointwise maximum

Let $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ be convex. Then

$$F(x) = \max_{i=1,\dots,m} \{ f_1(x), \dots, f_m(x) \}, \ \text{dom} F = \bigcap_{i=1}^m \text{dom} f_i,$$
 (31)

is convex.

Examples:

- Piecewise-linear fucntion: $f\left(x\right) = \max_{i=1,\dots,m}\left(a_i^Tx + b_i\right)$ is convex.
- Sum of r largest components of a vector $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \ldots + x_{[r]}$$
(32)

is convex, where $x_{[i]}$ is the i-th largest component of x. Proof:

$$f(x) = \max_{i_1, \dots, i_r \in I_r} \left\{ x_{i_1} + \dots + x_{i_r} \right\},\tag{33}$$

where $I_r \triangleq \{(i_1, \dots, i_r) : i_1 < \dots, i_r, i_j \in \{1, \dots, m\}, j = 1, \dots, n\}.$

E. Pointwise supremum

Let $\mathcal{A} \subseteq \mathbb{R}^p$ and $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$. Let f(x,y) be convex in x for each $y \in \mathcal{A}$. Then the supremum function over the set \mathcal{A} is convex, i.e.

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y) \tag{34}$$

is convex.

Examples:

• Support function of a set C:

$$S_C(x) = \sup_{y \in C} y^T x. \tag{35}$$

• Distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||x - y||.$$
 (36)

• Maximum eigenvalue of symmetric matrix: for $X \in \mathbb{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y. \tag{37}$$

F. Composition with scalar functions

Let $g: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$ with $\mathrm{dom} g = \mathbb{R}^n$ and $\mathrm{dom} h = \mathbb{R}$. Then

$$f(x) = h(g(x)) \tag{38}$$

is convex if

- 1) g is convex, h is nondecreasing and convex. For example, $\exp(g(x))$ is convex if g is convex.
- 2) g is concave, h is nonincreasing and convex. For example, $\frac{1}{g(x)}$ is convex if g is concave and positive.

G. Composition with vector functions

Let $g: \mathbb{R}^n \to \mathbb{R}^p$, $h: \mathbb{R}^p \to \mathbb{R}$ with $\mathrm{dom} g = \mathbb{R}^n$ and $\mathrm{dom} h = \mathbb{R}^p$. Then

$$f(x) = h(g(x)) = h(g_1(x), \dots, g_p(x))$$
 (39)

is convex if

- 1) Each g_i is convex, h is nondecreasing and convex in each argument. For example, $\sum_{i=1}^{m} \exp(g_i(x))$ is convex if g_i , i = 1, ..., m, are convex.
- 2) Each g_i is concave, h is nonincreasing and convex in each argument. For example, $-\sum_{i=1}^{m} \log g_i(x)$ is convex if g_i , i = 1, ..., m, are concave and positive.

H. Minimization

Let $C \subseteq \mathbb{R}^n \times \mathbb{R}^p$ be a nonempty convex set, $f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$ be convex (in $(x, y \in \mathbb{R}^n \times \mathbb{R}^p)$). Then

$$g(x) = \inf_{y \in C} f(x, y) \tag{40}$$

is convex in x. For example, for a nonempty convex set, $C \subset \mathbb{R}^n$, since $f(x,y) = \|x-y\|$ is convex in (x,y) then

$$\inf_{y \in C} \|x - y\| \tag{41}$$

is convex in x.

I. Perspective

The perspective of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the function $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$, such that

$$g(x,t) \triangleq tf\left(\frac{x}{t}\right), \text{ dom } g = \left\{(x,t) : \frac{x}{t} \in \text{dom } f, \ t > 0\right\}.$$
 (42)

Hence, g is convex in (x,t) if f is convex.

Example 2 Since $f\left(x\right)=x^{T}x$ is convex, then $g\left(x,t\right)=\frac{x^{T}x}{t}$ is convex in (x,t).

VI. CONVEXITY AND INFORMATION MEASURES

In this section, the properties of convex functions, shown above are used for proving convexity/convavity of information measures such as entropy and relative entropy:

A. Concavity of entropy of discrete random variable

Let $p_X(x)$ denote probability mass functions of a discrete random variable X with alphabet \mathcal{X} . Let $f(p_X(x)) = p_X(x) \log p_X(x)$. Since $p_X \geq 0$, then $\frac{d^2 f}{dp_X^2} \geq 0$. Hence by the second-order condition for verification of convexity it is implied that $f(p_X)$ is convex in p_X . Now, since convexity is sum invariant, then the negative entropy, $-H(p) \triangleq \sum_x p_X(x) \log p_X(x)$, is convex in p_X . Thus, $H(p_X)$ is concave in p_X .

B. Convexity of relative entropy

Let $p_X\left(x\right), q_X\left(x\right)$ denote probability mass functions of a random variable X with alphabet \mathcal{X} . The negative logarithm, $f\left(p_X\left(x\right)\right) = -\log p_X\left(x\right)$ is convex. Hence, the perspective function $g\left(p_X\left(x\right), q_X\left(x\right)\right) = q_X\left(x\right)\log\frac{q_X\left(x\right)}{p_X\left(x\right)}$ is convex in (p,q). Since convexity is sum invariant, then the relative entropy $D\left(q||p\right) \triangleq \sum_{x \in \mathcal{X}} q_X\left(x\right)\log\frac{q_X\left(x\right)}{p_X\left(x\right)}$ is convex in (p,q).

REFERENCES

- [1] S. Boyd, Convex Optimization. Cambridge University Press , 2004.
- [2] J.M. Steele, Stochastic Calculus and Financial Applications. Springer, 2001.