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Appendix A : Introduction to Probability and stochastic peeses

Lecturer: Haim Permuter Scribe: Shai Shapira and Uri Livnat

"The probability of an event is the ratio of the number of cadavorable to it, to the number of all
cases possible when nothing leads us to expect that any otees¥ cases should occur more than any

other, which renders them, for us, equally possible.”

Pierre Simon Laplace , 1812

|. BAsIC CONCEPTS OF PROBABILITY .

Definition 1.1 (Probability Space: (92, F,P)) Probability space formalizes three interrelated ideas by

three mathematical notions.

o ) - Sample space : set of all possible outcomesf a particular random experiment.
Where, {w : w € Q}.
o F' - Collection of all events, subsets 6f

« P - Probability measure.

Properties 1.1 (Probability Space) 1) P: F — [0,1]
2) Empty Event-0. P(0) =0
3) Deterministic Event -Q. P (Q) =1
4) Disjoint Events - A\ B =)
5) Complementary Events A A¢ =0, A|JA°=Q
6) For each collection of disjoint even{si,,, A, € F} , A, A; =0 Vi #j
exists:P (U, An) = >, P (4,)

Conclusions 1.1 (Probability Space)Conclusions arising from the above properties:

1) P(A°)=1-P(A)
2) For any arbitrary eventr§ A, B} : P(A|UB)=P(4)+P(B)—P(ANB)

Example 1 (Fair coin flip) If the space concerns one flip of a fair coin, then the outcoaneseads and
tails: Q = {H,T}. F = 2% contains2? = 4 events, namely{ H} : heads,{T} : tails, {} : neither heads
nor tails, and{ H, T} : heads or tails. Sof' = {{},{H},{T},{H,T}}. There is a fifty percent chance
of tossing either heads or tail: thi3({H}) = P({T}) = 0.5. The chance of tossing neither is zero:
P({}) =0, and the chance of tossing one or the other is dhg:H,T}) = 1.
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A. Conditional Probability.

Definition 1.2 (Conditional probability) is the probability of some evert, given the occurrence of some
other eventB. Conditional probability is writterP (4|B), and is read "the probability ofl, given B”.

Intersection events and conditional events are relatedhéydrmula:

P () - U0 0
which can also be written as,
P(A|B) = Pél?l’??) (1.2)

B. Statistically Independent Probabilities.

Definition 1.3 (Statistically Independent Probabilities) EventsA and B are Statistically Independent iff:

P(A|B) =P (A), (1.3)
or similarly,
P (AﬂB) — P (A)P(B) (1.4)
which can also be written as,
P(A,B)=P(A)P(B) (1.5)

C. Bayes’ Theorem.

Bayes’ theorenrelates the conditional and marginal probabilities of ¢seh and B, where B has a
non-vanishing probability:
Theorem 1.1 (Bayes’ theorem)

P(A) P (B|4)

PAIB) = =55

(1.6)

Each term inBayes’ theorenhas a conventional name.

« P(A) is the prior probability or marginal probability of A. It isptior” in the sense that it does not
take into account any information abo#Bt

« P (A|B) is the conditional probability ofi, given B. It is also called the posterior probability because
it is derived from or depends upon the specified valuéof

o P(B|A) is the conditional probability o3 given A.

« P (B) is the prior or marginal probability oB, and acts as a normalizing constant.

Intuitively, Bayes’ theorem in this form describes the waywhich one’s beliefs about observing’

are updated by having observed'.
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Il. RANDOM VARIABLES.

A random variable is a variable whose possible values are numerical outcorhes stochastic

phenomenon. There are two types of random varialdissreteand continuous

A. Continuous Random Variables.

Definition 1.1 (Continuous Random Variables) is a functionX : 2 — R such that for any real number

a the set{w : X (w) < a} is an event. According to that definition:

1) The Cumulutive Distribution Function (CDF) of a contirusorandom variable:
F(a) =P ({X () <a})

2) The Probability Density Function (PDF) of a continuousidam variable wheref'x(a) is a
differentiable functionfx (o) = 3F6X—a“")
Note that the derivativéaFaXT(a) might not always exist, but in our course we will deal only lwit

continuous random variable that the PDF exists

Properties 1l.1 (Continuous Random Variables) 1) Its CDF is monotonically rising and right con-
tinuous.
2) Fx(o0) =1, Fx(—o0) =0
3) if ag > ay thenP (a1 < X < ag2) = Fx(a2) — Fx(a1)
Conclusions 1.1 (Continuous Random Variables) 1) Fx(8) = fio fx(a)da
2) [ fx(a)da = Fx(c0) =1
3) fx(a) =0

B. Discrete Random Variables.
Definition 11.2 (Discrete Random Variables) Let {x¢, z1, ...} be the values a discrete r.v can take with
non-zero probabilityQ; = {w: X(w) =x;},7 €N

1) A discrete r.v has a Probability Mass Function (PMF) @ast of a PDF such as for a continuous

r.v). It is a function that gives the probability that a dister r.v is exactly equal to some value.
Px(z)=P(X=2)=P({we: X(w)==z}) where  {w e Q} (1.2)

2) Since the image oX is countable, the probability mass functiéi (x) is zero for all but a countable
number of values of'. The discontinuity of probability mass functions refledts fact that the CDF
of a discrete r.v is also discontinuous. Where it is diff¢issle, the derivative is zero, just as the

probability mass function is zero at all such points.

Properties 1.2 (Discrete Random Variables) 1) Px(z) >0
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2) 2 P(X =) =3 Px(wi) =1

C. Expectation.

Definition 11.3 (Expected value of a continuous random varidle)

uw=E[X]= / afx(a)do where { / fx(a)da < oo } (1.2)
Definition 11.4 (Expected value of a discrete random variabg)
E[X] = Y 2P(X=nx) (1.3)
reX

Properties 11.3 (Expectation) 1) For a deterministic variabl&[c] = ¢
2) Linearity :E[cX +dY] =E[cX]|+ E[dY] whereX,Y are r.v andc, d are constants.
3) Monotonicity : If X andY are random variables such th&t{w) > Y (w) thenE[X] > E[Y].

D. Variance.

The varianceof a random variable is a measure of statistical dispersvaraging the squares of the

deviations of its possible values from its expected value.

Var[X] = E[(X—E[X])ﬂ (11.4)

E [X?] - (B[X])*
Definition 11.5 (Variance of a continuous random variable)

Var(X) = /OO (o — B[X])? fo(a)da (11.5)

— 00

Definition 11.6 (Variance of a discrete random variable)

Var(X) = Y (z-E[X])’P(X =2) (11.6)
reX

= > 2’P(X =) - E’[X] (1.7)
reEX

Properties 1.4 (Variance) 1) For a deterministic variablé&/ar[c] = 0
2) Var(X +a) = Var(X)
3) Var(aX) = a? Var(X)
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E. Covariance.

Definition 11.7 (Covariance) Covariance is a measure of how much two variables changé¢hige
Cov(X,Y)=E[(X — E[X]))(Y — E[Y))] (1.8)

which can also be written as,

Cov(X,Y) = E[XY] — E[X]E[Y] (11.9)

Properties 11.5 (Covariance) Let X,Y be real valued r.v and, b are constants.

1) If X andY are independent their covariance is zero and they are cafiedrrelated.

Cov(X,Y) = E[XY] — E[X]E[Y]

2) Cov(X,a) =

3) Cov(X,X) = Var(X)

4) Cov(X,Y) = Cov(Y, X)

5) Cov(aX,bY) =ab Cov(X,Y)
6) Cov(X +a,Y +b) = Cov(X,Y)

Example 2 (Fair coin flip) For a coin toss, the possible events are heads or tails. Timberuof heads

appearing in one fair coin toss can be described using th@afiolg random variable:

1, if heads
X =
0, Iif tails.
with probability mass function given by:
%, if x=0,
fx(@)=91L ifz=1,

3

0, otherwise

Let's calculate theéexpectetaiorof the r.v :

EX] = ) #;P(X =)

%

1
04+ =1
+2

N = N =
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And the Variance
2

Var(X) = Y 2?P(X =) - E*[X]
i=1
1o, 1, (1)
= . .12 (2
3 013 (2>
1
T4

IIl. RANDOM VECTORS.

Definition 11l.1 (Random Vectors) Let X, X5 ... X,, Random Variables of the same probability space.

X1
. . ) Xo
Then, Their columnwise order will compose a Random VectdRin. Hence, X = X =
Xn
A. CDF of Random Vector:
Definition 111.2 (CDF of Random Vector)
Fx(Oél,OéQ .. .Oén) = P(Xl S O[l,XQ S g, ... ,Xn S Oén) (l”l)

o if Fx(ag,an...qp) = H?:l fx, (o) then X3, X» ... X,, are statistically independent, or mutually

independent.

IV. INDEPENDENT AND IDENTICALLY -DISTRIBUTED RANDOM VARIABLES .

Definition 1V.1 (i.i.d.) A collection of random variables imdependent and identically distributed (i.i.d.)

if each random variable has the same probability distritbusis the others and all are mutually independent

V. GAUSSIAN DISTRIBUTION .
A. Gaussian Random Variable

Definition V.1 (Gaussian Random Variable) The random variableX is said to be a Gaussian random

variable (or normal random variable) if its PDF has the form :

fx(a)= \/2‘;7 T where {n=E[X], 0 =Var(X)} (V.1)

Hence, a Gaussian r.v is characterized by 2 paramet{gznsor?} and its common notation is :
X ~ N(p, 02)
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B. Gaussian Random Vector

Definition V.2 (Gaussian Random Vector) The random variable§X;} , are called Jointly Gaussian
random variables, or similarly
X =(X1,Xs... Xn)T is called Gaussian random vector if for every collection ohmandom constants

{a;};, such thaty_; , a,X; is a Gaussian random vector.

Definition V.3 (Gaussian Random Vector) An equivalent definition: A random vectdf € R™ is called
a Gaussian random vector if it is continuous with the jointFPD
1 i (x ) A (X —
foo (@)= ————¢ B[(x-m) A (X)) v2)
(2m) 2 [A]?
where

p=E[X]=[E[X1],E[X2],..., E[X,]]

A=E[(X-p)(xX-p]

Properties V.1 (Gaussian Random Vector) 1) If X is a Gaussian random vector, each of its compo-
nents is a Gaussian random variable.
2) If X is a random vector with independent components and eachsoaésiaussian r.v theX is a
Gaussian random vector.
3) Linear transformation of a Gaussian random vegfor AX + b is a Gaussian random vector.

4) The Gaussian distribution is uniquely determined by tHas2 moments:{E,A}.

VI. MMSE ESTIMATOR .
MMSE - MINIMUM MEAN SQUARE ERROR

In statistics and signal processing, BIMSE estimatordescribes the approach which minimizes the

mean square error (MSE), which is a common measure of estimjaglity.

A. MMSE Estimator.

Definition VI.1 (MMSE Estimator) Let X be an unknown random variable/vector, andfebe a known
random variable - the measurements}6f An estimatorX (Y) is any function of the measuremerits

and its MSE is given by :

MSE = E[¢2] sy x = F [(X(Y) - Xﬂ (VI.1)

XMMSE(y) — arg min gamise (v )evx (v) {MSE}  where {X(Y) = Q(Y)} (V1.2)

The MMSE estimator is then defined as the estimator achiaviimjmal MSE.
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B. Linear MMSE Estimator.

o The linear MMSE estimator is the estimator achieving mimmMSE among all estimators of the
form AY + b. If the measuremerit’ is a random vector is a matrix and kis a vector.
o If X andY are jointly Gaussian, then the MMSE estimator is linear. Aasequence, to find the

MMSE estimator, it is sufficient to find the linear MMSE estiimia

2
_ B2 _ . _
MSE=B[| o =F [(X..nea,(y) X) } (V1.3)
Xlll\r{{é\grSE(Y) = arg minX%IeIgSE(Y)EVXIinear(Y) {MSE} where {Xlinear =AY + Q} (VI4)
For theScalarcase :
5 Cov(X,Y)
Ko "(Y) = E[X] + Nar(Y) (Y - E[Y]) (V15)
The estimation error in th&calarcase :
Cov?(X,Y)
MSE = E [El?near] = Var(X) — T(l/) (VI6)
For theVectorial case :
~ MMSE _
Xinear (Y) = E[X] + AﬂAﬁ (Y — E[Y]) (VL.7)
The estimation erro€ovariancematrix for theVectorial case :
~ N T
AE = E [(K - Xlinear) (K - Xlinear) :| (VI8)
= Axx —AxvAyyAyx (V1.9)

Where,

Axy = B [(X — BIX)) (¥~ E[Y))]

Properties VI.1 (MMSE Estimator) 1) X(Y) is anunbiasedestimator ofE[X]. In other words X

and X (V) have the same expectation:
E[X] = E[X] (VI.10)

Since the expectation of the error is 0.
E[=0  where {e - (X - X)} (VI.11)

2) The estimatorX and the errok are orthogonal:
E[X-€/=0  (Orthogonality Principle) (V1.12)

This will imply that the estimatoX and the erroe areuncorrelated



