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Appendix A : Introduction to Probability and stochastic processes

Lecturer: Haim Permuter Scribe: Shai Shapira and Uri Livnat

”The probability of an event is the ratio of the number of cases favorable to it, to the number of all

cases possible when nothing leads us to expect that any one ofthese cases should occur more than any

other, which renders them, for us, equally possible.”

Pierre Simon Laplace , 1812

I. BASIC CONCEPTS OF PROBABILITY .

Definition I.1 (Probability Space: (Ω, F,P)) Probability space formalizes three interrelated ideas by

three mathematical notions.

• Ω - Sample space : set of all possible outcomesω of a particular random experiment.

Where,{ω : ω ∈ Ω}.

• F - Collection of all events, subsets ofΩ.

• P - Probability measure.

Properties I.1 (Probability Space) 1) P : F → [0, 1]

2) Empty Event - ∅. P (∅) = 0

3) Deterministic Event -Ω. P (Ω) = 1

4) Disjoint Events - A
⋂

B = ∅
5) Complementary Events -A

⋂

Ac = ∅, A
⋃

Ac = Ω

6) For each collection of disjoint events{An, An ∈ F} , Ai

⋂

Aj = ∅ ∀i 6= j

exists:P (
⋃

n An) =
∑

n P (An)

Conclusions I.1 (Probability Space)Conclusions arising from the above properties:

1) P (Ac) = 1− P (A)

2) For any arbitrary eventrs{A,B} : P (A
⋃

B) = P (A) + P (B)− P (A
⋂

B)

Example 1 (Fair coin flip) If the space concerns one flip of a fair coin, then the outcomesare heads and

tails: Ω = {H,T }. F = 2Ω contains22 = 4 events, namely,{H} : heads,{T } : tails, {} : neither heads

nor tails, and{H,T } : heads or tails. So,F = {{}, {H}, {T }, {H,T }}. There is a fifty percent chance

of tossing either heads or tail: thusP ({H}) = P ({T }) = 0.5. The chance of tossing neither is zero:

P ({}) = 0, and the chance of tossing one or the other is one:P ({H,T }) = 1.
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A. Conditional Probability.

Definition I.2 (Conditional probability) is the probability of some eventA, given the occurrence of some

other eventB. Conditional probability is writtenP (A|B), and is read ”the probability ofA, givenB”.

Intersection events and conditional events are related by the formula:

P (A|B) =
P (A

⋂

B)

P (B)
(I.1)

which can also be written as,

P (A|B) =
P (A,B)

P (B)
(I.2)

B. Statistically Independent Probabilities.

Definition I.3 (Statistically Independent Probabilities) EventsA andB are Statistically Independent iff:

P (A|B) = P (A) , (I.3)

or similarly,

P
(

A
⋂

B
)

= P (A) P (B) (I.4)

which can also be written as,

P (A,B) = P (A) P (B) (I.5)

C. Bayes’ Theorem.

Bayes’ theoremrelates the conditional and marginal probabilities of events A and B, where B has a

non-vanishing probability:

Theorem I.1 (Bayes’ theorem)

P (A|B) =
P (A) P (B|A)

P (B)
(I.6)

Each term inBayes’ theoremhas a conventional name.

• P (A) is the prior probability or marginal probability of A. It is ”prior” in the sense that it does not

take into account any information aboutB.

• P (A|B) is the conditional probability ofA, givenB. It is also called the posterior probability because

it is derived from or depends upon the specified value ofB.

• P (B|A) is the conditional probability ofB givenA.

• P (B) is the prior or marginal probability ofB, and acts as a normalizing constant.

Intuitively, Bayes’ theorem in this form describes the way in which one’s beliefs about observing′A′

are updated by having observed′B′.
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II. RANDOM VARIABLES .

A random variable is a variable whose possible values are numerical outcomes of a stochastic

phenomenon. There are two types of random variables,discreteandcontinuous.

A. Continuous Random Variables.

Definition II.1 (Continuous Random Variables) is a functionX : Ω → R such that for any real number

a the set{ω : X (ω) ≤ a} is an event. According to that definition:

1) The Cumulutive Distribution Function (CDF) of a continuous random variable:

F (α) = P ({X (ω) ≤ α})
2) The Probability Density Function (PDF) of a continuous random variable whereFX(α) is a

differentiable functionfX(α) = ∂FX (α)
∂α

Note that the derivative∂FX (α)
∂α

might not always exist, but in our course we will deal only with

continuous random variable that the PDF exists

Properties II.1 (Continuous Random Variables) 1) Its CDF is monotonically rising and right con-

tinuous.

2) FX(∞) = 1, FX(−∞) = 0

3) if a2 > a1 thenP (a1 < X ≤ a2) = FX(a2)− FX(a1)

Conclusions II.1 (Continuous Random Variables) 1) FX(β) =
∫ β

−∞
fX(α)dα

2)
∫∞

−∞
fX(α)dα = FX(∞) = 1

3) fX(α) ≥ 0

B. Discrete Random Variables.

Definition II.2 (Discrete Random Variables) Let {x0, x1, . . . } be the values a discrete r.v can take with

non-zero probability.Ωi = {ω : X(ω) = xi}, i ∈ N

1) A discrete r.v has a Probability Mass Function (PMF) (instead of a PDF such as for a continuous

r.v). It is a function that gives the probability that a discrete r.v is exactly equal to some value.

PX(x) = P(X = x) = P ({ω ∈ Ω : X(ω) = x}) where {ω ∈ Ω} (II.1)

2) Since the image ofX is countable, the probability mass functionPX(x) is zero for all but a countable

number of values ofX . The discontinuity of probability mass functions reflects the fact that the CDF

of a discrete r.v is also discontinuous. Where it is differentiable, the derivative is zero, just as the

probability mass function is zero at all such points.

Properties II.2 (Discrete Random Variables) 1) PX(x) ≥ 0



A-4

2)
∑

i P(X = xi) =
∑

i PX(xi) = 1

C. Expectation.

Definition II.3 (Expected value of a continuous random variable)

µ = E[X ] =

∫ ∞

−∞

αfX(α)dα where

{
∫ ∞

−∞

fX(α)dα < ∞
}

(II.2)

Definition II.4 (Expected value of a discrete random variable)

E[X ] =
∑

x∈X

xP(X = x) (II.3)

=
∑

i

xi P(X = xi)

Properties II.3 (Expectation) 1) For a deterministic variable:E[c] = c

2) Linearity :E [cX + dY ] = E [cX ] + E [dY ] whereX,Y are r.v andc, d are constants.

3) Monotonicity : If X andY are random variables such thatX(ω) ≥ Y (ω) thenE[X ] ≥ E[Y ].

D. Variance.

The varianceof a random variable is a measure of statistical dispersion,averaging the squares of the

deviations of its possible values from its expected value.

Var[X ] = E
[

(X − E[X ])
2
]

(II.4)

= E
[

X2
]

− (E[X ])
2

Definition II.5 (Variance of a continuous random variable)

Var(X) =

∫ ∞

−∞

(α− E[X ])
2
fx(α)dα (II.5)

Definition II.6 (Variance of a discrete random variable)

Var(X) =
∑

x∈X

(x− E[X ])2 P(X = x) (II.6)

=
∑

x∈X

x2 P(X = x)− E2[X ] (II.7)

Properties II.4 (Variance) 1) For a deterministic variable:Var[c] = 0

2) Var(X + a) = Var(X)

3) Var(aX) = a2 Var(X)
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E. Covariance.

Definition II.7 (Covariance) Covariance is a measure of how much two variables change together.

Cov(X,Y ) = E [(X − E[X ])(Y − E[Y ])] (II.8)

which can also be written as,

Cov(X,Y ) = E[XY ]− E[X ] E[Y ] (II.9)

Properties II.5 (Covariance) Let X,Y be real valued r.v anda, b are constants.

1) If X andY are independent their covariance is zero and they are calleduncorrelated.

Cov(X,Y ) = E[XY ]− E[X ] E[Y ]

= E[X ] E[Y ]− E[X ] E[Y ]

= 0

2) Cov(X, a) = 0

3) Cov(X,X) = Var(X)

4) Cov(X,Y ) = Cov(Y,X)

5) Cov(aX, bY ) = ab Cov(X,Y )

6) Cov(X + a, Y + b) = Cov(X,Y )

Example 2 (Fair coin flip) For a coin toss, the possible events are heads or tails. The number of heads

appearing in one fair coin toss can be described using the following random variable:

X =











1, if heads,

0, if tails.

with probability mass function given by:

fX(x) =























1
2 , if x = 0,

1
2 , if x = 1,

0, otherwise.

Let’s calculate theExpectetaionof the r.v :

E[X ] =
∑

i

xi P(X = xi)

=
1

2
· 0 + 1

2
· 1

=
1

2
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And theVariance:

Var(X) =

2
∑

i=1

xi
2 P(X = x)− E2[X ]

=
1

2
· 02 + 1

2
· 12 −

(

1

2

)2

=
1

4

III. RANDOM VECTORS.

Definition III.1 (Random Vectors) Let X1, X2 . . .Xn Random Variables of the same probability space.

Then, Their columnwise order will compose a Random Vector inR
n . Hence, X = X =































X1

X2

...

Xn































A. CDF of Random Vector:

Definition III.2 (CDF of Random Vector)

FX(α1, α2 . . . αn) = P (X1 ≤ α1, X2 ≤ α2, . . . , Xn ≤ αn) (III.1)

• if FX(α1, α2 . . . αn) =
∏n

i=1 fXi
(αi) thenX1, X2 . . . Xn are statistically independent, or mutually

independent.

IV. INDEPENDENT AND IDENTICALLY -DISTRIBUTED RANDOM VARIABLES .

Definition IV.1 (i.i.d.) A collection of random variables isindependent and identically distributed (i.i.d.)

if each random variable has the same probability distribution as the others and all are mutually independent

V. GAUSSIAN DISTRIBUTION .

A. Gaussian Random Variable

Definition V.1 (Gaussian Random Variable) The random variableX is said to be a Gaussian random

variable (or normal random variable) if its PDF has the form :

fX(α) =
1√
2πσ2

e−
(α−µ)2

2σ2 where
{

µ = E[X ], σ2 = V ar(X)
}

(V.1)

Hence, a Gaussian r.v is characterized by 2 parameters :
{

µ, σ2
}

and its common notation is :

X ∼ N(µ, σ2)
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B. Gaussian Random Vector

Definition V.2 (Gaussian Random Vector)The random variables{Xi}ni=1 are called Jointly Gaussian

random variables, or similarly

X = (X1, X2 . . . Xn)
T is called Gaussian random vector if for every collection of non random constants

{ai}ni=1 such that
∑n

i=1 aiXi is a Gaussian random vector.

Definition V.3 (Gaussian Random Vector)An equivalent definition: A random vectorX ∈ R
n is called

a Gaussian random vector if it is continuous with the joint PDF :

f(X) (α)=
1

(2π)
n
2 |Λ| 12

e
− 1

2

[

(X−µ)TΛ−1(X−µ)
]

(V.2)

where

µ = E [X ] = [E[X1], E[X2], . . . , E[Xn]]

Λ = E
[

(

X − µ
) (

X − µ
)T

]

Properties V.1 (Gaussian Random Vector) 1) If X is a Gaussian random vector, each of its compo-

nents is a Gaussian random variable.

2) If X is a random vector with independent components and each one is a Gaussian r.v thenX is a

Gaussian random vector.

3) Linear transformation of a Gaussian random vectorY = AX + b is a Gaussian random vector.

4) The Gaussian distribution is uniquely determined by the 2first moments:
{

µ,Λ
}

.

VI. MMSE E STIMATOR .
MMSE - MINIMUM MEAN SQUARE ERROR

In statistics and signal processing, anMMSE estimatordescribes the approach which minimizes the

mean square error (MSE), which is a common measure of estimator quality.

A. MMSE Estimator.

Definition VI.1 (MMSE Estimator) Let X be an unknown random variable/vector, and letY be a known

random variable - the measurements ofX . An estimatorX̂(Y ) is any function of the measurementsY ,

and its MSE is given by :

MSE = E[ǫ2]
∣

∣

∣

ǫ=X̂(Y )−X
= E

[

(

X̂(Y )−X
)2

]

(VI.1)

X̂MMSE(Y ) = argmin
X̂MMSE(Y )∈∀X̂(Y ){MSE} where

{

X̂(Y ) = g(Y )
}

(VI.2)

The MMSE estimator is then defined as the estimator achievingminimal MSE.
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B. Linear MMSE Estimator.

• The linear MMSE estimator is the estimator achieving minimum MSE among all estimators of the

form AY + b. If the measurementY is a random vector,A is a matrix and bis a vector.

• If X andY are jointly Gaussian, then the MMSE estimator is linear. As aconsequence, to find the

MMSE estimator, it is sufficient to find the linear MMSE estimator.

MSE = E[ǫ2]
∣

∣

∣

ǫ=X̂linear(Y )−X
= E

[

(

X̂linear(Y )−X
)2

]

(VI.3)

X̂MMSE
linear (Y ) = argmin

X̂MMSE
linear (Y )∈∀X̂linear(Y ){MSE} where

{

X̂linear = AY + b
}

(VI.4)

For theScalarcase :

X̂MMSE
linear (Y ) = E[X ] +

Cov(X,Y )

Var(Y )
(Y − E[Y ]) (VI.5)

The estimation error in theScalarcase :

MSE = E
[

ǫ2linear

]

= Var(X)− Cov2(X,Y )

Var(Y )
(VI.6)

For theVectorial case :

X̂
MMSE

linear (Y ) = E[X] + ΛXY Λ
−1
Y Y (Y − E[Y ]) (VI.7)

The estimation errorCovariancematrix for theVectorial case :

Λǫǫ = E

[

(

X − X̂linear

)(

X − X̂ linear

)T
]

(VI.8)

= ΛXX − ΛXY Λ
−1
Y Y ΛYX (VI.9)

Where,

ΛXY = E
[

(X − E[X ]) (Y − E[Y ])
T
]

Properties VI.1 (MMSE Estimator) 1) X̂(Y ) is an unbiasedestimator ofE[X ]. In other words,X

andX̂(Y ) have the same expectation:

E[X̂ ] = E[X ] (VI.10)

Since the expectation of the error is 0.

E[ǫ] = 0 where
{

ǫ =
(

X̂ −X
)}

(VI.11)

2) The estimatorX̂ and the errorǫ areorthogonal:

E[X̂ · ǫ] = 0 (Orthogonality Principle) (VI.12)

This will imply that the estimatorX̂ and the errorǫ areuncorrelated


