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Mathematical methods in communication June 5th, 2012

Lecture 10

Lecturer: Haim Permuter Scribe: Oron Sabag and Tal Kopetz

I. NETWORK CODING

Example 1 (Simple RelayTonsider the following bi-directional communication syste
Nodes A and B make use of relay C in order to transfer mess&gesdY " respectively
where the alphabet’ =) = {0, 1}. What is the maximum bandwidth that can be used

between nodes A and B, where each link has a bandwidttKéfz

Node A Relay C Node B

Fig. 1. This is a simple relay problem where bi-Directional communicatidwésen nodes A and B can be achieved

only with the use of node C as a relay.

A simple approach to this problem would be that the maximumdiaadth between C
to A and C to B isb00H z each, since node C transmits the same message to both A
and B. However, ifX" @ Y™ is transmitted by relay C before transmitting to A and B,

a 1KHz bhi-directional channel between A and B can be achieved.

Example 2 (Multicast Network)Consider the next communication network, whefe
wants to transmit dits{b;, b,} to node5 and nodes via relays nodes. Each link has the
capacity of bit.

A few solutions may be applied here. One of them is as folloMade S transmitsby, bs

to nodesl and?2 respectively. Nodes and2 transmit the received bits to nod¢s, 5}
and {3,6} respectively without any change. TransmittingcP b, from node 3 to node
4 will yield {by,b, P b2} and {bs,b; @ b2} in nodess and nodet respectively. In Fig.

4 we can see the suggested solution where riodeceives{b,, b, € b»} and node6
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(@) (b)

Fig. 2. (a) The suggested solution for the problem above. Relay C eacdtP Y™ and transmits this message to

A and B. (b) Model for the given network where the capacity of each iknk’ = 1.
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Fig. 3. This figure depicts a model for the problem described above.

receives{b,, b; P b2}, XOR decoding at these nodes will achieve the required data i

the destinations.
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Fig. 4. This figure depicts the suggested solution.

Definition 1 (Acyclic Network)A network is acyclic if there is no a closed loop. Namely,

there is no path that starts at a node and return to the sang nod

Definition 2 (Noiseless Relay NetworkFonsider a acyclic noiseless relay network
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G(N,E,C) where N = [1,..., N] is a set of nodest C [1,..., N] x [1,..., N] is a set of
edges and = {C;, € R" : (5, k) € £}. Each edge represents a noiseless communication
link with a capacity ofC';.

Example 3 In Fig. 5 we can see an example for noiseless relay networkravhodel

is the source and nod¥ is the destination. The capacity links are defined’gsfor an

edge(j, k) € £.

2 »—————1 i \

J/ \/— - > \ —» N »A—A{>
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4 ——
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— /
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Fig. 5. Noiseless relay network with single source and single destination.

Definition 3 (Codebook for noiseless relay network)(2"#, n) code for noiseless relay
network G(\N, €,C) consists of:

1) A source message st ..., 2"%] and uniform distribution of messag¥.
2) A source encoder that assigms; € [1, ..., 2"“%/] to each message € [1, ..., 2"f]
for each edgé€l, j) € €£.
mij,
M1,

Mijs

Fig. 6. Source encoder with input messageand output messages ;.

3) A set of (N — 2) encoders:
Encoderk assigns an indexy,; € [1,...,2""] to each received messagerj; :
(7,k) € £} for each(k, 1) € &.
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Fig. 7. Relay encoder with input messages,, and output messages;, .

4) A destination decoder that assigns a message|[1, ..., 2"*] as a function of input

messagegm;y : (j, N) € £}.

Fig. 8. Destination decoder with input messages and its outcomen(m;,n : (ji, N) € £).

Definition 4 (Probability error of a code book)The probability error of codebook
(2" n)is P, = Pr(M # M).

Definition 5 (Achievable rate of a noiseless relay netwok)rate R is achievable if

there exists a sequence of cod@&”,n) such thatlim P.™ = 0.

n—oo

Definition 6 (Capacity of a noiseless relay networkhe capacity ofG(N,E,C) is the
supremum over the set of all achievable rates.

Theorem 1 (Max-flow Min-cut)The capacity of noiseless relay network is

- ' 1
¢ {5cN:IiIéISI,1NGSC} c(s), (1)

where

cS)= Y C 2)

{(j.k)e€:jeS,keSe)
Example 4 (Min-cut in noiseless relay networljonsider noiseless relay network, that
is shown in Fig. 9. The capacity of this network ¢ = 3 with the minimum cut
S ={1,2,3,5} and S = {4,6}, the cut betweert and 5S¢ is depicted in Fig. 9. The
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Fig. 9. Minimum cutS in a noiseless relay network.

capacity is achieved by sendingbit along the path — 2 — 4 — 6 and another dits

along the path —+ 3 — 5 — 6.

(Proof of converse for Theorem 1)

In this proof we want to show thak,™ = 0 implies thatR < C, where R is the rate
used to transmit a messagec [1, ..., 2""] from source to destination. Let’s fi C N/
such thatl € S and N € S¢, and letTy,Ts, ..., T} be all messages on edges frdino
S¢ whereT; € [1, ...,2"“%*] for somej € S,k € 5¢ .

nR = H(M)
= I(M; M)+ H(M|M) 3)
(2 I(M; M)+ (1+ P™nR) 4)
< H(M)+ne, (5)
(é) H(Ty, Ty, ..., T}) + ne, (6)
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@ &

< ) H(Ty) +ne, 7
i=1
(e)
< Z nCj, + ney (8)
jES,kese
9)

Where

a follows from the uniform distribution of\/ € [1,...,2"%] as defined in (3).

b follows from Fano’s inequality wherlg | M| = nR.

~

¢ follows from Markov chainM — (11,15, ..., Ty) — M (T, T, ..., Tk).
d follows from chain rule of entropy wherd (7;|T"') < H(T;).
e follows from upper bound on entropy for a finite alphaldétr;) < log |7;|.

A. Achievability via Ford-Fulkerson Algorithm

We will continue with finding the capacity of the Noiseless &eNetwork. We have
proved the converse, and now we will prove the achievability

We want to show that

R= min C(9) (10)

S:1€S8,NeS¢
is achievable. In order to prove the achievability we woubtistruct an algorithm called

Ford-Fulkerson [1] that finds the maximum flow possible in avoek.
Definition 7 (Flow) A flow from nodel to node/V is a functionf that maps each edge
e € £ to a non-negative real number.

f : E—R" (11)

E = {e=(1,..,N)x(1,...,N)} (12)
A flow must satisfy the following conditions:

1. f(j, k) < Cj; (Capacity constraint)
2.3 ccinw) f(€) = X ccou(w) [(€), v# 1, N (Conservation law).
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Another Notation:
Y. fGk = > [k (13)
(j,k)€in(v) (4,k)€out(v)
wherein(v) denote the edges that enter the nodendout(v) denote the edges that exit
the nodeuv.

We assume in our lecture that the destination node has oglgsetthat enter it.

Definition 8 (Value of flow) We defind thevalue of flowas follows:

val(f) =Y f(L,k) (14)
ke(2,...,N)
Every commodity that exits the source= 1, has to arrive at terminaV, hence
val(f) = f(G,N) (15)
J#EN

The Maximum-Flow Problem: Our goal is to find the maximum value of the flow
m?X val(f) (16)

and we will see that this yields the capacity of the netwonkotder to findmax  val( f)
we will introduce an algorithm. The algorithm will be itera so that each iteration
increases the flow. We will see that the algorithm indeedes&s the min-cut upper
bound. First, we need to define a tResidual Graph

Definition 9 (Residual Graph) Given a networkG and a flow f, we defineresidual
graph Gy = (V, &, Cy) with respect tof as follows:
1) The set of the vertices is the same agxin
2) For each(j, k) € £ if f(j,k) < Cj; then introduce an edggj, k) € & with
ijk = Cjx — f(J, k). We denote such an edge as a Forward Edge.
3) For(j,k) € € of f(j,k) > 0 then include an edge from k to@,fj = f(k,j). We

denote such an edge as a Backward Edge.

Example 5 (Achievability using Algorithm 1L onsider the networks and its flow f in
Figure 10.a. We denote on each edge its flow and capacitynBtance, 1/2 means that

f=1andC = 2. Figure 10.b depicts the corresponding residual gi@dplaccording to
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Algorithm 1 Ford-Fulkerson Algo: achieves the maximum value of flow
Start with a flow, for instancef = 0 for all edges.

loop
ComputeGy.
Find a path from node to nodeN in Gy.
Compute the bottleneck of the path inG.
(The bottleneck of a path is the smallest capacity from afjesdon the path.)
for i =1 :n (n - Number of edges on the pattp
if e; is a forward edgee - Edge: on the pathkhen
fle)) = fle)) +0
else ife; is a backward edgthen
fle:) = flei) =6
end if
end for
if 0 =0 then
Break
end if

end loop

its definition. For instancef (2, 3) is translated in ta&; as follows: The forward edge
is Cfy, = Cys — £(2,3) = 3 —2 =1 while the backward edge 6}, = f(2,3) = 2.

In order to achieve maximum rate, we execute algorithm 1 ensylstem. We start
off with the red path and compute it's bottlene¢kl. Now we go back to the network
graphG and change the flow on the corresponding path in the followayg: forward
edges are increased by 1 and backward edges are decreased by 1

Figure 11 depicts the modified network grafghand the corresponding residual graph
G Respectively.

One can see that there are no paths filbmo N on G. Thus,é = 0, the algorithm

terminates and we obtain the maximum flow which equals theagpof the network.
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Fig. 10. Figure (a) depicts an arbitarary network fl6iv Figure (b) depicts the corresponding residual gréfgh

Fig. 11. Figure (a) depicts the modified network flaw after execution of the algorithm. Figure (b) depicts the

corresponding residual graphiy

Questions:
1) Let us denotef’ as the new flow obtained after one iteration in Algorithm 1. Is
f" a valid flow? Yes. In order to prove this, let us recall that &dvllow has to
satisfy two constraints, the capacity constraint and theseovation constraint. Let

us first prove thayf’ can’t be larger then the Capacity.dfy, k) is a forward edge,
then
6 < Ce—fle) 17)

Now consider,

file) = fle)+9 (18)
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< fle) +(Cc = f(e) (19)
= C. (20)

Hence we obtained that'(e) < C. and sincef’(e) = f(e) + ¢ also f'(e) > 0.

Now if e(j, k) is a backward edge, then

b < fle) (21)
(22)
Consider,
file) = fle)—¢ (23)
> f(e) — f(e) (24)
=0 (25)

Hence f’(e) > 0 and sincef'(e) = f(e) — 6 and f(e) < C, then f'(e) < C..
Thus we have proven that the flow isn’t greater than the cgpaad always non-
negative.
The second condition of a flow is fulfilled due to the fact thiitemiges on the
path are increased/decreased by the saniéa path from source to destination
on G runs through nodd., then all incoming and outgoing edges to nddere
increased by the samkethus the conservation law holds.

2) Is the new value of flow larger than the previous one? Yeshawe edges entering
the destination node, so when we increase the flow on the path those edges

will be increased by thus achieving a larger value of flow.
val(f") = val(f) + 0 > val(f) (26)

3) Assume all capacities are integers, does the algorithmerges? From questions
(1) and (2) we can derive that the algorithm does converge. mbximum value

of flow is at most) 9) C. = Cs. Now, since the algorithm increases the value

ecout

of the flow by at least one unit each time, it is clear that tlgoathm can run for

at mostCy iterations thus converges.
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The algorithm terminates when there exi6tss.t. no path fromS to S¢ exists inGy.
Before we conclude this with a theorem, we need the followemrha regarding the

value of flow:

Lemma 1 (Value of flow) Let f be any(1, N) flow and1 € S, N € S°. Then
val(f) = Y fle)= > fle) (27)
ecout(S) ecin(S)
whereout(S) denotes all edges with their tail in the group of nodeand their head in
the group of nodes“ (all edges that exit the group of nod83 and:n(S) denotes all
edges with their head in the group of nodesand their tail in the group of nodeS*
(all edges that enter the group of nodes

We defined flow in Definition (8)

val(f Z f (1,k) (28)

77777

> flk1) = (29)
ke(2,...,N)
Then,
val(f)= ) fLk)= >, f(k1) (30)
ke(2,...,N) ke(2,...,N)

By the conservation law of flow, we know that for evary S that

Yo fle)= D> fle)=0,v#1 (31)

ecout(v) ecin(v)

Thus,

val(f Z[ Z fe Z f(e )} (32)

veS | ecout(v) ecin(v)
Since only for noder = 1 we obtain a non-zero value (from defintion). Now, if an edge
has both end points iff, then f(e) appears twice in the above sum, once with a positive
sign and once with a negative sign i.e. the contributiorz 66 the above sum is 0. On

the other hand it only has its head irt' then f(e) appears only once with a negative
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sign and ife only has its tail inS then f(e) appears only once with a positive sign. Of
course ife has neither its head nor its tail i5 then it does not participate in the sum at

all. Therefore, we have

Z{ PNICERY f(e>] = > flo= D fle (33)

veS | e€out(v) e€in(v) ecout(S) ecin(S)
finally using (32) and (33) we obtain the result of the lemmg2n).

Now we conclude with the following theorem:

Theorem 2 (Achievability) If f’ is a flow on networkG and no path fromS to S¢

exists inG’; then there exists a cut betwegn k) wherej € S andk € S° s.t.

f(k,j) = 0 (35)
val(f'y = C (36)
Where
¢ = > Ca (37)
jESkeSe

We first prove (34). Let us consider an edge (j, k) € G such thatj € S andk € S°.
Now lets Assume thaf(e) < c.. If so, thene(j, k) would be a forward edge ;. This
would mean that we could extended a path from the souréeinoG; which contradicts
our assumption that belongs toS¢. Thus (34) holds.

Secondly, we prove (35). Let us consider an edge (k,j) € G such thatj € S and
k € S°. Now lets Assume thaf(e’) > 0. If so, thene(k, ) would be a backward path in
Gy. This would mean that we could extended a path from the saoréein Gy which
contradicts our assumption thatbelongs toSc. Thus (35) holds. Now we calculate the

Value of flow:

va(f) 2 Y flo - 3 o) (38)
ecout(S) ecin(S)
2 % -0 (39)

ecout(S)
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- C (40)

where (a) follows from (27) and (b) follows from (34) and (3&hich were proved.

Fig. 12. The modified network flows after execution of the algorithm. The figure also depicts the cut at theesour

or destination in order to deriv€'.

Comment: Once the algorithm is terminated we can easily find the vafube flow
which equals to the capacity. We just need to consider thatthe source (where we
separate the source from the rest of the network) or at that¢be destination and obtain
the flow of the network. In Examplé, we cut at the source as shown in Figure 12 and
derive thatC' = 3.

Fig. 13. Figure (a) depicts an arbitrary netwarkwith integer links. Figure (b) illustrates transfering the netwafk
into a network with links ofl.

We would like to emphasis the fact that flow is transmittecbtigh disjoint paths.
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Fig. 14. Figure (a) depicts network and a flowf. Figure (b) depicts the same netwa@konly split in to Disjoint
Paths.

Definition 10 (Disjoint Paths) A set of paths is said to be edge disjoint if no edge is

common between any two paths.

Example 6 (Disjoint Paths) Given the network’ in Figure 13.a, we can divide each
edge tof edges off’ = 1 and receive the Disjoint Paths as in Figure 14.b. To do so, we

need first to consider an equivalent network where each edggth capacity link ofl.

I[I. NOISELESSMULTICAST NETWORK(ONE SOURCE TO MANY DESTINATIONS

Now we consider a multicast extension of the noiseless rektyork. The source

initiates the transmission of messafeto a set of destination®.

M

2 ===

/c; PO T T T ;_N hY R

4 ———

\ /_ _:::>~:f;k\

Fig. 15. Noiseless multicast network.
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Definitions of achievability and capacity in noiseless nealst network are defined the
same as for the single destination case; whereas, the plibbab error is defined as
P.™ = {Pr(M # M) for somej € D}.

Exercise 1 (All nodes are destinations)Prove that ifD = [2, ..., N|, then routing-only

will achieve the upper bound of

C< i C(S\WjeD. 41
- {SCNglelg,jeSC} (5)¥) (41)

Theorem 3 The capacity of noiseless multicast netwgtk\, £,C) is

C=min min C(9) (42)

i€D SCN,1e8,ieS¢
where

C(S) = > O (43)

(4,k)€E,jeS,keSe
proof of converseThe converse for Theorem 3 follows from the case of one source
and one destination. From the one source and one destiraiwerse in Theorem 1 it

follows that for each destinatione D

C < min  C(9). (44)
SCN,1€8,5€8¢

This inequality stands since if there exists a greater &able rate we would find it for
the single destination case. By minimizing this group of ugpeunds we conclude that

the rate for a multicast network is bounded by

C<min min C(5) (45)

i€D SCN,1€8,je8¢

We would next prove the achievability using linear netwodkling.

[Il. LINEAR NETWORK CODING

For simplicity, we first consider noiseless multicast netwwith integer link capacities,
represented by (N, £) with links of 1bit capacity. Therefore, each link of the multigraph

G can carryn bits of information (a symbol fromFy.) per n-transmission block.
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Furthermore, we assume thatis an integer so that the message can be represented
asM = [Ml, ...,MR] with Mj €Fon,j € [1,,R]

Example 7 Let's assumd? = 3 so the equivalent multigraph of netwogkcan be shown

as:

e W

/l\ ’Q M2
TN MR

/

M

I

Fig. 16. Transformation of noiseless multicast network into its equivatentigraph Network.

Definition 11 (Edges vectors for node kpiven a network modeled by multigraph
(N, E), we define the set of outgoing edges from a néde N by out(k) and the
set of all incoming edges to a nodes N by in(k).

Definition 12 (Definitions for linear codeJor this setup, 2", n) linear code consists
of:
1) A message s€flY,, each message is represented by a vector irRtidémensional
vector space over the finite fielg,..
2) A linear source encoder that assigns an index tupleut(1)) := {m. € Fau :
e € out(1)} to each(my, ...,mg) € FL via a linear transformation with coefficient

Q. € Fon.

m Me1 = Q1M + Q12Mg + Q33
1 \“/, — /

ms N N Mea = Q21M + QiaaMy + QlagMg

Fig. 17. A source encoder with R=3.

3) A set of linear relay encoders: Encodeassigns an index tuple(out(k)) to each
m(in(k)) via a linear transformation.

4) A set of linear decoders,the j decodgr: j € D} assignsi to eachm(In(j)).
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Me3 = Q31Me1 T Q32Me2

Mer —_~

T Meq = Qq1Me1 + Qg2Me2
meQ/\'"/ Mes = Q51Me1 + Q52Me2

Fig. 18. A relay encoder within(j)| = 2 and|out(j)| = 3.

Mj1 = 011Me1 + Q12Me2 + A13Me3

Mo —3 . Mj2 = Qi21Mea + Q22Men + A23Me3
g Mj3 = 31Me3 + Q32Me2 + 3313

3
N

Fig. 19. This figure depicts an example of a linear decoder in source.

Thus, for each destination nogec D a linear code induces a linear transformation
ﬁlf = Aj (d)mR, (46)

wherea is the coefficients vector of € D.

The rate R is achievable with zero error if there existsnag N and @ such that
Aj(a) =1 Vj e D.
Note that any invertibled,;(a) is sufficient for restoration ofn/* by multiplying Aj_l(d)
with /.

Example 8 Let’s consider the multicast network depicted in Fig. 20t = {4}: One

Mo = Q11M24 + Qt2M3y

M1 = agMag + 1pM34

Fig. 20. Example for linear network coding with R=2.
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can see that linear code book with= 2 induces the linear transformation:

my Qg (70 Moy

= (47)
oy 11 Q12 ms3q
Qg (7o (67 0 mio
= (48)
Q11 Q19 a5ty Qy mis
Qg (70 (67 0 a1 Qg my
= (49)
Q11 Q19 a5ty Qy Q3 Qy mo
We can see that for this multicast network,
_ Qg Qo ag 0 o) Qo
Aj(a) = : (50)
Q11 Q2 Qs0ig Q7 Q3 Oy

Restoration of the original messages can be done only by ptyiittg Aj‘l(o?) with mf
A;(a) is inveritable if| A;(@)| # 0, therefore we need to find a coefficients veciosuch

that |A;(a)| # 0.
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