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Mathematical methods in communication June 5th, 2012

Lecture 10

Lecturer: Haim Permuter Scribe: Oron Sabag and Tal Kopetz

I. NETWORK CODING

Example 1 (Simple Relay)Consider the following bi-directional communication system.

Nodes A and B make use of relay C in order to transfer messagesXn andY n respectively

where the alphabetX = Y = {0, 1}. What is the maximum bandwidth that can be used

between nodes A and B, where each link has a bandwidth of1KHz.

Fig. 1. This is a simple relay problem where bi-Directional communication between nodes A and B can be achieved

only with the use of node C as a relay.

A simple approach to this problem would be that the maximum bandwidth between C

to A and C to B is500Hz each, since node C transmits the same message to both A

and B. However, ifXn
⊕

Y n is transmitted by relay C before transmitting to A and B,

a 1KHz bi-directional channel between A and B can be achieved.

Example 2 (Multicast Network)Consider the next communication network, whereS

wants to transmit 2bits{b1, b2} to node5 and node6 via relays nodes. Each link has the

capacity of 1bit.

A few solutions may be applied here. One of them is as follows:NodeS transmitsb1, b2

to nodes1 and2 respectively. Nodes1 and2 transmit the received bits to nodes{3, 5}

and {3, 6} respectively without any change. Transmittingb1
⊕

b2 from node 3 to node

4 will yield {b1, b1
⊕

b2} and{b2, b1
⊕

b2} in nodes5 and node6 respectively. In Fig.

4 we can see the suggested solution where node5 receives{b1, b1
⊕

b2} and node6
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Fig. 2. (a) The suggested solution for the problem above. Relay C encodesXn
⊕

Y n and transmits this message to

A and B. (b) Model for the given network where the capacity of each linkis C = 1.
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Fig. 3. This figure depicts a model for the problem described above.

receives{b2, b1
⊕

b2}, XOR decoding at these nodes will achieve the required data in

the destinations.
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Fig. 4. This figure depicts the suggested solution.

Definition 1 (Acyclic Network)A network is acyclic if there is no a closed loop. Namely,

there is no path that starts at a node and return to the same node.

Definition 2 (Noiseless Relay Network)Consider a acyclic noiseless relay network
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G(N , E , C) whereN = [1, ..., N ] is a set of nodes,E ⊂ [1, ..., N ]× [1, ..., N ] is a set of

edges andC = {Cjk ∈ R
+ : (j, k) ∈ E}. Each edge represents a noiseless communication

link with a capacity ofCjk.

Example 3 In Fig. 5 we can see an example for noiseless relay network, where node1

is the source and nodeN is the destination. The capacity links are defined asCjk for an

edge(j, k) ∈ E .

j k

1
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4
M

C12

C14

C13

Cjk

M̂N

Fig. 5. Noiseless relay network with single source and single destination.

Definition 3 (Codebook for noiseless relay network)A (2nR, n) code for noiseless relay

networkG(N , E , C) consists of:

1) A source message set[1, ..., 2nR] and uniform distribution of messageM .

2) A source encoder that assignsm1j ∈ [1, ..., 2nC1j ] to each messagem ∈ [1, ..., 2nR]

for each edge(1, j) ∈ E .

m1j1

m1j2

m1j3

m

Fig. 6. Source encoder with input messagem and output messagesm1ji .

3) A set of (N − 2) encoders:

Encoderk assigns an indexmkl ∈ [1, ..., 2nCkl ] to each received message{mjk :

(j, k) ∈ E} for each(k, l) ∈ E .
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Fig. 7. Relay encoder with input messagesmjik and output messagesmkli .

4) A destination decoder that assigns a messagem̂ ∈ [1, ..., 2nR] as a function of input

messages{mjN : (j,N) ∈ E}.

mj1N

mj2N

mj3N

m̂

Fig. 8. Destination decoder with input messagesmjiN and its outcomêm(mjiN : (ji, N) ∈ E).

Definition 4 (Probability error of a code book)The probability error of codebook

(2nR, n) is Pe
(n) = Pr(M 6= M̂).

Definition 5 (Achievable rate of a noiseless relay network)A rate R is achievable if

there exists a sequence of codes(2nR, n) such that lim
n→∞

Pe
(n) = 0.

Definition 6 (Capacity of a noiseless relay network)The capacity ofG(N , E , C) is the

supremum over the set of all achievable rates.

Theorem 1 (Max-flow Min-cut)The capacity of noiseless relay network is

C = min
{S⊂N :1∈S,N∈Sc}

C(S), (1)

where

C(S) =
∑

{(j,k)∈E:j∈S,k∈Sc}

Cjk. (2)

Example 4 (Min-cut in noiseless relay network)Consider noiseless relay network, that

is shown in Fig. 9. The capacity of this network isC = 3 with the minimum cut

S = {1, 2, 3, 5} andSc = {4, 6}, the cut betweenS andSc is depicted in Fig. 9. The
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Fig. 9. Minimum cutS in a noiseless relay network.

capacity is achieved by sending 1bit along the path1 → 2 → 4 → 6 and another 2bits

along the path1 → 3 → 5 → 6.

(Proof of converse for Theorem 1)

In this proof we want to show thatPe
(n) = 0 implies thatR ≤ C, where R is the rate

used to transmit a messagem ∈ [1, ..., 2nR] from source to destination. Let’s fixS ⊂ N

such that1 ∈ S andN ∈ Sc , and letT1, T2, ..., Tk be all messages on edges fromS to

Sc whereTi ∈ [1, ..., 2nCjk ] for somej ∈ S, k ∈ Sc .

nR
(a)
= H(M)

= I(M ; M̂) +H(M |M̂) (3)
(b)

≤ I(M ; M̂) + (1 + P (n)
e nR) (4)

≤ H(M̂) + nǫn (5)
(c)

≤ H(T1, T2, ..., Tk) + nǫn (6)
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(d)

≤
k

∑

i=1

H(Ti) + nǫn (7)

(e)

≤
∑

j∈S,k∈Sc

nCjk + nǫn (8)

(9)

Where

a follows from the uniform distribution ofM ∈ [1, ..., 2nR] as defined in (3).

b follows from Fano’s inequality wherelog |M | = nR.

c follows from Markov chainM − (T1, T2, ..., Tk)− M̂(T1, T2, ..., Tk).

d follows from chain rule of entropy whereH(Ti|T
i−1) ≤ H(Ti).

e follows from upper bound on entropy for a finite alphabet,H(Ti) ≤ log |Ti|.

A. Achievability via Ford-Fulkerson Algorithm

We will continue with finding the capacity of the Noiseless Relay Network. We have

proved the converse, and now we will prove the achievability:

We want to show that

R = min
S:1∈S,N∈Sc

C(S) (10)

is achievable. In order to prove the achievability we would construct an algorithm called

Ford-Fulkerson [1] that finds the maximum flow possible in a network.

Definition 7 (Flow) A flow from node1 to nodeN is a functionf that maps each edge

e ∈ E to a non-negative real number.

f : E → R+ (11)

E := {e = (1, ..., N)× (1, ..., N)} (12)

A flow must satisfy the following conditions:

1. f(j, k) ≤ Cjk (Capacity constraint)

2.
∑

e∈in(v) f(e) =
∑

e∈out(v) f(e), v 6= 1, N (Conservation law).
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Another Notation:

∑

(j,k)∈in(v)

f(j, k) =
∑

(j,k)∈out(v)

f(j, k) (13)

wherein(v) denote the edges that enter the nodev andout(v) denote the edges that exit

the nodev.

We assume in our lecture that the destination node has only edges that enter it.

Definition 8 (Value of flow) We defind thevalue of flowas follows:

val(f) =
∑

k∈(2,...,N)

f(1, k) (14)

Every commodity that exits the source,v = 1, has to arrive at terminalN , hence

val(f) =
∑

j 6=N

f(j,N) (15)

The Maximum-Flow Problem: Our goal is to find the maximum value of the flow

max
f

val(f) (16)

and we will see that this yields the capacity of the network. In order to findmaxf val(f)

we will introduce an algorithm. The algorithm will be iterative so that each iteration

increases the flow. We will see that the algorithm indeed achieves the min-cut upper

bound. First, we need to define a theResidual Graph:

Definition 9 (Residual Graph) Given a networkG and a flowf , we defineresidual

graphGf = (V , Ef , Cf ) with respect tof as follows:

1) The set of the vertices is the same as inG.

2) For each(j, k) ∈ E if f(j, k) < Cjk then introduce an edge(j, k) ∈ Ef with

C
f
jk = Cjk − f(j, k). We denote such an edge as a Forward Edge.

3) For (j, k) ∈ E of f(j, k) > 0 then include an edge from k to jCf
kj = f(k, j). We

denote such an edge as a Backward Edge.

Example 5 (Achievability using Algorithm 1)Consider the networkG and its flowf in

Figure 10.a. We denote on each edge its flow and capacity. For instance, 1/2 means that

f = 1 andC = 2. Figure 10.b depicts the corresponding residual graphGf according to
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Algorithm 1 Ford-Fulkerson Algo: achieves the maximum value of flow
Start with a flow, for instance,f = 0 for all edges.

loop

ComputeGf .

Find a path from node1 to nodeN in Gf .

Compute the bottleneckδ of the path inG.

(The bottleneck of a path is the smallest capacity from all edges on the path.)

for i = 1 : n (n - Number of edges on the path)do

if ei is a forward edge (ei - Edgei on the path)then

f(ei) = f(ei) + δ

else if ei is a backward edgethen

f(ei) = f(ei)− δ

end if

end for

if δ = 0 then

Break

end if

end loop

its definition. For instance,f(2, 3) is translated in toGf as follows: The forward edge

is C
f
23 = C23 − f(2, 3) = 3− 2 = 1 while the backward edge isCf

23 = f(2, 3) = 2.

In order to achieve maximum rate, we execute algorithm 1 on the systemG. We start

off with the red path and compute it’s bottleneckδ=1. Now we go back to the network

graphG and change the flow on the corresponding path in the followingway: forward

edges are increased by 1 and backward edges are decreased by 1.

Figure 11 depicts the modified network graphG and the corresponding residual graph

Gf Respectively.

One can see that there are no paths from1 to N on Gf . Thus,δ = 0, the algorithm

terminates and we obtain the maximum flow which equals the capacity of the network.
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Fig. 10. Figure (a) depicts an arbitarary network flowG. Figure (b) depicts the corresponding residual graphGf
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Fig. 11. Figure (a) depicts the modified network flowG after execution of the algorithm. Figure (b) depicts the

corresponding residual graphGf

Questions:

1) Let us denotef ′ as the new flow obtained after one iteration in Algorithm 1. Is

f ′ a valid flow? Yes. In order to prove this, let us recall that a valid flow has to

satisfy two constraints, the capacity constraint and the conservation constraint. Let

us first prove thatf ′ can’t be larger then the Capacity. Ife(j, k) is a forward edge,

then

δ ≤ Ce − f(e) (17)

Now consider,

f ′(e) = f(e) + δ (18)
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≤ f(e) + (Ce − f(e)) (19)

= Ce (20)

Hence we obtained thatf ′(e) ≤ Ce and sincef ′(e) = f(e) + δ also f ′(e) ≥ 0.

Now if e(j, k) is a backward edge, then

δ ≤ f(e) (21)

(22)

Consider,

f ′(e) = f(e)− δ (23)

≥ f(e)− f(e) (24)

= 0 (25)

Hencef ′(e) ≥ 0 and sincef ′(e) = f(e) − δ and f(e) ≤ Ce then f ′(e) ≤ Ce.

Thus we have proven that the flow isn’t greater than the capacity and always non-

negative.

The second condition of a flow is fulfilled due to the fact that all edges on the

path are increased/decreased by the sameδ. If a path from source to destination

on Gf runs through nodeL, then all incoming and outgoing edges to nodeL are

increased by the sameδ thus the conservation law holds.

2) Is the new value of flow larger than the previous one? Yes, wehave edges entering

the destination node, so when we increase the flow on the path by δ, those edges

will be increased byδ thus achieving a larger value of flow.

val(f ′) = val(f) + δ > val(f) (26)

3) Assume all capacities are integers, does the algorithm converges? From questions

(1) and (2) we can derive that the algorithm does converge. The maximum value

of flow is at most
∑

e∈out(S) Ce = CS. Now, since the algorithm increases the value

of the flow by at least one unit each time, it is clear that the algorithm can run for

at mostCS iterations thus converges.
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The algorithm terminates when there existsG s.t. no path fromS to Sc exists inGf .

Before we conclude this with a theorem, we need the following lemma regarding the

value of flow:

Lemma 1 (Value of flow) Let f be any(1, N) flow and1 ∈ S,N ∈ Sc. Then

val(f) =
∑

e∈out(S)

f(e)−
∑

e∈in(S)

f(e) (27)

whereout(S) denotes all edges with their tail in the group of nodesS and their head in

the group of nodesSc (all edges that exit the group of nodesS) and in(S) denotes all

edges with their head in the group of nodesS and their tail in the group of nodesSc

(all edges that enter the group of nodesS).

We defined flow in Definition (8)

val(f) =
∑

k∈(2,...,N)

f(1, k) (28)

and we assume that no edges enter the source node, i.e,

∑

k∈(2,...,N)

f(k, 1) = 0 (29)

Then,

val(f) =
∑

k∈(2,...,N)

f(1, k)−
∑

k∈(2,...,N)

f(k, 1) (30)

By the conservation law of flow, we know that for everyv ∈ S that

∑

e∈out(v)

f(e)−
∑

e∈in(v)

f(e) = 0, v 6= 1 (31)

Thus,

val(f) =
∑

v∈S





∑

e∈out(v)

f(e)−
∑

e∈in(v)

f(e)



 (32)

Since only for nodev = 1 we obtain a non-zero value (from defintion). Now, if an edgee

has both end points inS, thenf(e) appears twice in the above sum, once with a positive

sign and once with a negative sign i.e. the contribution ofe to the above sum is 0. On

the other hand ife only has its head inS then f(e) appears only once with a negative
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sign and ife only has its tail inS thenf(e) appears only once with a positive sign. Of

course ife has neither its head nor its tail inS then it does not participate in the sum at

all. Therefore, we have

∑

v∈S





∑

e∈out(v)

f(e)−
∑

e∈in(v)

f(e)



 =
∑

e∈out(S)

f(e)−
∑

e∈in(S)

f(e) (33)

finally using (32) and (33) we obtain the result of the lemma in(27).

Now we conclude with the following theorem:

Theorem 2 (Achievability) If f ′ is a flow on networkG and no path fromS to Sc

exists inG′
f then there exists a cut between(j, k) wherej ∈ S andk ∈ Sc s.t.

f ′(j, k) = Cjk (34)

f ′(k, j) = 0 (35)

val(f ′) = C (36)

Where

C =
∑

j∈S,k∈Sc

Cjk (37)

We first prove (34). Let us consider an edgee = (j, k) ∈ G such thatj ∈ S andk ∈ Sc.

Now lets Assume thatf(e) < ce. If so, thene(j, k) would be a forward edge inGf ′ . This

would mean that we could extended a path from the source tok in Gf which contradicts

our assumption thatk belongs toSc. Thus (34) holds.

Secondly, we prove (35). Let us consider an edgee′ = (k, j) ∈ G such thatj ∈ S and

k ∈ Sc. Now lets Assume thatf(e′) > 0. If so, thene(k, j) would be a backward path in

Gf ′. This would mean that we could extended a path from the sourceto k in Gf which

contradicts our assumption thatk belongs toSc. Thus (35) holds. Now we calculate the

Value of flow:

val(f)
(a)
=

∑

e∈out(S)

f(e)−
∑

e∈in(S)

f(e) (38)

(b)
=

∑

e∈out(S)

Ce − 0 (39)
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= C (40)

where (a) follows from (27) and (b) follows from (34) and (35)which were proved.

2

3

1 41/3

1/1

2/2

2/2

1/1

(a)

Fig. 12. The modified network flowG after execution of the algorithm. The figure also depicts the cut at the source

or destination in order to deriveC.

Comment: Once the algorithm is terminated we can easily find the value of the flow

which equals to the capacity. We just need to consider the cutat the source (where we

separate the source from the rest of the network) or at the cutat the destination and obtain

the flow of the network. In Example1, we cut at the source as shown in Figure 12 and

derive thatC = 3.
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Fig. 13. Figure (a) depicts an arbitrary networkG with integer links. Figure (b) illustrates transfering the networkG

into a network with links of1.

We would like to emphasis the fact that flow is transmitted through disjoint paths.
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Fig. 14. Figure (a) depicts networkG and a flowf . Figure (b) depicts the same networkG only split in to Disjoint

Paths.

Definition 10 (Disjoint Paths) A set of paths is said to be edge disjoint if no edge is

common between any two paths.

Example 6 (Disjoint Paths) Given the networkG in Figure 13.a, we can divide each

edge tof edges off ′ = 1 and receive the Disjoint Paths as in Figure 14.b. To do so, we

need first to consider an equivalent network where each edge is with capacity link of1.

II. N OISELESSMULTICAST NETWORK(ONE SOURCE TO MANY DESTINATIONS)

Now we consider a multicast extension of the noiseless relaynetwork. The source

initiates the transmission of messageM to a set of destinationsD.

1

2

3

4
M

C12

C14

C13

M̂j

M̂k

M̂N

j

k

N

Fig. 15. Noiseless multicast network.
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Definitions of achievability and capacity in noiseless multicast network are defined the

same as for the single destination case; whereas, the probability of error is defined as

Pe
(n) = {Pr(M 6= M̂) for somej ∈ D}.

Exercise 1 (All nodes are destinations)Prove that ifD = [2, ..., N ], then routing-only

will achieve the upper bound of

C ≤ min
{S⊂N :1∈S,j∈Sc}

C(S)∀j ∈ D. (41)

Theorem 3 The capacity of noiseless multicast networkG(N , E , C) is

C = min
i∈D

min
S⊂N ,1∈S,i∈Sc

C(S) (42)

where

C(S) =
∑

(j,k)∈E,j∈S,k∈Sc

Cjk. (43)

proof of converseThe converse for Theorem 3 follows from the case of one source

and one destination. From the one source and one destinationconverse in Theorem 1 it

follows that for each destinationj ∈ D

C ≤ min
S⊂N ,1∈S,j∈Sc

C(S). (44)

This inequality stands since if there exists a greater achievable rate we would find it for

the single destination case. By minimizing this group of upper bounds we conclude that

the rate for a multicast network is bounded by

C ≤ min
i∈D

min
S⊂N ,1∈S,j∈Sc

C(S) (45)

We would next prove the achievability using linear network coding.

III. L INEAR NETWORK CODING

For simplicity, we first consider noiseless multicast network with integer link capacities,

represented byG(N , E) with links of 1bit capacity. Therefore, each link of the multigraph

G can carry n bits of information (a symbol fromF2n) per n-transmission block.
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Furthermore, we assume thatR is an integer so that the message can be represented

asM = [M1, ...,MR] with Mj ∈ F2n , j ∈ [1, ..., R].

Example 7 Let’s assumeR = 3 so the equivalent multigraph of networkG can be shown

as:

M M̂
1

1
1 2

3

≡
M1

M2

M3

M̂1
M̂2

M̂3

Fig. 16. Transformation of noiseless multicast network into its equivalentmultigraph Network.

Definition 11 (Edges vectors for node k)Given a network modeled by multigraph

(N , E), we define the set of outgoing edges from a nodek ∈ N by out(k) and the

set of all incoming edges to a nodek ∈ N by in(k).

Definition 12 (Definitions for linear code)For this setup, a(2nR, n) linear code consists

of:

1) A message setFR
2n , each message is represented by a vector in theR-dimensional

vector space over the finite fieldF2n .

2) A linear source encoder that assigns an index tuplem(out(1)) := {me ∈ F2n :

e ∈ out(1)} to each(m1, ...,mR) ∈ F
R
2n via a linear transformation with coefficient

αjk ∈ F2n .

m1

m2

m3

me1 = α11m1 + α12m2 + α13m3

me2 = α21m1 + α22m2 + α23m3

Fig. 17. A source encoder with R=3.

3) A set of linear relay encoders: Encoderk assigns an index tuplem(out(k)) to each

m(in(k)) via a linear transformation.

4) A set of linear decoders,the j decoder{j : j ∈ D} assignsm̂R
j to eachm(In(j)).
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me1

me2

me3 = α31me1 + α32me2

me4 = α41me1 + α42me2

me5 = α51me1 + α52me2

Fig. 18. A relay encoder with|in(j)| = 2 and |out(j)| = 3.

me1

me2

me3

m̂j1 = α11me1 + α12me2 + α13me3

m̂j2 = α21me2 + α22me2 + α23me3

m̂j3 = α31me3 + α32me2 + α33me3

Fig. 19. This figure depicts an example of a linear decoder in source.

Thus, for each destination nodej ∈ D a linear code induces a linear transformation

m̂R
j = Aj(ᾱ)m

R, (46)

whereᾱ is the coefficients vector ofj ∈ D.

The rate R is achievable with zero error if there exists ann ∈ N and ᾱ such that

Aj(ᾱ) = IR ∀j ∈ D.

Note that any invertibleAj(ᾱ) is sufficient for restoration ofmR by multiplying A−1
j (ᾱ)

with m̂R
j .

Example 8 Let’s consider the multicast network depicted in Fig. 20 with D = {4}: One

m1

m2

α1
m1

+
α2
m2

α
3m

1 +
α
4m

2

α5m12

α
6m

12

α7
m13

+
α8
m23

m̂1 = α9m24 + α10m34

m̂2 = α11m24 + α12m34

Fig. 20. Example for linear network coding with R=2.
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can see that linear code book withR = 2 induces the linear transformation:




m̂1

m̂2



 =





α9 α10

α11 α12









m24

m34



 (47)

=





α9 α10

α11 α12









α6 0

α5α8 α7









m12

m13



 (48)

=





α9 α10

α11 α12









α6 0

α5α8 α7









α1 α2

α3 α4









m1

m2



 (49)

We can see that for this multicast network,

Aj(ᾱ) =





α9 α10

α11 α12









α6 0

α5α8 α7









α1 α2

α3 α4



 . (50)

Restoration of the original messages can be done only by multiplying A−1
j (ᾱ) with m̂R

j .

Aj(ᾱ) is inveritable if|Aj(ᾱ)| 6= 0, therefore we need to find a coefficients vectorᾱ such

that |Aj(ᾱ)| 6= 0.

REFERENCES


