
Homework: Logistic Regression with Gradient Descent in Python

Overview:

In this hands-on assignment, you will classify images of handwritten digits (specifically digits 0 and 1) using 
logistic regression. You will:

1. Train a logistic regression model using scikit-learn and evaluate its performance.

2. Implement logistic regression from scratch using gradient descent and binary cross-entropy loss.

3.  Visualize your model's behavior using informative plots, including confusion matrix and 
misclassified examples.

Dataset:

We will use the MNIST dataset (from Keras) which includes 28x28 grayscale images of handwritten digits. 
You will filter this dataset to include only digits 0 and 1 for binary classification.

from tensorflow.keras.datasets import mnist

from sklearn.preprocessing import StandardScaler

import numpy as np

# Load dataset

(X_train_full, y_train_full), (X_test_full, y_test_full) = 
mnist.load_data()

# Filter digits 0 and 1

mask_train = (y_train_full == 0) | (y_train_full == 1)

mask_test = (y_test_full == 0) | (y_test_full == 1)

X_train = X_train_full[mask_train].reshape(-1, 28*28) / 255.0

y_train = y_train_full[mask_train]

X_test = X_test_full[mask_test].reshape(-1, 28*28) / 255.0

y_test = y_test_full[mask_test]

Then, split your data into train and test sets and standardize the features using StandardScaler.



Part 1: Sanity Check with scikit-learn

Use scikit-learn's LogisticRegression model to:

• Fit the training data

• Predict the labels on the test set

• Calculate and print the accuracy and log loss

from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import accuracy_score, log_loss

# Standardize data

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

# Train scikit-learn logistic regression

clf = LogisticRegression()

clf.fit(X_train_scaled, y_train)

y_pred = clf.predict(X_test_scaled)

y_prob = clf.predict_proba(X_test_scaled)[:, 1]

print("Accuracy:", accuracy_score(y_test, y_pred))

print("Log Loss:", log_loss(y_test, y_prob))



Part 2: Implement Logistic Regression from Scratch

You will now implement logistic regression using NumPy.

Tasks:

• Implement the sigmoid function

• Implement binary cross-entropy loss

• Use gradient descent to update weights over 100 epochs

• Track and store loss values over iterations for both training and test sets

• Compare results after 5 epochs and 100 epochs

def sigmoid(z):

    return

# Standardize again and add intercept

X_train_manual = scaler.transform(X_train)

X_manual = np.hstack([np.ones((X_train_manual.shape[0], 1)), 
X_train_manual])

y_manual = y_train.reshape(-1, 1)

# Initialize weights

W = np.zeros((X_manual.shape[1], 1))

# Set hyperparameters

lr =

epochs =

train_loss_history = []

test_loss_history = []

# Gradient descent loop

for i in range(epochs):

    z =

    y_hat = sigmoid(z)

    # Compute loss (binary cross-entropy)

    loss = -np.mean(y_manual * np.log(y_hat + 1e-10) + (1 - y_manual) * 
np.log(1 - y_hat + 1e-10))



    train_loss_history.append(loss)

# Compute test loss

y_hat_test = sigmoid(X_test_manual @ W)

test_loss = -np.mean(y_test.reshape(-1, 1) * np.log(y_hat_test + 1e-10) + 
(1 - y_test.reshape(-1, 1)) * np.log(1 - y_hat_test + 1e-10))

test_loss_history.append(test_loss)

    # Compute gradient

    grad =

    W -= lr * grad

    if (i + 1) % 10 == 0:

        print(f"Epoch {i + 1}, Loss: {loss:.4f}")



Part 3: Evaluation and Visualization

You will now evaluate your custom implementation and visualize results.

Tasks:

1. Accuracy and Log Loss: Evaluate your manual model after 5 and 100 epochs.

2. Plot 1: Loss vs Iteration — Plot binary cross-entropy loss over training epochs for both training and 
test sets.

3. Plot 2: Confusion Matrix — Use scikit-learn to generate a confusion matrix for predictions.

4. Plot 3: Important Pixels — Visualize model weights (excluding bias) as a 28x28 image.

5. Plot 4: Misclassified Examples — Display up to 10 misclassified images with predicted label and 
confidence.

6. Compare with scikit-learn model — Print scikit-learn accuracy again and show its misclassified 
examples.

# Prepare test data with intercept

X_test_manual = np.hstack([np.ones((X_test_scaled.shape[0], 1)), 
X_test_scaled])

# Predict and evaluate

y_prob_manual = sigmoid(X_test_manual @ W)

y_pred_manual = (y_prob_manual >= 0.5).astype(int)

print("Accuracy:", accuracy_score(y_test, y_pred_manual))

print("Log Loss:", log_loss(y_test, y_prob_manual))

# Plot 1: Loss vs Iteration

# Plot 2: Confusion Matrix

# Plot 3: Important Pixels

# Plot 4: Misclassified Examples

# Compare with scikit-learn

print("scikit-learn accuracy:", accuracy_score(y_test, y_pred))



Submission Instructions:

• Submit a PDF that includes all plots (loss, confusion matrix, important pixels, misclassified 
examples).

• Also submit a .py file with your code.

• Name your files as follows: <id>.pdf and <id>.py (e.g., 123456789.pdf, 
123456789.py).


