Homework Set #1
Properties of Entropy, Mutual Information and Divergence

1. Entropy of functions of a random variable.
 Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps:

 \[H(X, g(X)) \leq H(X) \]

 \[H(g(X)) \leq H(X) \]

 Thus $H(g(X)) \leq H(X)$.

 Solution: Entropy of functions of a random variable.

 (a) $H(X, g(X)) = H(X) + H(g(X)|X)$ by the chain rule for entropies.

 (b) $H(g(X)|X) = 0$ since for any particular value of X, $g(X)$ is fixed, and hence $H(g(X)|X) = \sum_x p(x)H(g(X)|X = x) = \sum_x 0 = 0$.

 (c) $H(X, g(X)) = H(g(X)) + H(X|g(X))$ again by the chain rule.

 (d) $H(X|g(X)) \geq 0$, with equality iff X is a function of $g(X)$, i.e., $g(\cdot)$ is one-to-one. Hence $H(X, g(X)) \geq H(g(X))$.

 Combining parts (b) and (d), we obtain $H(X) \geq H(g(X))$.

2. Example of joint entropy.
 Let $p(x, y)$ be given by

 \[
 \begin{array}{c|cc}
 & Y & 0 & 1 \\
 \hline
 X & & & \\
 0 & 1/3 & 1/3 \\
 1 & 1/3 & 0 \\
 \end{array}
 \]

 Find
(a) $H(X), H(Y)$.
(b) $H(X|Y), H(Y|X)$.
(c) $H(X, Y)$.
(d) $H(Y) - H(Y|X)$.
(e) $I(X; Y)$.

Solution: Example of joint entropy

(a) $H(X) = \frac{2}{3} \log \frac{2}{3} + \frac{1}{3} \log 3 = .918$ bits $= H(Y)$.
(b) $H(X|Y) = \frac{1}{3}H(X|Y = 0) + \frac{2}{3}H(X|Y = 1) = .667$ bits $= H(Y|X)$.
(c) $H(X, Y) = 3 \times \frac{1}{3} \log 3 = 1.585$ bits.
(d) $H(Y) - H(Y|X) = .251$ bits.
(e) $I(X; Y) = H(Y) - H(Y|X) = .251$ bits.

3. **Bytes.**

The entropy, $H_a(X) = - \sum p(x) \log_a p(x)$ is expressed in bits if the logarithm is to the base 2 and in bytes if the logarithm is to the base 256. What is the relationship of $H_2(X)$ to $H_{256}(X)$?

Solution: Bytes.

$$\lim_{i=\infty} I(Y_i; Y^{i-1}|Q_i) = 0H_2(X) = - \sum p(x) \log_2 p(x)$$

$$= - \sum p(x) \frac{\log_2 p(x) \log_{256}(2)}{\log_{256}(2)}$$

$$\overset{(a)}= - \sum p(x) \frac{\log_{256} p(x)}{\log_{256}(2)}$$

$$= \frac{-1}{\log_{256}(2)} \sum p(x) \log_{256} p(x)$$

$$\overset{(b)}= \frac{H_{256}(X)}{\log_{256}(2)},$$

where (a) comes from the property of logarithms and (b) follows from the definition of $H_{256}(X)$. Hence we get

$$H_2(X) = 8H_{256}(X).$$
4. Two looks.

Here is a statement about pairwise independence and joint independence. Let $X, Y_1,$ and Y_2 be binary random variables. If $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$, does it follow that $I(X; Y_1, Y_2) = 0$?

(a) Yes or no?

(b) Prove or provide a counterexample.

(c) If $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$ in the above problem, does it follow that $I(Y_1; Y_2) = 0$? In other words, if Y_1 is independent of X, and if Y_2 is independent of X, is it true that Y_1 and Y_2 are independent?

Solution: Two looks.

(a) The answer is “no”.

(b) Although at first the conjecture seems reasonable enough—after all, if Y_1 gives you no information about X, and if Y_2 gives you no information about X, then why should the two of them together give any information? But remember, it is NOT the case that $I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2)$. The chain rule for information says instead that $I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2 | Y_1)$. The chain rule gives us reason to be skeptical about the conjecture.

This problem is reminiscent of the well-known fact in probability that pair-wise independence of three random variables is not sufficient to guarantee that all three are mutually independent. $I(X; Y_1) = 0$ is equivalent to saying that X and Y_1 are independent. Similarly for X and Y_2. But just because X is pairwise independent with each of Y_1 and Y_2, it does not follow that X is independent of the vector (Y_1, Y_2).

Here is a simple counterexample. Let Y_1 and Y_2 be independent fair coin flips. And let $X = Y_1$ XOR Y_2. X is pairwise independent of both Y_1 and Y_2, but obviously not independent of the vector (Y_1, Y_2), since X is uniquely determined once you know (Y_1, Y_2).

(c) Again the answer is “no”. Y_1 and Y_2 can be arbitrarily dependent with each other and both still be independent of X. For example, let $Y_1 = Y_2$ be two observations of the same fair coin flip, and
5. **A measure of correlation.**

Let X_1 and X_2 be *identically distributed*, but not necessarily independent. Let

$$
\rho = 1 - \frac{H(X_1|X_2)}{H(X_1)}.
$$

(a) Show $\rho = \frac{I(X_1;X_2)}{H(X_1)}$.

(b) Show $0 \leq \rho \leq 1$.

(c) When is $\rho = 0$?

(d) When is $\rho = 1$?

Solution: A measure of correlation.

X_1 and X_2 are identically distributed and

$$
\rho = 1 - \frac{H(X_2|X_1)}{H(X_1)}.
$$

(a)

$$
\rho = \frac{H(X_1) - H(X_2|X_1)}{H(X_1)}
= \frac{H(X_2) - H(X_2|X_1)}{H(X_1)} \quad \text{(since } H(X_1) = H(X_2))
= \frac{I(X_1;X_2)}{H(X_1)}.
$$

(b) Since $0 \leq H(X_2|X_1) \leq H(X_2) = H(X_1)$, we have

$$
0 \leq \frac{H(X_2|X_1)}{H(X_1)} \leq 1
$$

$$
0 \leq \rho \leq 1.
$$

(c) $\rho = 0$ iff $I(X_1;X_2) = 0$ iff X_1 and X_2 are independent.
(d) $\rho = 1$ iff $H(X_2|X_1) = 0$ iff X_2 is a function of X_1. By symmetry, X_1 is a function of X_2, i.e., X_1 and X_2 have a one-to-one correspondence. For example, if $X_1 = X_2$ with probability 1 then $\rho = 1$. Similarly, if the distribution of X_i is symmetric then $X_1 = -X_2$ with probability 1 would also give $\rho = 1$.

6. The value of a question.
Let $X \sim p(x)$, $x = 1, 2, \ldots, m$.
We are given a set $S \subseteq \{1, 2, \ldots, m\}$. We ask whether $X \in S$ and receive the answer
$$Y = \begin{cases} 1, & \text{if } X \in S \\ 0, & \text{if } X \notin S. \end{cases}$$
Suppose $\Pr\{X \in S\} = \alpha$.

(a) Find the decrease in uncertainty $H(X) - H(X|Y)$.
(b) Is it true that any set S with a given probability α is as good as any other.

Solution: The value of a question.

(a) Consider
$$H(X) - H(X|Y) = H(Y) - H(Y|X) = H(Y) = H_0(\alpha) \quad (1)$$

(b) Yes, since the answer depends only on α.

7. Relative entropy is not symmetric
Let the random variable X have three possible outcomes $\{a, b, c\}$. Consider two distributions on this random variable

<table>
<thead>
<tr>
<th>Symbol</th>
<th>$p(x)$</th>
<th>$q(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$1/2$</td>
<td>$1/3$</td>
</tr>
<tr>
<td>b</td>
<td>$1/4$</td>
<td>$1/3$</td>
</tr>
<tr>
<td>c</td>
<td>$1/4$</td>
<td>$1/3$</td>
</tr>
</tbody>
</table>

Calculate $H(p), H(q), D(p \parallel q)$ and $D(q \parallel p)$.
Verify that in this case $D(p \parallel q) \neq D(q \parallel p)$.

Solution: Relative entropy is not symmetric.
(a) \(H(p) = 1/2 \log 2 + 2 \times 1/4 \log 4 = 1.5 \) bits.
(b) \(H(q) = 3 \times 1/3 \log 3 = \log 3 = 1.585 \) bits.
(c) \(D(p\|q) = 1/2 \log 3/2 + 2 \times 1/4 \log 3/4 = \log 3 - 3/2 = 0.0850 \) bits.
(d) \(D(q\|p) = 1/3 \log 2/3 + 2 \times 1/3 \log 4/3 = 5/3 - \log 3 = 0.0817 \) bits.

\(D(p\|q) \neq D(q\|p) \) as expected.

8. “True or False” questions

Copy each relation and write true or false. Then, if it’s true, prove it. If it is false give a counterexample or prove that the opposite is true.

(a) \(H(X) \geq H(X|Y) \)
(b) \(H(X) + H(Y) \leq H(X,Y) \)
(c) Let \(X, Y \) be two independent random variables. Then
\[
H(X - Y) \geq H(X).
\]
(d) Let \(X, Y, Z \) be three random variables that satisfies \(H(X,Y) = H(X) + H(Y) \) and \(H(Y,Z) = H(Z) + H(Y) \). Then the following holds
\[
H(X,Y,Z) = H(X) + H(Y) + H(Z).
\]
(e) For any \(X, Y, Z \) and the deterministic function \(f, g \) \(I(X;Y|Z) = I(X,f(X,Y);Y,g(Y,Z)|Z) \).

Solution to “True or False” questions e.

(a) \(H(X) \geq H(X|Y) \) is true. Proof: In the class we showed that \(I(X;Y) > 0 \), hence \(H(X) - H(X|Y) > 0 \).
(b) \(H(X) + H(Y) \leq H(X,Y) \) is false. Actually the opposite is true, i.e., \(H(X) + H(Y) \geq H(X,Y) \) since \(I(X;Y) = H(X) + H(Y) - H(X,Y) \geq 0 \).
(c) Let \(X, Y \) be two independent random variables. Then
\[
H(X - Y) \geq H(X).
\]

True
\[
H(X - Y) \overset{(a)}{\geq} H(X - Y|Y) \overset{(b)}{\geq} H(X)
\]
(a) follows from the fact that conditioning reduces entropy.
(b) Follows from the fact that given Y, $X - Y$ is a Bijective Function.

(d) Let X, Y, Z be three random variables that satisfies $H(X, Y) = H(X) + H(Y)$ and $H(Y, Z) = H(Z) + H(Y)$. Then the following holds $H(X, Y, Z) = H(X) + H(Y) + H(Z)$. This is false. Consider the following derivations

\[
H(X, Y, Z) = H(X, Y) + H(Z|X, Y) \tag{2}
\]
\[
= H(X) + H(Y) + H(Z) - I(Z; X, Y) \tag{3}
\]
\[
= H(X) + H(Y) + H(Z) - I(Z; X|Y) \tag{4}
\]
\[
\leq H(X) + H(Y) + H(Z) \tag{5}
\]

since $I(Z; X|Y)$ can be greater than 0. For example, X, Y are two independent RV distributed uniformly over $\{0, 1\}$ and $Z = X \oplus Y$. In this case, X is independent of Y and Y is independent of Z buy Z is dependent on (X, Y).

(e) For any X, Y, Z and the deterministic function f, g, $I(X; Y|Z) = I(X, f(X, Y); Y, g(Y, Z)|Z)$ is false since adding the function $f(X, Y)$ to the left hand side increases the mutual information.

\[
I(X, f(X, Y); Y, g(Y, Z)|Z) = I(X, f(X, Y); Y|Z) \tag{6}
\]
\[
= I(X; Y|Z) + I(f(X, Y); Y|Z, X) \tag{7}
\]
\[
= I(X; Y|Z) + H(f(X, Y)|Z, X) \tag{8}
\]
\[
\geq I(X; Y|Z) \tag{9}
\]

since $H(f(X, Y)|Z, X) \geq 0$.

9. True or False

Let X, Y, Z be discrete random variable. Copy each relation and write true or false. If it’s true, prove it. If it is false give a counterexample or prove that the opposite is true.

For instance:

- $H(X) \geq H(X|Y)$ is true. Proof: In the class we showed that $I(X; Y) > 0$, hence $H(X) - H(X|Y) > 0$.

• $H(X) + H(Y) \leq H(X,Y)$ is false. Actually the opposite is true, i.e., $H(X) + H(Y) \geq H(X,Y)$ since $I(X;Y) = H(X) + H(Y) - H(X,Y) \geq 0$.

(a) If $H(X|Y) = H(X)$ then X and Y are independent.
(b) For any two probability mass functions (pmf) P, Q,
\[
D\left(\frac{P + Q}{2}||Q\right) \leq \frac{1}{2}D(P||Q),
\]
where $D(||)$ is a divergence between two pmfs.
(c) Let X and Y be two independent random variables. Then
\[
H(X + Y) \geq H(X).
\]
(d) $I(X;Y) - I(X;Y|Z) \leq H(Z)$
(e) If $f(x,y)$ is a convex function in the pair (x,y), then for a fixed y, $f(x,y)$ is convex in x, and for a fixed x, $f(x,y)$ is convex in y.
(f) If for a fixed y the function $f(x,y)$ is a convex function in x, and for a fixed x, $f(x,y)$ is convex function in y, then $f(x,y)$ is convex in the pair (x,y). (Examples of such functions are $f(x,y) = f_1(x) + f_2(y)$ or $f(x,y) = f_1(x)f_2(y)$ where $f_1(x)$ and $f_2(y)$ are convex.)
(g) Let X, Y, Z, W satisfy the Markov chain $X \rightarrow Y \rightarrow Z$ and $Y \rightarrow Z \rightarrow W$. Does the Markov $X \rightarrow Y \rightarrow Z \rightarrow W$ hold? (The Markov $X \rightarrow Y \rightarrow Z \rightarrow W$ means that $P(x|y, z, w) = P(x|y)$ and $P(x, y|z, w) = P(x, y|z)$.)
(h) $H(X|Z)$ is concave in $P_{X|Z}$ for fixed P_Z.

Solution to True or False

(a) If $H(X|Y) = H(X)$ then X and Y are independent.
True:
\[
I(X;Y) = H(X) - H(X|Y)
\]
If $I(X;Y) = 0$ then $H(X) = H(X|Y)$. We can write:
\[
I(X;Y) = D\left(\frac{P_{X,Y}}{P_XP_Y}||\frac{P_X}{P_X}\right) = 0
\]
\[
D(Q||P) = 0 \iff P(x) = Q(x) \forall x, \text{ therefore } P_{X,Y}(x,y) = P_X(x)P_Y(y)
\]
for every x, y and as result $X \perp Y$.

8
(b) For any two probability mass functions (pmf) $P, Q,$

$$D \left(\frac{P + Q}{2} \right) \leq \frac{1}{2} D(P||Q),$$

where $D(||)$ is a divergence between two pmfs.

True:

Using the concave property of the divergence function:

$$D(\lambda P + (1 - \lambda)Q || Q) \leq \lambda D(P || Q) + (1 - \lambda)D(Q || Q)$$

Assigning $\lambda = \frac{1}{2},$ and since $D(Q||Q) = 0$:

$$D \left(\frac{1}{2} P + \frac{1}{2} Q || Q \right) \leq \frac{1}{2} D(P||Q)$$

(c) Let X and Y be two independent random variables. Then

$$H(X + Y) \geq H(X).$$

True:

$$H(X + Y) \geq H(X + Y|Y) \overset{(a)}{=} H(X)$$

(a) - since X is independent of $Y.$

(d) $I(X; Y) - I(X; Y|Z) \leq H(Z)$

True:

$$I(X; Y) - I(X; Y|Z) = H(X) - H(X|Y) - [H(X|Z) - H(X|Y, Z)]$$

$$= H(X) - H(X|Z) - [H(X|Y) - H(X|Y, Z)] \geq 0$$

$$\leq I(X; Z)$$

$$= H(Z) - H(Z|X) \geq 0$$

$$\leq H(Z)$$

(e) If $f(x, y)$ is a convex function in the pair $(x, y),$ then for a fixed $y,$ $f(x, y)$ is convex in $x,$ and for a fixed $x,$ $f(x, y)$ is convex in $y.$

True If the function is Convex for every combination of (x, y) it is necessarily Convex for Affine Function of the pair.
(f) If for a fixed y the function $f(x,y)$ is a convex function in x, and for a fixed x, $f(x,y)$ is convex function in y, then $f(x,y)$ is convex in the pair (x,y).

False
Consider the function $f(x,y) = xy$. Its linear in x for fixed y and vice versa but the function its neither convex nor concave. The second derivative matrix is not semi-definite positive.

(g) **False** Let us assume that
\begin{align*}
Z &\sim \text{Bern}(0.5), \\
W &\sim \text{Bern}(0.5), \\
X &= Z \oplus W, \\
Y &= X \oplus A,
\end{align*}
(10) (11) (12) (13)
where $A \sim \text{Bern}(0.1)$. The Markov $X - Y - Z$ holds since X and Z are independent and the relation $Y - Z - W$ holds from the fact that Y is independent of (Z,W). However, by knowing Z and W we know X and therefore $p(x,y|z,w) = p(x,y|z)$ does not hold in general.

(h) **True** We know that,
\[H(X|Z) = \sum_{z \in Z} p(z) H(X|Z = z). \]
(14)
For a fixed $p(z)$, $H(X|Z)$ is formed as a linear combination of concave functions ($H(X|Z = z)$ is concave), thus, $H(X|Z)$ is concave in $P_{X|Z}$.

10. **Random questions.**
One wishes to identify a random object $X \sim p(x)$. A question $Q \sim r(q)$ is asked at random according to $r(q)$. This results in a deterministic answer $A = A(x,q) \in \{a_1,a_2,\ldots\}$. Suppose the object X and the question Q are independent. Then $I(X;Q,A)$ is the uncertainty in X removed by the question-answer (Q,A).

(a) Show $I(X;Q,A) = H(A|Q)$. Interpret.
(b) Now suppose that two i.i.d. questions $Q_1, Q_2 \sim r(q)$ are asked, eliciting answers A_1 and A_2. Show that two questions are less valuable than twice the value of a single question in the sense that $I(X; Q_1, A_1, Q_2, A_2) \leq 2I(X; Q_1, A_1)$.

Solution: Random questions.

(a) Since A is a deterministic function of (Q, X), $H(A|Q, X) = 0$. Also since X and Q are independent, $H(Q|X) = H(Q)$. Hence,

$$I(X; Q, A) = H(Q, A) - H(Q, A|X)$$
$$= H(Q) + H(A|Q) - H(Q|X) - H(A|Q, X)$$
$$= H(Q) + H(A|Q) - H(Q)$$
$$= H(A|Q).$$

The interpretation is as follows. The uncertainty removed in X given (Q, A) is the same as the uncertainty in the answer given the question.

(b) Using the result from part (a) and the fact that questions are independent, we can easily obtain the desired relationship.

$$I(X; Q_1, A_1, Q_2, A_2) \overset{(a)}{=} I(X; Q_1) + I(X; A_1|Q_1) + I(X; Q_2|A_1, Q_1)$$
$$+ I(X; A_2|A_1, Q_1, Q_2)$$
$$\overset{(b)}{=} I(X; A_1|Q_1) + I(X; A_2|A_1, Q_1, Q_2) - H(Q_2|X, A_1, Q_1)$$
$$+ I(X; A_2|A_1, Q_1, Q_2)$$
$$\overset{(c)}{=} I(X; A_1|Q_1) + I(X; A_2|A_1, Q_1, Q_2)$$
$$= I(X; A_1|Q_1) + H(A_2|A_1, Q_1, Q_2) - H(A_2|X, A_1, Q_1, Q_2)$$
$$\overset{(d)}{=} I(X; A_1|Q_1) + H(A_2|A_1, Q_1, Q_2)$$
$$\overset{(c)}{=} 2I(X; A_1|Q_1)$$

(a) Chain rule.
(b) X and Q_1 are independent.
(c) Q_2 are independent of X, Q_1, and A_1.

11
(d) A_2 is completely determined given Q_2 and X.
(e) Conditioning decreases entropy.
(f) Result from part (a).

11. **Entropy bounds.**
Let $X \sim p(x)$, where x takes values in an alphabet \mathcal{X} of size m. The entropy $H(X)$ is given by

\[H(X) \equiv -\sum_{x \in \mathcal{X}} p(x) \log p(x) = E_p \log \frac{1}{p(X)}. \]

Use Jensen’s inequality ($Ef(X) \leq f(EX)$, if f is concave) to show

(a) $H(X) \leq \log E_p \frac{1}{p(X)} \leq \log m$.
(b) $-H(X) \leq \log(\sum_{x \in \mathcal{X}} p^2(x))$, thus establishing a lower bound on $H(X)$.
(c) Evaluate the upper and lower bounds on $H(X)$ when $p(x)$ is uniform.
(d) Let X_1, X_2 be two independent drawings of X. Find $\text{Pr}\{X_1 = X_2\}$ and show $\text{Pr}\{X_1 = X_2\} \geq 2^{-H}$.

Solution: Entropy Bounds.
To prove (a) observe that

\[H(X) = E_p \log \frac{1}{p(X)} \leq \log E_p \frac{1}{p(X)} = \log \sum_{x \in \mathcal{X}} p(x) \frac{1}{p(x)} = \log m \]

where the the first inequality follows from Jensen’s, and the last step follows since the size of \mathcal{X} is m.

12
To prove (b) proceed

\[-H(X) = E_p \log p(X) \leq \log E_p p(X) = \log \left(\sum_{x \in \mathcal{X}} p^2(x) \right)\]

where the second step again follows from Jensen’s and the third step is just the definition of $E_p(p(X))$. Thus, we have the lower bound

\[H(X) \geq -\log \left(\sum_{x \in \mathcal{X}} p^2(x) \right).\]

The upper bound is m irrespective of the distribution. Now, $p(x) = 1/m$ for the uniform distribution, and therefore

\[-\log \sum_{x \in \mathcal{X}} p^2(x) = -\log \sum_{x \in \mathcal{X}} \frac{1}{m^2} = -\log \frac{1}{m}\]

and therefore the upper and lower bounds agree, and are $\log m$. A direct calculation of the entropy yields the same result immediately.

The derivation of (d) follows from

\[
\Pr\{X_1 = X_2\} = \sum_{x,y \in \mathcal{X}} \Pr\{X_1 = x, X_2 = y\} \delta_{xy} = \sum_{x \in \mathcal{X}} p^2(x)
\]

where the second step follows from the independence of X_1, X_2, and the fact that they are identically distributed $X_1, X_2 \sim p(x)$. Here δ_{xy} is Kronecker’s delta function.

12. **Bottleneck.**

Suppose a (non-stationary) Markov chain starts in one of n states, necks down to $k < n$ states, and then fans back to $m > k$ states. Thus $X_1 \to X_2 \to X_3$, $X_1 \in \{1, 2, \ldots, n\}$, $X_2 \in \{1, 2, \ldots, k\}$, $X_3 \in \{1, 2, \ldots, m\}$, and $p(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$.

13
(a) Show that the dependence of X_1 and X_3 is limited by the bottleneck by proving that $I(X_1;X_3) \leq \log k$.

(b) Evaluate $I(X_1;X_3)$ for $k = 1$, and conclude that no dependence can survive such a bottleneck.

Solution: Bottleneck.

(a) From the data processing inequality, and the fact that entropy is maximum for a uniform distribution, we get

\[
I(X_1;X_3) \leq I(X_1;X_2) = H(X_2) - H(X_2 \mid X_1) \leq H(X_2) \leq \log k.
\]

Thus, the dependence between X_1 and X_3 is limited by the size of the bottleneck. That is $I(X_1;X_3) \leq \log k$.

(b) For $k = 1$, $0 \leq I(X_1;X_3) \leq \log 1 = 0$ so that $I(X_1,X_3) = 0$. Thus, for $k = 1$, X_1 and X_3 are independent.

13. **Convexity of Halfspaces, hyperplanes and polyhedron**

Let x be a real vector of finite dimension n, i.e., $x \in \mathbb{R}^n$. A halfspace is the set of all $x \in \mathbb{R}^n$ that satisfies $a^T x \leq b$, where $a \neq 0$. In other words a halfspace is the set

\[
\{x \in \mathbb{R}^n : a^T x \leq b\}.
\]

A hyperplan is the set of the form

\[
\{x \in \mathbb{R}^n : a^T x = b\}.
\]

(a) Show that a halfspace and a hyperplan are convex sets.

(b) Show that for any two sets \mathcal{A} and \mathcal{B} that are convex the intersection $\mathcal{A} \cap \mathcal{B}$ is also convex.

(c) A polyhedron is an intersection of halfspaces and a hyperplans. Deduce that a polyhedron is a convex set.
A probability vector \mathbf{x} is such that each element is positive and it sums to 1. Is the set of all vector probabilities of dimension n (called the probability simplex) a halfspace, hyperplane or polyhedron?

Solution:

(a) Hyperplane: Let x_1 and x_2 be vectors that belong to the hyperplane. Since they belong to the hyperplane, $a^T x_1 = b$ and $a^T x_2 = b$ (where a is the scalar vector).

\[
 a^T (\lambda x_1 + (1 - \lambda)x_2) = \lambda a^T x_1 + (1 - \lambda)a^T x_2 \\
 = \lambda b + (1 - \lambda)b = b.
\]

(15) So the set is indeed convex.

Now consider a Halfspace: Let x_1 and x_2 be vectors that belong to the halfspace. Since they belong to the hyperplane, $a^T x_1 \leq b$ and $a^T x_2 \leq b$.

\[
 a^T (\lambda x_1 + (1 - \lambda)x_2) = \lambda a^T x_1 + (1 - \lambda)a^T x_2 \\
 = \lambda a^T x_1 + (1 - \lambda)a^T x_2 \leq \lambda b + (1 - \lambda)b \\
 = b.
\]

(16) So the set is indeed convex.

(b) Let A and B be convex sets. We want to show that $A \cap B$ is also convex. Take $x_1, x_2 \in A \cap B$, and let x lie on the line segment between these two points. Then $x \in A$ because A is convex, and similarly, $x \in B$ because B is convex. Therefore $x \in A \cap B$, as desired.

(c) Let x_1 and x_2 be vectors that belong to the halfspace or the hyperplane sets. Then as was shown in (b) $x_1 \cap x_2$ is also a convex set. Therefore polyhedron is indeed a convex set. definition of polyhedron: $[x | Ax \leq b; Cx = d]$.

15
The probability simplex $\sum_{i=1}^{n} x_i = 1$ and $x_i \geq 0$ is a special case of a polyhedron.

Let X be a real-valued random variable with $\Pr(X = a_i) = p_i, i = 1, \ldots, n$, where $a_1 < a_2 < \ldots < a_n$. Let \mathbf{p} denote the vector p_1, p_2, \ldots, p_n. Of course $\mathbf{p} \in \mathbb{R}^n$ lies in the standard probability simplex. Which of the following conditions are convex in \mathbf{p}? (That is, for which of the following conditions is the set of $\mathbf{p} \in \mathbf{P}$ that satisfy the condition convex?)

(a) $\alpha \leq E[f(X)] \leq \beta$, where $E[f(X)]$ is the expected value of $f(X)$, i.e. $E[f(x)] = \sum_{i=1}^{n} p_i f(a_i)$ (The function $f : \mathbb{R} \rightarrow \mathbb{R}$ is given.)

(b) $\Pr(X > \alpha) \leq \beta$

(c) $E[|X^3|] \leq \alpha E[|X|]$.

(d) $\text{var}(X) \leq \alpha$, where $\text{var}(X) = E(X - EX)^2$ is the variance of X.

(e) $E[X^2] \leq \alpha$

(f) $E[X^2] \geq \alpha$

Solution: First we note that \mathbf{P} is a polyhedron because $p_i, i = 1, \ldots, n$ defines halfspaces and $\sum_{i=1}^{n} p_i = 1$ defines a hyperplane.

(a) $\alpha \leq \sum_{i=1}^{n} p_i f(a_i) \leq \beta$, so the constraint is equivalent to two linear inequalities in the probabilities p_i - convex set.

(b) $\Pr(X > \alpha) \leq \beta$ is equivalent to a linear inequality: $\sum_{i:a_i>\alpha} p_i \leq \beta$ - convex set.

(c) The constraint is equivalent to a linear inequality: $\sum_{i=1}^{n} p_i(|a_i^3| - \alpha|a_i|) \leq 0$ - convex set.

(d) $\text{var}(X) = \sum_{i=1}^{n} p_i a_i^2 - (\sum_{i=1}^{n} p_i a_i)^2 \leq \alpha$ is not convex in general. As a counterexample, we can take $n = 2, a_1 = 1, a_2 = 0, \alpha = 1/8$. $p = (0,1)$ are two points that satisfy $\text{var}(x)=0 \leq \alpha$, but if we take the convex combination $p = (1/2, 1/2)$ then $\text{var}(x)=1/4$ - not a convex set.
(e) The constraint is equivalent to a linear inequality: $\sum_{i=1}^{n} p_i a_i^2 \leq \alpha$ - convex set.

(f) The constraint is equivalent to a linear inequality: $\sum_{i=1}^{n} p_i a_i^2 \geq \alpha$ - convex set.

15. Perspective transformation preserve convexity Let $f(x), f : \mathbb{R} \rightarrow \mathbb{R}$, be a convex function.

(a) Show that the function

$$tf\left(\frac{x}{t}\right), \quad (17)$$

is a convex function in the pair (x, t) for $t > 0$. (The function $tf(\frac{x}{t})$ is called perspective transformation of $f(x)$.)

(b) Is the preservation true for concave functions too?

(c) Use this property to prove that $D(P||Q)$ is a convex function in (P, Q).

Solution:

(a) Let $f(x), f : \mathbb{R} \rightarrow \mathbb{R}$, be a convex function. Lets define $g(x, t) = tf(\frac{x}{t})$.

$$g(\lambda(x_1, t_1) + \bar{\lambda}(x_2, t_2)) = (\lambda t_1 + \bar{\lambda} t_2) f \left(\frac{\lambda t_1 (\frac{x_1}{t_1}) + \bar{\lambda} t_2 (\frac{x_2}{t_2})}{\lambda t_1 + \bar{\lambda} t_2} \right)$$

$$\leq (\lambda t_1 + \bar{\lambda} t_2) \frac{\lambda t_1}{\lambda t_1 + \bar{\lambda} t_2} f \left(\frac{x_1}{t_1} \right) + \frac{\bar{\lambda} t_2}{\lambda t_1 + \bar{\lambda} t_2} f \left(\frac{x_2}{t_2} \right)$$

$$= \lambda t_1 f \left(\frac{x_1}{t_1} \right) + \bar{\lambda} t_2 f \left(\frac{x_2}{t_2} \right)$$

$$= \lambda g(x_1, t_1) + \bar{\lambda} g(x_2, t_2) \quad (18)$$

So g is indeed a convex function.

Another way to solve, is to assume that $f()$ has a second derivative and show that the Hessian is semi-definite positive. However, the first proof is more general since its true for any convex function even if the derivative does not exist.
(b) Now let \(f(x), f : \mathbb{R} \to \mathbb{R} \), be a concave function.
-\(f(x) \) is convex function and by the same way of (a) we got that \(g \) is
a concave function. therefore the preservation is true for concave
functions too.

(c) \(D(P||Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)} = -\sum_x P(x) \log \frac{Q(x)}{P(x)} \). If we consider
\(Q = (q_1, ..., q_k) \) and \(P = (p_1, ..., p_k) \) and choose \(p_1 = t \) and \(q_1 = x \),
and \(f(x) = -log(x) \) (convex function) then we conclude from (a)
that \(p_1 \log \frac{p_1}{q_1} \) is convex in \((p_1, q_1)\) and since \(D(P||Q) \) a summation
of convex functions then it is convex.

16. Coin Tosses
Consider the next joint distribution: \(X \) is the number of coin tosses
until the first head appears and \(Y \) is the number of coin tosses until
the second head appears. The probability for a head is \(q \), and the tosses
are independent.

a. Compute the distribution of \(X \), \(p(x) \), the distribution of \(Y \), \(p(y) \),
and the conditional distributions \(p(y|x) \) and \(p(x|y) \).

b. Compute \(H(X), H(Y|X), H(X,Y) \). Each term should not in-
clude a series. Hint: Is \(H(Y|X) = H(Y - X|X) \)?

c. Compute \(H(Y), H(X|Y) \), and \(I(X;Y) \). If necessary, answers may
include a series.

Solution:

(a) Since \(X \) represents the number of coin tosses until the first head
appears, it is Geometrically distributed, i.e., \(X \sim G(q) \).

\[
p(x = k) = \begin{cases}
(1 - q)^{k-1}q & \text{if } k > 0; \\
0 & \text{if } k \leq 0.
\end{cases}
\]

Similarly, \(Y \) is Negative Binomial distributed, i.e., \(Y \sim NB(2, 1-q) \).

\[
p(y = n) = \begin{cases}
(n - 1)(1 - q)^{n-2}q^2 & \text{if } n > 1; \\
0 & \text{if } n \leq 0.
\end{cases}
\]
Since the coin tosses are independent, by knowing \(X \), the distribution of \(Y \) is Geometric distributed with an initial value at \(X \), i.e.,

\[
p(y = n|x = k) = \begin{cases}
(1 - q)^{n-k-1}q & \text{if } n > k; \\
0 & \text{if } n \leq k.
\end{cases}
\]

Assuming the second head toss was at \(n \), the distribution of \(X \) is uniform over all values between 1 and \(n - 1 \), i.e.,

\[
p(x = k|y = n) = \begin{cases}
\frac{1}{n-1} & \text{if } 1 \leq k \leq n - 1; \\
0 & \text{else}.
\end{cases}
\]

(b) The computation of \(H(X) \), \(H(Y|X) \) is immediate by definition,

\[
H(X) = \frac{H_b(q)}{q},
\]

\[
H(Y|X) = H(Y - X|X) = H(Y - X) = \frac{H_b(q)}{q}.
\]

\(H(X), H(Y|X) \) are equal since \(X \) and \(Y - X \) are both geometrically distributed with the same success probability. From the properties of joint entropy, we have that

\[
H(X, Y) = H(X) + H(Y|X) = \frac{2H_b(q)}{q},
\]
(c) From the definition of entropy,

\[
H(X|Y) = \sum_{y \in Y} \Pr(Y = y) H(X|Y = y)
\]

\[
= \sum_{y \in Y} \Pr(Y = y) \log(y - 1)
\]

\[
= \sum_{y=2}^{\infty} (y - 1)(1 - q)^y q^2 \log(y - 1).
\]

\[
H(Y) = H(X, Y) - H(X|Y)
\]

\[
= \frac{2H_b(q)}{q} - \sum_{y=2}^{\infty} (y - 1)(1 - q)^y q^2 \log(y - 1).
\]

\[
I(X; Y) = H(X) - H(X|Y)
\]

\[
= \frac{H_b(q)}{q} - \sum_{y=2}^{\infty} (y - 1)(1 - q)^y q^2 \log(y - 1).
\]

(25)

17. **Inequalities** Copy each relation to your notebook and write \(\leq, \geq\) or \(=\), prove it.

(a) Let \(X\) be a discrete random variable. Compare \(\frac{1}{2H(X)}\) vs. \(\max_x p(x)\).

(b) Let \(H_b(a)\) denote the binary entropy for \(a \in [0, 1]\) and \(H_{ter}\) is the ternary entropy i.e. \(H_{ter}(a, b, c) = -a \log a - b \log b - c \log c\), where \(p_1, p_2, p_3 \in [0, 1]\), and \(p_1 + p_2 + p_3 = 1\).

Compare \(H_{ter}(ab, a\bar{b}, \bar{a})\) vs \(H_b(a) + \bar{a}H_b(b)\).

Solution:

(a) Let us show that \(\frac{1}{2H(X)} \leq \max_x p(x)\).

\[
\frac{1}{2H(X)} = 2^{\mathbb{E}_X[\log p(X)]}
\]

\[
\leq 2^{\log \mathbb{E}_X[p(X)]}
\]

\[
= \mathbb{E}_X[p(X)]
\]

\[
\leq \max_x p^2(x)
\]

\[
\leq \max_x p(x),
\]
where (a) follows from Jensen’s inequality.

(b) We show that \(H_{ter}(ab, a\bar{b}, \bar{a}) = H_b(a) + aH_b(b) \).

\[
H_{ter}(ab, a\bar{b}, \bar{a}) = -ab \log(ab) - a\bar{b} \log(a\bar{b}) - \bar{a} \log \bar{a} \\
= -(ab + a\bar{b}) \log a - ab \log b - a\bar{b} \log \bar{b} - \bar{a} \log \bar{a} \\
= -a \log a + a(-b \log \bar{b} - \bar{b} \log \bar{b}) - \bar{a} \log \bar{a} \\
= H_b(a) + aH_b(b)
\]

18. **True or False of a constrained inequality (21 Points):**

Given are three discrete random variables \(X, Y, Z \) that satisfy \(H(Y|X, Z) = 0 \).

(a) Copy the next relation to your notebook and write true or false.

\[
I(X; Y) \geq H(Y) - H(Z)
\]

(b) What are the conditions for which the equality \(I(X; Y) = H(Y) - H(Z) \) holds.

(c) Assume that the conditions for \(I(X; Y) = H(Y) - H(Z) \) are satisfied. Is it true that there exists a function such that \(Z = g(Y) \)?

Solution:

(a) True. Consider,

\[
I(X; Y) = H(Y) - H(Y|X) \\
= H(Y) - H(Y|X) + H(Y|X, Z) \\
= H(Y) - H(Z|X) + H(Z|X, Y) \\
\geq H(Y) - H(Z|X) \\
\geq H(Y) - H(Z),
\]

where (a) follows from \(H(Z|X, Y) \geq 0 \) and (b) follows from \(H(Z) \geq H(Z|X) \) (conditioning reduces entropy).
(b) We used two inequalities; the first becomes equality if \(Z \) is a deterministic function of \((X, Y)\), and the second becomes equality if \(Z \) is independent of \(X \).

(c) False. For example, \(X \sim Bern(\alpha) \), \(Z \sim Bern(0.5) \), \(Y = X \oplus Z \) and \(X \) is independent of \(Z \). All conditions are satisfied, and there is no such function.

19. **True or False of**: Copy each relation to your notebook and write true or false. If true, prove the statement, and if not provide a counterexample.

(a) Let \(X - Y - Z - W \) be a Markov chain, then the following holds:
\[
I(X; W) \leq I(Y; Z).
\]

(b) For two probability distributions, \(p_{XY} \) and \(q_{XY} \), that are defined on \(X \times Y \), the following holds:
\[
D(p_{XY} || q_{XY}) \geq D(p_X || q_X).
\]

(c) If \(X \) and \(Y \) are dependent and also \(Y \) and \(Z \) are dependent, then \(X \) and \(Z \) are dependent.

Solution:

(a) True. By the given Markov, we have that \(I(X, Y; W) \leq I(X, Y; Z) \). By the facts that \(I(X; Z|Y) = 0 \) and \(I(Y; W|X) \geq 0 \), we get the desired inequality.

(b) True. Consider:
\[
D(p_{XY} || q_{XY}) = \sum_{x,y} p(x, y) \log \frac{p(x)}{q(x)} + \sum_{x,y} p(x, y) \log \frac{p(y|x)}{q(y|x)}
\]
\[
= D(p_X || q_X) + \sum_x p(x)D(p_{Y|X=x} || q_{Y|X=x})
\]
\[
\geq D(p_X || q_X),
\]
where the inequality follows from the non-negativity of KL divergence.
(c) False. For any two independent random variables X and Z, we can take Y as the pair (X, Z) which results a contradiction.

20. **Cross entropy**:

Often in Machine learning, cross entropy is used to measure performance of a classifier model such as neural network. Cross entropy is defined for two PMFs P_X and Q_X as

$$ H(P_X, Q_X) \triangleq - \sum_{x \in \mathcal{X}} P_X(x) \log Q_X(x). $$

In a shorter notation we write as

$$ H(P, Q) \triangleq - \sum_{x \in \mathcal{X}} P(x) \log Q(x). $$

Copy each of the following relations to your notebook and write true or false and provide a proof/disproof.

(a) $0 \leq H(P, Q) \leq \log |\mathcal{X}|$ for all P, Q.
(b) $\min_Q H(P, Q) = H(P, P)$ for all P.
(c) $H(P, Q)$ is concave in the pair (P, Q).
(d) $H(P, Q)$ is convex in the pair (P, Q).

Solution:

(a) **False.**

First, note that $H(P, Q)$ can be rewritten as

$$ H(P, Q) = - \sum_{x \in \mathcal{X}} P(x) \log Q(x) $$

$$ = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)} - \sum_{x \in \mathcal{X}} P(x) \log P(x) $$

$$ = D(P || Q) + H_P(X). \quad (26) $$

Thus, it obvious that $H(P, Q) \geq 0$. However, if we let P_{unif} be the uniform measure on \mathcal{X}, then

$$ H(P_{\text{unif}}, Q) = D(P_{\text{unif}} || Q) + H_{P_{\text{unif}}}(X) $$

$$ = D(P_{\text{unif}} || Q) + \log |\mathcal{X}| $$

$$ \geq \log |\mathcal{X}|, \quad (27) $$

23
due to the fact that $D(P_{\text{unif}}||Q) \geq 0$. Now, because $D(P_{\text{unif}}||Q) = 0$ if and only if $Q = P_{\text{unif}}$, by taking any $Q \neq P_{\text{unif}}$, we will get that $D(P_{\text{unif}}||Q) > 0$, which means that $H(P_{\text{unif}}, Q) > \log |X|$ for any $Q \neq P_{\text{unif}}$, contradicting the claim that $H(P, Q) \leq \log |X|$ for all P, Q.

(b) **True.**
This follows from the simple observation that $D(P||Q) \geq 0$ for all (P, Q), and thus

$$H(P, Q) = D(P||Q) + H_P(X) \geq H_P(X),$$

with equality if and only if $Q = P$.

(c) **False.**
If $H(P, Q)$ is concave in the pair (P, Q) then it must be concave in P and Q separately. However, it easy to see that $H(P, Q)$ is convex function in Q (for fixed P) because $-\log(\cdot)$ is convex.

(d) **False.**
If $P = Q$, then $H(P, Q) = H_P(X)$, which is a concave function of P.

24