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Random codes in communication 31 July 2011

Final Test (Moed Bet)

1) True or False (20 points)
Copy each relation to your notebook and writetrue or false. Then, if it’s true, prove it. If it is false
give a counterexample or prove that the opposite is true.

a) For two random variablesX, Y , H(X) > H(Y ), thenY can be compressed better thanX [4
points].

Solution:True. H(X) > H(Y ), henceRX > RY andY can be compressed better.

b) Which of the following sequence of code-lengths are a valid binary prefix codes(can be more
than one answer) [4 points].?
• 1,2,3,4 V
• 1,2,2,4 X
• 1,3,3,3 V
• 2,2,2,3 V

c) Let X be a continues alphabet random variable. For which of the following channels with
power constraint1

n

∑n

i=1 x
2
i (m) ≤ P , the capacity is not finite (there can be more than one

answer) [12 points]:
i) Y = X

ii) Y = X + Z, whereZ ∼ N(0, 1)
iii) Y = X + Z, whereZ ∼ N(0, 1) with probability 0.9, andZ = 0 with probability 0.1.
Provide a scheme that achieves the infinite capacity, if exists.

Solution: SinceX has continues alphabet, (a) and (c) - which has no noise - has infinite
capacity. The scheme is for (c), but also apply for (a):

• Take the interval[0,
√
P ] and divide it into2nR points-j

√
P

2nR , j = 1, 2, ..., 2nR.
• For every messagej, sendxi(m) = j

√
P

2nR for all i = 1, 2, ..., n.
• The decoder declares the message at the first time thaty = j

√
P

2nR for somej.
An error accurse ifZ 6= 0 for all i. Hence,P (er) = 0.9n, which goes to zero with increasing
n.

2) Blahut-Arimoto’s algorithm (30 points) Consider the i.i.d. source coding model as in Fig. 1,
where the inputXn is distributed i.i.d.∼ p(x) which is given by nature, and the decoder is required
to produce an output̂Xn that has a distortion constraint with the source, i.e.,

1

n
E

[

d(Xn, X̂n)
]

≤ D.

The solution to this problem, i.e., the minimum rate that satisfies the constraint above for a given

Xn
Encoder Decoder X̂n

Fig. 1. Rate distortion. We require1
n
E

[

d(Xn, X̂n)
]

≤ D
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distortionD, is

R(D) = min
p(x̂|x):E[d(X,X̂)]≤D

I(X ; X̂).

Solving this optimization problem is a difficult task for thegeneral source. In this question we
develop an iterative algorithm for finding the solution for afixed sourcep(x).

a) First, prove that the mutual information as a function ofp(x̂|x) andp(x̂) as below. [3 points]

I(X ; X̂) =
∑

x,y

p(x)p(x̂|x) log p(x̂|x)
p(x̂)

.

b) Show thatI(X ; Y ) as written above is concave in bothp(x̂), p(x̂|x) (Hint. You may use the
Log-Sum-inequality). [6 points]

c) Find an expression forp(x̂|x) that minimizesI(X ; X̂) when p(x̂) is fixed (Hint. You may
use the Lagrange multipliers method with the constraints

∑

x̂ p(x̂|x) = 1 for all x, and
∑

x,x̂ p(x)p(x̂|x)d(x, x̂)−D ≤ 0. See also the paragraph below!). [9 points]
d) Find an expression forp(x̂) that minimizesI(X ; X̂) whenp(x̂|x) is fixed (Hint. You may use

the Lagrange multipliers method with constraints
∑

x̂ p(x̂) = 1). [7 points]
e) Using (d), conclude thatR(D) = minp(x̂),p(x̂|x) I(X ; X̂). [5 points]

Clarification: First, note that the solution to (c) is a function ofλ ≥ 0 - the parameter associated
with the distortion constraint. This is ok, and is due to the fact that this parameterλ is correlated
with the slope at the point(R,D).
Second, the algorithm is performed by minimizing in each iteration over another variable; first over
p(x̂) whenpx̂|x) is fixed, then overp(x̂|x) whenp(x̂) is fixed, and so on. This iterative algorithm
converges for every slope−λ, and hence one can find the rate distortion functionR(D) for every
i.i.d. sourceXn, with reasonable alphabet size.

Solution:

a) SinceI(X ; X̂) = H(X̂)−H(X̂|X), the answer is obvious.
b) Recall, that the Log-Sum inequality is

n
∑

i=1

ai log
ai

bi
≥
(

n
∑

i=1

ai

)

log

∑n

i=1 ai
∑n

i=1 bi
.

Hence

(λp1(x̂|x)+(1− λ)p2(x̂|x)) log
λp1(x̂|x) + (1− λ)p2(x̂|x)
λp1(x̂) + (1− λ)p2(x̂)

≤ λp1(x̂|x) log
p1(x̂|x)
p1(x̂)

+ (1− λ)p2(x̂|x) log
p2(x̂|x)
p2(x̂)

.

Multiplying by p(x) and summing over allx, x̂, and lettingI(p(x̂), p(x̂|x)) be the mutual
information as in (a), we obtain

I
(

λp1(x̂)+(1− λ)p2(x̂), λp1(x̂|x) + (1− λ)p2(x̂|x)
)

≤ λI
(

p1(x̂), p1(x̂|x)
)

+ (1− λ)I
(

p2(x̂), p2(x̂|x)
)

.
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c) Define the lagrangian

L =
∑

x,x̂

p(x)p(x̂|x) log p(x̂|x)
p(x̂)

+ µ(x)(
∑

x̂

p(x̂|x)− 1)

+ λ(
∑

x,x̂

p(x)p(x̂|x)d(x, x̂)−D),

and differentiate overp(x̂|x). Solving ∂L
∂p(x̂|x) = 0 provides us with

p(x̂|x) = p(x̂)2−λd(x,x̂)

∑

x̂ p(x̂)2
−λd(x,x̂)

.

d) Define the lagrangian

J =
∑

x,x̂

p(x)p(x̂|x) log p(x̂|x)
p(x̂)

+ µ(
∑

x̂

p(x̂)− 1),

and differentiate overp(x̂). Solving ∂J
∂p(x̂)

= 0 provides us with

p(x̂) =
∑

x

p(x)p(x̂|x) (1)

e) The expression forp(x̂) is the one that corresponds top(x̂|x), and hence minimizing over
p(x̂), p(x̂|x) is the same as overp(x̂|x) alone.

3) Bit loading algorithm (50 points) Consider the parallel Gaussian channel as illustrated in Fig.2.
As seen in class, Gaussian inputs distribution maximizes the mutual information for this channel. In
order to determine the variance value in each subchannel, there are two types of loading algorithms
for parallel Gaussian channel- those that try to maximize data rate (power loading) and those that
try to minimize the energy at a given fixed data rate (bit-loading). We studied in class the power
loading algorithm, i.e., loading procedure which maximizes the number of bits per symbol subject
to a fixed energy constraint. Let us define the bit loading criterion.
Definition 1: (Bit loading criterion)A bit loading procedure minimizes the energy sum

N
∑

n=1

ǫn, (2)

subject to:

b =
1

2

N
∑

n=1

log2 (1 + ǫngn) , (3)

where gn represents the subchannel signal-to-noise ratio,gn is a fixed value for each of the
subchannels. However,ǫn ≥ 0, which is the energy investment in then-th subchannel, can be
varied to minimizes the total energy, subject to a fixed data rate b.

a) Write the bit loading problem as a convex optimization problem as learned in class, and explain
why this is a convex problem. [7 point]

b) Solve the bit loading optimization problem (hint: KKT conditions), and write the implicit
equation from which we can derive the water lever out of the parameters{gn}Nn=1 and b. [15
points]

c) Find the energy distribution{ǫn}Nn=1, for the following channel:



4

.

.

.

Z2 ∽ N (0, 1)

ZN ∽ N (0, 1)

Z1 ∽ N (0, 1)

Y1

Y2

YN

√
g1

√
g2

√
gN

X1 ∽ N (0, ǫ1)

X2 ∽ N (0, ǫ2)

XN ∽ N (0, ǫN)

ReceiverTransmitter

Fig. 2. Parallel Gaussian channel.

g1 g2 g3 g4 g5 b

19 17 10 3 0.05 6

Hint: be careful, if you decide thatǫi = 0 for some i ∈ {1, 2, .., N}, the water level
constant changes. [10 points]

d) Find the newdata rateb for sub-ex (c) in the case where constant energy is loaded in each
subchannel, i.e., in each of theN ′ sub channels you decided to use in (c), the energy is
min

ǫN

∑
N

n=1
ǫn

N ′
. [10 points]

e) Consider the case that the channel isY = G ·X + Z, whereG ∈ RN×N (now-not diagonal),
X ∈ RN×1, Z ∈ RN×1, andZ ∽ N (0, I). How Would you change your solution to (c)? [8
points]

Solution:

a) The convex optimization problem is, of course:

min
ǫN

n
∑

n=1

ǫn,

subject to

b− 1

2

N
∑

n=1

log2 (1 + ǫngn) ≤ 0.

This is a convex problem since the objective is affine, and theconstraint is convex (sincelog
is concave).
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b) We write the Lagrangian as

J =
n
∑

n=1

ǫn + λ

(

b− 1

2

N
∑

n=1

log2(1 + ǫngn)

)

.

Solving ∂J
∂ǫn

= 0 and we obtain

2(1 + ǫngn) = λgn,

or

ǫn =
λ

2
− 1

gn
.

Since allǫns are positive, we have

ǫn =

(

ν − 1

gn

)+

.

Now, if N ′ = {n : ν > 1
gn
}, i.e., all channels that should be in use, then:

b =
1

2

N
∑

n=1

log2 (1 + ǫngn)

=
1

2

N
∑

n=1

log2

(

1 +

(

ν − 1

gn

)+

gn

)

=
1

2

∑

n∈N ′

log2 (νgn)

=
1

2
|N ′| log2(ν) +

1

2

∑

n∈N ′

log2(gn).

and,

log2(ν) =
2b

|N ′| −
1

|N ′|
∑

n∈N ′

log2(gn).

c) First, we assume that all channels can be in use. Hence,ν = 1
max gn

= 20. In that case we can
see that the data rate is much larger than 6. On the other hand,if the worst channel is not in
use, andν = 1

g4
= 0.667, then

1

2
|N ′| log2(ν) +

1

2

∑

n∈N ′

log2(gn) = 2 log2(0.667) +
1

2
log(3 · 10 · 17 · 19)

= 1.039.

This data rate is lesser thanb = 6, and hence we know that0.667 ≤ ν ≤ 20 and ǫ5 = 0.
Therefore, we can write

log2(ν) =
2b

|N ′| −
1

|N ′|
∑

n∈N ′

log2(gn)

=
12

4
− 1

4
log2(3 · 10 · 17 · 19)

= 2.0034,
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or ν = 4.009 ≈ 4, which is the water level. Now, the energy investment isǫN =
{3.942, 3.941, 3.9, 3.667, 0}.

d) Now, that we know that the 5th channel is not in use, and the average power is

ǫ =
minǫN

∑N

n=1 ǫn

N ′ = 3.863,

the data rate will be

b =
1

2

4
∑

n=1

log2 (1 + ǫgn) = 3.196.

e) As discussed in class, any matrix has a SVD decompositionG = UDV , D is diagonal and
U, V are unitary. Hence,

Y = UDV X + Z,

U−1Y = D(V X) + U−1Z,

Y ′ = DX ′ + Z ′.

This problem can be solved, and thus solve the original problem.

Good Luck!


