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Introduction to Information Theory and Machine Learning August 14th, 2025.
(Prof. Permuter Haim, Dr. Bashar Huleihel, Mr. Rom Hirsch, and Mr. Eitan Spivak)

Final Exam - Moed B
Total time for the exam: 3 hours!

Please copy the following sentence and sign it:

“ I am respecting the rules of the exam: Signature: ”

1) Word-Guessing and Model Mismatch (35 Points): You are playing a word-guessing game. There are
1024 possible words, all equally likely.

(a) (5 points) Before making any guesses, what is the entropy of the random variable representing the
word?
Solution:
All words are equally likely on a set of size 1024, so

H(W ) = log2(1024) = 10 bits.

(b) (10 points) You guess the first letter of the word. You are debating between two guesses: T (appears in
1/4 of the words) vs L (appears in 1/8 of the words). You may use log2(768) ≈ 9.6 and log2(896) ≈ 9.8.
Which letter gives a better average reduction in entropy? By how much?
Solution:
Guess T :
P (T = correct) = 1

4
, P (T = incorrect) = 3

4
H(W | T = correct) = log2(1024 · 1

4
) = 8

H(W | T = incorrect) = log2(1024 · 3
4
) ≈ 9.6

Thus:
H(W | T ) = 1

4
· 8 + 3

4
· 9.6 = 2 + 7.2 = 9.20 bits.

Reduction: ∆T = 10− 9.20 = 0.80 bits.
Guess L:
P (L = correct) = 1

8
, P (L = incorrect) = 7

8
H(W | L = correct) = log2(1024 · 1

8
) = 7

H(W | L = incorrect) = log2(1024 · 7
8
) ≈ 9.8

Thus:
H(W | L) = 1

8
· 7 + 7

8
· 9.8 = 0.875 + 8.575 = 9.45 bits.

Reduction: ∆L = 10− 9.45 = 0.55 bits.
Conclusion: Guessing T yields 0.25 bits more reduction than guessing L.

(c) (10 points) Now consider guessing the letter R, which starts half of the words. However, 10% of
the time you guess R, the computer will not respond at all (the guess is still used). Which is better:
guessing R, or your better choice from part (b)? Justify.
Solution:
Probabilities:

P (R = ∅) = 0.1, P (R = correct) = 0.9 · 1
2
= 0.45, P (R = incorrect) = 0.45.

Conditional uncertainties:

H(W | R = ∅) = 10, H(W | R = correct) = log2(1024 · 1
2
) = 9, H(W | R = incorrect) = 9.
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Overall:

H(W | R) = 0.1 · 10 + 0.45 · 9 + 0.45 · 9 = 1.0 + 4.05 + 4.05 = 9.10 bits.

Reduction: ∆R = 10− 9.10 = 0.90 bits.
Conclusion: Guessing R yields 0.10 bits more reduction than guessing T from part (b).

(d) (10 points) You are given a file containing the letters {a, b, c, d} whose empirical distribution is

P =

[
1

2
,
1

4
,
1

8
,
1

8

]
.

You wish to compress this file using a code optimized for one of the following fixed probability models:

Q1 =

[
1

4
,
1

4
,
1

4
,
1

4

]
, Q2 =

[
1

2
,
1

8
,
1

8
,
1

4

]
.

Which information measure should be used to determine which model (Q1 or Q2) yields better
compression when the true source distribution is P ? Compute its value for both Q1 and Q2, and
state which model is better, with a brief explanation.
Solution:
Both the cross-entropy H(P,Q) = −

∑
i Pi log2Qi and the Kullback–Leibler divergence

DKL(P∥Q) =
∑

i Pi log2
Pi

Qi
are valid measures for model mismatch in compression. They are related

by
H(P,Q) = H(P ) +DKL(P∥Q),

so minimizing cross-entropy is equivalent to minimizing KL divergence when P is fixed.
Source entropy.

H(P ) = −
(

1
2
log2

1
2
+ 1

4
log2

1
4
+ 1

8
log2

1
8
+ 1

8
log2

1
8

)
= 1

2
· 1 + 1

4
· 2 + 1

8
· 3 + 1

8
· 3 = 1.75 bits.

KL divergences.

DKL(P∥Q1) =
1
2
log2

1/2

1/4
+ 1

4
log2

1/4

1/4
+ 1

8
log2

1/8

1/4
+ 1

8
log2

1/8

1/4

= 1
2
· 1 + 0 + 1

8
· (−1) + 1

8
· (−1) = 0.25 bits,

DKL(P∥Q2) =
1
2
log2

1/2

1/2
+ 1

4
log2

1/4

1/8
+ 1

8
log2

1/8

1/8
+ 1

8
log2

1/8

1/4

= 0 + 1
4
· 1 + 0 + 1

8
· (−1) = 0.125 bits.

Cross-entropies (optional check).

H(P,Q1) = H(P )+DKL(P∥Q1) = 1.75+0.25 = 2.00 bits, H(P,Q2) = 1.75+0.125 = 1.875 bits.

Conclusion. Since DKL(P∥Q2) < DKL(P∥Q1) (equivalently, H(P,Q2) < H(P,Q1)), the model Q2

yields better expected code length and thus better compression for source P .
2) Perfect Secrecy (35 Points): Consider a communication scenario where Alice wants to send a message

M , randomly drawn from a finite set M, to Bob. To keep the message hidden from eavesdroppers, she
encrypts it using a secret key K ∈ K that is known only to Alice and Bob and is independent of M .
The encryption is performed using a deterministic function C = f(K,M), producing encrypted message
C ∈ C. Bob decrypts the encrypted message using another deterministic function M = g(K,C), and
throughout the question we assume that such a decryption function g exists. The system is said to achieve
perfect secrecy if I(M ;C) = 0.

a) (5 points) Briefly explain why a perfectly secure system is safe from an eavesdropper.
Solution:
In a perfectly secure system, the message M and the encrypted message C are statistically independent.
This means that knowing C provides no information about M , so an eavesdropper who sees C cannot
learn anything about the original message.
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b) (7 points) True/False: Under any system (whether secure or not), it holds that H(M | C) ≤ H(K | C).

Hint: Use the assumption that there exits g such that M = g(K,C).
Solution:
True. Since M = g(K,C), we have:

H(K | C) = H(K, g(K,C) | C)

= H(K,M |C)

= H(M |C) +H(K|M,C)

≥ H(M |C),

where the inequality follows from the non-negativity of entropy.
c) (7 points) Show that I(M ;C) ≥ H(M)−H(K).

Solution:
We proceed as follows:

I(M ;C) = H(M)−H(M | C)
(a)

≥ H(M)−H(K | C)
(b)

≥ H(M)−H(K),

where (a) follows from the result of part (b), and (b) follows from the fact that conditioning reduces
entropy.

d) (6 points) True/False: A student claims that, in order to achieve perfect secrecy, we must have H(K) ≥
H(M). If true, do you think this condition is practical in real-world communication systems? If false,
provide a counterexample.
Solution:
True. From part (c), if perfect secrecy holds (i.e., I(M ;C) = 0), then:

0 = I(M ;C) ≥ H(M)−H(K) ⇒ H(K) ≥ H(M).

This means that the key must have entropy at least as large as the message. Usually the message is
very long (i.e., H(M) is large), and we need to transmit/store the key which is as long as the message
in a perfectly secure system.
Remark: This necessary condition for perfect secrecy was first established by Claude Shannon in his
seminal paper ”Communication Theory of Secrecy Systems”. It reflects the principle that the key must
be at least as “informative” (in entropy) as the message to completely hide it.

e) (10 points) Now assume that M , K, and C are all n-bit binary strings, i.e., M = K = C = {0, 1}n. Let
M and K be independent and uniformly distributed over {0, 1}n. Suggest encryption and decryption
functions f(K,M) and g(K,C) that achieve perfect secrecy.
Solution:
Consider f(K,M) = K⊕M , g(K,C) = K⊕C, where ⊕ denotes the bitwise XOR operation. Clearly
g(K, f(K,M)) = M . Moreover,

I(M ;C) = H(C)−H(C | M) = H(C)−H(K ⊕M | M)

= H(C)−H(K | M)
(a)
= H(C)−H(K)

(b)
= 0,

where step (a) follows from the fact that K and M are independent, and step (b) follows from the fact
that both are uniformly distributed over {0, 1}n. Hence, this is a perfectly secure system.

3) Polar Code (35 Points):
a) (6 points) True/False Consider the graph below showing the capacities of the synthetic channels for

a polar code of length N = 1024. A student claims that using a code rate of 0.8 will result in a block
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error probability very close to zero. Justify your answer in one or two sentences.

Solution:
False. From the graph, a code rate of 0.8 means using the 819 most reliable bit-channels, but many of
these have capacities significantly below 1, indicating they are unreliable. Including such low-capacity
channels will cause a high block error probability, far from zero.

b) (6 points) We want to transmit the information bits (1, 0) using a polar code of length N = 4 over
a binary erasure channel (BEC). Select frozen bits to achieve the best performance, and explain your
choice. Then, compute the codeword (X1, X2, X3, X4).
Solution:
For R = 0.5, we need to freeze two bits. we should freeze the bits corresponding to the two least reliable
synthetic channels. For a binary erasure channel (BEC) with parameter p, the synthetic channels are
given by:

W−− : BEC
(
1−

(
1− (1− p)2

)2)
,

W−+ : BEC
(
1−

(
(1− p)2

)2)
,

W+− : BEC
(
1−

(
1− p2

)2)
,

W++ : BEC(p4).

Since
p4 ≤ 1− (1− p2)2 ≤ 1− ((1− p)2)2 ≤ 1−

(
1− (1− p)2

)2
, p ∈ [0, 1],

Thus, the two least reliable channels are W−− and W−+, which correspond to bits U1 and U2. Therefore,
we freeze u1 = u2 = 0 and place the information bits in u3 and u4.
Given the information bits (1, 0), we have: u = (0, 0, 1, 0).

The polar encoding is x = uG4, where G4 = F⊗2 and F =

[
1 0
1 1

]
. This gives:

x1 = u1 ⊕ u2 ⊕ u3 ⊕ u4 = 1,

x2 = u2 ⊕ u4 = 0,

x3 = u3 ⊕ u4 = 1,

x4 = u4 = 0.

Hence, the codeword is:
(X1, X2, X3, X4) = (1, 0, 1, 0) .
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c) (7 points) Assume the codeword from part (b) is sent over BEC(p) and the receiver observes

y = (?, ?, 1, 0). Preform successive cancellation (SC) decoding and show if the decoder succeeded
in decoding the bits.
Remark: You may use the SC decoder functions: g(r1, r2, b) = r2 + (1 − 2b)r1 and f(r1, r2) =
sign(r1)sign(r2)min(|r1|, |r2|).
Solution:
First, note that u1 and u2 are frozen bits set to 0. Therefore, we only need to decode u3 and u4 using
the SC algorithm.
The first step is to compute the log-likelihood ratios (LLRs) for the codeword bits x4

1, denoted as l41,
where

li = log
P (xi = 0 | yi)
P (xi = 1 | yi)

.

For a BEC(p), the LLR values are 0 for erasures, +∞ for certain zeros, and −∞ for certain ones.
Given the received vector y = (?, ?, 1, 0), we have:

l41 = (0, 0,−∞,+∞).

Decoding u3:
Using the SC update rules:

g(r1, r2, b) = r2 + (1− 2b)r1, f(r1, r2) = sign(r1) · sign(r2) ·min(|r1|, |r2|),

and knowing u1 = 0, u2 = 0:
1. Compute

g(l1, l3, 0) = −∞, g(l2, l4, 0) = +∞.

2. Then
lu3 = f(−∞,+∞) = −1 ·+1 ·min(∞,∞) = −∞.

Since lu3 < 0, we decide û3 = 1.
Decoding u4:
1. Using û3 = 1:

lu4 = g(−∞,+∞, 1) = +∞+ (1− 2 · 1)(−∞) = +∞− (−∞) = +∞.

2. Since lu4 > 0, we decide û4 = 0.
The decoded information bits are (û3, û4) = (1, 0), which matches the transmitted bits. Hence, the SC
decoder successfully recovers the message.

d) (16 points) We aim to develop an SC-based neural network model, where the goal is to learn the check-
node function fθ and the bit-node function gθ. Suppose the analytic forms of f and g are unknown, but
you are provided with a large dataset of input and log-likelihood ratio (LLR) pairs D = {(xi, li)}Mi=1,
where xi ∈ {0, 1} are transmitted bits and li ∈ R are the corresponding LLR obtained after transmission
through the channel, i.e., li = log

(
P (xi=0|yi)
P (xi=1|yi)

)
, with yi denoting the received channel output. The

transmitted bits are independent and uniformly distributed, i.e., P (xi = 0) = P (xi = 1) = 0.5.
i) Describe how to generate a new training dataset for training fθ and gθ from {(xi, li)}Mi=1.

Hint: Recall f takes two LLRs and outputs one LLR; g takes two LLRs and a decoded bit, and
outputs one LLR.

ii) Propose a method to learn fθ and gθ from the dataset in part (i), specifying the cost function, and
provide a block diagram illustrating each model’s inputs and outputs.

Solution:

(i) Creating the training datasets. From the original dataset D = {(xi, li)}Mi=1, randomly sample two
independent elements (xa, la) and (xb, lb). Compute the SC node labels:

u1 = xa ⊕ xb, u2 = xb.
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Repeating this procedure N times yields two new datasets:

Df = {
(
(l(n)a , l

(n)
b ), u

(n)
1

)
}Nn=1,

Dg = {
(
(l(n)a , l

(n)
b , u

(n)
1 ), u

(n)
2

)
}Nn=1,

(ii) Learning fθ and gθ.
Approach: Since f and g output LLR values, we can model them as neural networks that output a
logit s (linear output). The LLR is

p̂(y) ≈ P (x = 1 | y), L̂LRx(y) = log
1− p̂(y)

p̂(y)
= −s.

Cost function: Using binary cross-entropy (BCE):

Costf =
1

N

N∑
n=1

LBCE

(
σ(fθ(l

(n)
a , l

(n)
b )), u

(n)
1

)
,

Costg =
1

N

N∑
n=1

LBCE

(
σ(gϕ(l

(n)
a , l

(n)
b , u

(n)
1 )), u

(n)
2

)
.

where σ is sigmoid.
Model LLR outputs:

L̂u1 = −fθ(la, lb), L̂u2 = −gϕ(la, lb, u1).

Block diagrams:

l1, l2 fθ s sigmoid p̂(u1 = 1 | l1, l2)

Fig. 1: Check-node NN model

l1, l2, u1 gϕ s sigmoid p̂(u2 = 1 | l1, l2, u1)

Fig. 2: bit-node NN model

Good Luck!


