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Introduction to Information and Coding Theory June 18, 2019

(Prof. Permuter Haim, Mr. Oron Sabag and Mr. Ron Shoham)

Final Exam - Moed A

Total time for the exam: 3 hours!

Important: For True / False questions, copy the statement to your notebook and write clearly true or false. You should prove the

statement if true, and provide counterexample otherwise.

1) Parallel marginal channels. (34 Points)

Consider the channel that is given in Fig. 1. The channel input is X and it has two outputs (Y1, Y2). The channel law is given

by PY1,Y2|X . We denote the capacity of this channel as CA.

X
PY1,Y2|X

Y1, Y2

Fig. 1: Channel with a single input and two outputs.

a) (8 points) What is the capacity of this channel? Write explicitly the joint distribution of (X,Y1, Y2).
Solution: This is a memoryless channel, so that the capacity is CA = maxPX

I(X;Y1, Y2). The joint distribution is

PXPY1,Y2|X .

b) (8 points) We now use the marginal version of this channel in Fig. 2. Specifically, the input is X and the outputs are

(Y1, Y2), but are generated according to the marginals distribution PY1|X and PY2|X . That said, PY1|X and PY2|X are the

marginals distributions of the original distribution PY1,Y2|X . We denote the capacity of this channel as CB . What is the

capacity of this channel? Write explicitly the joint distribution of (X,Y1, Y2).
Solution: This is also a memoryless channel, but the channel is QY1,Y2|X = PY1|XPY2|X . The capacity is also CB =
maxPX

I(X;Y1, Y2), but the joint distribution is PXQY1,Y2|X = PXPY1|XPY2|X .
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PY1|X
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DecoderEncoder

Fig. 2: Channel with a single input and two outputs according to marginals.

c) (8 points) True/False This sub-question is not related to the any of the above. For a joint distribution, PX,Y,Z , it is

given that Z is a deterministic function of Y . Define a new distribution QX,Y,Z = PXPY |XPZ|X . Is it true that Z is a

deterministic function of Y under the new distribution Q?

Solution: False. Take X = ∅ and Z = Y in the P distribution. Clearly, under the Q distribution Z and Y are independent,

and therefore, are not a function of each other.

d) (5 points) We now want to compare the capacities of the two settings above. Consider the special case where Y2 is a

function of Y1 in the original distribution PY1,Y2|X (Fig. 1). Write ≤,=,≥ between CA and CB , prove your answer.

Hint: you can use the conclusion from c).

Solution: To be precise, we denote IP (X;Y1, Y2) as the mutual information that is computed with respect to PXPY |X1,X2
,

and the same for Q. consider the following chain of inequalities:

CA = max
PX

IP (X;Y1, Y2)

= max
PX

IP (X;Y1)

= max
PX

IQ(X;Y1)

≤ max
PX

IQ(X;Y1, Y2)

= CB ,

e) (5 points) Demonstrate the result you proved in the previous question by providing specific examples. For instance, if

you proved that CA ≤ CB , then you should give one example for a channel with CA = CB and another example where

CA < CB .

Solution: Take X and Y1 be the input and output of a BSC with transition probability p. Also, take Y2 = Y1. When

p = 0.5, we have CA = CB = 0. For p = 0.25, one can show that CB > CA. Intuitively, in CA, the decoder observes a

single BSC, and in CB , the decoder observes two BSC with single input so it has more information.



2
2) True/False (27 Points):

a) Properties of mutual information: A joint distribution is given by P (x, θ, y) = P (x)P (θ)P (y|x, θ). Answer the

following three questions:

i) (4 points) True/False: Is it true that there is a Markov chain X − Y − θ? Prove or provide a counter example.

Solution: False. Counterexample, let X and θ be two independent random variables, each distributed according to

Bernoulli(0.5). Also, let Y = X ⊕ θ. One can check that H(X|Y ) 6= H(X|Y, θ).
ii) (4 points) Inequalities: Fill (and prove) one of the relations ≤,=,≥ between the following expressions :

I(X;Y ) ??? I(X;Y |θ).

Solution: Consider the following chain of inequalities:

I(X;Y ) = H(X)−H(X|Y )

(a)
= H(X|θ)−H(X|Y )

(b)

≤ H(X|θ)−H(X|Y, θ)

= I(X;Y |θ),

where (a) follows from the independence of X and θ, and (b) follows from conditioning reduces entropy. Therefore,

I(X;Y ) ≤ I(X;Y |θ).
iii) (3 points) Convex/Concave: Determine whether the mutual information, I(X1;X2) is convex OR concave function

of P (x2|x1) for a fixed P (x1). Hint: You can use your answers from the previous questions. You can not use the

results we showed in class!

Solution: We showed in class that mutual information is convex. Define:

P (θ) ∼ Bern(λ)

PY |X,θ=0 = P 1
Y |X

PY |X,θ=1 = P 2
Y |X (1)

, where λ ∈ [0, 1], and P i
Y |X are two conditional distributions. From the previous question, we have I(X;Y ) ≤

I(X;Y |θ) and substituting (1) into this result shows the desired convexity.

b) Machine learning:

i) (4 points)True/False: In Tree Distribution lecture we conclude that the criteria for an optimal tree is

maxAll Trees

∑n
i=1 I(xi, xj(i)), where xi is the ith feature, xj(i) is the parent of the ith feature, and I is the mutual

information between both features. This criteria is equivalent to the Maximum-Likelihood criteria.

Solution: True.

We showed in class that

Pt(x, y, z, w) = 2−n(H(Pxn,yn,zn,wn )+D(Pxn,yn,zn,wn ||Pt))

since the empirical entropy H(Pxn,yn,zn,wn) does not depend on the selected tree but only on samples, then to obtain

the maximum probability (likelihood), we should look for the minimum of the divergence D(Pxn,yn,zn,wn
||Pt).

As we saw in the lecture,

D(P ||Pt)
(b)
= const−

∑

a∈X

I(xi, xj(i)).

As we can see, to minimize the divergence, we need to maximize sum of the mutual information between parents

and sons.

ii) (3 points) True/False: In distribution tree a node can have more than two ’sons’.

Solution: True.

By the definition of the tree structure.

iii) (9 points) True/False: In Fig. 3 the vertical axis represent the log-likelihood of some data, and the horizontal axis

corresponds to the number of iterations. Copy each figure number and write True/False if this is a valid learning

curve of an EM algorithm over GMM model.

*iteration = E-step + M-step



3

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1
a

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

b

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

1.2
c

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1
d

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1
e

20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1
f

2 4 6 8 10

0

0.5

1

1.5

2

2.5

3
g

0 2 4 6 8

0.2

0.4

0.6

0.8

1
h

Fig. 3: Learning curves.

Solution: The graph should be non-decreasing. Also, once there was no improvement in an iteration, it means that no

further improvement can occur in the following iterations(explanation at (h)).

Therefore,

b, c, d, g: True

a: False, the log-likelihood should be monotonic non-decreasing.

e: False, the log-likelihood should be monotonic non-decreasing, it can not be a ”spike” in the log-likelihood.

f: False, the log-likelihood should be monotonic non-decreasing, it can not be a ”spike” in the log-likelihood.

h: False, we see that at the second step the likelihood remains the same. Therefore, the parameters haven’t change at

this step, i.e. the maximization hadn’t change the parameters. It means that the expectation step at the following iteration

will produce the same weights as before and therefore, once again, the parameters won’t change at the maximization

step. in this graph, the likelihood suddenly changes at the fifth iteration.

*Note - the values at vertical axis are L = log(
∏n

i=1 p(xi; θ)) =
∑n

i=1 log p(xi; θ). p(xi; θ) is a density function and

therefore can have values greater then 1 (for example, a single Gaussian with a very small variance).

3) Neural Network Cost Function (30 Points): Consider a standard Neural net with L layers. Denote wl+1 as the matrix

transformation from layer l to layer l + 1, and zl, al as the pre-activation and post-activation neurons, i.e. al = σ(zl),
zl+1 = wl+1al where σ is the activation function. We define a1 =∆ x, i.e. the inputs, and a =∆ aL, i.e. the outputs.

The back-propagation equations that we learned in class are

δL = ∇aC ⊙ σ′(zL)

δl = ((w(l+1))T δl+1)⊙ σ′(zl)

∂c

∂blj
= δlj

∂c

∂wl
j,k

= al−1
k δlj ,

where ⊙ is an element-wise multiplication.
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a) (5 Points) Set σ(z) = z, i.e. identity function, and the cost function to be c = 1

2 (y−a)2. Calculate δL in terms of a and y.

From now on we denote ∆ as the δL calculated in (a).

b) (5 Points) Set σ(x) = 1
1+e−x , i.e. the sigmoid function, and the cost function to be c = 1

2 (y− a)2. Calculate δL in terms

of ∆ and a.

c) (8 Points) Set σ(x) = 1
1+e−x , i.e. the sigmoid function. Find new cost functions (there is more than one) that gives

δL = ∆.

d) (4 Points) Insight: What is the benefit of using one of the cost functions you found in (c) instead of using c = 1
2 (y−a)2?

e) (8 Points) Set σ(x) = ex−e−x

ex+e−x , i.e. the hyperbolic tangent function. Find new cost functions (there is more than one) that

gives δL = ∆.

*Reminder: partial fraction decomposition example

x+ 9

(x+ 2)(x− 5)
=

A

x+ 2
+

B

x− 5

A(x− 5) +B(x+ 2) = x+ 9

A+B = 1

−5A+ 2B = 9

A = −1

B = 2.

Solution:

a)

δL = ∇aC ⊙ σ′(zL)

=
∂C

∂a
1

=
∂( 12 (y − a)2)

∂a
= a− y.

We notice that when the difference between the real target and the net’s output is great, ∆ is high with respect to it.

b) We know that the derivative of Sigmoid function σ(x) = 1
1+e−x is σ′(x) = σ(x)(1− σ(x)).

Additionally, σ(zL) is given as a. Hence:

δL = ∇aC ⊙ σ′(zL)

=
∂C

∂a
σ(zL)(1− σ(zL))

= (a− y)(1− a)a

= ∆(1− a)a.

c) We want that ∆ will be equal to ∂C
∂a

(1− a)a when ∆ = a− y as we found at (a). We get

∂C

∂a
=

a− y

(1− a)a

=
1

1− a
−

y

(1− a)a
.

Therefore:

∂C

∂a
=

1− y

1− a
−

y

a
.

Integrate both sides of the equation with respect to a :

C(a) = −(yln(a) + (1− y)ln(1− a)) + Constant.

d) We can identify the cost function we’ve got on (c) as the Cross Entropy function (when the constant is 0). We can see in

the figure below that the Sigmoid function goes into saturation when its values are close to 0 or 1, i.e. gradients values
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are close to zero. Therefore, We conclude that δL in (b) might be very small even if the difference between the real

target and the net’s output is high (For example, look at the case where the true label is 1, but the output is close to

0). We can see from the equations of Back-Propagation that the gradients of all of the parameters are multiplied by δL.

This means that if the output neurons are saturated then all of the parameter’s gradient values will go to zero. Therefore,

using cross-entropy helps to deal with the vanishing gradient issue, and speeds up training.
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Fig. 4: Sigmoid cost function. Gradient goes to zero on saturation

You can read more here http://neuralnetworksanddeeplearning.com/chap3.html at section ”The cross-entropy cost func-

tion”.

e) Notice that

σ′(z) = 1− (
ez − e−z

ez + e−z
)2

= 1− σ2(z).

Therefore:

δL =
∂C

∂a
(1− σ2(zL))

=
∂C

∂a
(1− a2).

For δL = ∆ = a− y we get:

∂C

∂a
=

a− y

1− a2

=
1

2

1− y

1− a
−

1

2

1 + y

1 + a
.

Integrate both sides of the equation as we did at (c):

C = −
1

2
((1 + y)ln(1 + a) + (1− y)ln(1− a)) + Constant.

4) Decision trees (24 Points): You wish to generate a model to predict if a mushroom is poisonous or not. In order to do

so, you decide to use a decision tree and build it using the ID3 algorithm with information gain. You have some empirical data:

Example Is heavy Is smelly Is spotted Is smooth Is poisonous

A 0 0 0 0 0

B 0 0 1 0 0

C 1 1 0 1 0

D 1 0 0 1 1

E 0 1 1 0 1

F 0 0 1 1 1

G 0 0 0 1 1

H 1 1 0 0 1

U 1 1 1 1 ?

V 0 1 0 1 ?

W 1 1 0 0 ?

http://neuralnetworksanddeeplearning.com/chap3.html
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a) (5 Points) What is the empirical entropy of ’Is poisonous’?

b) (9 Points) Which feature should you choose as the root of the decision tree? What is its information gain? Hint: You can

figure this out by looking at the data without explicitly computing the information gain of all four features.

c) (10 Points) Build the entire tree and use it to predict whether U,V,W are poisonous.

Solution:

1) hb(
′Is poisonous′) = hb

(

3
8

)

= 0.954.

2) It is possible to figure out that ’Is smooth’ is dividing the data most i.e. yielding largest information gain. Alternately, it is

very simple to calculate information gain for each feature:

Smooth

Yes

Yes

No

No

Heavy

Smelly

Spotted

G(Y ) = hb

(

2
5

)

G(Y ) = hb

(

1
3

)

G(Y ) = hb

(

1
2

)

G(Y ) = hb

(

1
4

)

Poisonous 2

Edible 1

Poisonous 3

Edible 2

Poisonous 2

Edible 2

Poisonous 3

Edible 1

Fig. 5: Comparison of all features for the root

Information gain(Y ; Θ) = hb(Y )−
1

∑

θ=0

P (Θ = θ)hb(Y |Θ = θ)

Information gain(Y ; Θ = smooth) = 1−
1

2
hb(

1

2
)−

1

2
hb(

1

4
) = 0.094

Information gain(Y ; Θ = heavy\smelly\spotted) = 1−
5

8
hb(

2

5
)−

3

8
hb(

1

3
) = 0.048.

3) ID3 algorithm’s argmax will pick ’Is smooth’ as root node. Next steps (using recursion) will be called with the following

data sets:

Data set for ’Is smooth’=yes:

Example Is heavy Is smelly Is spotted Is poisonous

C 1 1 0 0

D 1 0 0 1

F 0 0 1 1

G 0 0 0 1

And data set for ’Is smooth’=no:

Example Is heavy Is smelly Is spotted Is poisonous

A 0 0 0 0

B 0 0 1 0

E 0 1 1 1

H 1 1 0 1

The argmax result here is also very visible. ’Is smelly’ will be picked for maximizing the gain on both calls (splitting the data

completely). The new recursion calls will mark nodes as leaves and label them accordingly(1st and 2nd stopping conditions).
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Fig. 6: Entire decision tree built by ID3 with information gain

By the figure, U and V are edible while W is poisonous. Note that when you examine the tree carefully you see that the

decision is made by exclusive or of ’Is smooth’ and ’Is smelly’ features.

Good Luck!


