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Introduction to Information and Coding Theory September 23, 2014
(Prof. Permuter Haim, Mr. Tal Kopetz, and Mr. Oron Sabag)

Final Exam - Moed Bet
Total time for the exam: 3 hours!

1) Parallel Gaussian channels (25 Points) Consider a channel consisting ®fparallel Gaussian channels, with inputs and
X, and outputs given by
Yi=X1+ 2,
Yy = X5 + Zs.

X, Y

Fig. 1: Parallel Gaussian channels.

The random variableg; andZ, are independent of each other and of the inputs, and havetfeees-? ando3 respectively,
with 0% < 3.

a) SupposeX; = X, = X and we have the power constraiffX?] < P. At the receiver, an outplt” = Y; + Y3 is
generated. What is the capacity, of the resulting channel witlk' as the input and” as the output?

b) Suppose that we still have to transmit the same signal ém dwannels, but we can now choose how to distribute the
power between the channels, i¥; = aX and X, = bX. The new constraint i2[X?] + E[X2] < 2P. What is the
capacity,Cy, of this channel withX as the input andY;, Y>) as the output? Which andb achieve that capacity?

c) We now assume that; andZ; are dependent, specifically, = 27;. As in subsection b, we can choose how to distribute
the power between the channels, ¥, = aX and X, = bX under the power constraiff[X?] + E[X3] < 2P. The
outputs of the channels are given by

Yl =aX + Zl,
Yo =bX +27.
What is the capacityC., of this channel withX as the input andY7,Y>) as the output? Whiclh andb achieve that
capacity?
Solution
a) This channel has an inpi and outputY” and as we learned in class, the capacity of the Gaussian ehiangiven by
1
C= 5 log(1 + SNR). 1)
In our case,
E[(X1 + X2)?]
SNR= ———=--
E((Z2 + Z2)?]
4P
——. 2
< o (2)
So, the capacity of this channel is given by
1 4P
=—1 14+ —=—]. 3
¢ 2°g<+a%+a§) ®)
b) Let
Y1 =aX + Zl
Yy = bX + Zy, (4)

where Z; and Z, are independent of each other and have the variamgesd o3 respectively, witho < o3. We seek



the values ofz, b that maximize

I(X;Y1,Y2) = h(Y1,Y2) — h(Y1,Y2]| X)

- h(Y17 Yé) - h(Zl7 Z2)
1
=h(N,Ys) — 5 log 2meo?os, (5)
under the constraini? + > < 2. In order to findh(Y;,Y2) we need to find the covariance matrix Bf, Y2, which is
given by
[ a®P + o} abP
Py = < abP  VP+o} ) ©
Then,
v 35| = (2P + 02) (B P + 03) — a*b* P
= P(a*02 + b?0?) + oio?
< P(a*02 + (2 — a®)o?) 4+ olo2
= aQP(Ug — 0%) + (2P + ag)a%, (7
and 1
h(Y1,Y3) <log2me + 5 logla®P(03 — o7) + (2P + 03)07]. (8)

We can now see that, sineg < o3, the expression in (8) achieves its maximum value wheachieves its maximal
value, namely, for = v/2. We conclude that the optimal strategy in this case is to e &, to transmit the data, and
the capacity is thus

1 2P
Cb = — log (1 + —2> (9)
2 o7
c) In this case, we can séf; = 0, X5 = X andY = Y; — 2Y;. Substituting the equations faf, Y> and Z; we see that
Y = X. (20)

Thus, the capacity is infinite.
2) Erasure Channe with Feedback (25 Paints)
Let X be a random variable that is uniformly distributed in thesimal [0, 1].
a) lIs it possible to generate from one realizationXof binary random variable that is distributed Bernop)lIf yes, prove
it.
Consider the erasure channel with feedback as depictedyir2Fi
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Fig. 2: Erasure Channel with erasure parameter%.

A student provided the following coding scheme for the erasiannel: The messagdé has a finite alphabet of siz#?
and the points of the alphabet are distributed uniformlyhie intervall0, 1], i.e.m € {k ﬁ}ii?l. Fix a parameter
p € [0,1]. The intervall0, 1] is divided into two parts|0, p) and[p, 1). In the first transmission, if» € [0, p) the encoder
transmits’0’ and if m € [p, 1) the encoder transmits’.
Upon a successful transmission, the decoder knows thevattehere the message falls and this interval is dividedragai
with the same parameter If the transmission failed, the encoder repeats the tratesirbit until a successful transmission
is established.

b) What is the rate of the proposed coding scheme.

¢) Can this coding scheme achieve the capacity of the eratiamnel? If yes, prove it.

Solution
a) Yes. We construct the RY ~Bernoulli(p) in the following way

0, ze]0,p]
S E @

b) The capacity for an erasure channells= max,,) H(X)(1 — ¢) where in our case(z) is set ande = 1 and thus
C = 1Hb(p).

=3
c) It can be seen that when= % we obtain the capacity for the erasure channel whict' is %



3) Secure Network Coding (25 Points) Consider the network depicted in Fig. 3. :

The sourceS would like to transmit a messad® to the terminall’. The messagdy/, is a random binary vector of length
k,i.e.W = [wl,’wg, ... ,wk], where each element; is distributedw,; ~ Bern(0.5). Each link in the network can carry
only one bit, the bith; is transmitted at the upper link ardd through the lower link. A spy acquireg;, which is a random
observation of one of the links. We know th&t= b; with probability p and £ = b, with probability 1 — p.

Our goal is to maximize the amount of information that is sraitted to the terminal, while preserving th&tE; W) = 0
which means zero information available to the spy. All cantéts are known to the encoder, decoder, and to the spy.

/b_l\

Fig. 3: Network with one source and one terminal.

a) FindI(A4; A B) for A ~ Bern(a) and B ~ Bern(0.5).

b) What is the maximum number of bits (maximuhthat the source can send to nod&' in one transmission assuming
that the spy is NOT listening, i.eI(E; W) is NOT necessarily)?
Provide an achievability scheme and a converse.

¢) What is the maximum number of bits (maximuih that the sourceés can send to nod& in one transmission while
preservingl (E; W) = 0 for any value ofp?
Provide an achievability scheme and a converse. For thewdblitiy, you may use an additional RV which is distributed
uniformly in the interval[0, 1] and is drawn at the encodst

d) Is there a specific value @f which will allow us to send more bits? If yes, prove and if nggga counter example.

Solution

a) I(A; A® B) = 0. SinceB ~ Bern(0.5), we obtain a new RW' = A @ B that is distributed byC' ~ Bern(0.5) and is
independent ofA and thus the mutual information is zero.

b) We can send maximum 2 bits.
Achievability: Each bit from each link.
Converse: Cut-set bound.

¢) We can send maximum 1 bit.
Achievability: We send a random bit where D ~ Bern(0.5) through linkb; and the bitw @ d through link by. If
e =b; =d, thenI(E; W) = 0 sinced does not carry any information regarding If e = b; = w & d, as in section a,
W @ D is independent of¥” and thusI(E; W) = 0.
Converse: We will prove this by contradiction. Assuming wan send 2 bits of information;, w.. This means that
b1 = f(wi,w2) and by = f(wi,w2). Now we must make sure thd(F; W) = 0, but I(E; W) = pl(by;wi,ws2) +
ﬁ[(bg;wl,wg) = pH(bl) — pH(b1|w1, ’wg) + ﬁH(bg) — ﬁH(b2|w1,w2) = pH(bl) + ﬁH(bg) and this equals [ (0] only
if by andby are constants. In this case no information regardingw- will be transmitted and thus sending 2 bits of
information is impossible and we have a contradiction.

d) Since we have proven the converse in section ¢ foryjgmo more than 1 bit of information is possible.

4) Bhattacharyya distance (25 Points) For two probability density functions;(x) andg(x), define theBhattacharyya distance
betweenf andg as

Dy(f,9) = —log ( / O; de) (12)

The Bhattacharyya distance is widely used in various field$ 9s machine learning, statistics, and more.
For this question, the base of the logarithm is 2.
a) Prove thad < Dy(f,g) < oo.
When doesD,(f, g) = 0? When doedD;(f,g) = co?
Hint: You can use the Cauchy Schwarz inequality: for any teal valued functiond (), f2(x), we have:

%) 2 00 %)
‘/_ f1(x) fo(z)da g/_ |f1(:c)|2d:c/_ | fa(z)* da. (13)
b) We define the differential divergence as follows:
_ [~ f(@)
Diflle) = [ f@)tox T 19)

Let h(z) be a third probability density function. Show that

Di(f,9) < 5 (DGHF) + Dlbllg) 1)



c) Assume thatD,(f, g) < oco. For whath(z), there is an equality in Eq.(15)?
d) Does the following inequality holds?

2D(f, 9) < min{D(g||f), D(fl9)}
If yes, prove it, if not, give a counter example.

Solution

a) By Cauchy Schwarz inequality we have:

| Vi@ s [~ Vi@ a [ Ve as

= /Z f(z)dz /Z g(x)dx

=1-1=1.
Since — log is a monotonically decreasing function, we have:

Dy(f,g) = — log ( / O; de)

> —log(1) = 0.

(16)

(17)

(18)
(19)

(20)
(21)

The last equality holds only when there is equality in the €@guSchwarz inequality, which happens onlyfit= a - g.

Since bothf andg have an integral equal to one:

[ staa= [ gtariz =1,

thena = 1, which meansf = g. The other equalityD;(f, g) = co happens when

/ " T @g@dz =0,

(22)

(23)

and sincef (z)g(x) > 0, we have thaff (x)g(z) = 0 for almost every:. That means that andg have different supports.

b)
S (DWILF) + D(hlo)) = 3 <E7 s (i) + 2 1os () ))
_ %Eh zlog <%§;;2{+ log <%>}
: :
= 3B |log <Wg<)x)>}
SR
> —log <Eh %1)
s ([ L)
= Dy(f,9)

where (a) follows from Jensen’s inequality.

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

¢) There is an equality in Eq.(15) if and only if there is an &@y in Jensen’s inequality. Since log is a strictly convex

function, there is an equality i ff(())(i(x) is deterministic (equals to a constant). That means:

ay/ (f(X)g(X) = h(X), with probability 1

(32)



In order to find the constant we integrate both sides:

d) Take onceh = f and onceh = g to get:
If h=f:

If h=g:

cxj(fo VI@e@dz =1

a2~ Dv(f9) — 1

a = 2D(f9)

h(z) = 22009/ f(x)g(x).

Dy(f.9) < 5 (D7) + DUfllg))

= £ 0+ D(fllg)).

Dy(f,9) < 5 (D(gllf) + D(gllg))

(D(gllf) +0).

N =N =

Good Luck!
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