1

Solution for Moed A 2014

1) True or False

a) False. For example:

$Y \backslash X$	0	1
0	0.25	0.25
1	0.5	0

For this distribution we can calculate $H_b(0.25) = H(X) < H(X|Y=0) = 1$.

- b) True. For the converse, if multiplying by a would increase the capacity then we would use it in the point to point channel. To achieve, we divide by a and apply the decoding procedure as in the point to point channel.
- c) True. This can be done as in the previous question. Another approach is by noting that the function $(\cdot)^3$ is a bijective function and therefore by having Y we indeed can recover \tilde{Y} and:

$$\begin{split} I(X; \tilde{Y}) &= H(\tilde{Y}) - H(\tilde{Y}|X) \\ &= H(\tilde{Y}, Y) - H(Y, \tilde{Y}|X) \\ &= H(Y) - H(Y|X) \\ &= I(X; Y) \end{split}$$

and thus $\max_{p(x)} I(X;Y) = \max_{p(x)} I(X;\tilde{Y}) = \frac{1}{2} \log(1 + SNR)$.

2) Cascaded Additive modulo-2 with dependent noise

a) The capacity of the first channel is straightforward and equal to $C_1=1-H_b(\epsilon)$. To calculate the capacity C_2 between X and Y_2 we note that the noise between X and Y_2 is N_1+N_2 . Now, we have a simple point to point channel with this noise. The distribution of the noise is $N_1+N_2\sim Bern(\epsilon\bar{\alpha}_1+\bar{\epsilon}\alpha_2)$. Therefore, the capacity is:

$$C_2 = 1 - H_b(\epsilon \bar{\alpha_1} + \bar{\epsilon} \alpha_2)$$

- b) All relations can occur, here are some examples:
 - i) For $C_1=C_2$, substitute $\epsilon=0, \alpha_2=0$. It then follows that $C_1=C_2=1$. We are trying to produce two clean channels. The first channel is by $\epsilon=0$ and therefore $Y_1=X$. Now when N_1 is equal to zero we only need to make sure that N_2 does not change C_2 . This is done by setting $\alpha_2=0$. (α_1 can take any value since $N_2\neq 1$)

- ii) For $C_1 < C_2$, substitute $\epsilon = \frac{1}{3}$, $\alpha_1 = 1$, $\alpha_2 = 0$. It then follows that $C_1 = 1 H_b(\frac{1}{3})$ and $C_2 = 1$. The idea is to correct the noise that N_1 induces. We make sure that $N_1 + N_2 = 0$ and therefore $C_2 = 1$. ϵ can take any value different from zero.
- iii) For $C_1 > C_2$, substitute $\epsilon = \frac{1}{3}$, $\alpha_1 = \frac{1}{2}$, $\alpha_2 = \frac{1}{2}$. It then follows that $C_1 = 1 H_b(\frac{1}{3})$ and $C_2 = 0$. This case is trivial, there are many examples to achieve this.
- c) We begin with calculating the capacity of the third user, $C_3 = \max_{p(x)} I(X; Y_1, Y_2)$:

$$I(X; Y_1, Y_2) = H(Y_2, Y_1) - H(Y_2, Y_1 | X)$$
(1)

$$= H(Y_2, Y_1) - H(Y_2|Y_1, X) - H(Y_1|X)$$
(2)

$$= H(Y_2, Y_1) - H(Y_2|Y_1, X, N_1) - H(N_1)$$
(3)

$$= H(Y_2, Y_1) - H(X + N_1 + N_2 | Y_1, X, N_1) - H(N_1)$$
(4)

$$= H(Y_2, Y_1) - H(N_2|Y_1, X, N_1) - H(N_1)$$
(5)

$$= H(Y_2, Y_1) - H(N_2|N_1) - H(N_1)$$
(6)

Symmetry in $H(Y_2, Y_1)$ applies that the maximum is attained for p(x=0)=0.5. Then it follows immediately that $H(Y_1)=1$, and $H(Y_2|Y_1)=0.5H(Y_2|Y_1=0)+0.5H(Y_2|Y_1=1)$. We try to minimize C_1 by setting $\epsilon=0.5$ and therefore $C_1=0$.

We calculate the term $H(Y_2|Y_1)$ for $\epsilon = 0.5$:

$$H(Y_2|Y_1) = 0.5H_b(0.5(\alpha_1 + \alpha_2)) + 0.5H_b(0.5(\bar{\alpha_1} + \bar{\alpha_2})).$$

Note that at this point C_1 is fixed to zero and the only parameters left are α_1 and α_2 . Let's write the terms:

$$C_1 = 1 - H_b(0.5) = 0 (7)$$

$$C_2 = 1 - H_b(0.5(\bar{\alpha}_1 + \alpha_2)) \tag{8}$$

$$C_3 = 1 + 0.5H_b(0.5(\alpha_1 + \alpha_2)) + 0.5H_b(0.5(\bar{\alpha_1} + \bar{\alpha_2})) - 0.5(H_b(\alpha_1) + H_b(\alpha_2)) - H_b(0.5)$$
(9)

By choosing $\alpha_1 = 0$ and $\alpha_2 = 0.5$, we have that $C_3 > C_2$. There are many more examples.

3) Network Coding for Broadcast Channel

- a) The minimum transmissions to node i is $k-|\mathcal{M}_i|$. The minimum number of transmission required for the whole system is $N_{trans} = \max\{k-|\mathcal{M}_1|, k-|\mathcal{M}_2|\}$.
- b) To achieve this bound we first transmit all messages in the set $\mathcal{M}_1^c \cap \mathcal{M}_2^c$ directly to the receivers. Then, we transmit linear combinations of the missing parts. For example, assume that receiver 1 has M_1 and receiver 2 has M_2 , then the transmitter will send a linear combination of (M_1, M_2) . One should verify that by having all combinations, both receivers can recover the set of the messages \mathcal{M} . It is sufficient to work in bitwise XOR over the field \mathbb{F}_2 , since \mathcal{M}_i is known at the transmitter for each i.
- c) From the same arguments, $N_{trans} = \max_{i} \{k |\mathcal{M}_i|\}.$

d) The answer is the same as in subsection b only now the algorithm is preformed over τ number of sets.

4) Conditional Information Divergence

a) True or False. All arguments are true.

i)

$$D(P_{A,B}||Q_{A,B}) = \sum_{(a,b)\in\mathcal{A}\times\mathcal{B}} P_{A,B}(a,b) \log\left(\frac{P_{A,B}(a,b)}{Q_{A,B}(a,b)}\right)$$

$$= \sum_{(a,b)\in\mathcal{A}\times\mathcal{B}} P_{A,B}(a,b) \log\left(\frac{P_{B|A}(b|a)P_{A}(a)}{Q_{B|A}(b|a)Q_{A}(a)}\right)$$

$$= \sum_{(a,b)\in\mathcal{A}\times\mathcal{B}} P_{A,B}(a,b) \left[\log\left(\frac{P_{B|A}(b|a)}{Q_{B|A}(b|a)}\right) + \log\left(\frac{P_{A}(a)}{Q_{A}(a)}\right)\right]$$

$$= D(P_{B|A}||Q_{B|A}|P_{A}) + \sum_{(a,b)\in\mathcal{A}\times\mathcal{B}} P_{A,B}(a,b) \log\left(\frac{P_{A}(a)}{Q_{A}(a)}\right)$$

$$= D(P_{B|A}||Q_{B|A}|P_{A}) + \sum_{a\in\mathcal{A}} P_{A}(a) \log\left(\frac{P_{A}(a)}{Q_{A}(a)}\right) \sum_{b\in\mathcal{B}} P_{B|A}(b|a)$$

$$= D(P_{B|A}||Q_{B|A}|P_{A}) + \sum_{a\in\mathcal{A}} P_{A}(a) \log\left(\frac{P_{A}(a)}{Q_{A}(a)}\right)$$

$$= D(P_{B|A}||Q_{B|A}|P_{A}) + D(P_{A}||Q_{A})$$

ii)

$$\begin{split} D\big(P_{A,B} \big| \big| P_A P_B \big) &= \sum_{(a,b) \in \mathcal{A} \times \mathcal{B}} P_{A,B}(a,b) \log(\frac{P_{A,B}(a,b)}{P_A(a)P_B(b)}) \\ &= \sum_{(a,b) \in \mathcal{A} \times \mathcal{B}} P_{A,B}(a,b) \log(\frac{P_{B|A}(b|a)P_A(a)}{P_A(a)P_B(b)}) \\ &= \sum_{(a,b) \in \mathcal{A} \times \mathcal{B}} P_{A,B}(a,b) \log(\frac{P_{B|A}(b|a)}{P_B(b)}) \\ &= D\big(P_{B|A} \big| \big| P_B \big| P_A \big) \end{split}$$

iii) This follows from the known relation $I(X;Y) = D(P_{A,B}||P_AP_B)$.

iv)

$$D(P_{A|B}||Q_{A|B}|P_B) = \sum_{(a,b)\in\mathcal{A}\times\mathcal{B}} P_{A,B}(a,b) \log(\frac{P_{A|B}(a,b)}{Q_{A|B}(a,b)})$$

$$= \sum_{b\in\mathcal{B}} P_B(b) \sum_{a\in\mathcal{A}} P_{A|B}(a|b) \log(\frac{P_{A|B}(a,b)}{Q_{A|B}(a,b)})$$

$$= \sum_{b\in\mathcal{B}} P_B(b) D(P_{A|B=b}||Q_{A|B=b})$$

For the last part we use Shannon-Fano code which is known to be optimal for a dyadic distribution.

a) Using Shannon-Fano code, and multiplexing by Z, we have

$$L = \sum_{z \in \mathcal{Z}} p(z) \sum_{x \in \mathcal{X}} p(x|z) \log_2 \frac{1}{p(x|z)}$$
$$= \sum_{(x,z) \in \mathcal{X} \times \mathcal{Z}} p(x,z) \log_2 \frac{1}{p(x|z)}$$
$$= H(X|Z)$$

b) Since we encode with $Q_{X\mid Z}$, the average length is:

$$L = \sum_{z \in \mathcal{Z}} p(z) \sum_{x \in \mathcal{X}} p(x|z) \log_2 \frac{1}{q(x|z)}$$

$$= \sum_{(x,z) \in \mathcal{X} \times \mathcal{Z}} p(x,z) \log_2 \frac{1}{q(x|z)}$$

$$= \sum_{(x,z) \in \mathcal{X} \times \mathcal{Z}} p(x,z) \log_2 \frac{p(x|z)}{q(x|z)} - \sum_{(x,z) \in \mathcal{X} \times \mathcal{Z}} p(x,z) \log_2 p(x|z)$$

$$= D(P_{X|Z} ||Q_{X|Z}|P_Z) + H(X|Z)$$

c) The answer is the same as in the previous question since we still encode with $Q_{X\mid Z}.$