Solution for Moed A 2014

1) True or False
a) False. For example:
Y\X | 0 1
0 |0.25]0.25
1 05| 0

For this distribution we can calculaté;(0.25) = H(X) < H(X|Y =0) = 1.

b) True. For the converse, if multiplying hywould increase the capacity then we would use it in the point
to point channel. To achieve, we divide byand apply the decoding procedure as in the point to point
channel.

c) True. This can be done as in the previous question. Anapproach is by noting that the functign?

is a bijective function and therefore by havifgwe indeed can recovér and:

I(X;Y)=H(Y)-H(Y|X)
=HY,Y)-H(,Y|X)
= H(Y)— H(Y|X)

= I(X;Y)

and thusmax,,) I(X;Y) = max, ) [(X;Y) = 1 log(1 + SNR).
2) Cascaded Additive modulo-2 with dependent noise
a) The capacity of the first channel is straightforward andaétp C1 = 1 — Hy(e).
To calculate the capacity; betweenX andY; we note that the noise betweéhandY; is Ny + Ns.
Now, we have a simple point to point channel with this noidee @istribution of the noise i8/; + Ny ~

Bern(eay + €as). Therefore, the capacity is:
Cy =1— Hy(eay + €as)

b) All relations can occur, here are some examples:
i) For Cy = Cs, substitutes = 0, as = 0. It then follows thatC; = C, = 1. We are trying to produce
two clean channels. The first channel is &y 0 and thereforé; = X. Now whenV; is equal to
zero we only need to make sure thdt does not changé€’s. This is done by settingi, = 0. (a3

can take any value sinc¥s # 1)



i) For C; < Cs, substitutec = %,al = 1, a9 = 0. It then follows thatC; =1 — Hb(é) and(Cs = 1.
The idea is to correct the noise tha% induces. We make sure thaf; + Ny = 0 and therefore
C5 = 1. € can take any value different from zero.

iii)y For Cy > (s, substitutee = 3,1 = 1, a5 = 3. It then follows thatC; = 1 — Hy(3)and C; = 0.

This case is trivial, there are many examples to achieve this

c) We begin with calculating the capacity of the third usg§,= max,, I(X;Y1,Ys):

[(X:Y1,Y) = H(Ya, Y1) — H(Ya, Yi|X) (1)
= H(Y2.Y1) — H(Ya[Y1, X) — H(Yi|X) )
= H(Ya, Y1) - H(Ya[Y2, X, N1) — H(N)) ©)
=H(Y2,Y1) — H(X + N1 + No|Y1, X, N1) — H(Ny) 4)
= H(Y2,Y1) — H(No[Y1, X, Ny) — H(Ny) 5)
= H(Y2.Y1) — H(No|Ny) — H(NY) ®)

Symmetry in H(Y2,Y1) applies that the maximum is attained fofz = 0) = 0.5. Then it follows
immediately thatH (Y1) = 1, and H(Y2|Y1) = 0.5H(Y2|Y1 = 0) + 0.5H(Y2|Y1 = 1). We try to
minimize Cy by settinge = 0.5 and therefore”; = 0.
We calculate the tern#7 (Y2|Y7) for e = 0.5:

H(}/Q|Y1) = 05Hb(05(a1 + 042)) + 05Hb(05((f1 + 072).

Note that at this point’; is fixed to zero and the only parameters left atreand as. Let's write the

terms:
C1=1— Hy(0.5) =0 )
CQ =1- Hb(05(071 + 042)) (8)

C3=1+ 0.5Hb(0.5(a1 + Oég)) + 0.5Hb(0.5(d1 + dg)) — 0.5(Hb(oz1) + Hb(ag)) — Hb(05) (9)

By choosinga; = 0 andas = 0.5, we have that; > C5. There are many more examples.
3) Network Coding for Broadcast Channel

a) The minimum transmissions to nodés k — |M;|. The minimum number of transmission required for
the whole system i&V;.qns = max{k — M|, k — M|}

b) To achieve this bound we first transmit all messages inehd t; (| M directly to the receivers. Then,
we transmit linear combinations of the missing parts. Faneple, assume that receiver 1 hes and
receiver 2 has\l,, then the transmitter will send a linear combination(8f;, A/5). One should verify
that by having all combinations, both receivers can rectiverset of the messaged!. It is sufficient
to work in bitwise XOR over the field,, sinceM; is known at the transmitter for each

¢) From the same argument§y,.,s = max;{k — |M,|}.



d) The answer is the same as in subsecbi@mly now the algorithm is preformed overnumber of sets.
4) Conditional Information Divergence

a) True or False. All arguments are true.

i)
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iii) This follows from the known relation/ (X;Y) = D(Pa,g||PaPs)).
iv)
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For the last part we use Shannon-Fano code which is known tiptsmal for a dyadic distribution.



a) Using Shannon-Fano code, and multiplexingZaywe have

1
L=2 p(z) ) plz|2)log, 27

z€EZ TeX

= Z p(z, ) log, 2@l

(z,2)EXXZ

= H(X|Z)
b) Since we encode witl) x|z, the average length is:

L=3"p(z) S plal2) log ﬁ
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c) The answer is the same as in the previous question sincéilivensode with@ x| z.



