
Introduction to Information and Coding theory 30 June 2013
(Dr. Permuter Haim and Mr. Ziv Goldfeld)

Partial solution to Final Exam
Total time for the exam: 3 hours!

1) True or False (30 points):
Copy each relation to your notebook and writetrue or false. Then, if it’s true, prove it. If it is false give a counterexample or
prove that the opposite is true.

a) LetX be a continuous random variable. Then the following holds

I(X ;X) = h(X).

Solution: False.I(X ;X) = ∞ whenX is continuous (show it.). Note thath(X |X) is undefined since givenX the r.v.
X is discrete and not continuous.

b) Let X,Y, Z be three random variables that satisfiesH(X,Y ) = H(X) +H(Y ) andH(Y, Z) = H(Z) +H(Y ). Then
the following holds

H(X,Y, Z) = H(X) +H(Y ) +H(Z).

Solution: False. ConsiderX,Y be Binary Bern(12 ) andZ = X + Y .
c) For anyX,Y, Z and the deterministic functionf, g

I(X ;Y |Z) = I(X, f(X,Y );Y, g(Y, Z)|Z).

Solution: False. Let(X,Y, Z) be a triplet of random variables such thatH(Y |X,Z) > 0. Taking f(X,Y ) = Y and
g(Y, Z) = 0 yields I(X, f(X,Y );Y, g(Y, Z)|Z) = I(X,Y ;Y |Z) = h(Y |Z), which is strictly larger thanI(X ;Y |Z).

d) H(X |Z) is concave inPX|Z for fixed PZ .
Solution: True.H(X |Z = z) is concave inPX|Z=z andH(X |Z) is a linear combination ofH(X |Z = z) with coefficients
P (z).

e) Let P (y|x) characterize a channel with Binary input and letP (y|x = 1) = P (y|x = 0) for all y ∈ Y. The capacity of
this channel is 0.
Solution: True. For anyP (x) we haveP (y) = P (y|x = 1) = P (y|x = 0). (Show it.), henceH(Y ) = H(Y |X).

2) Two antennas with Gaussian noise (20 points): In this question we consider a point-to-point discrete memoryless channel
(DMC) in which the transmitter and the receiver both have twoantennas, illustrated in Fig. 1. This channel is defined by two
input alphabetsX1 andX2, two output alphabetsY1 andY2 and a channel transition matrixPY1Y2|X1X2

. A messageM is
randomly and uniformly chosen from the message setM = {1, 2, . . . , 2nR} and is to be transmitted from the encoder to the
decoder in a lossless manner (as defined in class).

M
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Fig. 1. Two antenna point-to-point DMC.

a) What is the capacity of the channel?

Now, consider the following Gaussian two antenna point-to-point DMC illustrated in Fig. 2
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Fig. 2. A Gaussian two antenna point-to-point DMC.
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The outputs of the channel for every timei ∈ {1, . . . , n} are give by,

Y1,i = X1,i + Z1, (1)

Y2,i = X1,i +X2,i + Z1 + Z2, (2)

where(Z1, Z2) are two independent (of each other and of everything else) Gaussian random variable distributed according to
Z1 ∼ N (0, N1) andZ1 ∼ N (0, N2). The input signals are bound to an average power constraints,

E

[
1

n

n∑

i=1

X2
1,i

]
≤ P1 ; E

[
1

n

n∑

i=1

X2
2,i

]
≤ P2. (3)

b) Find the capacity of the Gaussian channel in terms of the provided parameters and state the joint distribution of(X1, X2)
that achieves it.

Solution:
a) Let us denote the input pair(Xn

1 , X
n
2 ) by X̃n and the output pair(Y n

1 , Y n
2 ) by Ỹ n. An equivalent channel to the

one considered in this question is the point-to-point DMC for which (X̃n, Ỹ n) serve as the channel’s input and output
sequences, respectively, and the channel transition matrix is P

Ỹ |X̃ . Recalling that the point-to-point channel capacity is

given bymaxP
X̃
I(X̃ ; Ỹ ), and substitutingX̃n = (Xn

1 , X
n
2 ) and Ỹ n = (Y n

1 , Y n
2 ) we obtain:

C = max
PX1X2

I(X1, X2;Y1, Y2). (4)

b) First now thatY2 can be rewritten asY2 = Y1 +X2 + Z2. Now, we upper bound the capacity as:

I(X1, X2;Y1, Y2) = I(X1, X2;Y1) + I(X1, X2;Y2|Y1)

= h(Y1)− h(Y1|X1, X2) + h(Y2|Y1)− h(Y2|X1, X2, Y1)

(a)
= h(Y1)− h(Z1) + h(Y1 +X2 + Z2|Y1)− h(Y1 +X2 + Z2|X1, X2, Y1)

(b)
= h(Y1)− h(Z1) + h(X2 + Z2|Y1)− h(Z2)

(c)

≤ h(Y1)− h(Z1) + h(X2 + Z2)− h(Z2)

= h(Y1)−
1

2
log(2πeN1) + h(Y2)−

1

2
log(2πeN2)

(d)

≤
1

2
log

(
2πe(P1 +N1)

)
−

1

2
log(2πeN1) +

1

2
log

(
2πe(P2 +N2)

)
−

1

2
log(2πeN2)

=
1

2
log

( 2∏

i=1

(Pi +Ni)
)

where:
(a) follows from the definitions ofY1 and the fact thatZ1 is independent ofX1;
(b) follows from the fact thatZ2 is independent of(X1, X2, Z1) and therefore it is independent of(X1, X2, Y1);
(c) follows from the fact that conditioning reduces entropy;
(d) follows by the maximum of differential entropy property.

This upper bound is achieved by choosing(X1, X2) to be jointly Gaussian RVs with the following distribution,
(

X1

X2

)
∼ N

((
0
0

)
,

(
P1 0
0 P2

))
(5)

This distribution achieves (c) with an equality since by this choice we get thatY1 = X1 + Z1 andX2 + Z2 are independent.
Whereas (d) is achieved with equality since by this choiceY1 andY2 are Gaussian RVs with variancesP1 +N1 andP2 +N2,
respectively (which achieves the maximum of entropy)

3) Riddle (20 points): In a magic trick, there are three participants:the magician, an assistant, and a volunteer. The assistant,
who claims to have paranormal abilities, is in a soundproof room. The magician has a deck of 100 cards. A different number
from 1 to 100 is written on each card (in other words, they are numbered from 1 to 100). The magician asks a volunteer from
the crowd to pick six cards. Then, the cards are shown to the crowd. The volunteer keeps one of the cards. The magician
arranges the five cards that are left in some order. Now the assistant comes to the stage looks at the five cards and announces
the number of the card kept by the volunteer!

a) The magician and the assistant are experts in informationtheory. How did they preform the trick? (Hint: One can used
the 5 remaining cards to encode a message).

b) Can the magician and the assistant preform this trick withmore then 100 cards? If yes, explain how many. If the answer
is no, explain.

Solsution: The five cards are uniquely identified by their numbers (low tohigh). There are5! = 120 possible orderings for
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the five cards, which is more than enough to encode the number on the sixth card.
The actual numbers written on the white cards don’t matter, let’s call them, in increasing order,C1, C2, , C5. Since there are
5! permutations of1, 2, , 5, enough to encode all the numbers from 1 to 120. The code (for 120) could go as follows. IfC1 is
the top card, then the hidden card is in the range 1 to 24; if it is C2, the hidden card is 25 to 48, and so on. Then the range
identified by the top card is narrowed down by considering thenext card. And so on. With some practice the ”reading” would
be quick.
The magician and the assistant can indeed perform the magic with a deck of more than100 card. A deck of 125 cards is
the maximum possible (without flipping or rotating the cards). This is since, as mentioned above, there are5! = 120 possible
orderings for the five cards, plus the 5 cards that the assistant already knows, thus making a total of 125 cards.

4) network coding (30 points): Consider the network shown in Fig.3. This network consists of one source nodeS, two destination
nodesD1, D2, 12 another nodes and a XOR gate (the most left circle). Everyedge(i, j) in the network represents a directional
noiseless link from nodei to j, that can transmit 1 bit per second.
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Fig. 3. A network with one source node, two destination nodes, another 12 nodes and a XOR gate

In subquestions a-c the XOR gate is replaced by an ordinary node13 like the other nodes1− 12 (it doesn’t have to do a XOR
operation on the received bits).

a) For every destination node, find how many edge-disjoint paths exist between the source node and that destination node?
b) We want to transmit data from the source node to the destination nodeDi (i = 1 or 2). The other destination node

doesn’t have to receive the data. What is the maximal transmission rateRi (in bits per second) that can be achieved in
that case? Find fori = 1, 2.

c) Can we achieve these rates by simple routing scheme, whereevery node sends on its output links only bits there were
received at its input links.

d) Design a linear network code that would allow the source node to transmit data to both destination nodesD1, D2 at the
ratesR1, R2. (The XOR node behave in this subsection as XOR, namely the output is a XOR of all inputs.) Draw the
network and on each edge write the linear function that is applied.

e) Write the transfer matrix for each destination as a function of the source.

Solution

a) There are three edge-disjoint paths from the source nodeS to both destination nodesD1, D2. They are shown in the
figure below. The paths fromS to D1 are shown in green, while the paths toD2 are shown in blue.
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b) For every destinationDi, we know that the maximal transmission rateRi that can be achieved is equal to the amount of
edge-disjoint paths from the source nodeS to Di. We’ve seen that their amount is 3 (for bothD1 andD2). Since every
link in the network allows to send at a rate of1[bps], we have

R1 = R2 = 3[bps]

We now want to transmit data from the source node to both destination nodesD1, D2 at the ratesR1, R2 that were just
found.

c) We’ll prove it by contradiction. Suppose the ratesR1 = R2 = 3[bps] can be achieved by simple routing scheme. In that
case, the source nodeS will send three bits per second on its output links. Suppose the bitX1 is sent on the link(s, 1),
the bitX2 is sent on the link(s, 2) and the bitX3 is sent on the link(s, 3). Every nodei (for i = 1, 2, 3) will send the
bits Xi on its output links (assumption of simple routing scheme). Note that there is only one path that can lead the bit
X3 to nodeD2, which is

PD2
(3) = {(3, 6), (6, 9), (9, 11), (11, D2)}

Therefore every bit that will be sent on these links must beX3.Moreover, the bit that will be sent on the link(11, D1)
must be alsoX3 since thats the bit node 11 receives. Node 4 will send the bitX2 to node 13 (the node that replaces
the XOR gate) which in turn will need to decide which bit to send on the link(XOR,D1): X1 or X2. In any case, the
nodeD1 won’t get bothX1 andX2. This proves that the ratesR1 = R2 = 3[bps] can’t be achieved in that way.

d) We’ll use finite field to solve this question. We’ll identify every two bits as a scalar from the fieldF22 = {0, 1, 2, 3}.
Every node will send a scalar every two seconds on their output links. The sent scalars are functions of the received
scalars. The code is as follows:

i) The source nodeS sends 3 scalarsX1, X2, X3 on the links(s, 1), (s, 2), (s, 3) respectively.
ii) Node 1 gets the scalarX1 and sends it on the link(1, 5).
iii) Node 2 gets the scalarX2 and sends it on the links(2, 4), (2, 5), (2, 8).
iv) Node 3 gets the scalarX3 and sends it on the links(3, 6), (3, 12).
v) Nodes 1,4 and 12 send the scalarsX1, X2, X3 to the XOR gate, which in turn will send their XOR result toD1 on

the link (XOR,D1). Note that the bitwise XOR result of three scalars is their summation in the finite fieldF22 .
vi) Node 5 gets the scalarsX1, X2 and sends the scalarW on the link (5, 7), where

W = X1 + 2X2

vii) Node 6 gets the scalarX3 and sends it on the link(6, 9).
viii) Node 7 gets the scalarW and sends it on the links(7, 9), (7, 10).
ix) Node 8 gets the scalarX2 and sends it on the link(8, D2).
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x) Node9 gets the scalarsW,X3 and sends the scalarZ the link (7, D2), where

Z = W +X3

xi) Node 10 gets the scalarW and sends it on the link(10, D2).
xii) Node 11 gets the scalarZ and sends it on the links(11, D1), (11, D2).
xiii) Node 12 gets the scalarX3 and sends it on the link(12, D1).
xiv) The destinationD1 receives the following scalars:

Y1 = X1 + 2X2 +X3, Y2 = X3, Y3 = X1 +X2 +X3

and it findsX1, X2, X3 by solving a set of linear equations:



Y1

Y2

Y3



 =




1 2 1
0 0 1
1 1 1



×




X1

X2

X3





These equations have a unique solution since the determinant of the matrix isn’t zero:
∣∣∣∣∣∣

1 2 1
0 0 1
1 1 1

∣∣∣∣∣∣
= (−1)

∣∣∣∣
2 1
1 1

∣∣∣∣ = 3

xv) The destinationD2 receives the following scalars:

Y1 = X2, Y2 = X1 + 2X2, Y3 = X1 + 2X2 +X3

and it findsX1, X2, X3 by solving a set of linear equations:



Y1

Y2

Y3


 =



0 1 0
1 2 0
1 2 1


×




X1

X2

X3




These equations have a unique solution:



X1

X2

X3



 =




2 1 0
1 0 0
0 1 1



×




Y1

Y2

Y3





A diagram of the network code is shown in the figure below
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Remark: There exists more than one solution. You may work onF2 field, transmit on(S, 3), X3, on (5, 7), X1 and on
(9,11)X1 +X3. This yields three equations that are independent.

Good Luck!
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