Introduction to Information and Coding theory

30 June 2013

(Dr. Permuter Haim and Mr. Ziv Goldfeld)

Partial solution to Final Exam
Total time for the exam: 3 hours!

1) True or False (30 points):

Copy each relation to your notebook and writele or false. Then, if it's true, prove it. If it is false give a counterewple or
prove that the opposite is true.

a) Let X be a continuous random variable. Then the following holds

b)

d)

e)

I(X; X) = h(X).

Solution: False.I(X; X) = oo when X is continuous (show it.). Note thaf( X |X) is undefined since giveX the r.v.
X is discrete and not continuous.

Let X,Y, Z be three random variables that satisfiééX,Y) = H(X)+ H(Y) andH(Y,Z) = H(Z) + H(Y). Then
the following holds

H(X,Y,Z)=H(X)+ H(Y)+ H(Z).

Solution: False. Conside’X,Y be Binary Bern{) andZ = X +Y.
For anyX,Y, Z and the deterministic functiofi, g

[(X:Y|Z) = I(X, [(X,Y); Y. g(Y. 2)|2).

Solution: False. Let(X,Y, Z) be a triplet of random variables such thd{(Y|X, Z) > 0. Taking f(X,Y) = Y and
g(Y,Z)=0vyields I(X, f(X,Y);Y,9(Y,2)|Z) = I(X,Y;Y|Z) = h(Y|Z), which is strictly larger thad (X;Y|Z).
H(X|Z) is concave inPx, for fixed Pz.

Solution: True.H (X |Z = z) is concave inPy|z—. andH (X |Z) is a linear combination off (X'|Z = z) with coefficients
P(z).

Let P(y|z) characterize a channel with Binary input and Ry|z = 1) = P(y|z = 0) for all y € Y. The capacity of
this channel is O.

Solution: True. For anyP(z) we haveP(y) = P(y|lx = 1) = P(y|z = 0). (Show it.), henceH (Y) = H(Y|X).

2) Two antennas with Gaussian noise (20 points): In this question we consider a point-to-poiisctete memoryless channel
(DMC) in which the transmitter and the receiver both have ambtennas, illustrated in Fig. 1. This channel is defined by tw
input alphabetst; and &>, two output alphabet3; and)» and a channel transition matriky, y,| x, x,- A messageM is

randomly and uniformly chosen from the message/set= {1,2,...,2"%} and is to be transmitted from the encoder to the

decoder in a lossless manner (as defined in class).
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Fig. 1. Two antenna point-to-point DMC.

a)

What is the capacity of the channel?

Now, consider the following Gaussian two antenna poinpadit DMC illustrated in Fig. 2
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Fig. 2. A Gaussian two antenna point-to-point DMC.



The outputs of the channel for every time {1,...,n} are give by,

Yi; = X1+ 2y, 1)
Yo, = X1+ Xo; + 21 + Zo, (2

where(Z1, Z») are two independent (of each other and of everything elses§&an random variable distributed according to
Z1 ~ N(0,Ny7) and Z; ~ N (0, N2). The input signals are bound to an average power constraints
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b) Find the capacity of the Gaussian channel in terms of theigled parameters and state the joint distributiofi®f, X5)
that achieves it.

Solution:
a) Let us denote the input pa{X?, X7') by X" and the output paifYy", Y;") by Y™ An equivalent channel to the
one considered in this question is the point-to-point DME€idich (X™,Y™) serve as the channel’s input and output
sequences, respectively, and the channel transition xnatlﬁ’y‘x Recalling that the point-to-point channel capacity is

given bymaxp_ I(X;Y), and substitutingk™ = (X7, X7) andY™ = (Y;*, Y3") we obtain:

<P < Ps. Q)

)

C = max I(X;,Xo;Y1,Y2). 4)

X1 X2
b) First now thatY> can be rewritten a%> = Y; + X5 + Z5. Now, we upper bound the capacity as:
I(X1,X2;Y1,Y2) = I(X1, Xo; Y1) + (X1, Xo; Y2 Y1)
= h(Y1) = h(Y1]| X1, X2) + h(Y2|Y1) — h(Y2| X1, X2, V1)

W h(¥1) = h(Z1) + WY1 + Xz + Za|V1) — h(Ys + Xa + Z] X1, X2, V1)
®

= h(Y1) — h(Z1) + h(X2 + Z2|Y1) — h(Z2)

(<) h(Y1) — W(Z1) + (X2 + Z) — h(Z2)

=h(Y7) — % g(2meNy) + h(Ya) — % log(2meNs)

(%) llog (2me(Py + Ny)) — %10g(27reN1) + %log (2me(P; + N)) — %10g(27reN2)

(f[lPJrN)

where:

(a) follows from the definitions o7 and the fact thatZ; is independent ofX;

(b) follows from the fact thatZ, is independent of X, X2, Z1) and therefore it is independent oKy, Xo, Y7);
(c) follows from the fact that conditioning reduces entrppy

(d) follows by the maximum of differential entropy property

This upper bound is achieved by choosif¥j;, X) to be jointly Gaussian RVs with the following distribution,

(§)~N((8)(1§ 13)) ©)

This distribution achieves (c) with an equality since bystbhoice we get that; = X; + Z; and X, + Z, are independent.
Whereas (d) is achieved with equality since by this chdicendY; are Gaussian RVs with variancés + N1 and P, + N,
respectively (which achieves the maximum of entropy)

Riddle (20 points): In a magic trick, there are three participattie: magician, an assistant, and a volunteer. The assistant,
who claims to have paranormal abilities, is in a soundproofir. The magician has a deck of 100 cards. A different number
from 1 to 100 is written on each card (in other words, they amalpered from 1 to 100). The magician asks a volunteer from
the crowd to pick six cards. Then, the cards are shown to tbedcrThe volunteer keeps one of the cards. The magician
arranges the five cards that are left in some order. Now thstasscomes to the stage looks at the five cards and announces
the number of the card kept by the volunteer!
a) The magician and the assistant are experts in informdtieory. How did they preform the trick? (Hint: One can used
the 5 remaining cards to encode a message).
b) Can the magician and the assistant preform this trick witilie then 100 cards? If yes, explain how many. If the answer
is no, explain.

Solsution: The five cards are uniquely identified by their numbers (lovhigh). There ares! = 120 possible orderings for



the five cards, which is more than enough to encode the numb#reosixth card.

The actual humbers written on the white cards don’t matétis tall them, in increasing ordet;;, Cs,, Cs. Since there are

5! permutations ofl, 2, , 5, enough to encode all the numbers from 1 to 120. The code g0y dould go as follows. I, is

the top card, then the hidden card is in the range 1 to 24; € @i, the hidden card is 25 to 48, and so on. Then the range
identified by the top card is narrowed down by consideringrteet card. And so on. With some practice the "reading” would
be quick.

The magician and the assistant can indeed perform the maticandeck of more thari00 card. A deck of 125 cards is
the maximum possible (without flipping or rotating the cdrdsis is since, as mentioned above, theredre 120 possible
orderings for the five cards, plus the 5 cards that the assiateeady knows, thus making a total of 125 cards.

4) network coding (30 points): Consider the network shown in Fig.3. This nekiansists of one source node two destination

nodesD;, D,, 12 another nodes and a XOR gate (the most left circle). Evdge(:, j) in the network represents a directional
noiseless link from nodé to j, that can transmit 1 bit per second.

(3,12)
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Fig. 3. A network with one source node, two destination npdesther 12 nodes and a XOR gate

In subquestions a-c the XOR gate is replaced by an ordinadg hdlike the other node$ — 12 (it doesn’t have to do a XOR
operation on the received bits).

a) For every destination node, find how many edge-disjoittigpaxist between the source node and that destination node?

b) We want to transmit data from the source node to the destmaodeD; (i = 1 or 2). The other destination node
doesn't have to receive the data. What is the maximal trasssari rateR; (in bits per second) that can be achieved in
that case? Find for =1, 2.

c) Can we achieve these rates by simple routing scheme, velverg node sends on its output links only bits there were
received at its input links.

d) Design a linear network code that would allow the sourcgenim transmit data to both destination nodes D- at the

rates Ry, R2. (The XOR node behave in this subsection as XOR, namely thgubis a XOR of all inputs.) Draw the
network and on each edge write the linear function that idiegp
e) Write the transfer matrix for each destination as a famctf the source.

Solution

a) There are three edge-disjoint paths from the source otte both destination nodeB;, D,. They are shown in the
figure below. The paths from§ to D; are shown in green, while the paths £ are shown in blue.
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b) For every destinatio®;, we know that the maximal transmission rdtg that can be achieved is equal to the amount of

d)

edge-disjoint paths from the source nogi¢o D;. We've seen that their amount is 3 (for bath and D3). Since every
link in the network allows to send at a rate Hbps], we have

Rl = Rg = 3[[)]98]

We now want to transmit data from the source node to bothmigsin nodesD;, D- at the ratesR;, R, that were just
found.

We'll prove it by contradiction. Suppose the rates = R, = 3[bps| can be achieved by simple routing scheme. In that
case, the source nodewill send three bits per second on its output links. Supphsebit X is sent on the link(s, 1),

the bit X, is sent on the link(s,2) and the bitX; is sent on the link(s, 3). Every nodei (for i = 1,2, 3) will send the
bits X; on its output links (assumption of simple routing schemejteNthat there is only one path that can lead the bit
X3 to nodeD,, which is

Pp, (3) = {(35 6)7 (65 9)7 (9’ 11)7 (11, D2)}

Therefore every bit that will be sent on these links mustieMoreover, the bit that will be sent on the lifk1, D)
must be alsaX3 since thats the bit node 11 receives. Node 4 will send theXbito node 13 (the node that replaces
the XOR gate) which in turn will need to decide which bit to dem the link(XOR, D;): X; or Xs. In any case, the
node D; won't get bothX; and X». This proves that the rate8; = Ry = 3[bps] can’t be achieved in that way.

We'll use finite field to solve this question. We'll identievery two bits as a scalar from the field. = {0, 1, 2, 3}.
Every node will send a scalar every two seconds on their ouipks. The sent scalars are functions of the received
scalars. The code is as follows:

i) The source nodé& sends 3 scalarX;, X», X3 on the links(s, 1), (s, 2), (s, 3) respectively.
i) Node 1 gets the scalaX; and sends it on the linkl, 5).
iif) Node 2 gets the scalaX, and sends it on the link&, 4), (2, 5), (2, 8).
iv) Node 3 gets the scalaX; and sends it on the link&3, 6), (3,12).
v) Nodes 1,4 and 12 send the scalafs, X5, X3 to the XOR gate, which in turn will send their XOR result iy on
the link (XOR, D,). Note that the bitwise XOR result of three scalars is themsation in the finite fieldFse.
vi) Node5 gets the scalarX;, X, and sends the scal& on the link (5, 7), where

W =X, +2Xs

vii) Node 6 gets the scalaX; and sends it on the links, 9).
viii) Node 7 gets the scalalV and sends it on the link&7,9), (7, 10).

iX) Node8 gets the scalaX, and sends it on the link8, D-).
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X)

Xi)
Xii)
Xiii)
Xiv)

XV)

Node9 gets the scalar®/, X3 and sends the scalaf the link (7, D), where

Z=W+X;

Node 10 gets the scalal” and sends it on the link10, D).
Node 11 gets the scalaZ and sends it on the link&l1, Dy), (11, D2).
Node 12 gets the scalaX; and sends it on the link12, D, ).

The destinationD; receives the following scalars:

Y1 =X1+2Xo0+X3,Y0=X3,¥3 =X + Xo + X3

and it finds Xy, X5, X5 by solving a set of linear equations:

Y1 1 2 1 X1
Y2 =10 0 1} x X2
Y3 111 X3
These equations have a unique solution since the detertrofidime matrix isn't zero:
1 2 1
0 0 1_(_1)ﬁ }‘_3
1 1 1

The destinationD, receives the following scalars:

Y1 = X5, Yo =X,

+2X5,Y3 =X +2X9 + X3

and it finds Xy, X5, X5 by solving a set of linear equations:

Y1
}/2 =
L Y3
These equations have a unique solution:
e
Xo | =
X3

010 b'el
1 2 0| x| X,
12 1 X3 |
2 1 0 Y]
1 0 0| x| Y
01 1 Y; |

A diagram of the network code is shown in the figure below




Remark: There exists more than one solution. You may workRarfield, transmit on(.S, 3), X3, on (5,7), X; and on
(9,11) X; + X3. This yields three equations that are independent.

Good Luck!



