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Motivation 

● LLMs demonstrate human-level text generation capabilities

● Prone to misuse
- Misinformation & Fake news
- AI-generated scams
- Academic dishonesty

● Regulations hinge on this question  
- Can we reliably know what’s AI generated and what’s not?

● Watermarking emerged as a promising strategy

How can we reliably embed & detect watermarks?
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Watermarking LLMs

● Embedding a watermark signal into the token distribution

● Myriad watermarking schemes
○ Red-Green (Kirchenbauer et. al. 23)
○ Inverse transform (Kuditipudi et. al. 23)
○ Gumbel-max (Aaronson & Kircher 23)
○ Error correction codes (Christ & Gunn 24)
○ Synth-ID (Dathathri 24)
○ He et. al 24
○ …

● Trade-off between desirable properties

● We optimize for the quality-detectability trade off.

Detectability

RobustnessQuality

watermark #1
watermark #2



LLM Text Generation

● Tokens, vocabulary       , 
● Autoregressive token generation
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‘The’

‘sky’

LLM

[‘The’,’sky’]

‘is’

LLM

[‘The’,’sky’,’is’]

samplesample

…

Time



LLM Text Generation

● We focus on token-level watermarking
○ Treat each distribution independently
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What is LLM watermarking about?
● White-box watermarks

○ Access to LLM distribution
○ No access to model weights

● Requirements:
○ Watermark can be detected from the generated tokens.
○ Textual quality is not affected.

 
Detection – How easy it is to detect the watermark from the text

Quality – Distance from original token distribution, distortion

Goal: Embed a watermark into the token distribution



Towards a Formulation

● Two parties – Watermarker and Detector



First Step Towards a Formulation

● Both parties share secret key – generate Shared randomness
○ Shared side information   , we consider uniform over 

Set key as 
seed Sample Same realizations on both ends – 

shared randomness
key
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Towards a Formulation

● Score function
○ Watermarker – Generate watermarked distribution

○ Detector – Apply a statistical test 

token
Shared

 randomness



Example – Red Green Watermark  (Kirchenbauer et. al. 23’)

● Key idea: Both parties share a partition of token vocabulary 
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Example – Red Green Watermark  (Kirchenbauer et. al. 23’)

● Key idea: Both parties share a partition of 

● Binary partition – Red list and Green list
○ Random partition – according to shared randomness  
○ Score function – green list membership

● Watermarking - Reweigh token distribution
○ Increase the probability of green list tokens 
○ Decrease the probability of red list tokens.

‘is’

‘a’

‘science’

‘apple’
‘er’ ‘be’

‘am’

‘fast’

‘love’

‘dog’

‘dog’



Example – Red Green Watermark  (Kirchenbauer et. al. 23’)

● Statistical test – count how many green tokens
○ Detector generates same     samples.

● Test LHS is a proxy for         .
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Low Entropy Text Generation

● Generated tokens are relatively deterministic
○ Coding
○ Math

● Model: min-entropy constraint

● This work:

○ Worst case: A single token gets a probability of 0.5
○ Spiky distributions – Token vocabularies are very big. 

𝑃( ′world′ | ’print(“hello ′ ) 

𝑃  ′3′ ′1 + 2 =′ )

→  Uniform → includes one hot

* Are all texts potentially low-entropy?
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● Recall:
○ Shared randomness 
○ Score function
○ Watermarked distribution

When       is watermarked: 

Optimization Problem Formulation - Objective

Watermarked distribution

When       is not watermarked: 

Original distribution



● Recall - Proxy for detection -  Expected score:

● Objective function - maximize the gap between expected scores:

Optimization Problem Formulation - Objective
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Our contribution: Optimization Problem Formulation

● Considerations:

○ Watermarked distribution chosen after score and token are set

○ No control over token distribution

○ Score set prior to ’communication’ – can’t be dependent on anything
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Proposed Method

● Given                 solve the Optimal Transport problem:

● Sinkhorn

Set Solve 
OT

Prior to
 watermarking

Watermarking

Is the OT cost
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Proposed Method

● Extract                          from Optimal coupling – column.

● Sample                        to obtained watermarked token

Set Solve 
OT

Prior to
 watermarking

Watermarking

Sample
 

Repeat for n tokens



Proposed Method

● Detector:
○ Knows       and performs statistical test:

Set Solve 
OT

Prior to
 watermarking

Watermarking

Sample
 

Detect

Detection
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Summary Until Now

● Optimization Problem Formulation:

● Solving an OT via Sinkhorn
○ Score     determines the OT cost
○ Provides a zero-distortion watermark

● We call the solution the detection gapHow should we design the score function?



SimplexWater

 Binary Score Functions
0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1
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Binary Scores

● Score class

○ Example – red/green

● Optimization can be simplified: 

Each element in the vocabulary is assigned with a binary vector

Maximize the minimum Hamming distance



Binary Scores

● This is a coding – theoretic problem!

●      are codewords

● We design a distance-maximizing code
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Binary Scores

Designing a 
distance-maximizing codeMaximizing detection gap

(Watermarking problem)
(Coding theory problem)

- Vocabulary size
- Distribution family parameter



Binary Scores

Designing a 
distance-maximizing codeMaximizing detection gap

Proof - Plotkin Bound! (1960)
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Achieving the Detection Bound

● Can we achieve the upper bound?
○ Equivalently - Design a bound-achieving code

Yes! – Simplex codes
Shared randomness size



Achieving the Detection Bound

● Simplex code

● Example – Simplex code 
0 0 0
1 0 1 
0 1 1
1 1 0

0

1

3

2

1 2 3
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SimplexWater

● SimplexWater – Take score     to be a simplex code!
● m x (m-1) binary lookup table

0 0 0 0 0 0 0 1
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 1 0 1 0 1 1
1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 0 0 1 1

1

2

3

m

. 

. 

.

1 2 m-1.
 
.
 
.

1



SimplexWater

● SimplexWater – Take score     to be a simplex code!
● m x (m-1) binary lookup table
● Computed apriori on both ends 0 0 0 0 0 0 0 1

0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 1 0 1 0 1 1
1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 1
1 1 0 1 0 0 1 1

0

2

3

. 

. 

.

1 2 m-1.
 
.
 
.

1

m-1



SimplexWater

Set Solve 
OT

Prior to
 watermarking

Watermarking
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Detect
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SimplexWater

● SimplexWater is optimal across all binary score watermarks:

Set Solve 
OT

Prior to
 watermarking

Watermarking

Sample
 

Detect

Detection

Simplex 

code
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Beyond Binary Scores

● Binary detection gap is capped by 

● Bigger field size? 

Let’s make      real! 

*(Leibniz)



HeavyWater

 Continuous Score Functions



Towards a Continuous Watermark

● Extending continuous scores – Sample      randomly
○ Practically - Sample the lookup entries i.i.d.  

● Distribution         is continuous, zero mean 1D
0 0 0 0 0
0 0 0 1 1 
1 1 0 1 1 
1 1 0 0 0
1 0 1 0 1

1

2

m

. 

. 

.

1 2 .
 
.
 
. k



Random Score Generalizes Existing Watermarks

● Gumbel Watermark (Aaronson & Kircher ‘23, OpenAI):

○ Add i.i.d. Gumbel(0,1) noise to the logits and take argmax:

○ Detection:   
■ Resample Gumbel variables and calculate a Gumbel-based statistic
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Random Score Generalizes Existing Watermarks

● Gumbel Watermark (Aaronson & Kircher ‘23, OpenAI):

○ Add i.i.d. Gumbel(0,1) noise to the logits and take argmax:

○ Detection:   
■ Resample Gumbel variables and calculate a Gumbel-based statistic

● Gumbel watermark is asymptotically a special case of our framework!

(no reweigh)

If Gumbel is a special case
Can we provide a better solution?
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Towards HeavyWater

● What controls the detection gap?
● Generally, detection depends on the tail of        !

● Define score difference
● Quantile of the distribution of       is
● Detection gap is control by the integral of 
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Towards HeavyWater

● Heavier tail => Bigger detection gap

● Heavy tailed     => Heavy tailed
*(through MGFs) 

Sample score from a heavy 
tailed distribution!
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HeavyWater

● HeavyWater – Sample     from a heavy tailed distribution

● Best empirical performance – Lognormal distribution

0 0 0 0 0
0 0 0 1 1 
1 1 0 1 1 
1 1 0 0 0
1 0 1 0 1

1

2

m

. 

. 

.

1 2 .
 
.
 
. k



HeavyWater

● HeavyWater – Sample     from a heavy tailed distribution

● Best empirical performance – Lognormal distribution

● HeavyWater Steps:
○ Set side information size      and sample a                 lookup table i.i.d.
○ Share sampled lookup table prior to text generation
○ Repeat watermarking algorithm 0 0 0 0 0

0 0 0 1 1 
1 1 0 1 1 
1 1 0 0 0
1 0 1 0 1

1

2

m

. 

. 

.

1 2 .
 
.
 
. k
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Beyond Zero-Distortion

● Recall:     (due to OT)

● Higher detectability – at the cost of inducing distortion

●  pushing expected scores further apart

● Alter         to increase expected score - tilting
○ Exact operation    depends on  exact structure of 

Solve
OT

tilt
operationZero distortion

tilted

Nonzero distortion
Stronger detection



Beyond Zero-Distortion

● Tilting SimplexWater:
○ Increase probability of tokens with score 1
○ Decrease probability of tokens with score 0

● Tilting  HeavyWater –  around its (zero) mean



Numerical Results



Setting
● LLMs – Llama2-7b, Llama3-8b, Mistral-v02-7b

● 7 Datasets, For example:  
○ FinanceQA
○ LCC

● Top-p sampling, 0.99

● Temperature 1.0/ 0.7

● Methods: Red-Green, Gumbel, Inverse transform, Correlated Channel, 
SynthID

● Experiments from 2 benchmarks – WaterBench and MarkMyWords
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● Detection: p-value of statistical test
● Distortion: Cross entropy between base and watermarked 

distributions



Detection-Distortion Tradeoff

● Detection: p-value of statistical test
● Distortion: Cross entropy between base and watermarked 

distributions

Zero distortion

(D
et

ec
tio

n)

(Distortion)



Watermark Size 

● Watermark Size - #tokens at detection to obtain a certain p-value.



Randomness Generation

● Theoretical assumption - Perfect randomness –      is i.i.d.
○ New independent key on each time step 

● In practice – The key is a function of previous tokens
○ Robustness

● Examples of dependence 

○ Markov

○ Product

○ Sum
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The Benefit of Switching  

● Base method – Red-Green with              - nonzero distortion

● Hashing schemes:

● Markov: 

● Prod:

● Sum:

More than x2 better detection with lower distortion!



Watermark Information Size
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○       - side information size (design choice)

○       - floating point precision [bits]

● Information efficiency – low resource devices
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Watermark Information Size

● How many bits does it take to imprint the watermark?

○       - Tokenizer vocabulary size

○       - side information size (design choice)

○       - floating point precision [bits]

● Information efficiency – stealing the watermark (recover key)

Our watermarks are the most information-efficient!



Conclusion

● Main Takeaways
○ Minmax optimization formulation  
○ Optimal transport solution – zero-distortion watermark
○ Score design:

■ Binary scores –  SimplexWater, Coding theory
■ Continuous scores – HeavyWater, Heavy-tailed distributions

○ First unifying framework – RG&Gumbel
○ Additional results – computational overhead, additional detection&quality 

metrics, coding.

● Future work
○ Learnable score
○ Integrating robustness into optimization problem



0 0 0 0 0
0 0 0 1 1 
1 1 0 1 1 
1 1 0 0 0
1 0 1 0 1

1

2

m

. 

. 

.

1 2 .
 
.
 
. k

Thank you!



Randomness Generation

● Theoretical assumption - Perfect randomness –      is i.i.d.
○ Shared randomness  independent across time

● In practice – keys are dependent
○ Usually through hashing previous tokens

○ Markov
○ Product Hash
○ Semantic Hash

● We empirically explore the effect of Hashing
● Our watermark works with any randomness generation
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