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Abstract: Despite the widespread use of information measures in analyzing probabilistic
systems, effective visualization tools for understanding complex dependencies in sequen-
tial data are scarce. In this work, we introduce the information matrix (InfoMat), a novel
and intuitive matrix representation of information transfer in sequential systems. InfoMat
provides a structured visual perspective on mutual information decompositions, enabling
the discovery of new relationships between sequential information measures and enhanc-
ing interpretability in time series data analytics. We demonstrate how InfoMat captures
key sequential information measures, such as directed information and transfer entropy.
To facilitate its application in real-world datasets, we propose both an efficient Gaussian
mutual information estimator and a neural InfoMat estimator based on masked autore-
gressive flows to model more complex dependencies. These estimators make InfoMat a
valuable tool for uncovering hidden patterns in data analytics applications, encompassing
neuroscience, finance, communication systems, and machine learning. We further illustrate
the utility of InfoMat in visualizing information flow in real-world sequential physiological
data analysis and in visualizing information flow in communication channels under various
coding schemes. By mapping visual patterns in InfoMat to various modes of dependence
structures, we provide a data-driven framework for analyzing causal relationships and
temporal interactions. InfoMat thus serves as both a theoretical and empirical tool for
data-driven decision making, bridging the gap between information theory and applied
data analytics.

Keywords: data analysis; data visualization; directed information; information matrix;
information conservation; mutual information; transfer entropy

1. Introduction
Information theory plays a key role in the analysis of dynamics in stochastic

systems [1–4]. Through the lens of information theory, one can study the temporal evolu-
tion of dependence in a sequential system, which is often interpreted as the exchange of
information between its interacting components. For example, in communication channels,
directed information quantifies the information flow from the encoder to the channel [5,6].
Consequently, the feedback capacity of communication channels, which is characterized
by the optimization of average directed information, can be interpreted as the maximum
amount of information flow from the transmitter to the channel [7]. Another pertinent
example is neuroscience [8], where information theory is widely used for the analysis
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and processing of collected data. For example, transfer entropy [9] is used to infer func-
tional connectivity and to analyze information flow from recorded data, such as EEG and
fMRI [10]. Beyond communications and neuroscience, information theory was shown use-
ful for various fields of sequential analysis, encompassing control [11–13], reinforcement
learning [14,15], causal inference [16–18], and various machine learning tasks [19–21].

In contrast to its wide use to infer and quantify relations in time series data, informa-
tion theory fails to offer simple visualization tools to demonstrate its merits, and existing
visualization techniques are not applicable to such settings. A common example of depen-
dence visualization is the cross-correlation matrix [22]. For a given random vector pair
(X, Y) ∈ Rdx+dy , the correlation matrix is an Rdx×dy -valued matrix, whose (i, j)th entry
is the correlation between (Xi, Yj). While being a powerful tool for simple exploratory
analysis, the performance of the correlation matrix heavily relies on the data domain and
structure of the joint distribution. Specifically, it provides a complete characterization of
dependence only when the vectors’ entries are univariate Gaussian sequences with linear
relations. Furthermore, the correlation matrix does not generalize to the conditional setting,
which is crucial for visualization in time series analysis.

A common visualization of information theoretic relationships is the Venn diagram [4],
which serves as a visualization of mutual information, through decomposition into joint
and conditional entropies. Finally, the information diagram [23], which is based on the
Taylor diagram [24], explores the interplay between entropies and mutual information in a
geometric fashion by mapping dependence into an angle between the marginal entropy
vectors. However, this method is limited to a random pair. Beyond the visualization of
information measures, information theory is widely used to evaluate other visualization
and rendering techniques [25]. In this work, we attempt to close this gap, and propose a
new visualization method.

Contributions

In this work, we propose the information matrix (InfoMat), a novel visualization
tool of the information transfer in dynamic stochastic systems. Given two stochastic
sequences of length m, the InfoMat arranges the conditional mutual information terms that
describe the evolution of dependence in an m × m matrix. By arranging the m2 conditional
information terms that describe the temporal processes’ evolution in an m × m matrix,
various dependence patterns emerge in the InfoMat though visual patterns. We show
how the InfoMat captures popular sequential information measures such as the directed
information and transfer entropy through linear operations. We then demonstrate the
InfoMat utilities for both theoretical and practical methods.

For theoretical purposes, the InfoMat provides a visual representation of existing
information theoretic conservation laws and decompositions, while revealing new rela-
tionships. The relationships are proven by characterizing different subsets of the matrix
with corresponding information measures. Additionally, the InfoMat serves as a practical
visualization tool for arbitrary sequential data. Using a heatmap representation, we can link
various dependence structures in the data with visual patterns. We propose a Gaussian mu-
tual information estimator of the InfoMat that relies on the calculation of sample covariance
matrices and analyze its theoretical guarantees, while empirically demonstrating the power
of the resulting visualization tool. When a Gaussian estimator is insufficient, we develop
a neural InfoMat estimator, which is based on masked normalizing flows (MAFs), which
expand the class of distributions captured by the InfoMat. We demonstrate the estimated
InfoMat to visualize the power of optimal coding schemes in communication channels with
memory and for the visualization of information flows in real-world datasets.
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The rest of this paper is organized as follows. Section 2 presents required background
and preliminaries, followed by Section 3, which presents the InfoMat and demonstrates
its capabilities for the visualization of theoretical information-theoretic conservation laws.
Then, Section 4 discusses the Gaussian estimator of the InfoMat, while Section 5 explores
neural estimation. Finally, Section 6 demonstrates the utility of the estimated InfoMat for
visualizing dependence structures in sequential data, and Section 7 provides concluding
remarks and discusses future work.

2. Background and Preliminaries
2.1. Notation

Sets are denoted by calligraphic letters, e.g., X . When X is finite, we use |X | for its
cardinality. For any n ∈ N, X n is the n-fold Cartesian product of X , while xn = (x1, . . . , xn)

denotes an element of X n. For i, j ∈ Z with i ≤ j, we use the shorthand xj
i ≜ (xi, . . . , xj);

the subscript is omitted when i = 1. Expectations are denoted by E. When X is countable,
we use p for the PMF associated with the probability measure P. Random variables are
denoted by upper-case letters, e.g., X. The Kullback–Leibler (KL) divergence between
P and Q, with P ≪ Q, is DKL(P∥Q) ≜ EP

[
log dP

dQ
]
. The mutual information between

(X, Y) ∼ PXY is I(X; Y) ≜ DKL(PXY∥PX ⊗ PY), where PX and PY are the marginals of PXY.
The entropy of a discrete random variable X ∼ P is H(X) ≜ −E[log p(X)].

2.2. Sequential Information Measures

Consider a pair of jointly distributed sequences of length m, (Xm, Ym) ∼ PXm ,Ym .
The causal nature of sequential communication systems impedes mutual information
from properly describing sequential information flows, as it decomposes into non-causal
conditional mutual information terms, i.e., [26]

I(Xm; Ym) =
m

∑
i=1

I(Xi; Ym|Xi−1),

To this end, several causal adaptations of mutual information to time series data were
developed in the literature. The first is directed information [5], which was originally
developed to characterize information rates in communication channels with feedback.
The directed information from Xm to Ym is given by

I(Xm → Ym) ≜
m

∑
i=1

I(Xi; Yi|Yi−1), (1)

where the directed information in the opposite direction I(Ym → Xm) is defined sym-
metrically. The second information measure, which gained popularity in neuroscience
and physics is transfer entropy [9,27,28]. For parameters (m, k, l), the transfer entropy is
given by

TX→Y
m (k, l) ≜ I(Xm−1

m−k ; Ym|Ym−1
m−l ), (2)

Transfer entropy and directed information follow various decompositions and information
conservation laws. We will further discuss them through the lenses of the proposed InfoMat
in the upcoming section.

In physics, time series measures—such as approximate entropy [29], sample
entropy [30], permutation entropy [31], and dispersion entropy [32]—are widely used
to quantify the local complexity and irregularity of sequential data. While these scalar
metrics provide valuable insights into local dynamical properties, they are conceptually dis-
tinct from directed information and transfer entropy, as they are not based on quantification
through conditional mutual information.
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2.3. Information Decomposition and Conservation

In stochastic systems with memory, the temporal evolution of the dependence between
the system’s elements can be viewed through the lenses of information exchange. This
exchange of information can be captured within conversation laws, which quantify the
total amount of information flow in a given system. Specifically, for a system with m
time steps and two sources (Xm, Ym) ∼ PXm ,Ym , Massey [33] proved the following law of
information conservation

I(Xm; Ym) = I(Xm → Ym) + I(D ◦ Ym → Xm) (3)

where (Dk ◦ Xm) is a left concatenation of k ‘dummy’ deterministic symbols with Xm
k+1 and

(D ◦ Xm) = (D1 ◦ Xm). The authors of [34] propose a modification of (3) that distinguishes
between past and present effects, given by

I(Xm; Ym) = I(D ◦ Xm → Ym) + I(D ◦ Ym → Xm) + Iinst(Xm, Ym), (4)

where Iinst(Xm, Ym) ≜ ∑n
i=1 I(Xi; Yi|Xi−1, Yi−1) is the instantaneous information, which

measures the symmetric dependence between Xm and Ym, given a shared history. Informa-
tion conservation has been shown to be useful for the analysis of causal information flows
in neural spike trains and financial data [35,36].

3. Information Matrix
Fix m ∈ N. We are interested in characterizing the interaction between two stochastic

sequences (the sequences can be thought of as an m-step sample from some underlying
joint stochastic process) of length m in a visually meaningful manner. Denote the sequences
with (Xm, Ym) ∼ PXm ,Ym . Our emphasis is on the information-theoretic description of this
interaction, which can be seen as the evolution of dependence between the interacting
components over time. This characterization can alternatively be viewed as a transfer
of information. The entire dependence structure between Xm and Ym is captured by the
m-fold mutual information, given by the following chain rule [4]

I(Xm; Ym) =
m

∑
i=1

m

∑
j=1

I(Xi; Yj|Xi−1, Y j−1). (5)

The above decomposition implies that, along m steps, the interaction is characterized with
m2 conditional mutual information terms. This acts as our motivation for the following
definition and this work.

We define the InfoMat as the following m × m matrix:

IX,Y ∈ Rm×m
≥0 , IX,Y

i,j ≜ I(Xi; Yj|Xi−1, Y j−1). (6)

The InfoMat captures all the information transfer within the two-user system (Xm, Ym)

as (5) implies that
I(Xm; Ym) = ∑

i,j
IX,Y
i,j = 1mIX,Y1⊺m,

where 1m ∈ Rm is an m-length vector of ones and the inequality follows from the chain rule
for mutual information [4].

As we further show, the InfoMat allows for the interpretations of the chain rule (5),
and other information decomposition laws of I(Xm; Ym) as grouping the entries of IX,Y

into meaningful subsets that sum up to I(Xm; Ym). These decompositions are often termed
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information conservation laws [33]. We will show that such laws, whose proofs are usually
technical and algebraic, can be easily visualized by coloring subsets of the entries of IX,Y.

3.1. Visualizing Sequential Information Measures

We begin by demonstrating that the aforementioned sequential information measures
can be recovered through the summation of elements of the InfoMat. Directed information
(1) is given by the sum of a triangular sub-matrix, i.e.,

I(Xm → Ym) = 1T


IX,Y
1,1 IX,Y

1,2 . . . IX,Y
1,m

0 IX,Y
2,2

. . .
...

...
. . . . . . IX,Y

m−1,m
0 . . . 0 IX,Y

m,m

1. (7)

Due to its direction sensitivity, directed information in each direction is associated with a
certain triangular sub-matrix. Specifically, the direction Xm → Ym corresponds to the upper
triangular part of IX,Y, while the lower triangular part represents the direction Ym → Xm.

It is also useful to define the time-delayed directed information, which describes
the causal flow of information under a time delay at the transmitting node. For a delay
of k < m, the k-time-delayed directed information is given by I(Dk ◦ Xm → Ym) ≜

∑m
i=1 I(Xi−k; Yi|Yi−1). In IX,Y, a k-delay of directed information corresponds to a right shift

of k indices in the Xm → Ym direction, and a down shift in the Ym → Xm direction.
Next, the transfer entropy term TX→Y

i+1 (i, i) = I(Xi; Yi+1|Yi), which quantifies the
causal effect of Xi on Yi+1 given Yi is given by the sum over a column of length i in row
i + 1. For example, we have

TX→Y
3 (2, 2) = 1T



0 . . . IX,Y
1,3 . . . 0

... 0 IX,Y
2,3

. . .
...

...
. . . 0

. . .
...

...
. . . . . . 0

...
0 . . . . . . . . . 0


1. (8)

Note that a transfer entropy does not include terms on the InfoMat diagonal. This stresses
that transfer entropy focuses on strict past influence on present interaction, which is a key
distinction from directed information [37]. The relation between mentioned information
measures and the patterns in IX,Y are summarized in Table 1.

Table 1. Visual shapes of dependence patterns in IX,Y .

Information measure Visual pattern in IX,Y

I(Xm → Ym) Upper triangular with diagonal

I(Dk ◦ Xm → Ym) Upper triangular, side (m − k)
TX→Y

i+1 (i, i) Col. in row i + 1 with length i

3.2. Capturing Information Conservation Laws

Having identified the relation between information measures and their patterns in IX,Y,
we can visualize the aforementioned laws of information conservation [33,34]. Such rules
are often derived via algebraic manipulation of information measures and therefore may



Entropy 2025, 27, 357 6 of 25

lack intuition and may fail to provide a deeper understanding of the underlying interaction.
Recall that Massey’s information conservation law is given by (3)

I(Xm; Ym) = I(Xm → Ym) + I(D ◦ Ym → Xm) (9)

Following the identification of DI with triangular submatrices of IX,Y, (3) follows by coloring
index subsets and summing over each color group.

I(Xm; Ym) = 1T


IX,Y
1,1 IX,Y

1,2 . . . IX,Y
1,m

IX,Y
2,1 IX,Y

2,2
. . .

...
...

. . . . . . IX,Y
m−1,m

IX,Y
m,1 . . . IX,Y

m,m−1 IX,Y
m,m

1. (10)

Considering the finer decomposition using instantaneous information (4), we note that
Iinst(Xn, Yn) = Trace(IX,Y). We can therefore identify this decomposition by excluding the
diagonal from the upper sub-triangle.

I(Xm; Ym) = 1T


IX,Y
1,1 IX,Y

1,2 . . . IX,Y
1,m

IX,Y
2,1 IX,Y

2,2
. . .

...
...

. . . . . . IX,Y
m−1,m

IX,Y
m,1 . . . IX,Y

m,m−1 IX,Y
m,m

1. (11)

Next, we will leverage the constructed relations between InfoMat patterns and sequential
information measures to derive new information-theoretic decompositions and formulas.

3.3. Developing New Information-Theoretic Relations

Beyond the visualization of existing relationships, the simplicity of the InfoMat visual-
ization allows us to develop new meaningful information-theoretic equivalences. We begin
with the following proposition that relates the two information measures of interest.

Proposition 1 (Transfer entropic decomposition of directed information). For (Xm, Ym) ∼
PXm ,Ym and 1 ≤ k ≤ m, we have

I(Dk ◦ Xm → Ym) =
m−k

∑
i=1

TX→Y
i+1 (i, i).

Proof. We provide the proof for k = 1. Recall that directed information corresponds to the
upper triangular part of IX,Y. We note that TX→Y

i+1 (i, i) corresponds to a column in IX,Y that
begins in the (i + 1)th column and has length i. Thus, we color the triangular part (directed
information) as follows 

IX,Y
1,2 IX,Y

1,3 . . . IX,Y
1,m

IX,Y
2,3

. . .
...

. . .
...

IX,Y
m−1,m


The relation then follows by summing over the upper triangular part and dividing the sum
into the corresponding rows, i.e.,

I(D ◦ Xn → Yn) = TX→Y
2 (1, 1) + TX→Y

3 (2, 2) + · · ·+ TX→Y
m (m − 1, m − 1)
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The proof similarly extends to k > 1 with similar steps.

The proof demonstrates the simplicity of InfoMat, as it boils down to identify-
ing the aforementioned information measures as entry subsets within IX,Y. Equipped
with Proposition 1, we can provide an information conservation rule in terms of transfer
entropy terms.

Proposition 2 (Conservation of transfer entropy). Let (Xm, Ym) ∼ PXm ,Ym . Then

I(Xm; Ym) =
m−1

∑
i=1

TX→Y
i+1 (i, i) + TY→X

i+1 (i, i) + Iinst(Xm, Ym).

Finally, we propose a recursive decomposition of directed information via transfer entropy.

Proposition 3 (Directed information chain rule). Let (Xm, Ym) ∼ PXm ,Ym . Then

I(Dk ◦ Xm → Ym) = I(Dk+1 ◦ Xm → Ym) +
m−k

∑
i=1

I(Xi−k; Yi|Yi−1).

The proofs of Propositions 2 and 3 follow by arguments and tools similar to
Proposition 1 and are given in Appendix A.1 for completeness. The new derived
information-theoretic conservation laws and decompositions elucidate the relationships be-
tween mutual information, directed information, and transfer entropy. Strengthening these
connections is crucial, as each measure has distinct tools and applications, thereby enhanc-
ing their cross-utilization potential and potentially bridging various applications. While
these proposed relations can indeed be derived through existing algebraic manipulations
of mutual information, the technical complexity may make these deductions less apparent.

3.4. Relating Dependency Structures and Visual Patterns in the InfoMat

We now show that, beyond the derivation of various information decomposition laws,
the InfoMat can be used to identify temporal patterns in the data. To this end, we relate
various dependence structures to corresponding visual patterns in the InfoMat. We later
demonstrate those relations on data via various estimates of the InfoMat (Section 6). To
this end, we assume in this section that the sequence (Xm, Ym) is an m-fold projection of
some jointly stationary stochastic process defined over X × Y . As a first example, we
note that when the joint process is independent and identically distributed (i.i.d.), every
conditional mutual information with i ̸= j vanishes. The corresponding InfoMat takes the
form IX,Y = I(X; Y)Im with Im being the m-dimensional identity matrix.

Next, we focus on a specific case of interest, when the joint process is jointly Markov
with some order k. In this case, we know that, for IX,Y

i,j , when both i and j are larger than
k, we obtain a similar value of conditional mutual information due to joint stationarity.
This implies that within the square block within IX,Y that is determined by the indices
{(i, j)|i > k, j > k}, we have a Toeplitz structure (which is a matrix whose constant along
its diagonals.). Furthermore, when |i − j| > k, due to the joint Markov nature of the process,
we have IX,Y

i,j = 0. This implies a banded structure of the InfoMat, which is determined by
a k-width ‘Markov band’ outside the main diagonal. This is useful for InfoMat estimation.
As we further elaborate in the next sections, estimating the InfoMat may be generally
computationally expensive, as we are required to estimate the m2 conditional mutual
information terms. However, when the joint process is a stationary Markov of order
k, the number of distinct conditional mutual information terms reduces to O(km). We
demonstrate this relation between dependence structures and visual patterns on a simple
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example in Figure 1. The discussion readily extends to asymmetric Markov orders for the
X and Y processes.

Finally, we note that, as initially observed in Section 3.1, various areas in the InfoMat
correspond to different directions of information. Specifically, values in the upper triangular
correspond to information flow in the direction Xm → Ym, while information flow in the
opposite direction is represented by the lower triangular. Therefore, the trace of IX,Y

represented the instantaneous exchange of information, also quantifying its operator norm.
We believe that further relations and linear algebraic can be unveiled, with task and setting
specific structures. In Section 6, we demonstrate these relations on InfoMat estimates
from data.

Figure 1. Visualizing temporal dependencies in the InfoMat. We take a simple Gaussian process,

where Xt
i.i.d.∼ N (0, 1) and Yt = Xt+4 + Zt with Zt

i.i.d.∼ N (0, 0.1). In this case, the data show that
(left) Yt follows Xt with a delay of 4 time-steps. This is also visible in the InfoMat by a shift of
4 indices of the InfoMat Heatmap representation (right). The acquisition of the InfoMat Heatmap
representation is explained in Section 6.

4. InfoMat Estimation via Gaussian Mutual Information
Beyond its theoretical merit as a proof visualization tool, we argue that the InfoMat

is also effective for the visualization and analysis of dependence structures in time series
data. However, the underlying data distribution is often unknown. Even if it is known, the
corresponding conditional mutual information terms may not be given in closed form. To
this end, to utilize the InfoMat as a visualization tool in real data setting, an estimator is
required. In this section, we propose an approximation of IX,Y from samples of the joint
distribution PXm ,Ym .

Estimating IX,Y boils down to the estimation of m2 conditional mutual information
terms. Without assumptions on the data distribution, the complexity and performance
of mutual information estimators tend to deteriorate with the length of the conditioned
joint history. That is, the bigger (i, j) are, the more samples are required and the worse the
performance of the single IX,Y entry is expected to be. To that end, we begin by proposing a
data-efficient estimation of mutual information, focusing on an approximation that follows
from the Gaussian mutual information term, which is given in closed form. In this case,
estimating the entries of IX,Y boils down to the estimation of the corresponding covariance
matrices, whose guarantees are well studied, and for which we can use estimators with
parametric error rates. We begin by constructing and analyzing the proposed estimator.
Then, we analyze its theoretical performance.
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4.1. Proposed Estimator

Let (Xn, Yn) ∼ PXn ,Yn be a given dataset from which we want to estimate IX,Y. For
simplicity, we assume that all variables have zero mean. We begin by using the following
representation of conditional mutual information.

Lemma 1. Let (Xm, Ym) ∼ PXm ,Ym , and 1 ≤ i, j ≤ m. Then,

I(Xi; Yj|Xi−1, Y j−1) = H(Xi, Y j−1) + H(Xi−1, Y j)− H(Xi−1, Y j−1)− H(Xi, Y j). (12)

If (Xm, Ym) are jointly Gaussian, then

I(Xi; Yj|Xi−1, Y j−1) = IX,Y
G,i,j =≜

1
2

log

∣∣∣KXi ,Y j−1

∣∣∣∣∣∣KXi−1,Y j

∣∣∣∣∣∣KXi−1,Y j−1

∣∣∣∣∣∣KXi ,Y j

∣∣∣ , (13)

where KZ is the covariance matrix of Z ∼ PZ, and |KZ| representing its determinant.

To estimate IX,Y
i,j from a dataset (xn, yn) using the Gaussian estimator (13), we estimate

the corresponding sample covariance matrices K̂i,j ≜ K̂Xi ,Y j , and plug those into (13). We

denote the Gaussian estimator of IX,Y
i,j with ÎX,Y

G,i,j(xn, yn). Finally, a Gaussian estimator of IX,Y

is an m × m matrix whose (i, j) entry is given by ÎX,Y
G,i,j. The Gaussian mutual information

estimation procedure is summarized in Algorithm 1.

Algorithm 1 Gaussian InfoMat Estimation
input: Data (xn, yn), matrix length m
output: Gaussian estimate of IX,Y

Initialize ÎX,Y
G,i,j = 0 for (i, j) ∈ (1, . . . , m)× (1, . . . , m)

for (i, j) in (1, . . . , m)× (1, . . . , m) do

Divide (xn, yn) into datasets

((xi−1, yj−1)l , (xi, yj−1)l , (xi−1, yj)l , (xi, yj)l)
N
l=1

Calculate sample covariance matrices

Calculate ÎX,Y
G,i,j via (13).

return Estimated InfoMat.

The proposed Gaussian estimator for IX,Y relies on the estimation of covariance matri-
ces. Therefore, it inherits its guarantees from those of log determinants of sample covariance
matrices. We assume that the underlying data-generating process is stationary, and obtain
the dataset for the estimation of IX,Y

i,j by dividing (xn, yn) into the corresponding i × j
sequences. We thus have the following

Proposition 4 (Gaussian estimator performance guarantees). Let (Xn, Yn) be a sequence of
jointly Gaussian random vectors over Rdx+dy and let d = max(dx, dy). Then

1. Bias: limn→∞ E
[
ÎX,Y
G,i,j

]
= IG,i,j.

2. Variance: limn→∞ Var(ÎX,Y
G,i,j) = O( dm2

n ) = O( 1
n ).

The proof follows from the analysis in [38,39], and the dependence on m2 follows from
the division of the dataset (xn, yn) into the corresponding subsequences.
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We note that, as m grows, the performance of the Gaussian estimator deteriorates, as
the corresponding conditional mutual information term considers higher dimensional vari-
ables. To this end, we propose an alternative dataset acquisition approach—divide (xn, yn)

into n − m samples such that the lth subsequence for in f omati,j is given by (xl+i
l , yl+j

l ). This
provides us with a significantly larger effective dataset when n is not bigger than m by
orders of magnitude. However, the resulting sampled sequences are no longer i.i.d., and
therefore, the estimator’s guarantees no longer hold. We refer to such a dataset as a “cor-
related dataset”, and use it for the visualization of real-world data when data availability
is low.

While estimating IX,Y
G,i,j is a simpler task, a Gaussian approximation can capture only

partial information when the data distribution is far from a joint Gaussian. We propose an
upper bound on the error of using the Gaussian approximation.

Proposition 5. Let (X, Y, Z) ∼ PX,Y,Z and let (PXG ,YG ,ZG ) be the corresponding Gaussian joint
distribution with the same moments as (PZ,Y,Z). We have the following bound:

|I(X; Y|Z)− I(XG; YG|ZG)| ≤
DKL(PX,Y|Z∥PXG ,YG |Z|PZ)−DKL(PX|Z ⊗ PY|Z∥PXG |Z ⊗ PYG |Z|PZ)

+ max
z∈Z

DKL(PXG ,YG |ZG=z∥PXG |ZG=z ⊗ PYG |Zg=z)dTV(pZ, pzG ) (14)

The proof of Proposition 5 is given in Appendix A.2.

4.2. InfoMat Estimation for Discrete Datasets

When the data domain is discrete, i.e., Xm and Ym are drawn from some finite sets
X and Y , respectively, the Gaussian mutual information estimator is no longer valid. In
such a case, we propose a plug-in estimator of mutual information. The estimator relies
on the entropic factorization in Lemma 1, followed by a standard plug-in estimator for
each entropy term. For completeness, we provide more details on the plug-in estimation
methodology and demonstrate its application to the InfoMat in Appendix A.3. In the pro-
posed applications, the plug-in estimator had demonstrated satisfactory results. However,
its complexity grows exponentially with the size of conditioned history. In these situa-
tions, context tree weighting methodologies [36] can be utilized, to which our approach
seamlessly extends.

5. Beyond Gaussian—Neural Estimation
Despite its simplicity and data efficiency, the Gaussian mutual information approxi-

mation can only fully capture the dependence structure under strong assumptions, which
are often violated [40]. To this end, we propose a conditional mutual information estimator
that does not require joint Gaussianity. The algorithm relies on the concept of neural
estimation [41–44], which utilizes a variational formula of the measure of interest and
optimizes it with neural networks. With the purpose of maintaining the simplicity of the
Gaussian method, we turn to a recent scheme that leverages normalizing flows. We utilize
the recently proposed diffeomorphic conditional mutual information estimator [39] that
leverages a type of network optimization scheme termed MAFs [45]. MAF-based estimators
of mutual information map the jointly distributed pair into a corresponding Gaussian pair,
such that the learned mapping is a diffeomorphism (which is a differentiable invertible
map with a differentiable inverse). In what follows, we introduce the proposed estimator
and discuss its performance.
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5.1. Masked Autoregressive Flows

This section provides a high-level description of MAFs. For an in-depth discussion, we
refer the reader to [39,45]. Consider a pair (X, Y) that has a conditional distribution PXY|Z
for some random variables Z, such that PXY|Z=z is absolutely continuous for any z ∈ Z .
The employed estimator consists of two stages and relies on obtaining a diffeomorphism
that maps (X, Y) into a Gaussian pair (X′, Y′). The second stage consists of calculation of
the I(X′; Y′|Z) which has a simple form and will be a proxy for I(X; Y|Z).

To learn a parametric diffeomorphism, we optimize an MAF. MAFs map samples from
a (usually simple) base distribution p(U) to samples from an arbitrary target distribution
p(X), assuming both are absolutely continuous and defined on U ⊆ Rd and X ⊆ Rd

for some finite d ∈ N. We denote the MAF with Tθ . MAFs are designed such that their
Jacobian is a triangular matrix. This implies that its determinant is simply given by the
product of its diagonal. This property is crucial for the design as we are interested in
representing the likelihood of the target distribution as a function of the likelihood of the
base distribution and the partial derivatives along the parametric map pθ . For example,
when p(U) = Unif[0, 1]d, the parametric likelihood of X under Tθ is given by

log pθ(x) = log(d) +
d

∑
i=1

log
∣∣∣∣∂ui
∂xi

∣∣∣∣, (15)

where
∣∣∣ ∂ui

∂xi

∣∣∣ is the Jacobian of Tθ . The map Tθ can be realized by neural networks with
masked weight matrices and monotone activations [45]. Training an MAF consists of maxi-
mum likelihood optimization. Therefore, it is trained using minibatch gradient methods
with (15) serving as the loss for θ. This scheme readily adapts to conditional distribu-
tions pθ(x|z). The generalization considers a conditioner model gθ′(z) with parameters
θ′, whose purpose is to transfer the relevant information in Z about X into Tθ . The condi-
tional MAF is trained similarly to the unconditional MAF, with the slight change that now
xi = fθ(u) + gθ′(z). Note that the conditioner model need not to be a diffeomorphism.

5.2. Proposed Estimator

Equipped with an MAF model, we can discuss the proposed diffeomorphic conditional
mutual information estimator from [39]. We demonstrate the method on an unconditional
mutual information term, and then discuss the required modification to introduce condi-
tioning. Recall that our goal is to map the pair (X, Y) into a Gaussian pair (X′, Y′). We
break this task into a concatenation of two stages. First, we will map (X, Y) into a uniform
distribution over [0, 1]dx+dy by learning a MAF. Then, the uniform distribution will be
mapped into a Gaussian distribution using the inverse of the Gaussian cumulative distri-
bution function (CDF) This method is often referred to as generalized inverse transform
sampling [46].

To map (X, Y) into a pair of uniform random variables, the learned MAF maps each
variable into a mixture of Gaussian CDFs. Specifically, for both X and Y, we learn a
mapping τ : as follows

τ(xi, hi) =
k

∑
j=1

wi,j(hi)Φ(xi; µi,j(hi), σ2
i,j(hi)),
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where Φ is the Gaussian CDF with mean µ and variance σ2, (wi,j)i,j are the model pa-
rameters, and hi is some parametric autoregressive summary map, i.e., hi = hi(x<i). As
explained in [39], the reasoning behind this design choice is that ∂τ/∂xi is a Gaussian
mixture model, which is known to be a universal approximator of probability distributions.
Finally, the decomposition of τ and the inverse Gaussian CDF yields a parametric model
that maps an arbitrary random variable into a Gaussian variable. Thus, when applied to X
and Y, we result with a pair of Gaussian variables X′ and Y′.

Having mapped (X, Y), which are distributed according to the conditional distribu-
tion PXY|Z into the Gaussian pair, we can use the following result on conditional mutual
information invariance.

Proposition 6 (Conditional mutual information invariance). Let (X, Y, Z) ∼ PX,Y,Z and
denote by (X′, Y′) = ( fθ(X, Z), gϕ(Y, Z)), where fθ and gϕ are conditional diffeomorphisms. Then,

I(X; Y|Z) = I(X′; Y′|Z) (16)

Proposition 6 is a slight modification of ([39] (Lemma 2)). The existence of optimal
MAFs is guaranteed by the universal approximation properties of normalizing flows [47].
Finally, the Gaussian mutual information term is calculated from sample covariance ma-
trices, as elaborated in Section 4. The MAF-based scheme is depicted in Figure 2, and the
algorithm steps are summarized in Algorithm 2.

Figure 2. Neural estimation model. Dashed line represents maximum-likelihood (ML) training phase,
while the filled lines account for the inference (mutual information calculation) phase.

To estimate IX,Y from a given dataset, we apply Algorithm 2 to each coordinate pair
(i, j). The data are split in a similar fashion to Algorithm 1, but due to the parametric
nature of the estimator, we optimize using iterative minibatch-gradient descent. In the
training phase, we optimize all DMI models in parallel through the optimization of the
corresponding maximum-likelihood loss (15) for a fixed number of epochs. When the
training concludes, for each entry, IX,Y

i,j , we feed the corresponding dataset through the
optimized MAFs and estimate the sample covariance matrices, from which we calculate
the mutual information term. Neural network optimization is considerably expensive.
However, ref. [39] shows that the DMI outperforms existing conditional mutual information
estimators in terms of sample requirements. The proposed method boils down to the
optimization of m2 MAF models, which may be computationally expensive. We believe
that this complexity can be alleviated by incorporating recurrent architectures or attention
models. However, this investigation is out of the scope of this work.



Entropy 2025, 27, 357 13 of 25

Algorithm 2 Neural InfoMat Estimation
input: Data (xn, yn), matrix length m, number of epochs N.
output: Neural estimate of IX,Y

Initialize MAF parameters θi,j for (i, j) ∈ (1, . . . , m)× (1, . . . , m)

for (i, j) in (1, . . . , m)× (1, . . . , m) do

Divide (xn, yn) into datasets

((xi−1, yj−1)l , (xi, yj−1)l , (xi−1, yj)l , (xi, yj)l)
N
l=1

Optimize Tθi,j for N epoch via maximum likelihood (15)

Calculate ÎX,Y
G,i,j via (13) on Tθi,j to the sample set.

return Estimated InfoMat.

Remark 1 (Performance of normalizing flows). MAFs are a recent promising method for the
estimation of (conditional) mutual information using the expressive power of neural network, and
were shown to outperform previous methodologies in an array of experiments [39]. However, using
the MAF method separately on X and Y yields a pair of Gaussian variables, which are not guaranteed
to be jointly Gaussian [48]. Consequently, the estimated mutual information (through the Gaussian
formula) is, in general, a lower bound of I(X; Y). Nonetheless, the proposed method showed good
empirical performance in considered tasks, as we show in Section 6.

Remark 2 (Computational Complexity and Scalability). Estimating the m × m InfoMat,
where each entry represents a conditional mutual information term, poses significant computational
challenges. In the neural estimation approach, each of the m2 entries is estimated via a separate neural
network, leading to an overall computational complexity of O(Tm2), where T is the complexity of
estimating a single conditional mutual information term. This quickly becomes prohibitive as m
increases, both in terms of training time and memory usage. This complexity can potentially be
reduced by incorporating weight or state sharing through recurrent architectures, which we aim to
explore in future work. The current implementation offers two estimation options: the first is the
neural estimator, which provides a more accurate estimation when ample data are available, albeit
with increased computational overhead. The second is the Gaussian mutual information Estimator,
which relies on covariance matrix estimation and offers a more computationally efficient alternative
that performs well in low-data regimes or for moderate values of m.

6. Visualization of Information Transfer
In this section, we demonstrate the utility of the InfoMat as a visualization tool for se-

quential data. We demonstrate how one can use the relations between information measures
and InfoMat entry subsets (Section 3) to deduce temporal interactions in sequential data.
We show that the InfoMat provides a more informative mode of information compared
to existing measures, and propose measurements that can be coupled with the InfoMat
estimate to deduce relationships in the data. Throughout, we adopt the interpretation that
higher directed information in a certain direction implies a higher causal effect [36,43]. We
analyze the InfoMat through its heatmap representation. Specifically, the heatmap X-axis
corresponds to the X-process time index and Y-axis corresponds to the Y-process time
index, as per the InfoMat definition (6). An implementation of considered experiments can
be found at https://github.com/DorTsur/infomat (accessed on 22 March 2025).

https://github.com/DorTsur/infomat
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6.1. Synthetic Data—Gaussian Processes

We begin with a sequential Gaussian process, which allows us to clearly present
the relations between various dependence structures and the resulting InfoMat structure.
Specifically, we consider the following joint Gaussian autoregressive (AR) process

Xt =
k̄x

∑
k=0

αX
k Xt−k + αY

k Yi−k + NX
t , t ∈ N

Yt =
k̄y

∑
k=0

βX
k Xt−k + βY

k Yt−k + NY
t , (17)

where NY
t and NY

t are samples of a centered i.i.d. Gaussian processes with covariance
matrices KNx and KNy , respectively. By controlling the values for the AR model parame-
ters (k̄x, k̄y, αX

k , αY
k , βX

k , βY
k )

m
k=1, we induce various dependence structures on the sequence

(Xm, Ym), which we then visualize via IX,Y. All visualizations in this subsection are ob-
tained via Algorithm 1, with n ≈ 105 samples, which as. We assume that the samples are
given from the stationary distribution by omitting the first max(k̄x, k̄y) samples.).

We begin with a simple i.i.d. setting by taking βX
k = γ for γ ∈ (0, 1) and nullifying

the rest of the parameters. In this case, Xi ⊥⊥ Yj for i ̸= j. Thus, all shared information is
instantaneous, implying that we should expect a diagonal InfoMat. As seen in Figure 3a,
this is indeed the case. The corresponding InfoMat captures the dependence structure,
resulting in a diagonal matrix.

Next, denote x̄x = k̄y = k̄. We increase the values of AR weights for k̄ > 0, inducing
dependence in the history of the joint process. We consider a symmetric dependence
structure and set αX

k = αY
k = βX

k = βY
k = 0.3 for j ∈ {0, . . . , k̄} considering several values

of k̄. The value of k̄ can be interpreted as how far into the past the dependence of the
present terms extends. As shown in Figure 3b,c, the larger k̄ is, the bigger the ‘information
band’ around the diagonal, whose width depends on the value of k̄. Consequently, we
may deduce that the farther away we reside on the off-diagonal, the farther in history we
observe dependence.
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Figure 3. Visualization of history dependence in ARMA Gaussian process with various parameter
settings. The bigger the value of k̄ is, the bigger the information band around the instantaneous
information, represented by the diagonal. (a) Gaussian i.i.d. (k̄ = 0). (b) Gaussian AR, k̄ = 2.
(c) Gaussian AR, k̄ = 4.

Finally, we demonstrate how more complex temporal structures can be captured via
the InfoMat. Specifically, we take two cases in which the ARMA parameters are time-
varying, leading to nontrivial temporal relations between the processes. The first considers
that ARMA parameters vary over time, i.e., the amount of parameters which are not
nullified depends on the (i, j) value. As seen in Figure 4a, this results in a decay in the
aforementioned ‘dependence band’. Second, we demonstrate a case of pure unidirectional
information transfer in a single direction by introducing a time delay in the parameters
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and a significant difference between their values. As shown in Figure 4b, the information
transfer in dense in the lower triangular, which correspond to the DI term I(Ym → Xm)

(see Section 3). We conclude that the InfoMat successfully captures nontrivial temporal
dependence structures.
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Figure 4. Visualization of complex dependence structures in the Gaussian AR setting. (a) Decaying
Gaussian AR, γ = 0.5. (b) One-sided information transfer.

6.2. Expressiveness of Neural Estimation

As previously discussed, the efficient InfoMat estimation through Gaussian conditional
mutual information estimation comes at the cost of a mismatch when the relations are,
e.g., nonlinear. Herein, we demonstrate the utility of neural estimation (Section 5) to the
InfoMat capabilities by comparing its performance with the Gaussian mutual information
estimator. We take an i.i.d. jointly Gaussian dataset with correlation coefficient ρ = 0.9.
We then apply a cyclic shift of T < m to the samples Ym within each m-length sequence,
effectively resulting in a time-shift dependence structure. We introduce nonlinearity by
considering the mapping Xi 7→ log(Xi) and Yi 7→ Y3

i . Such mappings are invertible and
therefore the overall mutual information should be preserved.

As visualized in Figure 5, the neural estimator successfully recovers the correct struc-
ture in the data, while the Gaussian mutual information estimator fails to provide a mean-
ingful visualization in the given setting. As the mappings are invertible, the resulting
mutual information is 0.83 [nats] on nonzero entries, which are approximately the corre-
sponding values in the neural estimator of IX,Y. However, this accuracy comes at the cost
of training m2 neural nets, which is significantly slower than calculating sample covariance
matrices. Consequently, we argue that one should consider neural estimation when the
functional nature of the data are complex, and consider the Gaussian estimator when m is
large, or when simple, initial results may be of need.

(a) (b)

Figure 5. Estimated InfoMat under nonlinearities and cyclic shift. (a) Gaussian mutual information.
(b) Neural estimator.
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6.3. Visualizing Information Flow in Physiological Data

Directed information and transfer entropy have been previously addressed as mea-
sures of causal effect between two interacting processes [36,49]. To that end, they have been
used to quantify and compare flows of information in stochastic systems. We demonstrate
this paradigm with the InfoMat, while showing its applicability to visualize dynamics in
real-world datasets. We consider the Apnea dataset from Santa Fe Time Series Competition
(https://physionet.org/content/santa-fe/1.0.0/ (accessed on 22 March 2025)) [50,51]. The
Apnea dataset is common benchmark for the evaluation of transfer entropy estimation. It is
a sequential dataset which consists of measures of heart rate and chest volume (represent-
ing respiration force). The Apnea dataset was previously addressed in the literature as a
case study to understand the relation between sequential information measures and causal
effect. We estimate the InfoMat on the Apnea dataset, denoting the interacting processes
at hand being (Xt)t∈N = Heart and (Y)t∈N = Breath. The visualization of the estimated
InfoMat is given in Figure 6.

It was shown in [37,49] that the transfer entropy in the direction Breath → Heart is
higher than the transfer entropy measures in the other direction. By calculating the directed
information in each direction, we recover the same conclusion on the relationship in the
data. Specifically, we have

Î(D ◦ Xn → Yn) = 0.14 < 0.41 = Î(D ◦ Yn → Xn), Îinst(Xn, Yn) = 0.034.

This calculation implies that the causal effect in the Breath → Heart direction is the promi-
nent one, which is in agreement with the previous literature. This conclusion provides
another validation of the InfoMat method consistency.

Beyond its agreement with known previous results, the InfoMat provides a more
informative observation of the exchange of control between the two measures. For example,
we observe that most of the information transfer occurs in the first upper subdiagonal,
which corresponds to I(Xi−1; Yi|Xi−2, Yi−1), i.e., most information is transferred from the
previous time step to the next one. In the opposite direction, we have a significantly smaller
information transfer. Surprisingly, information is transferred from the steps further in
the process past, i.e., the effect is from Yt−2

t−4 to Xt. These results further motivate the use
of the InfoMat as a visual tool for the task of exploratory data analysis, we apply it to
real-world data.
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Figure 6. Physiological data. Larger effect in observed in the ‘breath’→‘heart’ direction.

6.4. Visualizing Coding Schemes Effect

As a final application, we demonstrate an application of the InfoMat to analyze
information flow in digital communication schemes. In this case, Xm and Ym represent the
input and output of some communication channel with memory. The joint distribution of

https://physionet.org/content/santa-fe/1.0.0/
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(Xm, Ym) is determined by the channel transition kernel input distribution. The purpose
of the encoder, which generates the sequence Xm according to some causally conditional
law P(Xm∥Ym−1) ≜ ∏m

i=1 P(Xi|Yi−1Xi−1) [26], is to maximize the downstream directed
information. Formally, under mild assumptions, the feedback capacity is characterized by
the following optimization problem [7]

C = lim
n→∞

sup
P(Xn∥Yn−1)

1
n

I(Xn → Yn). (18)

where C is termed the ‘feedback capacity’ of the communication channel, which is deter-
mined by the causal conditional law P(Ym∥Xm) ≜ ∏m

i=1 P(Yi|Yi−1Xi). Solving the channel
capacity optimization (18) provides the user with the value of maxima achievable rate
of reliable communications, coupled with a coding scheme that achieves this rate under
block length asymptotics. In what follows, we visualize the InfoMat for several channels,
under both a channel oblivious coding scheme and the capacity-achieving coding scheme.
As the data for this application are discrete, we utilize a simple plug-in estimator for
the considered conditional mutual information terms. For completeness, we provide a
characterization and analysis of the plug-in entropy estimator in Appendix A.3.

6.4.1. Ising Channel

As a first example, we consider the Ising channel [52], which is a popular example of a
communication channel with memory, which adheres to the famous Ising model. In this
case, the channel law is defined according to the relation

Yt =

Xt, w.p. 0.5

Xt−1, w.p. 0.5

The feedback capacity-achieving coding scheme was obtained in [53] by representing the
Ising channel is a finite state channel [7], which allowed for a dynamic programming
approximation of the corresponding optimization.

We estimate the InfoMat in the Ising channel under two coding schemes. The first,

which we refer to as the oblivious scheme, sends Xm i.i.d.∼ Ber(1/2) independently of the
channel outputs. (Figure 7a). The second generates Xm according to [53] (Figure 7b). We
note that the oblivious scheme generates an InfoMat with most of its information in the
main diagonal and a small residue in the off-diagonal. The diagonal information follows
from the i.i.d. scheme, and it is constant along all time steps. The nonzero off-diagonal
entries are due to event Yt = Xt−1 which injects memory through the channel transition
kernel. When we consider the feedback capacity-achieving scheme from [53], we result
with a non-constant pattern of information flow. Specifically, most of the information is sent
along the off diagonal, i.e., most of the information is sent through the effect of past channel
inputs. Additionally, we note that the amount of conveyed information is non-constant.
This is a result of the underlying finite-state machine that defines the evolution of Xm

according to past inputs, outputs and states ([53] Figure 5).
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(a) (b)

Figure 7. Visualization of information transfer in the Ising channel under various coding schemes.
(a) Oblivious coding scheme. (b) Optimal coding scheme.

Finally, we calculate the normalized directed information for each scheme, as it serves
as the proxy for the information rate in the channel. We have

1
m

Îi.i.d.(Xm → Ym) ≈ 0.45,
1
m

Îopt(Xm → Ym) ≈ 0.56

We note that, as expected, the capacity-achieving scheme yields a significantly greater
normalized directed information. The resulting quantity is very close to the theoretical
capacity values (0.575). We conjecture that the mismatch results from the plug-in estimation
error. Finally, we note that, in contrast to the i.i.d. scheme, the optimal scheme generates
information in the direction Y → X as well, which quantifies the usage of feedback in
the scheme.

6.4.2. Trapdoor Channel

Next, we visualize the effect of the coding strategy on the transfer of information in
the Trapdoor channel. The trapdoor channel is an example of a binary finite-state channel
whose state and output evolve according to the relation

Yt =

Z1/2(Xt), if St−1 = 0

S1/2(Xt), otherwise
, St = St−1 ⊕ Xt ⊕ Yt,

where Z1/2 and S1/2 denote the Z- and S-channels with a probability of 1/2. The output of a
Zp (Sp) channel equals its input when the latter is 0 (1) and distributes according to Ber(p)
otherwise. These channels are fundamental and have been extensively investigated in the
literature [4,54]. Again, we consider the channel oblivious coding scheme and the optimal
coding scheme from [7], as can be seen in Figure 8. We note that the highest amount of
conveyed information is in the beginning of transmission. Notably, the information transfer
under the optimal Trapdoor scheme is more uniform than the optimal Ising coding scheme.
In this case, the estimated normalized directed information is

1
m

Îi.i.d.(Xm → Ym) ≈ 0.441,
1
m

Îopt(Xm → Ym) ≈ 0.663

Again, we note that the optimal coding strategy induces information transfer in the back-
ward direction Y → X due to the incorporation of feedback into the input distribution.
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(a) (b)

Figure 8. Visualization of information transfer in the Trapdoor channel under various coding schemes.
(a) Oblivious coding scheme. (b) Optimal coding scheme.

7. Conclusions
In this work, we developed the InfoMat, a matrix representation of information

exchange. We showed the utility of the InfoMat for the visual proofs of information
conservation laws via matrix coloring arguments, which allowed us to expand the existing
set of decompositions for information measures. Then, we proposed several estimators of
the InfoMat, which were studied both theoretically and empirically. Equipped with the
InfoMat estimators, we presented several applications of the InfoMat as a visualization
tool to analyze the dependence structures and information transfer in sequential datasets
in various settings. For future work, we aimed to develop a computationally efficient
neural estimator of the InfoMat using weight sharing, sequential architectures [55], and
slicing techniques [56]. Given this work’s simplicity and the popularity of information
measures, the InfoMat can serve as an effective tool for data exploration in sequential data
analysis pipelines. Furthermore, we believe that the InfoMat can be highly useful for a
myriad of contemporary research fields that involve time series. Such fields encompass
empowerment [14], which characterizes robust sequential decision-making via information
theory, and causal inference [16], in which information theory has been shown to be
beneficial. Finally, we aim to investigate the multivariate extensions of the InfoMat, as it is
central to contemporary setting. This extension can be obtained by constructing higher-
dimensional information tensors that capture conditional mutual information among
multiple signals. while this extension can uncover rich patterns of inter-dependencies
in complex datasets, it also introduces new challenges in computational scalability and
visualization clarity.
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Appendix A
Appendix A.1. Proofs

Appendix A.1.1. Proof of Proposition 2

The proof utilizes the observation of Proposition 1. We decompose mutual information,
which is given by the entire matrix, into the upper and lower sub-triangulars (excluding
the main diagonal), and the main diagonal. As noted in the main text, Iinst(Xn, Yn) corre-
sponds to the main diagonal (black), TX→Y

i+1 (i, i) corresponds to a sub-column and TY→X
i+1 (i, i)

corresponds to a sub-row. We therefore have

IX,Y
1,1 IX,Y

1,2 IX,Y
1,3 . . . IX,Y

1,n

IX,Y
2,2 IX,Y

2,3
. . .

...

IX,Y
3,3

. . .
...

. . . IX,Y
n−1,n
IX,Y
n,n


=



IX,Y
1,1 IX,Y

1,2 IX,Y
1,3 . . . IX,Y
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IX,Y
2,2 IX,Y

2,3
. . .

...

IX,Y
3,3

. . .
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. . . IX,Y
n−1,n
IX,Y
n,n


(A1)



IX,Y
1,1 IX,Y

1,2 IX,Y
1,3 IX,Y

1,4 . . . IX,Y
1,n

IX,Y
2,1 IX,Y

2,2 IX,Y
2,3 IX,Y

2,4
. . .

...

IX,Y
3,1 IX,Y

3,2 IX,Y
3,3 IX,Y

3,4
. . .

...

IX,Y
4,1 IX,Y

4,2 IX,Y
4,3 IX,Y

4,4
. . .

...
...

. . . . . . . . . . . . IX,Y
n−1,n

IX,Y
n,1 . . . . . . . . . IX,Y

n,n−1 IX,Y
n,n


(A2)

I(Xn; Yn)

= (TX→Y
2 (1, 1) + TX→Y

3 (2, 2) + · · ·+ TX→Y
n (n − 1, n − 1))

+ Iinst(Xn, Yn)

+ (TY→X
2 (1, 1) + TY→X

3 (2, 2) + · · ·+ TY→X
n (n − 1, n − 1))

Appendix A.1.2. Proof of Proposition 3

The relation follows from noting that a delayed directed information term I(Dk+1 ◦
Xn → Yn) corresponds to a subtriangular element, which forms the one-step reduced
directed information element I(Dk ◦ Xn → Yn) when combined with the appropriate sub-
diagonal, which, in turn, correspond to a ‘delayed’ instantaneous mutual information term.
For example, when k = 0, it is given by (A1), which we decompose by means of coloring
and elements-gathering as

I(Xn → Yn) = Iinst(Xn, Yn) + I(D ◦ Xn → Yn)

Appendix A.1.3. Proof of Proposition 4

Let Zn be a set of n samples from N (0, KZ), defined on Rd.
Bias: According to [38], the bias of log |KZ| is given by

τn,d ≜
d

∑
k=1

(
ψ

(
n − k + 1

2

)
log

n
2

)
,

where ψ(z) is the digamma function, which is known to asymptotically behave as ψ(z) ≈
log(z)− z

2 . Thus, the bias τn,d term behaves as 1/n, vanishing at n → ∞.
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Variance: We have the following:

Var(ÎX,Y
G,i,j) ≤ Var(log |K̂Xi ,Y j−1 |) + Var(log |K̂Xi−1,Y j |)

+ Var(log |K̂Xi−1,Y j−1 |) + Var(log |K̂Xi ,Y j |).

Thus, the estimator variance is governed by the variance of the log-determinant estimator.
Following the analysis in the proof of ([39] Lemma 6),

Var(log |KZ|)
L−→ O

(
dZ
n

)
In our case, the dimension of KXi ,Y j is dxi + dy j, which is upper bounded by 2dm, and the
number of samples for the estimation of KXi ,Y j is n/ min(i, j), which is lower bounded by
n/m. As these bounds hold for all four sample covariance matrices, we have

Var
(

ÎX,Y
G,i,j

)
= O

(
dm

n/m

)
= O

(
dm2

n

)
,

which is sharp in n.

Appendix A.1.4. Proof of Lemma 1

Let (Xm, Ym) ∼ PXm ,Ym . The entropy decomposition of conditional mutual information
(12) follows from the following steps

I(Xi; Yj|Xi−1, Y j−1)

= H(Xi|Xi−1, Y j−1) + H(Yj|Xi−1, Y j−1)

− H(Xi, Yj|Xi−1, Y j−1)

= H(Xi, Y j−1)− H(Xi−1, Y j−1) + H(Xi−1, Y j)

− H(Xi−1, Y j−1)− (H(Xi, Y j)− H(Xi−1, Y j−1))

= H(Xi, Y j−1) + H(Xi−1, Y j)

− H(Xi−1, Y j−1)− H(Xi, Y j).

The formula for the Gaussian case (13) follows using the definition of multivariate Gaussian
entropy [4].

Appendix A.2. Analysis of the Gap Between Mutual Information and Gaussian
Mutual Information

We provide an upper bound on the error of employing the Gaussian mutual informa-
tion term instead of I(X; Y|Z). We analyze the gap for arbitrary (i, j) and for simplicity
we denote Xi = X, Yj = Y and (Xi−1, Y j−1) = Z. Thus IX,Y

i,j = I(X; Y|Z). We denote the
with (XG, YG, ZG) the jointly Gaussian triplet whose first and second moments are similar
to those of (X, Y, Z). Consequently, the Gaussian conditional mutual information term
corresponds to I(XG; YG|ZG). We utilize the following result from [58]

I(X; Y)− I(XG; YG)

= DKL(PX,Y∥PXG ,YG )−DKL(PX ⊗ PY∥PXG ⊗ PYG ).
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We have

I(X; Y|Z)− I(XG; YG|ZG)

≤ I(X; Y|Z)− I(XG; YG|Z)︸ ︷︷ ︸
≜∆G

+ I(XG; YG|Z)− I(XG; YG|ZG)︸ ︷︷ ︸
≜∆Z

.

We analyze each error term separately. For ∆G, we have

∆G =
∫
Z
(I(X; Y|Z = z)− I(XG; YG|Z = z))pZ(z) dz

=
∫
Z

(
DKL(PX,Y|Z=z∥PXG ,YG |Z=z)

−DKL(PX|Z=z ⊗ PY|Z=z∥PXG |Z=z ⊗ PYG |Z=z

)
pZ(z) dz

= DKL(PX,Y|Z∥PXG ,YG |Z|PZ)

−DKL(PX|Z ⊗ PY|Z∥PXG |Z ⊗ PYG |Z|PZ).

To bound the second error, we insert an additional term, which considers the KL term
conditioned on ZG, while integrated with respect to PZ, given by

EZ

[
DKL(PXG ,YG |ZG

∥PZG |ZG
⊗ PYG |ZG

|PZG )
]
.

We therefore have

∆Z =
∫
Z
DKL(PXG ,YG |Z=z∥PXG |Z=z ⊗ PYG |Z=z)pz(z) dz

−
∫
Z
DKL(PXG ,YG |ZG=z∥PXG |ZG=z ⊗ PYG |Zg=z)pzG (z) dz

=
∫
Z
DKL(PXG ,YG |Z=z∥PXG |Z=z ⊗ PYG |Z=z)pz(z)

−
∫
Z
DKL(PXG ,YG |ZG=z∥PXG |ZG=z ⊗ PYG |ZG=z)pz(z)

+
∫
Z
DKL(PXG ,YG |ZG=z∥PXG |ZG=z ⊗ PYG |ZG=z)pz(z)

−
∫
Z
DKL(PXG ,YG |ZG=z∥PXG |ZG=z ⊗ PYG |Zg=z)pzG (z) dz

= DKL(PXG ,YG |Z∥PXG ,YG |ZG
|PZ)

+DKL(PXG |Z ⊗ PYG |Z∥PXG |ZG
⊗ PYG |ZG

|PZ)

=
∫
Z
DKL(PXG ,YG |ZG=z∥PXG |ZG=z ⊗ PYG |Zg=z)

· (pZ(z)− pzG (z)) dz,

where the last term can be upper bounded by

=
∫
Z
DKL(PXG ,YG |ZG=z∥PXG |ZG=z ⊗ PYG |Zg=z)

· (pZ(z)− pzG (z)) dz

≤ max
z∈Z

DKL(PXG ,YG |ZG=z∥PXG |ZG=z ⊗ PYG |Zg=z)

· dTV(pZ, pzG ).
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We note that the resulting upper bound extends the result from [58]. We also note that, as
desired, (∆G + ∆Z) → 0 when PX,Y,Z → PXG ,YG ,ZG . This concludes the proof.

Appendix A.3. Additional Information on Plug-In Entropy Estimator

This section mainly follows the presentation and analysis from [59]. We begin by
describing the plug-in entropy estimator for a general variable X ∼ PX with finite alphabet
|X | < ∞. Then, we build upon this description to describe the employed entropy estimation
method in the InfoMat setting.

Let Xn i.i.d.∼ PX and w.l.o.g. let X = [0, 1, . . . , k]. The plug-in estimator of PX from Xn is
given by frequency counting, i.e.,

P̂n(i) =
1
n

n

∑
j=1

1Xj=i.

Consequently, the plug-in estimator of H(X) is given by Ĥn(Xn) = EP̂n
[− log P̂n]. Thus,

to estimate the entropy of X from a sample Xn, we estimate the empirical distribution
of X, and then plug it into the entropy expectation. The plug-in entropy estimator has
well-established theoretical guarantees [59,60] and is very simple to implement. To mention
a few, Ĥn(Xn) is a consistent estimator of H(X), both in the PX-a.s. and L2 sense, its
variance decays with log n/n2, it has strong concentration properties, and the estimation
error asymptotically behaves as a centered Gaussian distribution.

Following the construction of the plug-in entropy estimator, given a sample of n
samples Dn

i,j ≜ (Xi
(l), Y j

(l))
n
l=1, we utilize the conditional mutual information entropy de-

composition (12), to result with

În(Dn
i,j) = Ĥn(Dn

i,j−1) + Ĥn(Dn
i−1,j)− Ĥn(Dn

i−1,j−1)− Ĥn(Dn
i,j).

As conditional mutual information is a linear combination of entropy terms, it benefits from
many of the entropy guarantees, and its error is governed by the joint entropy term, and is
linear in the alphabet of the joint variable (as the plug-in proofs summarize the errors over
the various alphabet terms). Specifically, in our case, the error of IX,Y

i,j is linear in |X |i|Y|j,
which can easily ‘explode’ for large matrices. Other existing estimators, such as context
tree weighting estimators [36], have better time and space complexity, but at the cost of a
more complex algorithm that still suffers from the same exponential dependence on the
alphabet size.
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