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Communication Channel
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Capacity

Feedback is not present:

CFF = lim
n→∞

sup
PXn

1

n
I (X n;Y n)

Feedback is present:

CFB = lim
n→∞

sup
P
Xn‖Yn−1

1

n
I (X n → Y n)

where I (X n → Y n) is the directed information (DI)
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Feedback is present:

CFB = lim
n→∞

sup
P
Xn‖Yn−1

1

n
I(Xn → Yn)

where I (X n → Y n) is the directed information (DI)

DI is a unifying measure for feed-forward (FF) and feedback
(FB) capacity
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Talk Outline

Directed Information Neural Estimator (DINE)
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Talk Outline

Directed Information Neural Estimator (DINE)

Neural Distribution Transformer (NDT)
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Preliminaries - Donsker-Varadhan

Theorem (Donsker-Varadhan Representation)

The KL-divergence between the probability measures P and Q, can

be represented by

DKL(P‖Q) = sup
T:Ω−→R

EP [T]− logEQ

[
eT
]

where, T is measurable and expectations are finite.

For mutual information:

I (X ;Y ) = sup
T:Ω−→R

EPXY
[T]− logEPXPY

[
eT
]
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MINE (Y. Bengio Keynoe ISIT ’19)

Mutual Information Neural Estimator:
Given {xi , yi}

n
i=1

Approximation

Î (X ;Y ) = sup
θ∈Θ

EPXY
[Tθ]− logEPXPY

[
eTθ

]

Estimation

În(X ,Y ) = sup
θ∈Θ

1

n

n∑

i=1

Tθ(xi , yi)− log
1

n

n∑

i=1

eTθ(xi ,ỹi )
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Estimator Derivation

DI as entropies difference

I (X n → Y n) = h (Y n)− h (Y n‖X n)

where h (Y n‖X n) =
∑n

i=1 h
(
Yi |X

i ,Y i−1
)

Using an reference measure:

I (X n → Y n) = I (X n−1 → Y n−1)+

DKL(PY n‖X n‖PY n−1‖X n−1 ⊗ P
Ỹ
|PX n)︸ ︷︷ ︸

D
(n)
Y‖X

−DKL(PY n‖PY n−1 ⊗ P
Ỹ
)︸ ︷︷ ︸

D
(n)
Y

P
Ỹ
is some uniform i.i.d reference measure of the dataset.
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Estimator Derivation

DI Rate as a difference of KL-divergences:

I (X n → Y n) = I (X n−1 → Y n−1) + D
(n)
Y ‖X − D

(n)
Y︸ ︷︷ ︸

increment in info. in step n
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Estimator Derivation

DI Rate as a difference of KL-divergences:

D
(n)
Y ‖X − D

(n)
Y

n→∞
−−−→ I (X → Y)

The limit exists for ergodic and stationary processes
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Estimator Derivation

DI Rate as a difference of KL-divergences:

D
(n)
Y ‖X − D

(n)
Y

n→∞
−−−→ I (X → Y)

The goal:
Estimate D

(n)
Y ‖X ,D

(n)
Y
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Directed Information Neural Estimator

Apply DV formula on D
(n)
Y ‖X ,D

(n)
Y :

D̂
(n)
Y = sup

T :Ω→R

EPYn [T(Y
n)]− EP

Yn−1⊗P
Ỹ

[
exp
{
T(Y n−1, Ỹ )

}]

where the optimal solution is T∗ = log
P
Yn|Yn−1

P
Ỹ

Ziv Aharoni Capacity via DINE 9 / 18



Directed Information Neural Estimator

Approximate T with a recurrent neural network (RNN)

D̂
(n)
Y = sup

θY

EPYn [TθY(Y
n)]− EP

Yn−1⊗P
Ỹ

[
exp
{
TθY(Y

n−1, Ỹ )
}]
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Directed Information Neural Estimator

Estimate expectations with empirical means

D̂
(n)
Y = sup

θY

1

n

n∑

i=1

TθY (yi |y
i−1)− log

(
1

n

n∑

i=1

eTθY
(ỹi |y

i−1)

)
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Directed Information Neural Estimator

Estimate expectations with empirical means

D̂
(n)
Y = sup

θY

1

n

n∑

i=1

TθY (yi |y
i−1)− log

(
1

n

n∑

i=1

eTθY
(ỹi |y

i−1)

)

Finally, Î (n)(X → Y) = D̂
(n)
XY − D̂

(n)
Y
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Consistency

Theorem (DINE consistency)

Let {Xi ,Yi}
∞
i=1 ∼ P be jointly stationary ergodic stochastic processes.

Then, there exist RNNs F1 ∈ RNNdy ,1, F2 ∈ RNNdxy ,1, such that

DINE În(F1, F2) is a strongly consistent estimator of I (X → Y), i.e.,

lim
n→∞

În(F1, F2)
a.s
= I (X → Y)
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Consistency

Theorem (DINE consistency)

Let {Xi ,Yi}
∞
i=1 ∼ P be jointly stationary ergodic stochastic processes.

Then, there exist RNNs F1 ∈ RNNdy ,1, F2 ∈ RNNdxy ,1, such that

DINE În(F1, F2) is a strongly consistent estimator of I (X → Y), i.e.,

lim
n→∞

În(F1, F2)
a.s
= I (X → Y)

Sketch of proof:

Represent the solution T∗ by a dynamic system.

Universal approximation of dynamical system with RNNs.

Estimation of expectations with empirical means.
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Implementation

D̂
(n)
Y = sup

θY

1

n

n∑

i=1

TθY (yi |y
i−1)− log

(
1

n

n∑

i=1

eTθY
(ỹi |y

i−1)

)
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Implementation
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n
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1

n
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(ỹi |y
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)

Adjust RNN to process both inputs and carry the state
generated by true samples

Ziv Aharoni Capacity via DINE 11 / 18



Implementation

D̂
(n)
Y = sup

θY

1

n

n∑
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TθY (yi |y
i−1)− log

(
1

n

n∑

i=1

eTθY
(ỹi |y

i−1)

)

Adjust RNN to process both inputs and carry the state
generated by true samples
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S̃1 S1

0

Ỹ1
Y1

F F

S̃T ST

ST−1

ỸT
YT

F F
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Implementation

Complete system layout for the calculation of D̂(n)
Y

Yi

Reference Gen.

Ỹi

Modified

Si

S̃i

Dense

Dense TθY (Ỹi |Y
i−1)

TθY (Yi |Y
i−1)

DVLSTM

Layer

Input

D̂Y (θY ,Dn)
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NDT

Neural Distribution Transformer (NDT)
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NDT

Model M as i.i.d Gaussian noise {Ni}i∈Z.

The NDT a mapping

w/o feedback: NDT : N i 7−→ Xi

w/ feedback: NDT : N i ,Y i−1 7−→ Xi
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NDT

Model M as i.i.d Gaussian noise {Ni}i∈Z.

The NDT a mapping

w/o feedback: NDT : N i 7−→ Xi

w/ feedback: NDT : N i ,Y i−1 7−→ Xi

NDT is modeled by an RNN

LSTM Dense Dense
Channel Xi

Yi−1

Ni
Constraint
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Capacity Estimation

Iterating between DINE and NDT.

Ni

NDT Channel

DINE

Xi

Yi

(RNN)

Feedback

PYi |X iY i−1

Noise

∆

Output În(X → Y)

Gradient

Yi−1

(RNN)

Ziv Aharoni Capacity via DINE 15 / 18



Results

Channel - MA(1) additive Gaussian noise (AGN):

Zi = αUi−1 + Ui

Yi = Xi + Zi

where, Ui
i.i.d.
∼ N (0, 1), Xi is the channel input sequence bound

to the power constraint E [X 2
i ] ≤ P , and Yi is the channel

output.
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MA(1) AGN Results

Estimation performance
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Conclusion and Future Work

Conclusions:

Estimation method for both FF and FB capacity.

Pros: mild assumptions on the channel

Cons: lack of provable bounds
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Thank You!
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