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Abstract. In the field of machine learning, the training of an ensemble
of models is a very common method for reducing the variance of the pre-
diction, and yields better results. Many researches indicate that diversity
between the predictions of the models is important for the ensemble per-
formance. However, for Deep Learning classification tasks there is no ex-
plicit way to encourage diversity. Negative Correlation Learning (NCL)
is a method for doing so in regression tasks. In this work we develop
a novel algorithm inspired by NCL to explicitly encourage diversity in
Deep Neural Networks (DNNs) for classification. In the development of
the algorithm we first assume that the same training characteristics that
hold in NCL must also hold when training an ensemble for classification.
We also suggest the Stacked Diversified Mixture of Classifiers (SDMC),
which is based on our outcome. SDMC is a layer that aims to replace the
final layer of a DNN classifier. It can be easily applied on any model, while
the cost in terms of number of parameters and computational power is
relatively low.

1 Introduction

Ensemble methods are a simple and efficient way to yield better results by ag-
gregating predictions from multiple models. Many works point out that the key
for an ensemble to perform well is to encourage diversity among the models
[2, 5, 6, 8, 10]. A well known framework for generating a diversified ensemble for
regression tasks uses Negative Correlation Learning (NCL) criteria [1, 6, 8]. In
this note we would like to develop a novel analogue framework for the classifi-
cation problem. For regression, the negative correlation is well motivated from
simple decomposition of the error into bias-variance-covariance [1, 6]. However,
for classification problems such a framework is less clear. Currently, most of
the ensembles in DNNs are obtained by training the same architecture multiple
times with different seeds. The randomization achieves some diversity but it is
done implicitly, without any clear criteria. We suggest an amended cost func-
tion for multiple classifiers which encourages diversity between different model
predictions.

In general, the cost function used in machine learning can be motivated
by several considerations. For instance, cross-entropy can be motivated by a
maximum-likelihood criteria, but also by being a “good match” to sigmoid or
softmax nodes for binary or multi-class cases, respectively [7]. Using a “good
match” to a sigmoid or softmax node is also what motivates us in developing a
cost function for ensemble classification. We show that by adding a penalty that
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encourages increasing the cross-entropy between the predictions of the models
we get the same learning characteristics as in NCL.

The novelty of our idea lies in our giving an explicit criterion for simulta-
neously training multiple models for an ensemble, while encouraging diversity
explicitly. One of the benefits of this method is that all models are equally
strong. We also suggest a variant called Stacked Diversified Mixture of Classifiers
(SDMC), which can be applied on any DNN classifier easily, without increasing
the number of parameters and computational power significantly. SDMC is a
variant for the vanilla final softmax layer used in DNN, based on our outcome
in this article.

2 Regression with Negative Correlation Learning

For regression tasks there is a well known technique for encouraging diver-
sity in ensembles called Negative Correlation Learning (NCL)[1, 6]. A math-
ematical analysis shows that reducing the correlation between the regressors in
an ensemble might leads to reducing the MSE of the ensemble (bias-variance-
covariance decomposition). Its main idea is that by adding a penalty pi =
(fi − fens)

∑
j 6=i(fj − fens) for each model cost function, where fi is the i’th

model prediction and fens = 1

M

∑M
j=1

fj is the ensemble prediction, we reduce
the correlation between the predictors. This yields a new cost function:

ei =
1

2
(fi − t)2 + γpi, (1)

=
1

2
(fi − t)2 + γ(fi − fens)

∑
j 6=i

(fj − fens). (2)

When calculating its gradient, and setting λ = 2γ(1− 1

M
), we get

∂ei

∂fi
= (fi − t)− γ[2(1−

1

M
)(fi − fens)] (3)

= (fi − t)− λ(fi − fens)

= (1− λ)(fi − t) + λ(fens − t). (4)

3 Classification
Inspired by the above result, we would like to find a penalty for the classification
cost that yields the same characteristics. In order to achieve this, we start from
the outcome we got in (4) and integrate it. This procedure is similar to that
presented in [7] for finding the cross-entropy as the desired cost function for a
sigmoid classifier. The difference between classification and regression is that we
use an activation function on the final layer1. For binary classification we use
the sigmoid function fi(zi) =

1

1+e−zi
, in contrast to regression where fi(zi) = zi.

Therefore, based on the outcome in (4) we demand

1 In this Brief Announcement we demonstrate our idea only on a sigmoid (binary
classification), but the proof for softmax is similar and is presented in the full version
of this paper.



Negative Cross-Entropy: An approach for encouraging diversity in ensembles 3

∂ei

∂zi
= (1− λ)(fi − y) + λ(fens − y). (5)

By applying the chain rule ∂ei
∂zi

= ∂ei
∂fi

∂fi
∂zi

and the result ∂fi
∂zi

= fi(1− fi), we get

∂ei

∂fi
=

(1− λ)(fi − y) + λ(fens − y)

fi(1− fi)
(6)

=
fi − y

fi(1− fi)
−

λ

M

∑
j 6=i

fi − fj

fi(1− fi)
(7)

ei =

∫
∂ei

∂fi
dfi (8)

= −y log(fi)− (1− y) log(1− fi)

−
λ

M

∑
j 6=i

{−fj log(fi)− (1− fj) log(1− fi)} (9)

= H(y, fi)−
λ

M

∑
j 6=i

H(fj , fi). (10)

H is the cross-entropy function and y ∈ {0, 1} is the true label. Therefore, by
adding a penalty pi = − 1

M

∑
j 6=i H(fj , fi) and choosing λ ∈ [0, 1] we get a

method to encourage diversity in classification ensembles explicitly.

4 Stacked Diversified Mixture of Classifiers
In this section we suggest a new architecture inspired by our above outcome and
the D-ConvNet architecture [8]. We train a single DNN to generate features,
and on top of the net, instead of using a vanilla softmax layer, we use a Stacked
Diversified Mixture of Classifiers (SDMC). A SDMC is structure of multiple
softmax layers with multiple amended cost functions for each softmax layer.
An illustration of this architecture is shown in Fig. 1. The advantage of using
this variant is that we do not need to train multiple networks simultaneously,
which might significantly increase the training time and the computational power
needed. Instead, we only train a single DNN and stack on top of it multiple
classifiers. Each classifier has its own set of weights and is jointly optimized with
the other classifiers by an amended cost function that penalizes low cross-entropy
with others.

Input

Deep Neural Network Ensemble of classifiers

Output

Fig. 1. Diversified Mixture Of Classifiers. First, an input is sent to a DNN. Next,
the DNN performs initial processing and feature extraction out of the input. Finally,
a pool of classifiers is trained using our suggested cost functions that penalize with
respect to the cross-entropy with other classifiers.
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5 Results
5.1 MNIST using vanilla diversified classifiers

The MNIST is a standard toy dataset, where the task is to classify the images into
10 digit classes. Our goal here was to get some proof of concept and to observe
training behaviour when using our cross-entropy penalty. Here, we used only
our vanilla version and did not apply a SDMS variant. Our architecture was of a
single hidden layer DNN with ReLU activation. We set the number of models to
be M = 5 and changed the values of λ. The results are shown in Table 1. Results
include both the accuracy and the cross-entropy of the predictions over the test
set. We notice from the results that our method reduces the cross-entropy and
get higher accuracy for λ > 0. We observe that even though the performance of
a single net deteriorated when increasing λ, the ensemble performs better.

Ensemble scores Single net scores

λ Accuracy CE Accuracy CE

0 0.9790 0.0669 0.9767 0.0810
0.05 0.9798 0.0663 0.9770 0.0809
0.1 0.9799 0.0664 0.9768 0.0802
0.3 0.9797 0.0658 0.9767 0.0806
0.5 0.9802 0.0649 0.9764 0.0842
0.7 0.9800 0.0659 0.9760 0.0866

Table 1. Results on MNIST using our suggested cost function. Ensemble scores refers
to the accuracy and cross-entropy(CE) of the ensemble prediction over the test set.
Single net scores refers to the scores of the prediction of a single model in the ensemble.
Scores are averaged over 6 experiments with a different seed for each λ.

5.2 CIFAR-10 using SDMC

We conducted studies of the SDMC over the CIFAR-10 dataset [4]. We used the
architecture and code of ResNet 110 [3] and stacked on top of it an ensemble of 10
classifiers. This resulted in adding 5850 parameters to a model with an original
size of 1731002, i.e. enlarging the model by 0.34%. The results are shown in
Table 2. In the results we see that the optimal λ reduces the error by ∼ 7% with
almost no cost in the number of parameters and computational power. We also
see that the cross-entropy reduces significantly. We notice that the optimal λ is
lower than the vanilla usage of our method.

M = 1 M = 10 M = 10 M = 10 M = 10 M = 10 M = 10 M = 10
λ = 0 λ = 0.001 λ = 0.01 λ = 0.05 λ = 0.1 λ = 0.3 λ = 0.5

error(%) 6.43 6.2 6.14 6.12 5.98 6.09 6.13 6.31
CE 0.3056 0.3102 0.3041 0.3048 0.2968 0.2918 0.3137 0.4957

Table 2. Results on CIFAR-10 test set using SDMC with ResNet 110. M refers to the
number of classifiers, and CE stands for cross-entropy. We ran each model 5 times and
show “best(mean-std)” as in [3, 9].

6 Conclusion
In this paper we propose a novel Deep Learning Classification Framework for
encouraging diversity explicitly, based on cross-entropy penalties. First, we in-
troduced the idea of using an amended cost function for multiple classifiers based
on NCL results. Later, we introduce Stacked Diversified Mixture of Classifiers
(SDMC) which aims to improve the capabilities of a model without increasing
the number of parameters and computational power significantly.
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