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A B S T R A C T

In this study, we examine the problem of downlink wireless routing in integrated access backhaul (IAB)
networks involving fiber-connected base stations, wireless base stations, and multiple users. Physical constraints
prevent the use of a central controller, leaving base stations with limited access to real-time network conditions.
These networks operate in a time-slotted regime, where base stations monitor network conditions and forward
packets accordingly. Our objective is to maximize the arrival ratio of packets, while simultaneously minimizing
their latency. To accomplish this, we formulate this problem as a multi-agent partially observed Markov
Decision Process (POMDP). Moreover, we develop an algorithm that uses Multi-Agent Reinforcement Learning
(MARL) combined with Advantage Actor Critic (A2C) to derive a joint routing policy on a distributed basis. Due
to the importance of packet destinations for successful routing decisions, we utilize information about similar
destinations as a basis for selecting specific-destination routing decisions. For portraying the similarity between
those destinations, we rely on their relational base-station associations, i.e., which base station they are
currently connected to. Therefore, the algorithm is referred to as Relational Advantage Actor Critic (Relational
A2C). To the best of our knowledge, this is the first work that optimizes routing strategy for IAB networks.
Further, we present three types of training paradigms for this algorithm in order to provide flexibility in
terms of its performance and throughput. Through numerical experiments with different network scenarios,
Relational A2C algorithms were demonstrated to be capable of achieving near-centralized performance even
though they operate in a decentralized manner in the network of interest. Based on the results of those
experiments, we compare Relational A2C to other reinforcement learning algorithms, like Q-Routing and
Hybrid Routing. This comparison illustrates that solving the joint optimization problem increases network
efficiency and reduces selfish agent behavior.
1. Introduction

The increasing demand for wireless communication and the limita-
tions of the electromagnetic spectrum have led to the development of
more efficient methods for managing networks. To meet these needs,
the 3rd Generation Partnership Project (3GPP) has established a stan-
dard, New Radio (NR), which includes novel designs and technologies
to support fifth-generation (5G) networks [1]. One of the key fea-
tures of this new protocol is the inclusion of new bands at millimeter
wave (mmWave) frequencies. These frequencies offer the potential for
increased data rates by exploiting the spatial diversity available in
these bands, which are currently less congested compared to traditional
bands. However, operating at mmWave frequencies also introduces
new physical challenges, such as severe path and penetration losses.
To overcome these challenges, network density can be increased and
beam-forming methods can be used [2].
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Although increasing network density has potential benefits, the
deployment and operation of fiber between the Next-Generation Node
Base Station (gNB) and the core network can be costly. Integrated
Access and Backhaul (IAB) is a promising solution for successful 5G
adoption as it allows for only a fraction of the gNBs to be connected
to traditional fiber-like infrastructures, thus reducing redundant de-
ployment and operational costs by utilizing spatial diversity [3]. The
gNBs connected to fiber are called IAB donors, while the remaining
gNBs are called IAB nodes and use multi-hop wireless connections
for backhaul traffic. While IAB networks are cost-effective in terms
of deployment and operation, ensuring reliable network performance
remains a challenging research area due to their highly non-stationary
nature. The dynamic nature of the topology, tight delay constraints,
and limited information regarding the status of the network are some
of the factors to be considered when supporting these requirements.
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Routing plays a crucial role in the context of network congestion
control, where each destination may have multiple paths, and base sta-
tions monitor network conditions to make routing decisions. There are
two main approaches for implementing routing algorithms in wireless
networks: centralized and distributed. In a centralized approach, there
is a central network processor that is responsible for path selection,
while in a distributed approach, each node makes next-hop decisions
based only on its own observations without knowledge of other nodes’
decisions. In practical implementations, due to bandwidth limitations
and multi-hop structures, information sharing is limited to the base
station’s neighborhood. This implies that base stations can only observe
a part of the current network state, and enhance, when operating in a
distributed manner next-hop transmission decisions are only based on
partial observations.

This paper specifically focuses on the analysis of distributed routing
algorithms developed for the downlink channel in integrated access
backhaul (IAB)-based networks that exhibit physical limitations. We
design a deep reinforcement-learning-based algorithm to achieve opti-
mal routing policies. One unique aspect of our approach is that, given
that successful routing decisions rely heavily on packet destinations,
we consider that it is beneficial for the agent to use knowledge of
similar destinations when making routing decisions. To portray the
similarity between these destinations, we use their relational base-
tation associations, which refer to the base stations they are currently
onnected to. Our study differs from previous works that focused on
esigning routing policies to optimize packet paths to specific desti-
ations without sharing information with other similar destinations.
hese previous algorithms are generally not suitable for a dynamic
opology like the one in this study. We propose a novel algorithm for
earning a decentralized routing policy using deep policy gradients.
o make the learning efficient, we use the Advantage Actor Critic
A2C) [4] algorithm, which is a combination of policy gradient [5],
emporal difference estimation [6], and deep neural networks, and
nables learning from experience in an unknown environment with
large state space through interactions with the environment. Our

roposed algorithm is called Relational A2C.
In the current study, we present numerical results that evaluate

he performance of the Relational A2C algorithm in several network
cenarios. We also compare the results obtained by Relational A2C
ith those from other methods such as [7–10]. Our results show that

he proposed approach outperforms existing methods and is able to
chieve performance comparable to that of centralized systems. To
he best of our knowledge, this is the first work that addresses the
outing problem in IAB networks using deep reinforcement learning
RL). Additionally, our algorithm formulates the routing problem as
joint optimization problem, which promotes agent cooperation and

educes selfish behavior, resulting in more efficient use of network
esources.

.1. Related work

Routing in networks has been and still is the subject of extensive
esearch, as seen in [11,12]. There is a large body of literature on rout-
ng strategies for wireless networks, including earlier protocols such as
SR [13] and AODV [14] for ad-hoc networks, and various routing
rotocols for delay and disruption tolerant networks (DTNs) [15], as
ell as strategies for resource constrained wireless networks (such as

ensor networks or internet-of-things networks) [16]. However, many
xisting routing protocols were designed for specific wireless network
cenarios and may not be easily adaptable to other scenarios. For
xample, routing protocols for ad-hoc networks assume a connected
etwork, while routing protocols for DTNs assume a disconnected
etwork. In this study, we focus on routing in IAB networks that are
haracterized by dynamic topology changes and strict time constraints,
2

nd cannot be expected to be subject to these assumptions. This has
motivated the introduction of methods that can acquire a nearly op-
timal policy without requiring a-priori knowledge. A major technique
that is capable of achieving this goal is RL, which is a class of machine
learning algorithms that can learn an optimal policy via interaction
with the environment without knowledge of the system dynamics (such
algorithms are also known as model-free algorithms) [17, Ch. 1]. One
of the most popular RL techniques is Q-learning [18], which can
learn the optimal policy online by estimating the optimal action-value
function. Early works that applied Q-learning to network routing used
the classical tabular Q-learning method [7,19,20]. This system enables
each device to forward a limited number of packets in each time
slot; for this it receives a reward over the ACK signal. However, it
becomes computationally difficult to apply this method when the state
space becomes large. This issue has motivated the combination of deep
learning [21] with RL, giving rise to the deep RL class of algorithms.
These algorithms have attracted much attention in recent years due to
their ability to approximate the action-value function for large state
and action spaces. Recently, the authors in [22] proposed a deep RL-
based algorithm called deep Q-network (DQN), which combines deep
neural networks and Q-learning. Recent studies that derived DRL-based
algorithms for network routing problems can be found in [8,23–28]:

A DRL approach for routing was developed in [23] with the ob-
jective of minimizing the delay in the network. In this approach, a
single controller finds all the paths of all source–destination pairs given
the demand in the network, which represents the bandwidth request
of each source–destination pair. However, this approach results in
complex state and action spaces, and does not scale for large networks
as it depends on a centralized controller. Moreover, in this approach,
the state representation does not capture the network topology, which
is highly dynamic in our scenario. Motivated by the high complexity
of the state and action representations of the approaches proposed
in [23,24], a feature engineering approach has recently been proposed
in [25] that only considers some candidate end-to-end paths for each
routing request. This proposed representation was shown to outperform
the representation of the approaches proposed in [23,24] in some
use-cases. In [26], the authors employed a deep recurrent Q-Network
(DRQN), to determine the routing policy, this is a mixture of a DQN and
a long short-term memory (LSTM) network. Using device-specific char-
acteristics, such as the last k actions taken and the next m destinations
of packets in queues, the algorithm is trained for each device. The LSTM
layer in the DRQN algorithm uses past observations for the prediction
of the whole network state, which, in turn, allows the agent to select the
next hop for a specific packet in the next time step. The work in [27]
applied an algorithm called hierarchical-DQN (h-DQN) [29]. h-DQN
facilitates exploration in complicated environments by decomposing
the original problem into a hierarchy of sub-problems such that higher-
level tasks invoke lower levels as if they were primitive actions. In [8],
the authors used another RL algorithm called Actor Critic algorithm,
which is a policy-based RL algorithm where the policy learned directly
via parametrization. They compared their results with that of the
algorithm in [7,20] and showed that their proposed algorithm achieves
better performance.

1.2. Paper structure and notations

The organization of this paper is as follows. In Section 2, we present
the problem formulation and assumptions. In Section 3, we provide
the mathematical background for our proposed solution, including
Markov Decision Processes (MDPs), RL, and Multi-Agent Reinforcement
Learning (MARL). Section 4 presents our mathematical formulation
for the problem and explains the rationale behind the chosen MARL
approach. In Section 5, we provide a review of existing routing al-
gorithms. Section 6 describes our proposed algorithm, which is based
on the A2C method and includes three different training paradigms,
ranging from fully decentralized to centralized training. Simulation

results, including a comparison with existing routing algorithms, are
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Fig. 1. IAB network illustration with 1 IAB donor, 3 IAB nodes and 9 UEs.
presented in Section 7. Finally, in Section 8, we conclude this work
and discuss future research directions.

Throughout this work, we use N to denote natural numbers, bold
letters (e.g., 𝐗) to denote vectors, and 𝐗𝐢 denotes the 𝑖th element in
the vector 𝐗, 𝑖 ≥ 0. Further, 𝐗𝐭,𝐢 denotes the 𝑖th element in the vector
𝐗 at the 𝑡th time-step, 𝑖 ≥ 0, 𝑡 ∈ N. we use calligraphic letters to denote
sets, e.g.,  , and the cardinality of a set is denoted by | ⋅ |, e.g., || is the
cardinality of the set  . Lastly, E[⋅] denotes the stochastic expectation.

2. Problem formulation

We consider a multi-hop IAB wireless network with an IAB donor,
IAB nodes and User Equipments (UE) [3], as shown in Fig. 1. The IAB
donor is wired to the core network, whereas IAB nodes use wireless
communication to backhaul their traffic from the core network via a
multi-hop connection. Our primary focus lies in analyzing the downlink
channel within this network. Both the IAB donor and IAB nodes provide
access and backhaul interfaces for the UE and IAB nodes, respectively.
We model this network by an undirected weighted graph  = ( ,, 𝑑),
where  ,  denote the sets of nodes and wireless links, respectively,
and 𝑑 ∶  → N assigns a delay to each wireless link. There are
three sets present in  : a set  of the IAB donor, a set  of the IAB
nodes and a set  of the UEs, i.e.,  =  ∪  ∪  . Each of the
nodes 𝑛 ∈  ∪  is equipped with an independent buffer queue, and
a transceiver with beam-forming and routing capabilities. Each of the
links (𝑛, 𝑚) ∈  is a bidirectional link between node 𝑛 and node 𝑚,
portraying a time-varying wireless channel.

We assume that time is slotted by 𝑡 ∈ N, and, for simplification, we
assume that packets are constant in length and that transmission rates
are limited to transmit integer numbers of packets per slot. As another
simplification, we represent the wireless link’s spectral efficiency as
a delay between the two nodes of the graph using the mapping 𝑑.
This assumption is based on the fact that links with varying degrees
of spectral efficiency will require a different number of transmissions
to transfer the same amount of data, so using a link with low spectral
efficiency rather than a link with high spectral efficiency will result in
an increased delay.
3

Once an IAB node or UE is activated, it is connected to an already
active node, i.e., either an IAB donor or another IAB node that has a
path to an IAB donor. Thus, we build the network topology in an itera-
tive greedy fashion, similar to that in [30], where we set constraints on
the maximum number of IAB parents (𝑃𝑚𝑎𝑥

𝑝𝑎𝑟𝑒𝑛𝑡), IAB children (𝐶𝑚𝑎𝑥
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛),

the number of users each base station has (𝑈𝑚𝑎𝑥
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛), and the number

of associated base stations each user has (𝑈𝑚𝑎𝑥
𝑝𝑎𝑟𝑒𝑛𝑡). It should be noted

that by using the following topology generation scheme, we obtain a
connected graph, i.e., there is a path from any base station to any
other node in the network. We assume that all our nodes operate at
mmWave bands for backhaul and access transmission and reception (in-
band backhauling) with beamforming capabilities. Therefore, similar
to [31], we disregard the interference between non-assigned nodes
since narrow beam mmWave frequencies have a power limit rather than
an interference limit.

We address the stochastic nature of packet arrivals using a Poisson
process with parameter 𝜆. The packets are distributed among the base
stations based on available wireless bandwidth, with any remaining
packets distributed uniformly. Each packet is assigned a Time To
Live (TTL) as its time limit. To handle dropped packets and balance
delay and loss optimization, we employ an iterative approach. When
a packet’s TTL expires, we inject a new packet with a delay equal
to the expired TTL. If the replacement packet is dropped again, we
introduce a new packet with a delay of twice the TTL, and so on. Base
stations prioritize packets based on their TTL using an unlimited-sized
prioritized queue. This ensures that packets with shorter TTLs receive
higher priority for delivery, maintaining an efficient processing order.

We denote 𝑖 as the set of neighbors of node 𝑖 ∈  , i.e., (𝑖, 𝑗) ∈
, ∀𝑗 ∈ 𝑖, and let 𝐶,𝐾 ∈ N be the number of wireless channels
and activated base stations, respectively. In each time step, each base
station extracts a set of packets from its queue. This is followed by
deciding where to send each packet, which means that the 𝑖th base
station has to choose one destination from 𝑖 for each packet. In
our model, users may move or change their base-station associations
between two consecutive time slots, which would be resolved in a
change of the network topology. In addition, the edge delays are slowly
varying around their initial values to modulate the changes in the
wireless medium.
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Fig. 2. Decision process framework.

3. Background

In the following section, we introduce the mathematical founda-
tions, on which we will base our proposed solution. We begin by
exploring MDPs and Partially Observe MDPs (POMDPs). Then, we
describe the tools from the field of RL and MARL that we use as the
basis for our method.

3.1. MDPs and Partially Observe MDPs preliminaries

We can define MDP as a tuple, ⟨ ,,,⟩, where  , and  are
the sets of environment states, actions and rewards, respectively. In
addition, let  be the set of the probabilities

{

Pr(𝑠′, 𝑟|𝑠, 𝑎)
}

𝑠′ ,𝑠∈ ,𝑎∈,𝑟∈,
whereas the probability Pr(𝑠′, 𝑟|𝑠, 𝑎) represents the agent probability
of observing next state 𝑠′ and reward 𝑟 after being at state 𝑠 and
performing action 𝑎. The agent’s policy can be represented as the
following mapping 𝜋 ∶ × → [0, 1], which represents a mapping from
the current state to the probability distribution on the action space.

A Partially Observe MDP (POMDP) is defined as a tuple (, ,
,,) [32]. An agent interacting with the environment at state 𝐬 ∈ 
observes an observation 𝑜(𝑠) ∈ . After observing 𝑜, the agent selects
an action 𝑎 ∈  based on this observation, which means that now
the agent’s policy is determined by its observations. That is, policy can
be represented as the following mapping 𝜋 ∶  ×  → [0, 1], which
represents a mapping from the current observation to the probabil-
ity distribution on the action space. After performing an action, the
remainder of the decision process is the same as for the MDP case.

3.2. RL preliminaries

We examine a general model-free RL framework [17] applied to a
specific MDP, in which the agent interacts with the environment and
learns to accomplish the task at hand by a series of discrete actions.
In this case, the agent does not assume any prior knowledge of the
underlying environment statistics. Fig. 2 describes the decision making
processes between the agent and the environment: at each discrete time
step 𝑡, the agent observes the current state of the environment 𝑆𝑡 and
executes an action 𝐴𝑡 according to its policy 𝜋. Then, the agent receives
an immediate reward 𝑅𝑡 and the environment transitions to a new state
𝑆𝑡+1, based on the transition kernel Pr(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡), to the next state
𝑆𝑡+1.

Under this framework, the agent’s goal is to select actions that
maximize the expected cumulative discounted reward 𝐺𝑡, where we
define 𝐺𝑡 as follows:

𝐺𝑡 =
∞
∑

𝑛=0
𝛾𝑛𝑅𝑡+𝑛+1, 𝛾 ∈ [0, 1). (1)

The discount factor 𝛾 determines how much immediate rewards are
favored over more distant rewards. For a general MDP framework, the
action-value function 𝑄 (𝑆 ,𝐴 ) represents the expected accumulated
4

𝜋 𝑡 𝑡
Fig. 3. Multi-agent decision process framework.

discounted reward starting from state 𝑆𝑡, picking action 𝐴𝑡, and follow-
ing policy 𝜋 afterwards, whereas the value function 𝑉𝜋 (𝑆𝑡) represents
the expected accumulated discounted reward starting from state 𝑆𝑡, and
following policy 𝜋 [17, Ch. 3]:

𝑄𝜋 (𝑆𝑡, 𝐴𝑡) ≜ 𝐸𝜋 [𝐺𝑡|𝑆𝑡, 𝐴𝑡], 𝑉𝜋 (𝑆𝑡) ≜ 𝐸𝜋 [𝐺𝑡|𝑆𝑡].

The optimal policy 𝜋∗ is a policy that satisfies 𝑄∗(𝑆𝑡, 𝐴𝑡) ≜ 𝑄𝜋∗ (𝑆𝑡, 𝐴𝑡) ≥
𝑄𝜋 (𝑆𝑡, 𝐴𝑡) for any policy 𝜋 and for every possible state–action pair. By
continuously interacting with the environment, the RL agent aims to
learn the optimal policy 𝜋∗.

3.3. MARL preliminaries

MARL also addresses sequential decision-making problems, but with
more than one agent involved, as illustrated in Fig. 3. In particular, both
the evolution of the system state and the reward received by each agent
are influenced by the joint actions of all agents. More intriguingly, each
agent has to optimize its own long-term reward, which now becomes a
function of the policies of all other agents [33].

As we are interested in optimizing the network performance in
this study, it is essential that our agents act cooperatively. In a fully
cooperative setting, all agents will tend to share a common reward
function, such as 𝑅1 = 𝑅2 = ⋯ = 𝑅𝑁 = 𝑅. We note that this
model may also be referred to as a multi-agent MDP (MMDP) in the
AI community [34]. In this model, the value function and Q-function
are identical for all agents, which enables the application of single-
agent RL algorithms, where all agents are coordinated as one decision
maker [33].

Besides the common-reward model, another slightly more general
and emerging model for cooperative MARL considers team-average
rewards [33,35]. Specifically, agents are allowed to have different
reward functions, which may be kept private for each agent, while the
goal for cooperation is to optimize the long-term reward corresponding
to the average reward 𝑅 ≜ 1

𝑁
∑𝑁−1

𝑖=0 𝑅𝑖. The average-reward model,
which allows more heterogeneity among agents, includes the model
above as a special case. It also preserves privacy among agents, and
facilitates the development of decentralized MARL algorithms [33,35].

4. RL for IAB network routing

In the following section, we formulate and evaluate the IAB network
routing problem using a Multi-Agent POMDP. First, we propose and an-
alyze an approach to solve this problem. Next, we proceed to formulate
it mathematically as a Multi-Agent POMDP. We conclude our discussion
by describing our evaluation metrics.

During the agents’ training phase, their experience is formed from
tuples of ⟨𝑠, 𝑎, 𝑟⟩ that are chained together into time sequences by the
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next state, 𝑠′. We can define the decision-making process in our network
experience in two ways. One approach is to select the base station as the
decision-maker, where each base station acts as an independent agent
and makes its own decisions on how to forward packets. Alternatively,
we can select the packet as the decision-maker, where every packet
in the network becomes an agent and independently decides its action
when it reaches the front of a base station’s queue.

In our work, we have employed the packet-based approach to
mathematically define the decision-making process. It is important to
note that this approach serves as a convenient mathematical framework
for the development of our algorithms. In practical implementation,
the base stations, acting as agents, make decisions on behalf of the
packets in their respective queues. This choice allows us to leverage the
benefits of the packet-based approach and its associated mathematical
convenience while ensuring a practical and realistic implementation.
Considering that our network consists of multiple packets, the decision-
making process can be seen as a multi-agent problem with increased
complexity. This complexity arises from the simultaneous operation of
multiple packets within the same network.

4.1. Formulating IAB routing using a Multi-Agent POMDP framework

This section outlines the mathematical formulation of our problem.
Due to the presence of multiple agents with a joint goal, we formulate
the problem of multi-agent routing as a Multi-Agent POMDP [32] with
discrete actions. Each agent observes statistics relevant to itself and
does not observe the entire global state. We denote the Multi-Agent
POMDP by a tuple ( ,,1,2,… ,𝑁 , ,, 𝑁, 𝛾), where 𝑁 is the
umber of agents and  is the environment state space. Environment
tate 𝐬 ∈  is not fully observable. Instead, agent 𝑖 draws a private
bservation 𝐨𝑖 ∈  that is correlated with 𝐬. 𝑖 is the action space of
gent 𝑖, yielding a joint action space  = 1×2×⋯×𝑁 . Pr(𝐬′, 𝑟|𝐬, 𝐚) ∈

is the state-reward transition probability, where 𝑟, 𝐬, 𝐬′, 𝐚 ∈  ×  ×
×. , 𝛾 represent the available rewards set and the discount factor,

espectively. Agent 𝑖 ∈ {1, 2,… , 𝑁} uses a policy 𝜋𝑖 ∶ ×𝑖 → [0, 1] to
hoose actions after drawing observation 𝐨𝑖. After all agents have taken
ctions, the joint action 𝐚 triggers a state transition 𝐬 → 𝐬′ based on the
tate transition probability Pr(𝐬′|𝐬, 𝐚).

In Mulit-Agent POMDP, MARL can be used as a computational tool.
elow, we specify each component using the MARL definitions.

• Observations. The agent can only observe information relevant
to the packet it controls. Specifically, we consider the packet’s
current node, time to live (TTL), and queue delay in this work. Let
𝐨𝑖 = (𝑛, 𝑡, 𝑄𝑢𝑒𝑢𝑒𝐷𝑒𝑙𝑎𝑦(𝑖, 𝑛)) be the agent 𝑖 observation. The scope
of 𝑛 in this context is limited to only the base stations and the
final destination, i.e., other users cannot relay messages.

• Actions. If agent 𝑖 is authorized to perform a wireless hop based
on 𝐨𝑖 = (𝑛, 𝑡), the allowable action set includes all wireless links
that are available from node 𝑛. For example, 𝑎𝑖 = 𝑙𝑛,𝑛′ , where
𝑙𝑛,𝑛′ ∈  represents the link between nodes 𝑛 and 𝑛′. Let 𝐚 =
(𝑎1, 𝑎2,… , 𝑎𝑁 ) be the joint action. Whenever the agent does not
have permission to conduct a wireless hop, its action will be
defined as null.

• Transitions. Joint action 𝐚 triggers a state transition 𝐬 → 𝐬′
with probability Pr(𝐬′|𝐬, 𝐚) which depends on the dynamics of the
environment and on the frequency at which the agent is polled to
provide an action. In this case, the frequency is dependent on the
duration of each time slot in the system.

• Reward. Let 𝐷𝑖 represent the immediate delay of the 𝑖th agent.
To be more specific, 𝐷𝑖 consists of two components that cause
delay to the 𝑖th agent: the instant wireless link delay and the
delay caused by waiting at the current base-station queue. We
define the current agent’s delay as the sum of these two terms.
5

If we define the observation as 𝐨𝑖 = (𝑛, 𝑡) and the action as
𝑎𝑖 = 𝑙𝑛,𝑛′ , we can denote the immediate delay of the agent as
𝐷𝑖 = −(𝑞𝑛𝑖 + 𝑑((𝑛, 𝑛′))), where 𝑞𝑛𝑖 represents the delay induced by
the 𝑛th node queue to the 𝑖th agent. Accordingly, we define the
agents’ joint reward using the immediate delay representation as
follows: 𝑅 ≜ 1

𝑁
∑

𝑖∈ 𝐷𝑖 ∈ , where  represents the set of active
agents.

Let 𝛱 ≜ ×𝑁−1
𝑖=0 𝜋𝑖 represent the joint agent policy. Let 𝐬𝑡 ∈  denote

he state of the network at time 𝑡 ∈ N. Our objective is to derive an
L-based algorithm to identify the set of policies {𝜋𝑖}𝑁−1

𝑖=0 that maximize
he expected accumulated discounted reward over a finite time horizon,
.e,

⋆ = argmax
𝛱

{

E𝛱

[ 𝑇
∑

𝑡=1
𝛾 𝑡−1𝑅𝑡+1

|

|

|

𝐬1
]

}

. (2)

.2. Evaluation metrics

A reactive routing scheme is used in a multi-hop IAB network to
ynamically minimize packet delay while ensuring that packets reach
heir destination on time. There might be multiple hops, links with low
pectral efficiency, and nodes with overloaded queues in a packet’s
ath, all of which may cause delay. There are various metrics to
easure or estimate the congestion within the network. In our scenario
e define our congestion estimation using the following metrics:

• Average Packet latency — The average time it takes for a packet
to travel from its source to its destination.

• Arrival Ratio — The percentage of packets that made it to their
destination successfully.

his multi-objective problem aims to minimize the packet latency while
imultaneously maximizing the arrival ratio. Therefore, it may suffer
rom a Pareto-front, which means that optimizing w.r.t. one objective,
eads to a sub-optimal solution w.r.t. another objective [36]. Despite
he fact that the network performance measurements are well defined,
n individual agent does not necessarily have access to their signals.
or example, the arrival ratio represents a metric which is dependent
pon the entire network; due to its multi-hop structure, at each time
lot an individual cannot even obtain a good estimation of this value.

. Existing routing algorithms

The following section describes existing solutions for solving a
outing problem. Throughout this section, we explore and modify those
lgorithms to solve the problem of routing in an IAB network.

.1. Centralized-routing

In this policy, the algorithm has access to the full network state.
uring each time step, the next hop is determined by computing the

hortest path to the packet’s destination. By observing the full state
hile calculating the shortest path, this algorithm also accounts for
elays caused by queues at other base stations along the packet’s path.
ven though this algorithm has a high complexity, it achieves network
erformance improvement with full knowledge of the network’s state,
nd serve as a benchmark in comparison to a decentralized approach.

.2. Minimum-Hop routing

In this policy, the algorithm has access only to the links’ delay [9].
ased solely on those link delays, the next hop is determined for each
ime step by computing the shortest path to the packet’s destination.
n addition to serving as a benchmark, this algorithm is intended to
nalyze the influence of queue delay on the resulting delay.
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5.3. Back-pressure routing

In this policy [10], each base-station stores a queue for each possible
destination. The following procedure describes this algorithm. In each
time slot, each node calculates the difference between the specific
queue length and the corresponding queue length located at each of its
neighboring nodes (this calculation occurs for each queue). By utilizing
this difference for all available destinations, each base station is able
to make two different decisions. First, it makes a greedy decision
regarding which packets to extract from the queues based on the
size of the differentiation (in other words, the destinations with the
greatest degree of differentiation will be selected). Second, the node
will determine the packet’s next hop based on a greedy decision (the
neighbor with the highest differentiation score).

5.4. Q-Routing

In this policy, each node uses an off policy iterative method termed
Q-learning [7]. Next, Q-learning is first used to learn a representation
of the network state in terms of Q-values and then these values are
used to make routing decisions. Given this representation of the state,
the action 𝑎 at node 𝑛 is to find the best neighbor node to deliver
the a packet that results in lower latency for the packet to reach its
destination. The following procedure describes this algorithm. As soon
as node 𝑛 extracts a packet destined to node 𝑑 from his queue, it selects
he next-hop decision based on the 𝜖-greedy policy w.r.t. its Q-values,

i.e.,

𝑦 =

⎧

⎪

⎨

⎪

⎩

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑅𝑎𝑛𝑑𝑜𝑚(𝑛) 𝑤.𝑝. 𝜖,
𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝑛

𝑄̂(𝑛)(𝑎, 𝑑) 𝑤.𝑝. 1 − 𝜖. (3)

Once the packet has been sent from node 𝑛 to neighboring node 𝑦, node
will send its best estimate back to node 𝑛, max𝑎′∈𝑦

𝑄̂(𝑦)(𝑎′, 𝑑) for the
destination 𝑑 back to node 𝑛 over the ACK signal. This value essentially
estimates the remaining time in the journey of the packet. Following
that, the Q-value is modified by the following formula:

𝑄̂(𝑛)
𝑛𝑒𝑤(𝑦, 𝑑) = 𝑄̂(𝑛)

𝑜𝑙𝑑 (𝑦, 𝑑) + 𝛼 ⋅
(

𝑟 + 𝛾 ⋅ max
𝑎′∈𝑦

𝑄̂(𝑦)(𝑎′, 𝑑) − 𝑄̂(𝑛)
𝑜𝑙𝑑 (𝑦, 𝑑)

)

. (4)

5.5. Full Echo Q-Routing

This algorithm is a variant of the Q-Routing algorithm described
above, and addresses the well-known issue of exploration against ex-
ploitation [7]; similarly to Q-Routing, it utilizes an iterative off-policy
method termed Q-Learning. In order to eliminate the problem of ex-
ploration against exploitation, this algorithm executes the following
procedure. As soon as node 𝑛 extracts a packet destined to node 𝑑 from
its queue, it selects the next-hop decision based on the greedy policy
w.r.t. its Q-values, 𝑦 = argmax𝑎∈𝑛

𝑄̂(𝑛)(𝑎, 𝑑). Once the packet has been
sent from node 𝑛 to neighboring node 𝑦, node 𝑛 receives information
from all neighboring nodes, which transmit their respective best esti-
mates for packets destined to node 𝑑, i.e., max𝑎′∈𝑦

𝑄̂(𝑦)(𝑎′, 𝑑),∀𝑦 ∈ 𝑛.
Using those estimations, node 𝑛 modifies its Q-values for each neighbor
by utilizing the following formula:

𝑄̂(𝑛)
𝑛𝑒𝑤(𝑦, 𝑑) = 𝑄̂(𝑛)

𝑜𝑙𝑑 (𝑦, 𝑑)+𝛼⋅
(

𝑟+𝛾 ⋅ max
𝑎′∈𝑦

𝑄̂(𝑦)(𝑎′, 𝑑)−𝑄̂(𝑛)
𝑜𝑙𝑑 (𝑦, 𝑑)

)

,∀𝑦 ∈ 𝑛. (5)

5.6. Hybrid routing

In this algorithm, a Q-Routing agent is trained simultaneously with
an on policy iterative method [8]. In this case, Q-learning is used to
learn a representation of the network state in terms of Q-values, and
then Hybrid routing uses these values to update the agent’s policy
parameters by using the Actor-Critic method. As soon as node 𝑛 extracts
a packet destined to node 𝑑 from its queue, it selects its next action
6

based on sampling its policy distribution, 𝜋𝑛(𝑑, ⋅;𝜽𝑛). Then, it sends
the packet to one of its neighboring nodes 𝑦. The corresponding Q-
value is updated based on a Q-Routing update rule, and then its policy
parameters 𝜽𝒏 are updated according to the following formula:

𝜽𝒏 ← 𝜽𝒏 + 𝛼 ⋅∇𝜽𝑛 log𝜋𝑛(𝑦, 𝑑;𝜽𝑛) ⋅
(

𝑟 + 𝛾 max
𝑎′∈𝑦

𝑄̂(𝑦)(𝑎′, 𝑑) − max
𝑎∈𝑛

𝑄̂(𝑛)(𝑎, 𝑑)
)

.

6. Our proposed multi-agent relational A2C routing algorithm

In this study, we are primarily interested in exploring a decen-
tralized solution to the problem of routing in an IAB network. In
the following section, we present our novel solutions to this issue.
First, we discuss the motivation behind our proposed solution and the
challenges it seeks to address. Following this, we describe the main
characteristics of our solution. Finally, we present three different train-
ing paradigms within our approach, ranging from fully decentralized
training to centralized training.

As a first step, we attempted to solve the above task using traditional
RL techniques such as Q-routing [7], Full-Echo Q-Routing [7], and
Hybrid Routing [8]. These methods have not achieved a high degree of
generalization due to the challenges posed by the above task, such as
partial observability, a large state space, and multi-agent optimization.
Essentially, these methods assume that each agent acts independently
and does not share their experience with other agents, resulting in
performance degradation as a result of insufficient correlation between
reward signals, network state, and other agents’ policies.

Our proposed solution addresses these issues by formulating this
problem as a Mutli-Agent POMDP as described in Section 4.1. We de-
fine our algorithm objective in the same manner as described in Eq. (2)
to encourage cooperation among the different agents. Furthermore, we
leverage the homogeneity between destinations in order to support
an invariant number of users, as we might encounter in a real-world
scenario. To this end we categorize destinations into groups based on
their relational base-station association, i.e., which base station they are
currently connected to. Through this categorization, policy and value
functions are shared by each group. As part of this process, each agent
uses an iterative online on-policy method called Advantage Actor-Critic
(A2C) [17, Ch. 13]. According to this scheme, the actor decides what
action to take and the critic informs the actor of its effectiveness and
how it should be adjusted. Based on the current observation, critic
produces an estimated representation of the network state, and the
actor uses this information to update its policy. Every agent in the
network represents its own strategy through its actor. To contend with
the issue of the large size of the state space, we propose using neural
networks to approximate both the actor and the critic. Consequently,
since we categorize agents according to their relational association with
base stations, we refer to this algorithm as Relational A2C.

In this section, we present three algorithms based on our method,
each in its own subsection. The first algorithm is Relational A2C, in
which training is centralized. Specifically, all agents use the same
global actor and global critic. Fig. 4(a) shows how these are updated
based on information from all of the IAB stations. The second algorithm
is the Dec-Relational A2C algorithm, in which each base station has a
local actor and critic that are trained based on the local base station
experience. Fig. 4(b) illustrates how the information from the base sta-
tion is used to update these models. Lastly, the third algorithm is based
on federated learning [37], which we refer to as Fed-Relational A2C.
Most of the time, this algorithm operates in a decentralized manner, but
once within a given period of time, it converts the weighted averages of
these local model weights into a global model, which then is broadcast
to the base stations.

6.1. Relational A2C

In this section, we present the general idea behind our method and
explain our centralized training solution. As a first step, we unify all

packets destined to the same destination in accordance with the same
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Fig. 4. Illustration of centralized and decentralized training paradigms for our proposed method.
Fig. 5. An illustration of the categorization mapping 𝐻 for a scenario with 𝐾 = 4.
policy. In the following step, for any possible graph topology, denoted
as ⋆ ≜ {| 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑔𝑟𝑎𝑝ℎ 𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟𝑚𝑠 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦}, we
define a mapping 𝐻 ∶  × ⋆ → {0, 1}𝐾 that maps agents destined to
nodes 𝑛 ∈  to a given group. In this case, 𝐾 and |{0, 1}𝐾 | represent
the numbers of available base stations and different groups that our
agents are divided into, respectively. Next, we define our categorization
mapping, 𝐻 ∶  × ⋆ → {0, 1}𝐾 as follows:

𝐻(𝑖,)[𝑗] ≜

{

1, if (𝑖, 𝑗) ∈ ,
7

0, if (𝑖, 𝑗) ∉ .
It is noteworthy that according to this mapping destinations are
grouped according to their relational base-station associations. Fur-
thermore, Fig. 5 demonstrates the functionality of this mapping. In
addition, the division of our system’s agents into different groups is in-
tended to result in a significant reduction in the number of agents. As a
result, multiple agents can cooperate under the same goal and share in-
formation with similar groups, thereby suppressing the non-stationarity
issue associated with multi-agent systems [38].

Next, we present the centralized training paradigm, namely Rela-
tional A2C (Fig. 4(a)). In view of the fact that we are utilizing neural
networks, we would like to prevent bias in our input and categorize
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gents in a meaningful way. Thus, we propose encoding the observa-
ions of the 𝑛th agent under the assumption that it is located at the 𝑖th
ode as follows:

𝑛 ≜ [𝑜𝑛𝑒𝐻𝑜𝑡(𝑖), 𝑡,𝐻(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑛),), 𝑄𝑢𝑒𝑢𝑒𝐷𝑒𝑙𝑎𝑦(𝑛, 𝑖)], (6)

here we define 𝑜𝑛𝑒𝐻𝑜𝑡 ∶  → {0, 1}𝐾 as follows:

𝑛𝑒𝐻𝑜𝑡(𝑛)[𝑗] ≜

{

1, 𝑗 = 𝑛,
0, otherwise.

he last variables, 𝑡 and 𝑄𝑢𝑒𝑢𝑒𝐷𝑒𝑙𝑎𝑦(𝑛, 𝑖), represent the TTL and the
ueue delay of agent 𝑛 at the node 𝑖, respectively.

Let 𝛱(⋅;𝜽), 𝑉𝛱 (⋅;𝐰),𝜽 ∈ R𝐿1 ,𝐰 ∈ R𝐿2 , 𝐿1, 𝐿2 ≪ || ⋅|| be our actor
and critic representations, respectively, as depicted in Fig. 6. In spite
of the fact that we are only provided with one actor and one critic for
all groups, we are still able to differentiate between them due to the
mapping 𝐻 . Considering this representation, and assuming the packet 𝑛
is located at the 𝑖th base station, the packet strategy determines the next
hop decision by sampling the corresponding actor distribution 𝛱(𝐨𝑛;𝜽).
Next, the 𝑖th base station sends the agent via a packet to its next hop
decision. After that, the base station receives instantaneous feedback
through the ACK signal that contains the critic’s estimation for the next
hop and the agent’s instant delay, 𝑉𝛱 (𝐨′𝑛;𝐰) and 𝐷𝑛, respectively. The
critic’s value represents the next-node estimate of remaining time in a
packet’s journey to the agent destination, when the agent follows policy
𝛱 .

Next, we consider 𝑉𝛱 (𝐨𝑡,𝑛;𝐰) as the estimation of the 𝑛th agent aver-
aged delay given the current observation, i.e., E[∑𝑇−𝑡−1

𝑘=0 𝛾𝑘 ⋅𝐷𝑛,𝑡+1+𝑘|𝐨𝑡,𝑛,
𝛱]. We derive the following equality based on the Bellman equation for
a single agent scenario applied for the 𝑛th agent:

𝑉𝛱 (𝐨𝑡,𝑛;𝐰) = E[𝐷𝑛,𝑡+1 + 𝛾 ⋅ 𝑉𝛱 (𝐨𝑡+1,𝑛;𝐰)|𝐨𝑡,𝑛,𝛱].

Hence, we propose to update the critic by minimizing the estimation
error. This is achieved by minimizing the following objective  w.r.t. 𝐰:

 (𝛱) = E
[(

𝑉𝛱 (𝐎𝑛;𝐰) −
(

𝐷𝑛 + 𝛾 ⋅ 𝑉𝛱 (𝐎′
𝑛;𝐰)

)

)

2|
|

|

|

𝛱
]

, (7)

where 𝐎𝑛, 𝐷𝑛 and 𝐎′
𝑛 represent the random variables of observation,

instant delay and next observation for a random agent. We update the
critic’s parameters using the gradient descent method:

𝐰 ← 𝐰 − 𝛼 ⋅ ∇  (𝛱),
8

𝐰 o
or some learning rate 𝛼 ∈ (0, 1). Next, we seek to identify a set of pol-
cy parameters 𝜽 that maximizes the expected cumulative discounted
eward (refer to the definition in (2)). To do so, we derive the following
emma.

emma 1. The gradient of the objective 𝐽 (𝛱) w.r.t. 𝜽 is proportional to
he following estimator:

𝜽𝐽 (𝛱)∝E
[

∑

𝑛′∈𝑡

∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)
(

𝑄𝛱 (𝐬𝑡, 𝐚𝑡)−
1

|𝑡|
∑

𝑛∈𝑡

𝑉𝛱 (𝐨𝑡,𝑛;𝐰)
)

]

,

where 𝑡 represents the set of agents that were active at timestep 𝑡.

Proof. The full proof is attached in Appendix B. □

According to its definition, the action-value function 𝑄𝛱 (𝐬𝑡, 𝐚𝑡) rep-
resents the average delay of all packets while the network is at state
𝐬𝑡, uses action 𝐚𝑡, and follows the policy 𝛱 . Our proposal is to estimate
the average network delay 𝑄̂𝛱 (𝐬𝑡, 𝐚𝑡) using our active agents in order
to accommodate the partially observed issue, i.e.,

𝑄̂𝛱 (𝐬𝑡, 𝐚𝑡) =
1

|𝑡|
∑

𝑛∈𝑡

𝑄̂𝛱 (𝐨𝑡,𝑛, 𝑎𝑡,𝑛) =
1

|𝑡|
∑

𝑛∈𝑡

𝐷𝑛,𝑡+1 + 𝛾 ⋅ 𝑉𝛱 (𝐨𝑡+1,𝑛;𝐰).

ollowing that, we can estimate the gradient of the objective 𝐽 (𝛱)
.r.t. 𝜽 at the 𝑡th time-step using the following sample:

𝜽𝐽 (𝛱) =
∑

𝑖∈𝑡

(

1
|𝑡|

∑

𝑛∈𝑡

𝐷𝑛,𝑡+1 + 𝛾 ⋅ 𝑉𝛱 (𝐨𝑡+1,𝑛;𝐰) − 𝑉𝛱
(

𝐨𝑡,𝑛;𝐰
)

)

⋅ ∇𝜽log𝛱(𝑎𝑡,𝑖|𝐨𝑡,𝑖;𝜽). (8)

his estimation allows us to apply the stochastic gradient ascent method
n order to find the local optimal solution. That is, at each time step t,
he parameter 𝜽 is updated by

← 𝜽 + 𝜂∇𝜽𝐽 (𝛱),

or some learning rate 𝜂 ∈ (0, 1). By using this method, we expect
o increase the cooperation between the different agents through the
ptimization of the joint objective (Fig. 4(a) illustrates this procedure).
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The steps of the proposed Relational A2C algorithm are summarized in
Algorithm 1 below:

Algorithm 1 The Relational A2C Algorithm for Simultaneously
Optimize Routing Strategy
1: Initialize Actor and Critic weights 𝜽,𝐰 and learning rates 𝜂, 𝛼.
2: for time step 𝑡 = 1, 2,… , 𝑇 do
3: Extract active agents 𝑡.
4: for Agent 𝑛 ∈ 𝑡 do
5: Observe o𝑡,𝑛.
6: 𝐚𝑛,𝑡 = 𝑎,w.p. 𝛱(𝑎|o𝑡,𝑛;𝜽),∀𝑎 ∈ 𝑛,𝑡,
7: end for
8: Execute actions.
9: for Agent 𝑛 ∈ 𝑡 do

10: Obtain the delay 𝐷𝑛,𝑡+1 and next observation o𝑡+1,𝑛 associ-
ated with the 𝑛𝑡ℎ agent.

11: Set Temporal Difference Error.
12: 𝛿𝑡,𝑛 = 𝐷𝑛,𝑡+1 + 𝛾 ⋅ 𝑉 (o𝑡+1,𝑛;𝐰) − 𝑉

(

o𝑡,𝑛;𝐰
)

.
13: end for
14: Update critic and actor parameters based on Eq. (7) and Eq. (8).

15: 𝜽𝑡+1 ← 𝜽𝑡 + 𝜂 ⋅
(

∑

𝑛∈𝑡 ∇𝜽𝑡 log
(

𝛱(𝑎𝑡,𝑛|o𝑡,𝑛;𝜽)
)

⋅
( 1
|𝑡|

∑

𝑛′∈𝑡 𝛿𝑡,𝑛′
)

)

.

16: 𝒘𝑡+1 ← 𝒘𝑡 − 𝛼 ⋅ ∇𝒘

(

∑

𝑛∈𝑡 (𝛿𝑡,𝑛)
2
)

.

17: end for

6.2. Dec-Relational A2C

In this section we extend our method to support a decentralized
training paradigm, namely, Dec-Relational A2C. For decentralized train-
ing, we propose decoupling the neural network across the different
base stations so that each base station uses its own set of weights for
both actor and critic, as depicted in Fig. 6. With a dedicated neural
network for each base station, the base station ID in the observa-
tion becomes redundant, so we drop it, leading to a new observation
𝐨𝑛 = [𝑡,𝐻(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑛),), 𝑄𝑢𝑒𝑢𝑒𝐷𝑒𝑙𝑎𝑦(𝑛)], where 𝑄𝑢𝑒𝑢𝑒𝐷𝑒𝑙𝑎𝑦 repre-
sents the amount of time the 𝑛th agent waited at the current base
tation queue. Let 𝛱̂𝑘(⋅;𝜽𝑘), 𝑉𝛱 (⋅;𝐰𝑘),𝜽𝑘 ∈ R𝐿1 ,𝐰𝑘 ∈ R𝐿2 , be our

actor and critic representations at the 𝑘th base-station, respectively.
In addition, let 𝑘, 𝑛, 𝑘′, 𝐨𝑛, 𝐨′𝑛 be our current node, agent, next node
ecision, observation and next step observation, respectively. Following
hat, based on the Bellman equation we propose to modify the temporal
ifference estimation as follows:

𝑘,𝑛,𝑘′ = 𝐷𝑛 + 𝛾 ⋅ 𝑉𝛱 (𝐨′𝑛;𝐰𝑘′ ) − 𝑉𝛱 (𝐨𝑛;𝐰𝑘), (9)

such that there is a mutual update between the different base stations
through the ACK signal. Essentially, by using this modification we hope
that the next base-station estimation combined with the instant delay
will represent the estimated path delay from the current base station for
this agent. Next, let 𝑘 represent the set of agents who took a next-hop
ecision from base station 𝑘. The critic is then updated at each base

station 𝑘 by minimizing the following objective 𝑘 w.r.t. 𝐰𝑘:

𝑘(𝛱̂𝑘) = E
[

∑

𝑛∈𝑘

𝛿2𝑘,𝑛,𝑘′𝑛
|

|

|

|

𝛱̂𝑘

]

, (10)

where we update critic’s parameters using the gradient descent method:

𝐰𝑘 ← 𝐰𝑘 − 𝛼 ⋅ ∇𝐰𝑘
𝑘(𝛱̂𝑘),

for some learning rate 𝛼 ∈ (0, 1). As a next step, we aim to approximate
the objective gradient w.r.t. 𝜽𝑘.

Lemma 2. The gradient of the objective 𝐽 (𝛱) w.r.t. 𝜽𝑘 is proportional to
the following estimator:

∇ 𝐽 (𝛱)
9

𝜽𝑘
∝ E
[

∑

𝑛∈𝑘,𝑡

∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛|𝐨𝑡,𝑛;𝜽𝑘)
(

𝑄𝛱 (𝐬𝑡, 𝐚𝑡) −
1

|𝑘,𝑡|
∑

𝑛′∈𝑘,𝑡

𝑉𝛱 (𝐨𝑡,𝑛;𝐰𝑘)
)

]

,

where 𝑘,𝑡 represents the set of agents that were active at the 𝑘th base
tation at timestep 𝑡.

roof. The full proof is attached in Appendix C. □

To support decentralized training, we first proposed a local esti-
ation of average network delay, 𝑄̂(𝑘)

𝛱 (𝐬𝑡, 𝐚𝑡) = 1
|𝑘,𝑡|

∑

𝑛∈𝑘,𝑡 𝐷𝑛,𝑡+1 +

𝛾 ⋅ 𝑉𝛱 (𝐨𝑡+1,𝑛;𝐰𝑎𝑡,𝑛 ). Using this estimation and following Lemma 2, we
an estimate the objective 𝐽 (𝛱) gradient w.r.t. 𝜽𝑘 using the following
ample:

𝜽𝑘𝐽 (𝛱̂𝑘) =
∑

𝑛∈𝑘

∇𝜽𝑛 log
(

𝛱̂𝑘(𝑎𝑛|𝐨𝑛;𝜽𝑘)
)( 1

|𝑘|
∑

𝑛′∈𝑘

𝛿𝑘,𝑛′ ,𝑎𝑛′
)

, (11)

where we neglect the time indexing for notational simplicity. After-
wards, we update our agents policies using the gradient ascent method:

𝜽𝑘 ← 𝜽𝑘 + 𝜂∇𝜽𝑘𝐽 (𝛱̂𝑘),

or some learning rate 𝜂 ∈ (0, 1). We term this method as Dec-Relational
2C. By following this method we are able achieve fully decentralized

raining of our network (Fig. 4(b) illustrates this procedure). The steps
f this algorithm are summarized in Algorithm 2 below:

Algorithm 2 The Dec-Relational A2C Algorithm for Simultaneously
Optimize Routing Strategy
1: Initialize Learning Rates 𝜂, 𝛼.
2: for Base Station 𝑘 = 0, 1,… , 𝐾 − 1 do
3: Initialize Actor and Critic weights 𝜽𝑘,𝐰𝑘.
4: end for
5: for time step 𝑡 = 1, 2, ..., 𝑇 do
6: for Base Station 𝑘 = 0, 1,… , 𝐾 − 1 do
7: Extract active agents 𝑘,𝑡.
8: for Agent 𝑛 ∈ 𝑘,𝑡 do
9: Observe o𝑡,𝑛.

10: 𝑎𝑡,𝑛 = 𝑎,w.p. 𝛱̂𝑘(𝑎|o𝑡,𝑛;𝜽𝑘),∀𝑎 ∈ 𝑛,𝑡,
11: end for
12: end for
13: Execute actions.
14: for Base Station 𝑘 = 0, 1,… , 𝐾 − 1 do
15: for Agent 𝑛 ∈ 𝑘,𝑡 do
16: Obtain the delay 𝐷𝑛,𝑡+1 and next observation o𝑡+1,𝑛

associated with the 𝑛𝑡ℎ agent.
17: Set Temporal Difference Error.
18: 𝛿𝑡,𝑛 = 𝐷𝑛,𝑡+1 + 𝛾 ⋅ 𝑉 (o𝑡+1,𝑛;𝐰𝑎𝑡,𝑛 ) − 𝑉

(

o𝑡,𝑛;𝐰𝑘
)

.
19: end for
20: end for
21: Update critics’ and actors’ parameters based on Eq. (10) and

Eq. (11).
22: for Base Station 𝑘 = 0, 1,… , 𝐾 − 1 do
23: 𝜽𝑡+1,𝑘 ← 𝜽𝑡,𝑘 + 𝜂 ⋅

(

∑

𝑛∈𝑘,𝑡 ∇𝜽𝑘 log
(

𝛱̂𝑘(𝑎𝑡,𝑛|o𝑡,𝑛;𝜽𝑡,𝑘)
)

⋅

( 1
|𝑘,𝑡|

∑

𝑛′∈𝑘,𝑡 𝛿𝑡,𝑛′
)

)

.

24: 𝒘𝑡+1,𝑘 ← 𝒘𝑡,𝑘 − 𝛼 ⋅ ∇𝒘𝑘

(

1
|𝑘,𝑡|

∑

𝑛∈𝑘,𝑡 (𝛿𝑡,𝑛)
2
)

.

25: end for
26: end for

6.3. Fed-Relational A2C

To conclude, we propose another version that combines the features
of the previous versions. As part of this approach, the weights of the
network are updated using a federated learning approach [37]. There-
fore, we refer to this method as Fed-Relational A2C. In this approach
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Table 1
Simulation network hyper-parameters.
|| || | | 𝑁 𝑃 𝑚𝑎𝑥

𝑝𝑎𝑟𝑒𝑛𝑡 𝐶𝑚𝑎𝑥
𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑈𝑚𝑎𝑥

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑈𝑚𝑎𝑥
𝑝𝑎𝑟𝑒𝑛𝑡 𝑇𝑇𝐿 User’s speed [ m

sec
] 𝐶

1 9 100 300 000 3 3 35 2 50 3 1
Table 2
Algorithm’s hyper-parameters.
𝛾 𝛼 𝜂 𝜖𝐷 𝜖𝑚𝑖𝑛 Federated update frequency [Time-slots]

0.995 0.0001 0.0001 0.9999 0.01 1000
the agents constantly update their weights in a decentralized manner,
similar to the decentralized approach, while the agents periodically
report their weights to a central controller; based on the weights
they submit, the controller calculates a new set of shared weights.
The final step is to relay the updated weights to the base stations.
Thus, we find this method to be somewhere in the middle between
the previous centralized and decentralized approaches. Additionally,
in this approach, weights are shared periodically among the different
base stations, resulting in the same observations as in the relational
approach. The steps of this algorithm are summarized in Algorithm 3
below:

Algorithm 3 The Federated-Relational Advantage Actor Critic (Fed-
Relational A2C) Algorithm for Simultaneously Optimize Routing
Strategy
1: Initialize Actor and Critic weights and learning rates 𝜽,𝐰, 𝜂, 𝛼.
2: Initialize federated update period 𝜏.
3: for BS 𝑘 = 0, 1,… , 𝐾 − 1 do ⊳ Broadcast Actor and Critic weights.
4: 𝐰𝑘 ← 𝐰, 𝜽𝑘 ← 𝜽.
5: end for
6: for time step 𝑡 = 1, 2,… , 𝑇 do
7: if 𝑡 MOD 𝜏 == 0 then
8: Collect Actor and Critic weights from each base-station

{𝐰𝑘}𝐾−1
𝑘=0 , {𝜽𝑘}

𝐾−1
𝑘=0 with the number of updates since last global

update {𝑛𝑘}𝐾−1
𝑘=0 .

9: FederatedUpdate({𝐰𝑘}, {𝜽𝑘}𝐾−1
𝑘=0 ,K,{𝑛𝑘}𝐾−1

𝑘=0 ).
10: end if
11: Follow decision and training phases of Decentralized Algorithm

2. ⊳ Lines 6-25.
12: end for
13: procedure FederatedUpdate(CriticWeights,ActorWeights,K,Number

OfUpdates)
14: {w𝑘}𝐾−1

𝑘=0 ← CriticWeights, ⊳ Unpack the Critic Weights.
15: {𝜽𝑘}𝐾−1

𝑘=0 ← ActorWeights, ⊳ Unpack the Actor Weights.
16: {𝑛𝑘}𝐾−1

𝑘=0 ← NumberOfUpdates ⊳ Unpack each BS’s update
number.

17: 𝐰 ←
∑𝐾−1

𝑘=0
𝑛𝑘

∑𝐾−1
𝑘=0 𝑛𝑘

𝐰𝑘, 𝜽 ←
∑𝐾−1

𝑘=0
𝑛𝑘

∑𝐾−1
𝑘=0 𝑛𝑘

𝜽𝑘, ⊳ Apply FedAvg
Update Rule.

18: for BS 𝑘 = 0, 1,… , 𝐾 − 1 do ⊳ Broadcast the new calculated
weights to the agents

19: 𝐰𝑘 ← 𝐰, 𝜽𝑘 ← 𝜽.
20: end for
21: end procedure

It should be mentioned that in a general POMDP setting solved
using MARL techniques, as considered here, a common problem is
multiple local optimum points [39] within the joint policy space, which
may be resolved with convergence to a less desirable, local optima
strategy solution [39]. As a result, convergence to the optimal policy
is not guaranteed theoretically. In practice, however, it achieves very
good performance even in various POMDP models with infinitely large
state space. For example, the work in [40] developed an Actor Critic
algorithm for teaching multiple agents how to play Starcraft games
directly from screen images, and achieved very good performance at
various stages.
10
Fig. 7. Network topology illustration.

7. Experiments and insights

In this section, we describe our main research insights and their
associated experiments. First, we evaluate several connectivity scenar-
ios in order to demonstrate the importance of network routing in an
IAB network. Next, we study the impact of network load as well as the
impact of mobility. This analysis shows that high loads affect network
performance significantly in the case of mobility for most of the routing
algorithms. We then analyze how changes in online traffic patterns
and node failure affect the network. As a result of this experiment,
we gained valuable insights into how the proposed routing can adapt
to and recover from online changes. Lastly, we analyzed the different
routing convergence times

As part of these experiments, we study and evaluate various routing
methods within an IAB network, as discussed in Section 5. In particular,
the performance of Relational A2C is compared to six other algorithms:
Centralized Routing, Minimum-Hop Routing, Back-pressure Routing, Q-
Routing, Full Echo Q-Routing, and Hybrid Routing. We refer the reader
to Section 5 for a detailed explanation of each algorithm.

To conduct those experiments, we have developed a gym-based
simulated IAB environment [41]. The simulation takes place over a
2-dimensional grid.1 Tables 1,2 describe network and algorithms hy-
per parameters, respectively. Furthermore, Relational A2C was im-
plemented as described in Algorithms 1,2,3 in Section 6, with all
methods based on the A2C network architecture shown in Fig. 6. In
the following, all the metrics we mentioned in Section 4 are used
as the figure-of-merit for evaluating the performance of the different
algorithms.

Fig. 7. illustrates a network composed with 1 IAB Donor, 9 IAB
Nodes and 100 users.

1 For reproducing our results, we refer the reader to run our code, https:
//github.com/Shahaf-Yamin/Routing-In-IAB-Networks.

https://github.com/Shahaf-Yamin/Routing-In-IAB-Networks
https://github.com/Shahaf-Yamin/Routing-In-IAB-Networks
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Fig. 8. Visualization of different connectivity scenarios.
Fig. 9. Performance illustration of different network’s connectivity cases.
7.1. The importance of routing in an IAB network

In this section, we examine the importance of routing in an IAB
network by measuring network performance in various scenarios of
connectivity. Our study emphasizes the importance of routing algo-
rithms by illustrating that for high connectivity, where routing is
needed, performance is much higher than for low connectivity, where
routing is not needed due to the limited number of paths. In order to
change the network’s connectivity we have modified the constraints
that dictate the number of parents each IAB node/User may have and
the number of devices (IAB children/Users) that each IAB can support.

Using the results illustrated in Fig. 9, we can conclude that using a
single path topology (Fig. 8.a.) yielded the lowest arrival ratio and the
longest delay. We can also deduce that higher network connectivity
is highly recommended to support the expected 5G’s requirements
of high load and low latency. Moreover, while higher connectivity
may have some benefits, we must also consider that a higher level
of connectivity may result in more interference between nearby base
stations, which may contradict our assumption regarding interference.
In light of this conclusion, the purpose of this study is to examine how
using routing can improve network performance, while only taking
partial connectivity into account.

7.2. The influence of network load

This section examines how network load affects the performance of
different algorithms in various mobility scenarios. That is, we evaluate
each algorithm’s resilience under different loads for various mobility
scenarios. Following this, we conclude that an increase in load/mobility
affects network performance significantly for most of the proposed
routing algorithms. As a next step, we will describe in detail our
experiments and their corresponding empirical results.
11
To change the network load, the parameter 𝜆 of the Poisson distribu-
tion has been modified. This parameter indicates the average number
of packets generated in each time-slot by the IABs. To modify 𝜆, we
scanned various loads successively from bottom-to-top, and then from
top-to-bottom. The results presented are an average of 10 different
measurements for each load across five different network topologies.

First, we evaluate the performance of our algorithms over a static
topology, which means that users cannot change their base-station
association or location. Next, we increase the user’s speed to 3 𝑚

𝑠𝑒𝑐
, which

means that users can change their location and change their association
with a base station at any time. We then refer to this scenario as
a dynamic topology and evaluate our algorithms’ performance. In
addition, we investigate how the speed of UEs affects the performance
of the different algorithms. Furthermore, due to the lack of further
information provided by the arrival ratio, we present only the average
delay metric. The following sections provide results and insights from
those experiments.

7.2.1. Static topology
This experiment evaluated the algorithm’s performance under a

static network topology and changing load. In Fig. 10(a), we present the
performance of the algorithms. Based on these results, we can conclude
that all three versions of the Relational A2C algorithm outperformed
other algorithms, despite acting in a decentralized manner. Moreover,
these results also revealed that using exploration in conjunction with
exploitation (Full-Echo Q-Routing) greatly improved performance at
low to medium loads when compared with Q-Routing, whilst they
achieved similar performances for higher loads.

As a further interesting phenomenon, we observe that Hybrid Rout-
ing improves performance when compared with traditional Q-Routing
under low loads, but degrades performance under higher loads. We
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Fig. 10. Static topology and dynamic topology — average delay performance for different routing algorithms under different loads.
explain this phenomenon by stating that higher loads require better
coordination among agents, as making an incorrect routing decision
while the network is already congested will probably result in packet
loss. Our conclusion is that since each agent learns an independent
stochastic policy as part of the algorithm, it is less effective at handling
non-stationary problems than traditional Q-Routing algorithms. In our
next experiment, we allow UEs to travel and change their base-station
association, which will further increase the non-stationarity of the
problem.

Additionally, as network load increases, we observed performance
degradation of the Shortest-Path algorithm. Our explanation for this
phenomenon is that queue delay does not have a significant influence
on performance for low loads, but as the load increases, it becomes
more significant.

7.2.2. Dynamic topology
This experiment evaluated the algorithm’s performance under a

dynamic network topology and changing load. Following this, based on
the results illustrated in Fig. 10 we can determine that although acting
in a decentralized manner, all versions of Relational A2C’s algorithm
managed to achieve superior performance than the other algorithms
for this scenario. Further, Hybrid Routing does not perform well in
this non-stationary environment, as we observe further degradation in
performance when compared to a static scenario, and at low load it is
even less effective than Q-Routing.

Moreover, when compared with the static scenario, Full-Echo Q-
Routing exhibits performance degradation at medium to high loads.
It performs worse in this range than the traditional Q-Routing. Our
explanation for this phenomenon is that when using Full Echo Q-
Routing, frequent topology changes may cause multiple modifications
to the routing policy, which will result in increased instability and
longer routing times as loads increase. In addition, this phenomenon
coincides with the phenomena observed in [7], in which the authors
applied those algorithms to a grid topology.

Furthermore, it is worth noting that the Shortest Path Routing and
Centralized Routing algorithms, operating in a centralized manner with
access to complete information about user equipment (UE) connections,
demonstrates robustness and consistency in its performance despite UE
mobility. By considering the entire network topology, the algorithm can
effectively adapt to changes and reroute traffic accordingly. Similarly,
the Maximum Backpressure algorithm aims to optimize queue lengths
between base stations to maximize throughput. Although user mobility
can indirectly influence queue lengths due to changes in traffic patterns,
the algorithm’s primary objective is to manage the dynamics of the
queue system and enhance throughput. As a result, the performance of
12
the Maximum Backpressure algorithm is less directly affected by user
mobility compared to Full-Echo Q-Routing.

The significant performance gap between all versions of Relational
A2C and the traditional hybrid algorithm supports our claim that by
following our proposed algorithms, agents are able to cooperate more
effectively and increase the stability of our routing policy, proving
that agents that cooperate achieve better outcomes than agents who
act selfishly. Thus, these results demonstrate that optimizing the joint
goal and solving the coordination problem between agents significantly
improves performance for both static and dynamic topologies.

When comparing the performance of static versus dynamic topolo-
gies as illustrated in Fig. 10, we observe that all tabular RL baselines
suffer from performance degradation when users are permitted to move
and change their base-station association. Based on these results, which
indicate a significant difference between static and dynamic topologies,
we propose the following experiment to examine the effect of UE
movement on algorithm performance.

7.2.3. Results from examining the influence of dynamic topology changes
In this experiment, we evaluated the algorithm’s robustness to

dynamic topology changes under constant loads. For this purpose, we
scanned various UE speeds and measured the arrival ratio and average
delay with the different algorithms. We evaluate the algorithms’ per-
formance for two possible loads, medium load (𝜆 = 3) and high load
(𝜆 = 5), presented in Figs. 11(a) and 11(b), respectively.

Figs. 11(a) and 11(b) demonstrate that increasing the UE speed
will not have a significant impact on the Relational A2C algorithm’s
performance for varying network loads. Also, in medium loads, Full
Echo Q-Routing achieves superior performance to Q-Routing, with
both suffering from similar performance degradation as a result of
their different UE speeds. Furthermore, we observe that the combi-
nation of higher load with increased speed results in more severe
performance degradation for Full Echo Q-Routing compared to tradi-
tional Q-Routing. This observation is consistent with the results of our
previous experiments. Moreover, Hybrid Routing shows the greatest
degradation among all Q-Routing algorithms, further demonstrating
that it is less able to cope with this non-stationary setting than tra-
ditional Q-Routing algorithms. Aside from this, we observe that all
other RL-based algorithms suffer from performance degradation when
UE speed is increased, which serves as an additional indication of our
proposed approach’s superiority.

7.3. Experiment results for online changes

The purpose of this section is to examine how online changes impact
algorithm performance in a variety of scenarios. Our study indicates
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Fig. 11. Average network delay for different routing algorithms under different UE speed.
Fig. 12. Static topology and dynamic topology — average delay performance for different routing algorithms under bursts of traffic. low load — 𝜆 = 2, high load — 𝜆 = 5.
that Relational A2C-based approaches are superior for handling such
online changes when compared to other algorithms. As a next step,
we will describe the online scenarios that we have studied. In the
first case, we analyzed the algorithm’s response to bursts of traffic. In
the second case, we investigate how the algorithm responds to node
failures and recovery situations. Also, in these experiments we capture
those online changes by measuring the algorithm’s performance using
a sliding window with a length of 100 time slots.

7.3.1. Experiment results for bursts of traffic
During this experiment we measure the algorithm’s response to

bursts of traffic. This was accomplished by evaluating the algorithm
performance while changing the network load. Our experiment in-
volves changing the network load rapidly from low (𝜆 = 2) to high
(𝜆 = 5) and then back to low. The results presented here are an average
of 10 measurements across five different topologies of the network.
Furthermore, we conducted this experiment for both static and dynamic
topologies, as depicted in Figs. 12(a) and 12(b), respectively. Further,
due to the absence of further information offered by the arrival ratio,
we present only the average delay metric measured through time for
this experiement.

In both static and dynamic scenarios, it is evident that the Relational
A2C versions achieve superior performance than the traditional RL-
algorithms. Additionally, all algorithms exhibit similar reaction times
when measuring the impact of changes in load from low to high
13
and from high to low. When comparing between static and dynamic
scenarios, we are able to see that the Relational A2C algorithms did not
suffer from any performance degradation, while the tabular methods
greatly suffer.

Further, we observe that Full Echo Q-Routing is superior to tradi-
tional Q-Routing in static scenarios, while they achieve similar perfor-
mance in dynamic scenarios. Additionally, Hybrid Routing suffers from
the greatest degradation of all Q-Routing algorithms when working
with high loads, emphasizing its inability to cope with such a non-
stationary scenario. Our conclusions are consistent with the results of
our previous experiments, which further verifies the results.

7.3.2. Experiment results for node failure
In this experiment, we evaluate how the algorithms respond to a

scenario of node failure and recovery. To achieve this, the algorithm
performance was evaluated while removing a random base station from
the network for a specified period of time. Since we insert dynamic
changes through node failures, we now consider only static topologies,
in which users cannot move. The following results are based on an
average of 30 consecutive experiments with random base-station failure
in each experiment.

This experiment was conducted for a high load as shown in Fig. 13.
To illustrate the arrival ratio metric in such an online setting, we mea-
sured the number of packets that dropped within our sliding window.
From these results, it is evident that all algorithms are able to recover
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Fig. 13. Performance for different routing algorithms in case of node failure for high load 𝜆 = 5.
Fig. 14. Illustration of the performance of different routing algorithms through their
training procedures.

from the node failure situation, although we observe that the average
delay does not return to its initial value after the node has recovered. In
our opinion, this is due to the fact that the other base stations’ queues
are already congested at this point. This results in a more congested
network than before the node failure. In conjunction with the fact
that the arrival rate process does not change over time, performance
is degraded under higher loads.

A further, but equally significant, conclusion we can draw from
these measurements is that while Relational A2C has a lower delay
than Centralized Routing in Fig. 13(a), its packet loss rate is higher
in Fig. 13(b). This demonstrates the importance of using both arrival
rate and average delay in our analysis.

7.4. Algorithm convergence

In this section, we examine the algorithm’s convergence time under
a constant load, starting with a random initialization point. According
to our results, all versions of our algorithm were able to converge to
a similar solution, as opposed to the other baselines that suffer from
performance degradation. Thus, we conclude that all Relational A2C-
based algorithms were able to achieve a better routing solution than
traditional algorithms. The results presented in Fig. 14 are the average
of those measurements.
14
Additionally, we found that centralized training achieved the fastest
convergence among the different training paradigms of our proposed
method. In fact, this convergence gap arises because the different
agents can share their experience implicitly through the mutual updates
of both the actor and the critic among all base stations. Furthermore, we
conclude that Fed-Relational A2C performs better than Dec-Relational
A2C in terms of convergence. In general, this difference can be un-
derstood intuitively, since federated learning approaches manage the
trade-off between a fully decentralized training paradigm and a cen-
tralized training paradigm. Another interesting phenomenon is that Full
Echo Q-Routing appears to be the fastest algorithm that converges to
a stable solution (an approximated point of equilibrium). This rapid
convergence can be explained by the fact that Full Echo Q-Routing
receives all of the rewards available to it, regardless of the chosen
action. As a result, it is able to reduce the number of interactions
required for convergence with the environment.

7.5. Algorithm scalability

In this section, we examine the algorithm’s performance for differ-
ent number of base-stations for two possible loads, medium load (𝜆 = 3)
and high load (𝜆 = 5), presented in Figs. 15(a) and 15(b), respectively.
The following results are based on an average of 5 consecutive ex-
periments with different topology in each experiment. Figs. 15(a) and
15(b) provide insightful evidence regarding the impact of increasing
the number of base-stations on network performance. The results reveal
that for medium loads, a higher number of base-stations may not
necessarily lead to improved network performance. However, under
higher loads, increasing the number of base-stations can result in a
significant improvement in performance. These findings suggest a non-
linear relationship between the number of base-stations and network
performance, with the effectiveness depending on the specific load
conditions.

Upon comparing the performance of various algorithms, several key
observations have emerged. Firstly, both the Fed-Relational A2C and
Dec-Relational A2C algorithms exhibit similar performances across all
scenarios. However, there is a slight degradation in their performance
compared to the Relational A2C algorithm, particularly when using 20
base-stations. This can be attributed to the fact that in the Relational
A2C algorithm, agents share the same actor and critic, facilitating the
exchange of knowledge through mutual gradient updates.

Furthermore, we observed that the Hybrid routing algorithm expe-
riences the most significant performance degradation as the number
of base-stations increases. This degradation can be attributed to the
dynamic nature of the topology, where user equipment (UE) mobility
leads to frequent changes in base-station associations. The dynamic
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Fig. 15. Performance for different routing algorithms in case of different number of base-stations.
changes introduced by increasing the network size pose challenges
in updating the routing policy effectively in an online manner, thus
impacting performance.

Additionally, both the Q-Routing and Full-Echo Q-Routing algo-
rithms demonstrate high variance and a strong dependency on the
number of base-stations. For example, at high loads with only 5 base-
stations, Full-Echo Q-Routing exhibits the worst performance. Although
increasing the number of base-stations improves its performance, Q-
Routing fails to achieve the performance levels attained by Relational
A2C and similar algorithms at medium loads.

These findings provide insights into the strengths and weaknesses of
each algorithm and emphasize the effectiveness and robustness of the
Relational A2C algorithm in various scenarios. By optimizing routing
strategies in IAB networks, these insights contribute to the ongoing
efforts of enhancing network performance and efficiency.

8. Conclusion

In this paper, we have investigated the problem of routing in an IAB
network, where multiple IAB nodes operate concurrently to efficiently
route packets while avoiding network congestion. Our objective was to
develop a joint routing policy that maximizes the network’s arrival ratio
and minimizes the average packet delay. To achieve this, we proposed
the novel Relational A2C algorithm, which utilizes online learning and
observations from IABs to determine the optimal joint routing strategy.

Through extensive evaluations and comparisons with other algo-
rithms, we demonstrated that the Relational A2C algorithm outper-
forms baseline approaches in various scenarios. Its performance is com-
parable to a centralized approach, showcasing its ability to learn near-
centralized policies. This highlights the effectiveness and superiority of
our proposed approach over existing methods.

Moreover, our study emphasized the crucial role of network routing
in mitigating congestion and maximizing the utilization of network
resources in IAB networks. By developing an efficient joint routing
policy, we can significantly enhance the overall network performance
and improve the delivery of packets to their destinations.

In summary, this paper contributes to the field of IAB network
routing by introducing the Relational A2C algorithm and showcasing
its effectiveness. By optimizing joint routing policies, we can improve
network performance, and future research can focus on incorporating
robust security measures for practical deployment.
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Appendix A. MDP formulation

Under the assumption that each packet is an individual agent, this
section introduces the proof that for the multiple packets scenario,
we can formulate the problem of IAB network routing as an MDP
with multiple agents. Table A.3. summarizes the Multi-Agent MDP
formulation, while Lemmas 3, 4 prove that it is indeed a Multi-Agent
MDP. To formulate the problem as a Multi-Agent MDP we shall define
the following tuple: ⟨ ,, 𝑅, , 𝛾,𝑁⟩, where N represents the maximal
number of packets (agents) our system supports.

Under this formulation, as illustrated in Fig. 16, each agent has four
available modes. The following explains the meaning of each mode,

• 𝑂𝑓𝑓 - In this mode, the packet is not a part of the network at
the moment, either because it has already been delivered to its
destination, or suffered from a TTL expiration event, or because
it is awaiting injection into the network.

• 𝑄𝑢𝑒𝑢𝑒 - In this mode, the packet is waiting in a specific base-
station queue.

• 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 - In this mode, the packet is currently required to make
a next-hop decision.

• 𝐴𝑖𝑟 - In this mode, the packet is transferred over the air from one
node to another in the network.

We define our reward as follows:

𝑟𝑡(𝐬𝑡, 𝐚𝑡) = −
𝑁−1
∑

𝑖=0

(

𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒𝑡,𝑖 + 𝑑((𝑛𝑡,𝑖, 𝑎𝑡,𝑖))
)

⋅ 1[𝑠𝑡,𝑖,3=𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛], (12)

specifically, 𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒𝑡,𝑖 represents the period of agent 𝑖 waiting
at node 𝑛𝑡,𝑖 queue before transmission and 𝑑((𝑛𝑡,𝑖, 𝑎𝑡,𝑖)) represents the
transmission delay between node 𝑛𝑡,𝑖 and node 𝑎𝑡,𝑖 at time step 𝑡 ∈ N.
The last term, 1[𝑠𝑡,𝑖,3==𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛], represents if agent 𝑖 has permission to
conduct a wireless hop or not. Next, we provide the full proof that this
formulation is indeed a Multi-Agent MDP.
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Table A.3
MDP formulation.
Type Representation

Action Space of agent i at time t 𝑡
𝑖 =

(

(𝐬𝑡,𝑖,3 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛) →
{

𝑎|∀𝑎 ∈  , (𝑛𝑡,𝑖 , 𝑎) ∈ 
})

∧ ∅

Action Space at time t 𝑡 = ×𝑁−1
𝑖=0 𝑡,𝑖

State 𝐬𝑡 =
⋃𝑁−1

𝑖=0 𝐬𝑡,𝑖,
where 𝐬𝑡,𝑖 = {𝑛𝑡,𝑖 , 𝑡𝑡𝑙𝑡,𝑖 , 𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒𝑡,𝑖 , 𝐴𝑔𝑒𝑛𝑡𝑀𝑜𝑑𝑒𝑡,𝑖}

Action 𝐚𝑡 ∈ 𝑡

Reward −
∑𝑁−1

𝑖=0

(

𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒𝑡,𝑖 + 𝑑((𝑛𝑡,𝑖 , 𝑎𝑡,𝑖))
)

⋅ 1[𝑠𝑡,𝑖,3=1]
Fig. 16. Different modes of each agent.
Lemma 3. Given the history 𝑡 the reward distribution depends only on 𝐬𝑡
and 𝐚𝑡. Thus, let Pr ∶  ××Z → [0, 1] be the agent’s reward distribution.

Proof.

Pr(𝑟𝑡|𝑡)
(𝑎)
= Pr(𝑟𝑡|𝐬𝑡, 𝐚𝑡, 𝑟𝑡−1)

(𝑏)
= Pr(𝑟𝑡|𝐬𝑡, 𝐚𝑡). (13)

(𝑎) is true straight from the definition of history. Further, it follows that
(𝑏) is true since the reward does not depend on the previous history
once the action and state are determined. This claim is true since it is
composed of 𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒𝑡,𝑖, which is a part of the current state, and
𝑑((𝑛𝑡,𝑖, 𝑎𝑡,𝑖)), which is a random variable that is dependent only on the
current state and action. □

Lemma 4. Given the history 𝑡 the transition probability matrix Pr
depends only on 𝐬𝑡 and 𝐚𝑡. Thus, let Pr ∶ ×× → [0, 1] be the transition
probability matrix.

Proof. We begin by defining the following probabilities, Whenever an
agent reaches a TTL expiration event, its mode will transition to Off:

Pr
(

𝐬𝑡+1,𝑖 = (⋅, ⋅, ⋅, 𝑂𝑓𝑓 )|𝐬𝑡, 𝐚𝑡, 𝑠𝑡,𝑖,1 = 0
)

= 1. (14)

Next, we deal with the Air mode transition probabilities:

Pr
(

𝐬𝑡+1,𝑖 =
(

𝑎𝑡, 𝑡𝑡𝑙𝑡,𝑖 − 1, 𝑑((𝑛𝑡,𝑖, 𝑎𝑡,𝑖)), 𝐴𝑖𝑟
)

|𝐬𝑡, 𝐚𝑡, 𝑠𝑡,𝑖,3 = 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
)

= 1. (15)

Pr
(

𝐬𝑡+1,𝑖=
(

𝑛𝑡,𝑖, 𝑡𝑡𝑙𝑡,𝑖−1, 𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒𝑡,𝑖 − 1, 𝐴𝑖𝑟
)

|𝐬𝑡, 𝐚𝑡, 𝑠𝑡,𝑖,3=𝐴𝑖𝑟, 𝑠𝑡,𝑖,2 > 0
)

= 1. (16)

Pr
(

𝐬𝑡+1,𝑖 = (𝑛𝑡,𝑖, 𝑡𝑡𝑙𝑡,𝑖 − 1, 1, 𝑄𝑢𝑒𝑢𝑒)|𝐬𝑡, 𝐚𝑡, 𝑠𝑡,𝑖,3 = 𝐴𝑖𝑟, 𝑠𝑡,𝑖,2 = 0
)

= 1. (17)

Next, we explain why the current state combined with agent action
provides sufficient information regarding queue transition probabili-
ties, so the history condition does not matter. In the current state, the
agent knows both the TTL values and the locations of all the agents. A
prioritized queue, in combination with its state and action, enables the
agent to determine which agents will transition from queue to decision
mode next.

Last, the injection process of new agents in our system, which
is based over sampling an i.i.d. random process, is independent at
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the agent history. Thus, we can define our transition probabilities as
follows:

Pr(𝐬𝑡+1|𝑡)
(𝑎)
= Pr(𝐬𝑡+1|𝐬𝑡, 𝐚𝑡, 𝑟𝑡−1)

(𝑏)
= Pr(𝐬𝑡+1|𝐬𝑡, 𝐚𝑡).

Equality (𝑎) is from the definition of history. Equality (𝑏) is due to the
fact that given that you are at state 𝐬𝑡 and you have chose action 𝐚𝑡,
the previous states that you have visited have no influence over your
next transition probabilities, as we have just shown for each agent
mode. □

Appendix B. Proof of Lemma 1

Proof. Let 𝜏(𝑇 ) ≜ (𝐬0, 𝐨0, 𝐚0, 𝑟1,… , 𝐬𝑇−1, 𝐨𝑇−1, 𝐚𝑛, 𝑟𝑇 , 𝐬𝑇 , 𝐨𝑇 ) represent a
possible trajectory with length 𝑇 . In addition, let Pr(𝜏(𝑇 )) ≜ Pr(𝐬0, 𝐨0,
𝐚0, 𝑟1,… , 𝐬𝑇−1, 𝐨𝑇−1, 𝐚𝑇−1, 𝑟𝑇 , 𝐬𝑇 , 𝐨𝑇 ), by applying the chain rule and
Lemmas 3, 4, we receive Pr(𝜏(𝑇 )) = Pr(𝐬0)𝛱𝑇−1

𝑡=0
(

𝛱𝑁−1
𝑛=0 𝛱(𝑎𝑡,𝑛|𝐨𝑡,𝑛;𝜽)

)

Pr(𝐨𝑡|𝐬𝑡) Pr(𝐬𝑡+1, 𝑟𝑡+1|𝐬𝑡, 𝐚𝑡). Thus, we get

∇𝜽 log Pr(𝜏(𝑇 )) =
𝑇−1
∑

𝑡=0

𝑁−1
∑

𝑛=0
∇𝜽 log𝛱(𝑎𝑡,𝑛|𝐨𝑡,𝑛;𝜽). (18)

Let us recall our goal, which is that we would like to solve the following
optimization problem:

𝛱⋆ = argmax
𝛱

𝐽 (𝛱) = argmax
𝛱

E[
𝑇−1
∑

𝑡=0
𝛾 𝑡 ⋅ 𝑟𝑡+1|𝛱]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐽 (𝛱)

.

Following that, we can now calculate the gradient of the objective 𝐽 (𝛱)
w.r.t. the policy parameters 𝜽:

∇𝜃𝐽 (𝜃)

= ∇𝜃E
[

1
𝑁

𝑁−1
∑

𝑛=0
𝐺𝑛

] (𝑎)
=

∑

𝜏(𝑇 )
∇𝜽 Pr(𝜏(𝑇 )) ⋅

1
𝑁

𝑇−1
∑

𝑡=0
𝛾 𝑡 ⋅ 𝑟𝑡+1

=
∑

𝜏(𝑇 )
∇𝜽 Pr(𝜏(𝑇 )) ⋅

Pr(𝜏(𝑇 ))
Pr(𝜏(𝑇 ))

⋅
𝑇−1
∑

𝑡=0
𝛾 𝑡 ⋅ 𝑟𝑡+1

=
∑

Pr(𝜏(𝑇 ))∇𝜽 log Pr(𝜏(𝑇 )) ⋅
𝑇−1
∑

𝛾 𝑡 ⋅ 𝑟𝑡+1

𝜏(𝑇 ) 𝑡=0
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E
(
c
c
t
t
t
a
i

A

P
a
p
𝑟
m
P

∇

N

∇

t
t
E
d
o
d
t
a
b
r
d
a
d
c
o
o
a
L
i

(𝑏)
=

∑

𝜏(𝑇 )
Pr(𝜏(𝑇 ))

(𝑇−1
∑

𝑡=0

𝑁−1
∑

𝑛′=0
∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)

)

⋅
𝑇−1
∑

𝑡′=0
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

(𝑐)
= E

[𝑇−1
∑

𝑡=0

(𝑁−1
∑

𝑛′=0
∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)

)

⋅
(𝑇−1
∑

𝑡′=0
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

)]

(𝑑)
= E

[𝑇−1
∑

𝑡=0

(

∑

𝑛′∈𝑡

∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)
)

⋅
(𝑇−1
∑

𝑡′=𝑡
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

)]

(𝑒)
∝ E

[(

∑

𝑛′∈𝑡

∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)
)

⋅
(𝑇−1
∑

𝑡′=𝑡
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

)]

(𝑓 )
= E𝐬𝑡∼𝜇(𝑠),𝐨𝑡∼Pr(⋅|𝐬𝑡),𝐚𝑡∼𝛱(⋅|𝐨𝑡)

[

E
[ (

∑

𝑛′∈𝑡

∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)
)

⋅
𝑇−1
∑

𝑡′=𝑡
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

|

|

|

|

𝐬𝑡, 𝐨𝑡, 𝐚𝑡
]]

(𝑔)
= E𝐬𝑡∼𝜇(𝑠),𝐨𝑡∼Pr(⋅|𝐬𝑡),𝐚𝑡∼𝛱(⋅|𝐨𝑡)

×
[

∑

𝑛′∈𝑡

∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)E
[𝑇−1
∑

𝑡′=𝑡
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

|

|

|

|

𝐬𝑡, 𝐚𝑡
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄𝛱 (𝐬𝑡 ,𝐚𝑡)

]

(ℎ)
= E𝐬𝑡∼𝜇(𝑠),𝐨𝑡∼Pr(⋅|𝐬𝑡),𝐚𝑡∼𝛱(⋅|𝐨𝑡)

×
[

∑

𝑛′∈𝑡

∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽) ⋅𝑄𝛱 (𝐬𝑡, 𝐚𝑡)
]

(𝑖)
= E𝐬𝑡∼𝜇(𝑠),𝐨𝑡∼Pr(⋅|𝐬𝑡),𝐚𝑡∼𝛱(⋅|𝐨𝑡)

×
[(

∑

𝑛′∈𝑡

∇𝜽 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽) ⋅
(

𝑄𝛱 (𝐬𝑡, 𝐚𝑡) −
1

|𝑡|
∑

𝑛∈𝑡

𝑉𝛱 (𝐨𝑡,𝑛;𝐰)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏(𝐨𝑡)

)

)]

.

Equality (𝑎) follows from the definition of expectation combined with
the linearity of both expectation and derivative (under the assumption
that the trajectories set is independent of the policy parameters). Equal-
ity (𝑏) follows from Eq. (18), and equality (𝑐) follows from the definition
of expectation. Next, equality (𝑑) holds since the policy of agents that
are not active at a certain time slot 𝑡 ∈ (0,… , 𝑇−1) is independent of the
policy parameters, and therefore, the corresponding derivative is equal
to zero. The proportion relation (𝑒) holds under the assumption of an
MDP with a stationary distribution, which we denote with 𝜇(𝑠), 𝑠 ∈ .
quality (𝑓 ) holds according to the law of total expectation. Equality
𝑔) holds since the derivative of the agent’s policy is deterministic when
onsidering the current state, observation and action, and therefore, it
an be moved out of the inner expectation. Equality (ℎ) follows from
he definition of action-value function and from the fact that given
he current state and action, the current observation is irrelevant to
he expected return. Last, equality (𝑖) is due to the fact that reducing
baseline function that is independent of the policy actions does not

ntroduce any bias under the expectation [17, Ch. 13]. □

ppendix C. Proof of Lemma 2

roof. Let 𝜏(𝑇 ) ≜ (𝐬0, 𝐨0, 𝐚0, 𝑟1,… , 𝐬𝑇−1, 𝐨𝑇−1, 𝐚𝑛, 𝑟𝑇 , 𝐬𝑇 , 𝐨𝑇 ) represent
possible trajectory with length 𝑇 . In addition, we denote the joint

arameters 𝜽 as follows: 𝜽 ≜
⋃𝐾−1

𝑘=0 𝜽𝑘. Next, let Pr(𝜏(𝑇 )) ≜ Pr(𝐬0, 𝐨0, 𝐚0,
1,… , 𝐬𝑇−1, 𝐨𝑇−1, 𝐚𝑇−1, 𝑟𝑇 , 𝐬𝑇 , 𝐨𝑇 ), by applying the chain rule and Lem-
as 3, 4; thus we receive Pr(𝜏(𝑇 )) = Pr(𝐬0)𝛱𝑇−1

𝑡=0
(

𝛱𝑁−1
𝑛=0 𝛱(𝑎𝑡,𝑛|𝐨𝑡,𝑛;𝜽)

)

r(𝐨𝑡|𝐬𝑡) Pr(𝐬𝑡+1, 𝑟𝑡+1|𝐬𝑡, 𝐚𝑡). Thus, we get

𝜽𝑘 log Pr(𝜏(𝑇 )) =
𝑇−1
∑

𝑡=0

𝑁−1
∑

𝑛=0
∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛|𝐨𝑡,𝑛;𝜽) for ∀𝑘 ∈ (0,… , 𝐾 − 1).

(19)
17

t

ext, we derive the gradient of the joint objective 𝐽 (𝛱) w.r.t. 𝜽𝑘.

𝜽𝑘𝐽 (𝜃)

= ∇𝜃E
[

1
𝑁

𝑁−1
∑

𝑛=0
𝐺𝑛

] (𝑎)
=

∑

𝜏(𝑇 )
∇𝜽𝑘 Pr(𝜏(𝑇 )) ⋅

𝑇−1
∑

𝑡=0
𝛾 𝑡 ⋅ 𝑟𝑡+1

=
∑

𝜏(𝑇 )
∇𝜽𝑘 Pr(𝜏(𝑇 )) ⋅

Pr(𝜏(𝑇 ))
Pr(𝜏(𝑇 ))

⋅
𝑇−1
∑

𝑡=0
𝛾 𝑡 ⋅ 𝑟𝑡+1

=
∑

𝜏(𝑇 )
Pr(𝜏(𝑇 ))∇𝜽𝑘 log Pr(𝜏(𝑇 )) ⋅

𝑇−1
∑

𝑡=0
𝛾 𝑡 ⋅ 𝑟𝑡+1

(𝑏)
=

∑

𝜏(𝑇 )
Pr(𝜏(𝑇 ))

(𝑇−1
∑

𝑡=0

𝑁−1
∑

𝑛′=0
∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)

) 𝑇−1
∑

𝑡′=0
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

(𝑐)
= E

[𝑇−1
∑

𝑡=0

(𝑁−1
∑

𝑛′=0
∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽)

)

⋅
(𝑇−1
∑

𝑡′=0
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

)]

(𝑑)
= E

[𝑇−1
∑

𝑡=0

(

∑

𝑛′∈𝑘,𝑡

∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽𝑘)
)

⋅
(𝑇−1
∑

𝑡′=𝑡
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

)]

(𝑒)
∝ E

[(

∑

𝑛′∈𝑘,𝑡

∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽𝑘)
)

⋅
(𝑇−1
∑

𝑡′=𝑡
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

)]

(𝑓 )
= E𝐬𝑡∼𝜇(𝑠),𝐨𝑡∼Pr(⋅|𝐬𝑡),𝐚𝑡∼𝛱(⋅|𝐨𝑡)

×
[

E
[(

∑

𝑛′∈𝑘,𝑡

∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽𝑘)
)

⋅
𝑇−1
∑

𝑡′=𝑡
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

|

|

|

|

𝐬𝑡, 𝐨𝑡, 𝐚𝑡
]]

(𝑔)
= E𝐬𝑡∼𝜇(𝑠),𝐨𝑡∼Pr(⋅|𝐬𝑡),𝐚𝑡∼𝛱(⋅|𝐨𝑡)

×
[

∑

𝑛′∈𝑘,𝑡

∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽𝑘)E
[𝑇−1
∑

𝑡′=𝑡
𝛾 𝑡

′
⋅ 𝑟𝑡′+1

|

|

|

|

𝐬𝑡, 𝐚𝑡
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄𝛱 (𝐬𝑡 ,𝐚𝑡)

]

(ℎ)
= E𝐬𝑡∼𝜇(𝑠),𝐨𝑡∼Pr(⋅|𝐬𝑡),𝐚𝑡∼𝛱(⋅|𝐨𝑡)
[

∑

𝑛′∈𝑘,𝑡

∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽𝑘) ⋅𝑄𝛱 (𝐬𝑡, 𝐚𝑡)
]

(𝑖)
= E

[(

∑

𝑛′∈𝑘,𝑡

∇𝜽𝑘 log𝛱(𝑎𝑡,𝑛′ |𝐨𝑡,𝑛′ ;𝜽𝑘)⋅
(

𝑄𝛱 (𝐬𝑡, 𝐚𝑡)

− 1
|𝑘,𝑡|

∑

𝑛∈𝑘,𝑡

𝑉𝛱 (𝐨𝑡,𝑛;𝐰)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏(𝐨𝑡)

)

)]

.

Equality (𝑎) follows from the definition of expectation combined with
he linearity of both the expectation and derivative (Under the assump-
ion that the trajectories set is independent of the policy parameters).
quality (𝑏) follows from Eq. (19), and equality (𝑐) follows from the
efinition of expectation. Next, equality (𝑑) holds since the policy
f agents that are active in a certain time slot 𝑡 ∈ (0,… , 𝑇 − 1) is
ependent on the policy parameters of the 𝑘th base-station only if
hey are acting within these base stations, and therefore, the remaining
gent’s derivative is equal to zero (the ones that are active outside of
ase-station 𝑘 or the ones that are not active at all). The proportion
elation (𝑒) holds under the assumption of a MDP with a stationary
istribution, which we denote with 𝜇(𝑠), 𝑠 ∈ . The equality (𝑓 ) holds
ccording to the law of total expectation. Equality (𝑔) holds since the
erivative of the agent’s policy is deterministic when considering the
urrent state, observation and action, and therefore, it can be moved
ut of the inner expectation. Equality (ℎ) follows from the definition
f action-value function and from the fact that given the current state
nd action, the current observation is irrelevant to the expected return.
ast, equality (𝑖) is due to the fact that reducing a baseline function that
s independent with policy actions does not introduce any bias under
he expectation [17, Ch. 13]. □
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