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Machine Learning & Wireless Networks

* Two Aspects:

« Using machine learning to optimize communication networks

 Learning on mobile devices (the focus of today’s talk)




Today's Talk: Focus on Federated Learning

« Motivation
 Federated Learning over Wireless Channels (Scheduling)
* Privacy Protection in Federated Learning (Differential Privacy)

« Some Research Issues



Motivation



Machine Learning (ML): State-of-the-Art

 Tremendous progress in recent years

« More and more data is available

« Significant increase in computational power

« "Standard” ML
4 \\ * Implemented in a centralized manner (e.g., in a data center/cloud)

e Full access to the data

« State-of-the art models (e.q., Deep Neural Networks) run in the cloud

« Managed and operated by standard software tools (e.g., TensorFlow, etc.)

» Accelerated by specialized hardware (e.g., Nvidia's GPUs, Google's TPUs)



Machine Learning at the Wireless Edge

* Centralized ML may not be suitable for many emerging applications, e.g.,
 Self-driving cars
» First responder networks
» Healthcare networks

«  What makes these applications/situations different
« Datais born at the edge (phones and loT devices)
» Limited capacity uplinks
« Low latency & high reliability
« Data privacy / security
» Scalability & locality

« Motivates moving learning closer to the network edge



Networked ML Models

“Standard” ML
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ML in the cloud with dumb end-user devices
All data is in the cloud

Inference and decision making in the cloud
No data privacy

Federated ML

ML in the cloud + on-user-device ML
Only part of the data is in the cloud
Use the cloud but smartly
Privacy-promoting

Decentralized ML

No infrastructure (e.g., cloud) needed

Data is fully distributed

Collaborative intelligence

Privacy-promoting (sharing models instead of
data)
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Federated Learning: Basic Architecture

* Federated Learning

» Enable end-user devices to do ML without centralizing data

 Key features

» On-device datasets: end users (UEs) keep raw data locally

» On-device training: end-user devices perform training on a shared model

» Federated computation: an edge node (AP) collects trained weights from end

users and updates the shared model; then the process is iterated to convergence



Federated Learning: Issues to Address

- Living on the edge @
« Communication to the AP needs to go through wireless channels IQ:

* The wireless medium is shared and resource-constrained
» Only a limited number of devices can be selected in each update round

= Transmissions are not reliable due to interference

« Questions

« How should we schedule devices to update trained weights?

« How does the interference affect the training?



Scheduling Mechanisms

» Scheduling mechanisms

» Random Scheduling: AP uniformly selects

N out of K UEs at random

= Round Robin: AP groups UEs into G=K/N

groups, sequentially selecting each group

= Proportional Fair: AP selects NV out of K

UEs with the strongest SNRs:

* le RmN
m” = arg max = ..., =
mC{1,2,...K} | Rm, Ry

Yang, et al. (2020), “Scheduling Policies for Federated Learning in Wireless Networks", /EEE T-COM



Performance Metric

 Federated Learning in a mobile edge network

 The trained update can be successfully received by AP if and only if

= The UE is selected by the AP, and . = C/—/Honﬁg“rratl:: s LA
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« Metric to quantify the effectiveness of training: ? & ]

»= The number of communication rounds required to reach an e-accurate solution



Convergence Rates of Federated Learning

Theorem 1: Under RS policy, for any given convergence target €, choosing the Tgrs such

that
log(e/n
A (/1_1) —, (28)
log (1 - 1+V<0,a)>
we have the expected duality gap satisfies E[P(w(a®s)) — D(aTrs)] < e. o= path loss exponent

B = precision level at UEs

Theorem 2: Under RR policy, for any given convergence target €, choosing the Trr such
PO G b= S n = total # exemplars

that
Glog(e/n)

) -8\’
log (1 - 1+V(9,a))

we have the expected duality gap satisfies E[P(w(aT®r)) — D(aTrr)] < ¢

Trr > (31)

Theorem 3: Under PF policy, for any given convergence target ¢, choosing the Tpy such
that
log(e/n)
o8 (1-(1-) 5 (1) i)

we have the expected duality gap satisfies E[P(w(a’F)) — D(alfr)] < e.

Tep > (33)



 High SINR vs low SINR threshold

Normalized communication rounds
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Numerical Example

—e—RS:0=15dB
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» PF works the best in high SINR condition
= RR works the best in low SINR condition
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—e—RS: 9 =-25dB
—e—RR:0=-25dB
—w—PF: 0 =-25dB
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Loss
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A Conclusion: Scheduling Protocol Matters
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» SVM on MNIST data set
» 10,000 sample points distributed on 100 devices

» Select 20 out of 100 each global aggregation
= Low SINR threshold
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Can we optimize scheduling?




Design Metric: Age of Information

« Metric 0

« Age-of-Information (Aol) at a UE i

» During each communication round, if selected, the Aol drop to 0. Otherwise,

the Aol increases by 1: Ti[t + 1] = (T;[t] + 1)(1 — S;[t]), S;[t] € {0,1}

Yang, et al. (2020), "Age-Based Scheduling Scheme for Federated Learning in Mobile Edge Networks,” /CASSP



Loss

Numerical Results — Minimizing Average Aol

= SVM on MNIST data set
» 10,000 sample points distributed on 100 devices
» Available subchannels: 20
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Privacy in Federated Learning

- An early claim for federated learning was that it was “privacy preserving” because the data

remains on the end-user devices.

- Subsequent studies have shown that this is not the case, and that end-user data can be

inferred from parameter (or gradient) updates.
- So, privacy of end-user data is a concern with federated learning.

- One approach is to use differential privacy to protect end-user data.



Differential Privacy in Federated Learning:
The Basic ldea

- Generally speaking, differential privacy refers to a type of privacy in which two datasets,
one with private information and one without it, but otherwise identical, cannot be

distinguished by a statistical query (with high probability).
- Differential privacy can be achieved in many cases by adding noise to data.
- This approach can be used in federated learning.

- This creates a tradeoff between privacy and performance.



Differential Privacy in Federated Learning:
An Example

Parameter setting:
= CNN on MNIST data set
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» Tradeoff between privacy and accuracy
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Wei, et al. (2020), “Federated Learning with Differential Privacy: Algorithm and Performance Analysis,” 7-/FS



Some Research Issues

» Device limitation
- Resources on end-user devices are limited (e.g., energy, storage, computational power)

- Fundamental trade-offs between, e.qg., # of layers, # of neurons per layer, energy expenditure, accuracy, ...

- Heterogeneous datasets and device capabilities

« Communication efficiency
- Coded distributed machine learning

- Limited data at the edge

- Local data is sparse = training sets are usually small
- Incorporating domain and physics knowledge

« Security & Privacy
- Robustness to malicious end-user devices & adversarial training examples
- Server-less implementations (e.g., with blockchain)




Some Recent Papers of Interest

Privacy and Security:

Nguyen, et al. (202 1) “Federated Learning Meet Blockchain in Edge Computing,” IEEE loT|
Wei, et al. (2020) “Federated Learning with Differential Privacy: Algorithms and Performance Analysis,” IEEE T-IFS

Communications Efficiency:

Chen, et al. (2021),“Communication Efficient Federated Learning,” PNAS
Shlezinger, et al. (2021),“UVeQFed: Universal Vector Quantization for Federated Learning,” IEEE T-SP

Yang, et al. (2020), “Scheduling Policies for Federated Learning in Wireless Networks,” IEEE T-COM
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