# Machine Learning at the Wireless Edge



### H. Vincent Poor

**Princeton University** 

## Machine Learning & Wireless Networks

• Two Aspects:



- Using machine learning to optimize communication networks
- Learning on mobile devices (the focus of today's talk)



# Today's Talk: Focus on Federated Learning

- Motivation
- Federated Learning over Wireless Channels (Scheduling)
- Privacy Protection in Federated Learning (Differential Privacy)
- Some Research Issues

Motivation

## Machine Learning (ML): State-of-the-Art

- <u>Tremendous progress in recent years</u>
  - More and more data is available
  - Significant increase in computational power



- <u>"Standard" ML</u>
  - Implemented in a centralized manner (e.g., in a data center/cloud)
  - Full access to the data
- <u>State-of-the art models (e.g., Deep Neural Networks) run in the cloud</u>
  - Managed and operated by standard software tools (e.g., TensorFlow, etc.)
  - Accelerated by specialized hardware (e.g., Nvidia's GPUs, Google's TPUs)

## Machine Learning at the Wireless Edge

- Centralized ML may not be suitable for many emerging applications, e.g.,
  - Self-driving cars
  - First responder networks
  - Healthcare networks
- What makes these applications/situations different
  - Data is born at the edge (phones and IoT devices)
  - Limited capacity uplinks
  - Low latency & high reliability
  - Data privacy / security
  - Scalability & locality

- Motivates moving learning closer to the network edge

### Networked ML Models

"Standard" ML

- ML in the cloud with dumb end-user devices
- All data is in the cloud
- Inference and decision making in the cloud
- No data privacy

**Federated ML** 



- ML in the cloud + on-user-device ML
- Only part of the data is in the cloud
- Use the cloud but smartly
- Privacy-promoting

**Decentralized ML** 



- No infrastructure (e.g., cloud) needed
- Data is fully distributed
- Collaborative intelligence
- Privacy-promoting (sharing models instead of data)

# Federated Learning over Wireless Channels (Scheduling)



## Federated Learning: Basic Architecture

- Federated Learning
  - Enable end-user devices to do ML without centralizing data
  - Key features
    - <u>On-device datasets</u>: end users (UEs) keep raw data locally
    - <u>On-device training</u>: end-user devices perform training on a shared model
    - <u>Federated computation</u>: an edge node (AP) collects trained weights from end users and updates the shared model; then the process is iterated to convergence

### Federated Learning: Issues to Address

- Living on the edge
  - Communication to the AP needs to go through wireless channels
  - The wireless medium is shared and resource-constrained
    - Only a limited number of devices can be selected in each update round
    - Transmissions are not reliable due to interference
- <u>Questions</u>
  - How should we schedule devices to update trained weights?
  - How does the interference affect the training?



### Scheduling Mechanisms

- Scheduling mechanisms
  - <u>Random Scheduling</u>: AP uniformly selects
    *N* out of *K* UEs at random
  - <u>Round Robin</u>: AP groups UEs into G=K/N groups, sequentially selecting each group
  - <u>Proportional Fair</u>: AP selects N out of K
    UEs with the strongest SNRs:

$$\mathbf{m}^* = \operatorname*{arg\,max}_{\mathbf{m} \subset \{1,2,\dots,K\}} \left\{ \frac{\tilde{R}_{m_1}}{\bar{R}_{m_1}}, \dots, \frac{\tilde{R}_{m_N}}{\bar{R}_{m_N}} \right\}$$



Yang, et al. (2020), "Scheduling Policies for Federated Learning in Wireless Networks", IEEE T-COM

### Performance Metric

- Federated Learning in a mobile edge network
  - The trained update can be successfully received by AP if and only if
    - The UE is selected by the AP, and
    - The received SINR exceeds a decoding threshold

$$\gamma_{k,t} = \frac{P_{\mathrm{ut}}h_k \|z_k\|^{-\alpha}}{\sum_{z \in \tilde{\Phi}_{\mathrm{u}}^k} P_{\mathrm{ut}}h_z \|z\|^{-\alpha} + \sigma^2} > \theta_1$$

- Metric to quantify the effectiveness of training:
  - The number of communication rounds required to reach an  $\varepsilon$ -accurate solution



### Convergence Rates of Federated Learning

**Theorem 1:** Under RS policy, for any given convergence target  $\varepsilon$ , choosing the  $T_{RS}$  such

that

$$T_{\rm RS} \ge \frac{\log(\varepsilon/n)}{\log\left(1 - \frac{(1-\beta)/G}{1+\mathcal{V}(\theta,\alpha)}\right)},\tag{28}$$

we have the expected duality gap satisfies  $\mathbb{E}[P(\mathbf{w}(\mathbf{a}^{T_{RS}})) - D(\mathbf{a}^{T_{RS}})] < \varepsilon$ .

**Theorem 2:** Under RR policy, for any given convergence target  $\varepsilon$ , choosing the  $T_{RR}$  such that

$$T_{\rm RR} \ge \frac{G \log(\varepsilon/n)}{\log\left(1 - \frac{1-\beta}{1+\mathcal{V}(\theta,\alpha)}\right)},\tag{31}$$

we have the expected duality gap satisfies  $\mathbb{E}[P(\mathbf{w}(\mathbf{a}^{T_{\mathrm{RR}}})) - D(\mathbf{a}^{T_{\mathrm{RR}}})] < \varepsilon$ .

**Theorem 3:** Under PF policy, for any given convergence target  $\varepsilon$ , choosing the  $T_{PF}$  such that

$$T_{\rm PF} \ge \frac{\log(\varepsilon/n)}{\log\left(1 - (1 - \beta)\sum_{i=1}^{K-N+1} {K-N+1 \choose i} \frac{(-1)^{i+1}/G}{1 + \mathcal{V}(i\theta, \alpha)}\right)},\tag{33}$$

we have the expected duality gap satisfies  $\mathbb{E}[P(\mathbf{w}(\mathbf{a}^{T_{\mathrm{PF}}})) - D(\mathbf{a}^{T_{\mathrm{PF}}})] < \varepsilon$ .

 $\alpha$  = path loss exponent  $\beta$  = precision level at UEs n = total # exemplars

### Numerical Example

- PF works the best in high SINR condition
- RR works the best in low SINR condition

### • High SINR vs low SINR threshold



## A Conclusion: Scheduling Protocol Matters

SVM on MNIST data set

• 10,000 sample points distributed on 100 devices Select 20 out of 100 each global aggregation



Can we optimize scheduling?

# Design Metric: Age of Information $\int_{U_{i}}^{U_{i}} \int_{U_{i}}^{U_{i}} \int_{U_{i}}^$

- Metric
  - Age-of-Information (AoI) at a UE *i* 
    - During each communication round, if selected, the Aol drop to 0. Otherwise, the Aol increases by 1:  $T_i[t+1] = (T_i[t]+1)(1-S_i[t]), S_i[t] \in \{0,1\}$

Yang, et al. (2020), "Age-Based Scheduling Scheme for Federated Learning in Mobile Edge Networks," ICASSP

### Numerical Results – Minimizing Average Aol

- SVM on MNIST data set
- 10,000 sample points distributed on 100 devices
- Available subchannels: 20



# Privacy Protection in Federated Learning (Differential Privacy)



### Privacy in Federated Learning

- An early claim for federated learning was that it was "privacy preserving" because the data remains on the end-user devices.
- Subsequent studies have shown that this is not the case, and that end-user data can be inferred from parameter (or gradient) updates.
- So, privacy of end-user data is a concern with federated learning.
- One approach is to use differential privacy to protect end-user data.

### Differential Privacy in Federated Learning: The Basic Idea

- Generally speaking, differential privacy refers to a type of privacy in which two datasets,
  one with private information and one without it, but otherwise identical, cannot be
  distinguished by a statistical query (with high probability).
- Differential privacy can be achieved in many cases by adding noise to data.
- This approach can be used in federated learning.
- This creates a tradeoff between privacy and performance.

### Differential Privacy in Federated Learning: An Example



#### **Parameter setting:**

- CNN on MNIST data set
- 10,000 sample points distributed on 50 devices

### **Observations:**

- Convergence under differential privacy
- Tradeoff between privacy and accuracy



# Some Research Issues

### Device limitation

- Resources on end-user devices are limited (e.g., energy, storage, computational power)
- Fundamental trade-offs between, e.g., # of layers, # of neurons per layer, energy expenditure, accuracy, ...
- Heterogeneous datasets and device capabilities
- <u>Communication efficiency</u>
  - Coded distributed machine learning





- Limited data at the edge
  - Local data is sparse  $\rightarrow$  training sets are usually small
  - Incorporating domain and physics knowledge
  - <u>Security & Privacy</u>
    - Robustness to malicious end-user devices & adversarial training examples
    - Server-less implementations (e.g., with blockchain)

## Some Recent Papers of Interest

### **Privacy and Security:**

Nguyen, et al. (2021) "Federated Learning Meet Blockchain in Edge Computing," IEEE IoTJ

Wei, et al. (2020) "Federated Learning with Differential Privacy: Algorithms and Performance Analysis," IEEE T-IFS

### **Communications Efficiency:**

Chen, et al. (2021), "Communication Efficient Federated Learning," PNAS

Shlezinger, et al. (2021), "UVeQFed: Universal Vector Quantization for Federated Learning," IEEE T-SP

Yang, et al. (2020), "Scheduling Policies for Federated Learning in Wireless Networks," IEEE T-COM

# Thank You!

