IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 12 May 2025, accepted 3 July 2025, date of publication 14 July 2025, date of current version 23 July 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3588009

== RESEARCH ARTICLE

TREET: TRansfer Entropy Estimation
via Transformers

OMER LUXEMBOURG ", (Student Member, IEEE), DOR TSUR ", (Student Member, IEEE),
AND HAIM PERMUTER"™, (Senior Member, IEEE)

Electrical and Computer Engineering Department, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
Corresponding author: Omer Luxembourg (omerlux @post.bgu.ac.il)

This work was supported in part by Israel Science Foundation (ISF) under Grant 899/21 and Grant 3211/23, and in part by the
NSF-(Israel-USA) Binational Science Foundation (BSF) Grant.

ABSTRACT Transfer entropy (TE) is an information theoretic measure that reveals the directional flow of
information between processes, providing valuable insights for a wide range of real-world applications. This
work proposes Transfer Entropy Estimation via Transformers (TREET), a novel attention-based approach for
estimating TE for stationary processes. The proposed approach employs Donsker-Varadhan representation
to TE and leverages the attention mechanism for the task of neural estimation. We propose a detailed
theoretical and empirical study of the TREET, comparing it to existing methods on a dedicated estimation
benchmark. To increase its applicability, we design an estimated TE optimization scheme that is motivated
by the functional representation lemma, and use it to estimate the capacity of communication channels with
memory, which is a canonical optimization problem in information theory. We further demonstrate how
an optimized TREET can be used to estimate underlying densities, providing experimental results. Finally,
we apply TREET to feature analysis of patients with Apnea, demonstrating its applicability to real-world
physiological data. Our work, applied with state-of-the-art deep learning methods, opens a new door for
communication problems which are yet to be solved.

INDEX TERMS Deep learning, information theory, transfer entropy, transformers, neural estimation,

communication channels.

I. INTRODUCTION
Transfer entropy (TE), introduced by Schreiber [1], stands as
a pivotal information-theoretic measurement that captures the
coupling dynamics within temporally evolving systems [2].
Derived as an extension of mutual information (MI), TE is
distinctive for its inherent asymmetry, strategically employed
in diverse applications for causal analysis [3]. TE serves as a
robust measure of the directed, asymmetric information flow
between two stochastic processes. Specifically, TE quantifies
the reduction in uncertainty about a process observations,
incorporating the past values of another process to predict the
future values of the first [4].

TE has found applications in various domains. In neuro-
science, it has proven to be effective in deciphering functional
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connectivity among and between neurons to various physical
tasks [5], [6], [7]. Moreover, analysis between visual sensors
and movement actuators in embodied cognitive systems can
be one via TE [8]. TE is instrumental in social network
analysis, as it quantifies causal relationships between users
by measuring the directed flow of information. This enables
the detection of influential individuals and the examination
of how misinformation propagates through the network [9].
[10] utilizes a variant of TE to predict the direction of the
US stock market, incorporating TE as input feature. Lately,
[11] suggested a greedy algorithm for feature selection while
leveraging the connection between each feature and the target
with TE. Estimating TE is crucial for distinguishing between
correlation and causation, as it quantifies the direction and
magnitude of information flow between variables, thereby
uncovering the underlying causal structures in complex
systems
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A. ESTIMATION AND OPTIMIZATION OF TRANSFER
ENTROPY

Estimating information theoretic measures such as TE is
challenging, especially when the underlying data distribution
is unkown [4]. Many methods drows inspiration from MI
estimators. Among the estimation methods, Kernel Density
Estimation (KDE) [12], and k-nearest neighbors (KNN)
based methods such as Kraskov-Stogbauer-Grassberger
(KSG) [13], [14] are noteworthy, despite their struggle
with the bias-variance trade-off. Granger causality [15],
a statistical concept introduced by Clive W. J. Granger,
assesses whether one time series can predict another.
Specifically, if the inclusion of past values of a time series
X enhances the prediction of another time series Y beyond
the information provided by past values of Y alone, then X is
said to “Granger-cause” Y. This is typically evaluated using
vector autoregressive (VAR) models, where the predictive
power of past values of X on Y is tested for statistical
significance. Notably, Granger causality [15] also serves
as a foundational method for TE estimation, particularly
in Gaussian joint processes where it is equivalent to TE,
highlighting its effectiveness in quantifying information flow
between sequences [16], [17].

Copnet [18], a copula entropy-based method, builds
on empirical density estimation similar to KNN-based
approaches and successfully quantifies TE. By establishing
the relationship between copula entropy and MI, [18]
proposed a formulation of TE using four copula entropy
terms.

Recent advancements have embraced neural estimation
approaches like the Donsker-Varadhan (DV) and Nguyen-
Nowozin-Jordan variational formulas for Kullback-Leibler
(KL) and f-divergence to accurately estimate MI, directed
information (DI) rate, and TE [19], [20], [21], [22]. These
methods include MI neural estimation (MINE) for MI,
DI neural estimation (DINE) for DI rate, and TE neural
estimation (TENE) for TE, solving the optimization problems
posed by variational formulas using NNs.

TENE [22] uses the classifier-based conditional MI
estimator [23], which estimates two MI terms that are
subtracted to obtain TE. Besides using NNs for optimization
instead of a non-parametric method, TENE reduce the
number of terms in the TE formula to two MI values,
unlike Copnet. However, it suffers from input dimensionality
issues when estimating higher-order TE, since increasing
the sequence length to estimate larger-order TE introduces
input dimensionality challenges in the DV-based variational
formulation. In contrast, [21] estimate DI rate, a closely
related measure to TE, using RNNs, enabling estimation
for theoretically infinite memory sequences. Nevertheless,
DINE is designed to estimate information flow over infinite
sequences, which corresponds to the DI rate and is not
well-suited for finite-order TE estimation.

NNs have revolutionized fields such as computer vision
and natural language processing, with transformers now
dominating time-series analysis, overtaking RNNs due to
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their superior performance [24], [25], [26], [27]. Despite
the widespread adoption of MINE for information-theoretic
estimation, it has been subject to scrutiny due to its
limitations, such as high variance in gradient estimates,
bias in MI estimation, and training instability under high-
dimensional settings [28], [29], [30].

To address these challenges, we introduce TREET,
a transformer-based neural estimator of transfer entropy for
high-dimensional continuous data.

B. CONTRIBUTIONS

In this work, we introduce TREET, a novel TE estimator that
leverages the attnetion mechanism. Our method is grounded
in the DV representation, leveraging attention-based NNs
adapted to meet the structural constraints of DV optimization.
Theoretically, we establish the consistency of TREET and
develop an auxiliary neural distribution generator (NDG),
an input distribution generative module to facilitate TE opti-
mization, utilizing transformers. Empirically, we showcase
the versatility of TREET across various applications.

o Show that TREET outperforms TENE and Copnet by
extending the benchmark presented in [22] to address
longer order TE, particulary in scenarios of high valued
TE and long temporal contexts.

« Demonstrate the joint optimization of TREET and the
NDG for the estimation of the capacities of channels
with memory, supported by theoretical validations.
Experiments on long-memory channels emphasize
TREET’s ability to capture and utilize extensive histori-
cal dependencies while accurate estimating their channel
capacities.

o Derive a density estimator of the underlying process,
which emerges as a byproduct of the TREET optimiza-
tion.

o Apply TREET to the Apnea dataset [31], [32] for feature
analysis, illustrating its utility in uncovering causal
relationships within real-world data, paving the way for
broader applications in future research.

C. ORGANIZATIONS

The reminder of the paper is organized as follows, Section II
provides background on information theory and NNs.
Section III presents the TREET, its theoretical guarantees
and practical implementations, whereas the optimization of
TREET is described in Section IV. Experimental results
on TE dedicated benchmark, channel capacity estimation
and it’s memory analysis, probability density estimation and
features analysis on real-world data are shown in Section V.
Section VI concludes the paper and discuss future research
potentials.

Il. BACKGROUND

In this section, we elaborate on the preliminaries necessary
to present our method. We familiarize the reader with our
notation and provide the formal definition of TE, then relate it
to DI. Subsequently, we introduce the concept of transformer
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NN, define them, and discuss the theorem of universal
approximation. Lastly, we present the use of NN as estimators
for information theoretic measures.

A. NOTATION
Calligraphic letters, such as X, denote subsets of the
d-dimensional Euclidean space, R?. Expectations are
represented by [E, with all random variables defined in
the probability space (€2, F,P). The collection of Borel
probability measures on X is indicated as P(X), and Pac(X)
specifically refers to those measures that are absolutely
continuous with respect to Lebesgue measure, with their
densities denoted by lowercase p. Random variables and
vectors are uppercase, e.g., X, and stochastic processes are
in blackboard bold, e.g., X := (X} )<z for discrete time .

The sequence of [/ samples from time 7 in process X
is XtH'l = [X;, ...,XH_I]T, and for stationary processes,
X! = [Xo,X1,...,X/]1". For Q € Pac(X) with PDF ¢, the
cross entropy between P and Q is hce(P, Q) := —Ep[log¢].
Differential entropy of X ~ P is h(X) := hgg(P, P).
If 0 « P, the KL divergence Dy (P||Q) := Ep[log %].
MI between (X, Y) ~ Pxy is I(X; Y) := Dk (Pxy ||[Px @ Py).
Conditional KL divergence for Py|x, Qy|x given X ~ Py
is Dk (Pyx IQy|x|Px), and conditional MI for (X, Y, Z) ~
Pxyz is I(X; Y|Z) := Dk (Pxy|z|IPx|z ® Py|z|P7).

For a comprehensive list of all symbols and their defini-
tions, please refer to Appendix E.

B. TRANSFER ENTROPY

TE quantifies causal influence from the past of one sequence

on the present of another, formally given as follows
Definition 1 (Transfer Entropy): For jointly distributed

processes X and Y and k,l < oo, the TE, with parameters

(k, 1), is given by

TEx-y (k. D =1 (X YY) (1)
When the considered processes are jointly stationary, the
temporal index 7 in (1) can be omitted, and TE is written as

TEx-yv (k. =1 (X5 vilY/)). @
Note that our definition of TE includes X;, whereas other
definitions [1], [16], [22], [33] define TE as I(X'~'; v;|¥/ 7).
The main difference introduced by this change is that
the definition reduces to MI when the processes are
jointly independent and identically distributed (i.i.d.), i.e.,
TEx_y(0,0) = I(X;Y). When k = [, the abbreviated
notation TEx_, y(!) is used.

C. RELATION TO DIRECTED INFORMATION
DI [34], [35] is given by

n—1

(X" > v") =301 (X5 vy 3)
i=0
n—1

(X" — ") = ZTEX_,y(i). 4)
=0
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When (X", Y") are the n-fold projections of stochastic
processes X and Y, which (2) shows that DI is the sum of
TE terms. The DI rate can be defined as

1
IX—=Y):= lim -I (X" — Y”)
n—-oo n
9D i X" YY", )
n— o0

and (a) holds due to stationarity [21]. The DI rate can be
therefore observed as a limit case of TE, where the limit of
TE exists since TEx_.y(!) = h¥;|Y'"") — hy; X!, vi=1
and each conditional entropy is non-negative, decreasing for
increasing / (conditioning reduces entropy). Moreover, under
appropriate Markov assumptions, ¥; — /=1 — Y:OIO, Y —
x!, y'=1 — x=L,v=L), an equality between TE and DI
can be established,

Lemma 1: Define markov property Z, — Zp_1 — 72 gs
Py izt = Pz,z, . Let X and Y be two jointly stationary
processes such that the following markov property holds,

y,— vyl —y-!

—00°?

Y — (' YT - (X, Yoo,
forl € N. Then, form € N,m > [,
TEx—y(m) = TEx-y (D), (6)
and
TExy(m) =1X—Y). (7

Refer to Appendix A for detailed proof.

D. ATTENTION MECHANISM AND TRANSFORMERS

NNs capabilities can be enhanced by the attention! mech-
anism [24], which selects various combinations of inputs
according to their significance to the predictions. The
attention can address time series datasets, while weighting
over each time input. Attention comprises queries, which
represent the current temporal focus, keys, which match
against the queries to determine relevance, and values, that
contain the NN inputs to be weighted and act as a memory
function in time-series.

Definition 2 (Attention): Let Wo, Wk, Wy € R**4 gnd
let Q = XWg,K = XWk and V. = XWy be the queries,
keys and values, X = (x1,x2,...,x,), Vi1 x; € R Then the
attention is given by,

Attn(X) = softmax (QKT) v,

where softmax(Z); = exp[Zj1/> ,,—, exp [Zn] where Z €
R", is performed for each column of the dot-product between
queries and keys separately.

Transformers utilize positional encoding (PE), which maps
each input to the attention according to its ordinal index, and
is applied before the attention for time series applications
to deformation of the sequence structure. Attention can be

IThis paper considers the dot-product attention.
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generalized by considering several heads which operate in
parallel. Multi-head attention is given by:

MultiHead-Attn(X) = [H1, ..., Hy W), )

where

H; = softmax (Q(i)K(i)T) vO, i=1,....n (9

Wy € R4h%d g learnable parameter, and Q(i), K® v® are
the /M learnable projections of queries keys and values [24].
A transformer block is a sequence-to-sequence function,
which maps input sequence to an output sequence. Each
transformer block consists of attention layer and time-wise
feed-forward layer. Formally, a transformer function class is
given as follows [36]

Definition 3 (Transformer Function Class): Letd;, d,,l,v €

N. The class of transformers with v neurons, denoted

g(d dobV) . pdixl Réox! s the set of discrete-time with
the following structure:
h
AttN(Xpe) = Xpe + > W Wi Xpe
i=1
- softmax [ (W) Xpe) (WiXpe) |, (10b)
(W2 - Attn(Xpe) + b11lT) +hl],  (100)

where X € R%*! is the input sequence of 1 samples,
Y € R%X! js the transformer output, W € RYexdi Wi €
RAXdn Wi, Wi, Wi, € RImxde Wy e Rérx W3 €
Rexdr b e R by € R% are the weights and biases
of the network, E € R%*! is the PE of the input. The
number of heads h and the head size d,, are the parameters
of the multi-head attention and d, is the hidden dimension
of the feed-forward (FF) layer. Assuming that the input is
an additive product with it’s positional encoding product,
before the transformer blocks. The class of transformers with
dimensions (d;, d,, 1) is thus given by

U g(d,dg,l,l/)' (11)

veN
Transformers are a universal approximation class of sequence

to sequence mappings [36]:

Theorem 1 (Universal Approx. for Transformers): Lete >
0] €¢ NU c RT*i z < RI*do pe open sets, and
f U — Z be a continuous vector-valued function. Then,
there exist v € N and a v-neuron transformer g € g(d’ AL
(as in Definition 3, such that for any sequence of inputs
{(u'} € U and sequence of outputs {z'} € Z, we have

lrahy = gah| =< (12)
Theorem 1 establishes the umversal approx1mat10n capa-
bilities of transformers for sequence-to-sequence mappings,
whereas many real-world applications, such as time-series
forecasting and information flow estimation, require models

(d do 1)
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that respect the inherent causal structure of sequential data.
To address this, the class of causal transformers is utilized,
Gcif, which is built upon Gy and enforces a strict temporal
dependency, ensuring that each output at certain time step
is computed only from past and present inputs. This causal
structure is crucial for tasks such as TE estimation, where
information flow must be inferred without accessing future
observations. To this end, the notation of causal functions is
used

Definition 4 (Causal Function): Let F : R%*L — RdxL
be afunction for d,,d,, L € N. For a series of inputs U =
{ut} ., and function outputs Z = {Zt}z |» the function F is
as a causal function if, for any ty the output z;, depends only
on the inputs {u; }1<y,-
To enforce causality in the mapping function, a causal mask
is applied to the attention scores [24], ensuring that each
output only depends on past and present inputs, as defined in
Definition 4. Notably, only the attention mechanism performs
time mixing, so applying the causal mask does not alter the
rest of the transformer architecture. The causal mask, denoted
as M e R/, is applied element-wise to the dot-product of
keys and queries before the softmax operation and is given by

Myijy = [ 1 W= . (13)
—o0 otherwise

where —oo nullifies the corresponding entries after the
softmax operation. Hence, (10b) is written as,

h
AttN(Xpe) = Xpe + D WHWi Xpe
i=1
-softmax [ (Wi Xpe) (WoXpe) O M|, (14)

where © is the Hadamard (element-wise) product, meaning
that the multiplication is performed entry-wise between
matrices of the same dimensions. Although changing
the dot-product operation of the attention, the model
remains consistent with the universality framework, which
is grounded in the architecture’s capacity for pair-wise
operations rather than being constrained by the specifics of
the attention mechanism [36].

E. NEURAL ESTIMATION
Neural estimation leverages NNs to approximate and opti-
mize statistical functionals, such as mutual information
and statistical divergences. Neural estimators often utilize
a variational formula, such as the DV representation [19,
Theorem 3.2].

Theorem 2 (DV Representation): For any, P, Q € P(X),
we have

D.(PIQ) = sup_ Eplf] —log (Egle'T),  (15)
f:X—>R

where the supremum is taken over all measurable functions f

with finite expectations.

To obtain an estimate from the DV representation, the class

of functions is approximated with the class of NNs and
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expectations are replaced with sample means [20], [21],
[22], [37]. A provably consistent neural estimator of TE is
developed, that utilizes the power of the attention mechanism.

IIl. ESTIMATION OF TRANSFER ENTROPY

Transformers excel at capturing long-range dependencies
in time series, offering superior scalability and training
stability compared to RNNs [24]. While DINE [21], built
on RNNs, helped mitigate the high variance and bias
of neural information-theoretic estimators, self-attention’s
global receptive field and parallelism allow it to further
improve neural estimation in high-dimensional settings.

In this paper we harness to computational power of
transformers architecture and modify the attention mech-
anism to result with TREET, a new estimator of TE for
high dimensional continuous data. We begin by deriving
the estimator, then account for its theoretical guarantees.
Finally, implementation details are provided, outlining the
modifications of attention to neural estimation.

A. ESTIMATOR DERIVATION

The TREET provides an estimate of the TE (1) from a set
of samples D,; = (X", Y"™) ~ Pyuii yuss, where [ is
the memory order of the TE. Assuming that / <« n and
thus omitting the dependence on [ in the dataset notation,
ie. D, = D, . To derive TREET, first we represent TE
as subtraction of KL divergences, w.r.t. some absolutely
continuous reference distribution f’y over the alphabet V.2
We propose the following.

Lemma 2 (TE as KL Divergences): TE decomposes as

TEx—y (D) = Dy, \yi1x;7, — Dy, jyr-17, (16)

where
Dyllyl—]”?l = DKL (Pyllyl—l ”f)Y’Pyl—l) s
DY]|Y171XI||?1 = DKL (PY[|YI_]XI||7)Y‘PYI_|X1) ) (17b)

and the conditional KL divergence is Dk (Px|z||Py|z|Pz) =
Ez[DkL(PxzIPy|z)].

Lemma 2 is proved in Section VI-C, and follows basic
information theorstic roperties of TE %inddKleivergences.

V!l? s Vy )C+ V’lﬂ s VXy

Let Gl = Qétf' V‘),Qé(th = géﬂ b e sets
of causal transformer architectures for I, dy, dy, vy, vxy €
N. Each KL term can be approximated using the DV

representation (15) as follows:

Dyijyi-yz, = sup E [gy (Yl)]

8v€Gg

(17a)

—tog (B [ev 77" (182)
Dy yi-ixnyy, o e [g”' (Yl’ Xl)]

XY= ctf

~log (]E [egxy(m“’xl)]) . (18b)

21f Y is not bounded, the maximal bounds can be set, regarding to the
dataset properties.
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where g, € ggﬁ, 8y € Qé(tf Finally, replacing expectations
with sample means in (18a), yields the TREET, given by

fEX—)Y(Dn; D

= Sup Dyllyl—lxl”)';l(Dna gxy)
gxyegé(t}/

— sup Dyijyi-1)5,(Dn- &),
8y€Ycy

(192)

where

—~ 1< .
Dy pyi-17, Pn- 8y) 1= — 2.8 (YilH)
i=1

— log (% i egy(?iﬂ,YiiHl)) . (20a)

i=1
1 n
= i+1 i+1
DY1|Y1’1X1||?1(D"’ gxy) = ; ngy (YiH_ ’XiH_ )

=

~log (% Z 5o (T 77! *Xf“)). (20b)

i=1
where Y is iid. under absolutely continuous reference
measure under the alphabet )/, and

sup Dy, yi-1x1)7 (Dn: 8x) = Dy, jyi-1x17,
gxyegé(t{
sup Dy, yi-1)5,(Dn- 8y) = Dy, yi-17;-
8y€Ye
The TREET (19) is consequently given as the subtraction
of the solutions of two optimization problems (20a), (20b),
each optimizing its own NN. The optimization is performed
via mini-batch gradient ascent with the corresponding
model gy, gxy and the dataset D,. Next, we prove that the
TREET implemented with causal transformers is a consistent
estimator of TE.

B. THEORETICAL GUARANTEES

The TREET consistency is established when the joint
process (X, Y) is stationary and the TREET networks are
implemented with the class of causal transformers. We have
the following:

Theorem 3 (TREET Consistency): Let X and Y be jointly
stationary, ergodic stochastic processes. The TREET is a
strongly consistent estimator of TEx_.y(l) for Il € N, i.e.
P — a.s. for every € > 0 there exists and N € N such that
for every n > N we have

TEx_y(Dp; 1) — TExy(D)| < € 1)

where [ is the memory parameter of the TE.

The proof following the steps of 1) representation step -
represents TE as a subtraction of two DV potentials, 2)
estimation step - proves that the DV potentials is achievable
by empirical mean of a given set of samples, and 3)
approximation step - shows that the estimator built upon
causal transformers converges to TE with the corresponding
memory parameter. The proof is given in the Appendix B.
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Y,
B

Reference
Sampler —
" v,

FIGURE 1. The estimator architecture for the calculation of
Dyllyl—l "?I (Dnv gﬁy)-

Dy yi-17,(Dn; g6,)

Algorithm 1 TREET

Input: Joint process samples Dj,; Observation length / € N.

Output: TEx_, y(D,; I) - TE estimation.
1: NN initialization gg,, gg,, With corresponding parame-
ters 6, Oxy. -

: Step 1 — Optimization:

repeat
Draw a batch B,,: m < n sub-sequences, length L > /
from Dy, with reference samples Py for each.

5:  Compute both potentials Dy, yi-1x1,7 (Bm, go.,),

o~

DY/lyl_I ”'f[(Bm, ggy) via (20)
Update parameters:
Qxy < Qxy + V@\UvDY]\Yl_IXlHYI(Bm7 gexy)
Oy < by + Vo,Dy, jyi-17,Bn, 0,)
until convergence criteria.
: Step 2 — Evaluation: Evaluate for a sub-sequence (20)
and (19a) to obtain TEx ., y(D,; I).

b

—_
=)

C. ALGORITHM AND IMPLEMENTATION

This section describes the TREET implementation. We present
an overview scheme for estimation of TE and describe the
algorithm. Then the TREET architecture is outlined. In prac-
tice, the TREET optimization boils down to gradient-based
optimization of its parameters. Therefore, denote the TREET
networks with gg, , gg,, with corresponding parameters 6y, and
Oxy respectively. For simplicity, we address mainly gy, and
DY1| yi-1)7,» and afterwards explain how to extend all to gg,,
and Dy, 11y,

1) OVERVIEW AND ALGORITHM

The TREET algorithm follows an iterative joint optimization
of Dy, yi-1x17, and Dy, y1-1x1 7, through iterative mini-batch
gradient optimization. The algorithm inputs are /, D,,, which
are the TE parameter and the dataset, respectively. Every
iteration begins with feeding mini-batch sized m < n with
sequences length / in each model, followed by the calculation
of both DV potentials (20), that construct TEx_y(l) (19).
The calculated objective is then used for gradient-based
optimization of the NN parameters. The iterative process
continues until a stopping criteria is met, typically defined
as the convergence of TEy_ y(Dy;[) within a specified
tolerance parameter € > (. For evaluation, the sequence-wise
TE is estimated over as many samples and then averaged
to obtain the estimated TE. The full pipeline for estimating
DY1|YH 17,(Dn. 86,) is presented in Fig. 1, and the complete
list of steps is given in Algorithm 1.
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9y(¥i, Y ) g, (¥, Y
Dense Dense

Add & Norm Add & Norm

Feed Forward Feed Forward

Concat & Norm Concat & Norm

Fixed-Past- KV Modified Fixed-Past-
Causal-Attention Causal-Attention
Q K v Q K V
Embeddings Embeddings
[Posilion] + [ Value ] [Position] + [ Value ]
Vi, Y] Vi, Vi)

FIGURE 2. The TREET architecture for gy, with memory parameter /.

It illustrated using a single sequence as an example. However, it is
capable of parallel processing for sequences of length L > /, and in such
cases, the number of outputs for the function will be L — / + 1. Both
transformer share the same weights. The FPCA and the modified FPCA are
as elaborated in Section I1I-C2.

The DV representation, (15), suggest that the function f
is the same function for both terms that construct it, i.e. the
weights are shared for both network propagation. Hence, our
transformer in TREET, which constructed by (20), is the same
for both terms, for both DV representation. Exemplifying
with DY,|Y1*1||17,v both gy(Yl) and gy(I?l, Y!=1) use the same
learning parameters, from positional encoding layers and
attention to FF layers. The only difference between the two
terms, is in how the attention mechanism operates, which
essentially re-uses keys and values generated for the first
term, to generate the second in (18b). This model for g, is
visualized in Fig. 2. Next, we elaborate about the proposed
fixed past causal attention that constructs the TREET and
its variation, modified fixed past causal attention which is
required for the reference measurement distribution.

2) FIXED PAST CAUSAL ATTENTION

To comply with (20) in Section III-A, the model must
avoid using future inputs relative to the prediction point
and operate with a fixed sequence length of /. To enforce
this constraint within the attention mechanism, a masking
strategy introduced, termed as fixed past causal attention
(FPCA). Unlike the standard causal mask M € RL*L that
simply prevents access to future values, FPCA employs a
Toeplitz-like banded mask M’ € REXE defined as:
, 1 ifj—i<landj>i
M[i’j] ~ | =00 otherwise @
This ensures that each attention query attends only to the

current and previous / — 1 inputs, maintaining a fixed-length
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historical context. The FPCA is given by
FPCA := softmax(QK ' © M")V (25)

FPCA matrix is visualized in (22), as shown at the bottom of
the page. Note that only the last L — / + 1 results from the
transformer outputs sequence are used, in order to keep the
past information fix to length /. Hence, the complexity of the
proposed attention operation is O(Lld,).

3) REFERENCE SAMPLING WITH FPCA
This section describes the calculation of gy(Y;, yi=h (20a).
Denote the scoring value after the softmax operation of FPCA
for query g; with key k; as
R eliki

i) = —, Jj<Ii (26)

(i.)) Z;n:l'_l eqi'km
Since FPCA with memory parameter / is used, the attention
output at time ¢ can be written as FPCA;, = R ,—nvi—1 +
R(tﬁ,lﬂ)vt,lﬂ + ... + R¢,nve. In order to calculate
g(Yr, Ytt:ll), FPCA should use information from the keys
and values that were used to calculate gy(Yt’f 1)~ To that end,
we modify the FPCA mechanism as follows:

ediki
Wh S ik j=<i
.. e m=i—1 € "
Raj = ik o 27
s =J-

In this case, the modified FPCA for time ¢ can be written
as Modified-FPCA; = R.i—nyvi—i + Rai—1+1)Vi—i+1 +
...+ R V. Summarizing, the second term (20a) generated
by the modified FPCA, contains all keys and values of the
relative past and query, key and value for the current present,
which are a function of the reference distribution. The
dot-product matrix between queries and keys is visualized
in (23), as shown at the bottom of the page, for [ <
L, and modified FPCA is written as Modified-FPCA =
softmax(QK T ® M’)V. FPCA and modified FPCA imme-
diately extend to multi-head setting.

In our implementation, the reference input ?, for the
second term in (20a) are drawn from the uniform measure
on the bounding box of the current batch of ¥ samples, while

theoretically, our method allows to draw from any positive
continuous distribution measure; for fyrther details check
Appendix B. The implementation of DY”YH x117,(Dn» 8xy)
(20b) is obtained by concatenating the X' values with the
corresponding Y/ or (Y7, Y'=1) values for both the FPCA and
the modified FPCA, respectively.

IV. OPTIMIZATION OF ESTIMATED TRANSFER ENTROPY
Many data-driven problems reduce to steering an input
distribution to maximize information flow, analogous to
reinforcement learning, where a policy is learned to maxi-
mize expected reward. Thus, applications can leverage TE
optimization by controlling the distributions of processes
X and Y, either independently or jointly. Communication
channel capacity offers a canonical example: it equals the DI
rate and, by Section II-C, can be estimated via TE. Because
capacity embodies the fundamental limit of information
flow, demonstrating TREET optimization with on this task
provides a proof-of-concept readily generalizable to other
TE-based control problems.

Remark 1 (Channel capacity): Consider channels with
and without feedback links from the channel output back to
the encoder. The feedforward capacity of a channel sequence
{Pyonn },for neNis

) 1
Cpr = lim sup —I(X"; Y™, (28)
n—00 Pyn T
and the feedback capacity is
1
Crg = lim  sup -I(X" — Y"). (29)
=00 PXn”yn—l

The achievability of the capacities is further discussed
in [38], [39], and [34] showed that for non-feedback
scenario, the optimization problem over Pxnjyn can be
translated to Pxr, which support the use of DI rate for both
optimization problems [21]. Under some conditions TE can
estimate the DI rate, as presented in Section II-C.

Focusing on channel capacity, and assuming that the input
distribution sampling mechanism is controllable, we propose
an algorithm for the optimization of estimated TE with
respect to the input generator. We refer to this model as
the neural distribution generator (NDG). The estimated

4+ k@ G+ * K+ -0 . -0
KT = —00  q(t+1+1) - k@+1) q(+i+1) - K@i+ —00 : (22)
: —00 ’ —00
—00 —00 qu+L) - ka+L—n - qa+L) k@t
G+ - k@ Ge+l) - ket —00 .. —00
Q/K\T _ =00 qti+1) - ka+1) Gr+1+1) - ki) —00 : _ (23)
_m : _”’i
—00 e —00 qa+r) “ka+L-n - Ga+r) - katr)
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Xt

I 11

FIGURE 3. The recursive process for the NDG with transformers.
If feedback presents, the input includes the past channel output,
concatenated with the corresponding value X; at time i.

TE optimization methodology is inspired by the proposed
methods from [21]. However, the adaptation to transformer
architectures considers a different implementation of the
proposed scheme. As the TREET estimates TE from samples,
the NDG is defined as a generative model of the input
distribution samples, and is optimized with the goal of
maximizing the downstream estimated TE.

Lemma 3 (Optimal TE): Let (X,Y) be jointly stationary
processes, and the TE with memory parameter | € N. Then,
the maximal TE, TEY_, y(I), by X is

TEY .y (D) :=supI(x’; vy~ 1), (30)
Py
The proof of the lemma is giv)én in Appendix D. The lemma

suggests that NDG with input sequence length / is enough
to achieve maximum TE with memory parameter [/, for
independently controlling the distribution of X.

The NDG calculates a sequence of channel input X'
through the mapping

he U ZEh - X, i=1,....n, ()

where U, is the random noise drawn from Py € Pac(U), U C
RY, which cause the stochasticity, Zl’_1 are the past
observation of the generated process created by the model,
and the channel corresponding outputs if feedback exists. /g
is the parametric NDG mapping with parameters ¢ € .
By the functional representation lemma [40] and the restated
lemma in [21], the distribution of X is achlevable from
an NN function. After [ iterations, with Z' storing the
information of previous iterations, the NDG generates the
whole sequence.

Transformers need access to the whole sequence at once,
in contrast to RNNs where a single state can theoretically
represent the past sequence. Thus, the input sequence to
the NDG with transformer is created via past outputs of
the transformer itself (and corresponding channel outputs
if feedback exists) as depicted in Fig. 3, and the past
observations are taken without gradients to prevent back-
propagation through iterations. In our implementation, the
input convention for each time step is a concatenated vector
of [X;, U;]T to maintain the input structure of samples and
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FIGURE 4. Complete system for estimating and optimizing TREET with
NDG while Altering between the models to train on. (x) If feedback
presents, past channel output realizations included.

Algorithm 2 Continuous TREET Optimization
Input: Continuous sequence-to-sequence system S; Obser-
vation lengghl e N.
Output: TEX_)Y(U 1), optimized NDG.
1: NN initialization gs,, gs,, and hy with corresponding
parameters 60y, Oy, ¢.
2: repeat
3 Draw noise U™, m < n.
4: Compute batch Bf, sized m using NDG, S
5
6

if training TREET then
Perform TREET optimization - Step 1 in
Algorithm 1.

7: else Train NDG .

8 Compute TExﬁy(B%, 86y 80,5 Mg 1)
using (19a). '

9: Update NDG parameters

10: ¢ < ¢ + VyTEx_y(Bh, 86, 86,5 Mg 1)

11: until convergence criteria.
122 Draw U™ to produce / length sequence and evaluate
TEX %Y(D}’H )

13: return TEX_)Y(U 1), optimized NDG.

random noise for every projection in the network. In relative
history time steps, the noise is replaced with a zero vector,
and for the present time, the input X; is replaced with a zero
vector.

To estimate and optimize the TE at once, we jointly training
the TREET and the NDG. As described in Algorithm 2 and
Fig. 4, in each iteration only one of those model is updated
by maximizing each DV potentials, Dy, -1, Dy, yi-1x17,»
for TREET model and by maximizing TEx_,y for NDG
model. The entire pipeline of one iteration creates a sequence
length [ from the NDG, by iterating it / times with some
initiated zero values - which creates the dataset, Df =
(X9 y®m). Afterwards, feeding each sample sequence
from the dataset to TREET for achieving the corresponding
networks’ outputs as mentioned back in Algorithm 1,
which constructs the loss that generate gradients backward
according to each model. Next, we demonstrate the power of
the proposed method for estimating the channel capacity.
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V. EXPERIMENTAL RESULTS
Evaluation of TREET comprises four interconnected exper-
iments that build upon one another to tell a unified
narrative: first, assessing core TE estimation accuracy; next,
harnessing TREET for optimization of information flow;
then demonstrating TREET’s built-in distribution-estimation
utility; and finally applying it as a feature-analysis tool
on real-world clinical data, illustrating how foundational
performance extends seamlessly to practical applications.
Section V-A benchmarks TE estimation on synthetic
long-memory data, extending [22] and comparing TREET
against TENE and Copnet. Section V-B integrates TREET
with NDG to optimize communication channel capacity,
compared with DINE, the RNN-based DI estimator [21], and
Section V-C further analyses the optimization and estimation
memory performance. While estimation experiments are
about continuous spaces of distributions, discrete spaces can
easily be applied to the algorithm of TREET. Section V-D
applies TREET to PDF estimation of memory processes,
demonstrating adaptability to continuous-space distribution
tasks. Section V-E presents a real-world case study using
TREET for feature analysis on an Apnea patients dataset.
All experiments consider a TREET network with a single
FPCA layer follows by a single FF layer, and for the
optimization procedure the NDG consists of transformer
with a single causal-attention layer and a single FF layer.
Further details about the implementation® are provided in
Appendix F.

A. TRANSFER ENTROPY BENCHMARK

In order to present TREET as robust estimator, we extend
the benchmark from [22] to handle higher orders of TE.
Considering the following system:

Zt, ifYt_l <)\.,

Y = (32)
l [sz_lJm/l—pzZt, else,

where A € R is the process threshold, p € [0, 1]
determines the dependency between X;_; and Z;, for X;, Z;
i.id. M(O, 1). The following equality holds - TEx_,y(l) =
TEx_y(1), VI > 1[22]. Comparing TREET with Copnet
and TENE.

Copnet [18] is empirical-density based non-parametric
method that estimates the TE by four different values of
copula entropy, which each one equals to a different MI value.
We edited their version of estimator to handle conditioning
on longer context length than one. Another estimator is
TENE [22], parametric estimator, which utilizes the DV
representation for estimation of two MI terms which are
non-conditional, thus is prone to break with higher orders
of TE since the input dimension to the DV optimization
function will increase. For a fair comparison, the experiment
was recreated using NN architectures with similarly sized

3The code implementation can be found at our Github repository
https://github.com/omerlux/TREET
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TABLE 1. TE estimation extended benchmark.

A /3 2 a1 o 1 2 3
Ground
Model, wth | 0.829 0.811 0.699 0.415 0.132 0.019 0.001
1 0.812 0.792 0.667 0.395 0.126 0.016 0.0
2 0.826 0.796 0.681 0.392 0.117 0.014 O
= 4 0.825 0.798 0.682 0.393 0.115 0.013 0
E 7 0.82 0.799 0.679 0.405 0.121 0.015 0.001
E 9 0.815 0.802 0.686 0.403 0.126 0.017 0.001
19 0.824 0.805 0.69 0.405 0.128 0.017 0.001
49 0.829 0.811 0.694 0.409 0.128 0.018 0.001
99 0.829 0.81 0.693 041 0.115 0.017 0.001
1 0.823 0.807 0.696 0416 0.126 0.014 O
2 0.814 0.782 0.688 0.39 0.115 0.013 0
@ 4 0.76 0.602 0.382 0.119 0.013 -0.001
E 7 0.698 0.354 0.09 0.013 0.0
= 9 0.359 0.091 0.014 0.0
19 0.038 0.021 0
49 0.027 0.01 -0.002
99 0.102 -0.002 -0.002
1 0.835 0.81 0.688 0.397 0.111 0.0 -0.022
2 0.819 0.786 0.676 0.377 0.106 -0.004 -0.017
- 4 0.9 0.864 0.747 0.469 0.193 0.087 0.079
g 7
S 9
19
49
99

Comparing TREET, TENE and Copnet. The process is given by (32)
and the true TE can be calculated for varying A [22]. The color inten-
sity signifies the extent of deviation from the ground truth. The value
is constant for any order - I > 1 since TEx_,y (1) = TEx_,y(1). Our
proposed benchmark is an extended version of the one presented in
[22] to include variable length input to calculate different orders of TE.
In the given benchmark, p is set to 0.9, while the A and [ parameters
are varied.

parameters for both TENE and TREET and a training batch
size of 1024.

As shown in Table 1, TREET achieves performance
comparable to TENE and Copnet for TE parameter [ = 1,
and process parameter p = 0.9. However, as [ increases, both
TENE and Copnet struggle to estimate TE accurately due to
the increasing input dimensionality associated with longer
context windows. In contrast, TREET effectively handles
the additional temporal information, even for / = 99.
This highlights the advantages of TREET’s architecture in
accommodating time dependencies.

B. CAPACITY ESTIMATION FOR FINITE MEMORY
PROCESSES

As shown in Section II-C, under some conditions TE is equal
to the DI rate and converges to it. DINE [21] proved that it
can estimate a capacity of stationary channels by optimizing
the DI rate estimator and the input distribution of the channel
Px, as Remark 1 mentions about channel capacities. Our
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FIGURE 5. Channel capacity estimations. (a) Capacity of AWGN channel as a function of vector dimension for the 0 dB case. (b) Capacity of AWGN channel
as a function of SNR. (c) Feedback capacity of Gaussian MA(1) channel with variate SNR. (d) Feedforward capacity of Gaussian MA(1) channel with variate
SNR. (e) Feedback capacity of Gaussian AR(1) channel with variate SNR. (f) Feedforward capacity of Gaussian AR(1) channel with variate SNR.P represents

the power constraint and the noise parameter is o2.
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FIGURE 6. NDG input noise and output X, 0 SNR case.

experiments have shown that for memory-less channels and
for memory channels with and without feedback, TREET
(for an appropriate / order) can approximate the DI rate,
which is estimates the capacity, with the joint optimization
procedure of the input distribution (NDG) and TE estimation.
All of the results are presented in Fig. 5. Important to
note that channel input constraints are essential for ensuring
that the transmitted signals are well-suited to the channel’s
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characteristics and limitations. In this experiment, the power
constraint on the input signal of the channel, which is
implemented via normalizing a batch of samples to a
certain statistics according to the power constraint. While
we present results on continuous-valued processes, TREET
can be optimal for discrete data, using methods, such as
reinforcement learning optimization [41].

1) AWGN CHANNEL
Consider additive white Gaussian noise (AWGN) channel
with i.i.d. noise,

Z ~ N, o%),

Y =X + 74, t e,

X; is the channel’s input sequence, coupled with the average
power constraint ]E[XE] < P. The capacity of this channel
is simple for analytical calculation, and is given by the
following formula C = 0.5log (1 + P/o?). Since the process
is memoryless, maximized both DI rate and TE (for any
! > 0) coincide with the channel capacity. We estimated
and optimized the TREET according to Algorithm 2 and
compared the model performance with the DI rate estimation
and optimization. Results are presented in Fig. 5a and
Fig. 5b. It can be seen that both are estimating the right
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FIGURE 7. Attention weights at training convergence of TREET optimized by NDG. Each row in the matrices represent a different
input sequence and the columns are the weights of past values i from current prediction t (i.e. i = 0 represent the present prediction
t). For the GMA(100) process, it can be observed that giving enough time-steps, TREET easily observes at the related time

i = 100 where the information needed to be gathered from, whereas shorter length lead to instability of training.

TABLE 2. Capacity estimation for the GMA(100) channel at 0 SNR with
varying memory lengths. The true capacity is 0.405 [nats]. In this setup,
the memory length / for DINE corresponds to the bptt length of the LSTM,
and for TREET, it represents the sequence input length. DINE estimates
the DI rate regardless of input length, whereas TREET estimates the
order-/ TE. Each value is averaged over ten experiments with different
random seeds. Best estimations in bold.

TREET DINE
! Estimated Absolute Estimated Absolute
capacity [nat] error (%) capacity [nat] error (%)
60 0.19 53 0.30 25
70 0.29 29 0.35 15
80 0.28 31 0.34 17
90 0.29 28 0.30 26
100 0.37 9 0.36 12
110 0.38 7 0.33 20
120 0.36 11 0.33 18
130 0.36 11 0.34 17
140 0.35 14 0.26 35

capacities which are the MI, although their access to multiple
past observations. Moreover, changing the input dimension
changes the estimated capacities, as expected. Note that
larger dimensions cause error of in estimation and still is an
open academic research [28], [29], [30]. To further analyze
the learned distribution, we visualize the optimized NDG
mapping in Fig. 6. It can be seen that the optimized NDG
maps the uniform (U ~ [—1,1]) inputs into Gaussian
samples. This observation meets our expectations, as the
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distribution that achieve the channel capacity in AWGN is
the Gaussian distribution [42].

2) GAUSSIAN MA(1) CHANNEL
Given a Moving Average (MA) Gaussian noise channel with
order 1,

Zy = Nt + aN;_y,

lext—i_zt, IGZ,

where N; ~ N(O, 02) are ii.d. and X; is the input to
the channel with power constraint E[Xf] < P. We apply
Algorithm 2 to both feedforward and feedback settings,
comparing with ground truth solutions and the DI-based
scheme. The feedforward capacity can be calculated with the
water-filling algorithm [43], whereas the feedback capacity
can be calculated by the root of forth order polynomial
equation [44]. As seen in Fig. 5c¢ and Fig. 5d, our method
successfully estimated the capacity for a wide range of SNR
values, compared to previous method.

3) GAUSSIAN AR(1) CHANNEL
The case of autoregressive (AR) Gaussian noise channel of
order 1 is similar,

Zy =Ny +aZ;q,

YIZXt‘i‘Zt, tEZ,

where N; ~ N(0,0?) are iid. and X, is the input
to the channel with power constraint E[th] < P. The
capacity is also affected by the existence of feedback.
Feedforward capacity can be solved with the water-filling
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TABLE 3. Comparison of density estimation models on the HMM process
without state delay (8 = 0), with Gaussian and uniform noise. Results
show KL divergence and TV distance relative to the analytical conditional
density, averaged over ten trials. Best in bold; second-best underlined.

Model Gaussian Uniform
KLD TV KLD TV
Kalman 1.076 0.467 1304  0.408
KDE 1.135 0.608 0.847 0.417
MDN 1.098 0.632 0.667  0.460
DINE 0.795 0.525 0.475 0.291
TREET 0.797 0.524 0.482 0.296

algorithm [43] and [45] prove how to achieve the feedback
capacity analytically. Fig. Se and Fig. 5f compare the results
TREET estimator with the previous one, showcasing it’s
successful estimation on variated SNR values.

C. CAPACITY ESTIMATION - MEMORY ANALYSIS

Previous experiments showed the capability of correctly
estimating TE. Delving deeper into the memory effectiveness
of TREET, we tested Gaussian MA channel, as presented
before, but with time delay of 100 steps.

Z; = N; + aNi_100,
YZ=XI+ZI’ tGZ

It is notable that to achieve the correct capacity, the
information from ¢+ — 100 steps must be an input to the
TREET, hence any TE estimation with order / < 100 will
result a false estimation value. The estimation optimization
algorithm is tested with shorter input length and longer
input length, than the demanded one. Fig. 7a shows the
analysis of the attention weights related to the DYzIY’*‘ X!|T,
model with [ = 130 input steps (i.e. TEx_ y(130)), at the
convergence stages of training, and Fig. 7b considers the
same for [ = 90 input steps (TEx_, y(90)). It is evident from
Fig. 7 that TREET effectively captures relevant information
from long time series when provided with a sufficient input
length. However, when the input length is too short, critical
information is lost, leading to a complete noisy attention
weights.

Additionally, we compare TREET with DINE for different
input lengths on the GMA(100) channel. It is important to
note that DINE can theoretically deal with long sequences
even if given a shorter backpropagation through time (bptt)
input length than the process memory due to state propaga-
tion. However, as seen in Table 2, DINE struggles to estimate
the correct capacity under long memory. In contrast, TREET
achieves its best estimation for memory lengths larger than
100, with an absolute error rate of less than 14%. When
the TREET memory is shorter than the channel memory, its
performance significantly degrades, with absolute error rate
no less than 28%.
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TABLE 4. Memory-delay analysis of density estimation on the HMM
process (B # 0) with varying state delay k. TREET and DINE are compared
in terms of mean KL divergence and TV distance relative to the analytical
density, averaged over ten trials. Best in bold; second-best underlined.

TREET DINE MDN
KL TV KL vV KL TV KL TV

2 0933 0569 0934 0570 1460 0.708 0.636 0.405
5 1.036 0601 0875 0.556 1454 0.707 1284 0.599
10 0984 0.585 1299 0.662 1450 0706 1.239 0.603
15 0992 0587 1441 0704 1448 0707 1232 0.602
25 0993 0.587 1451 0706 1443 0704 1.196 0.598
50 0993 0.589 1452 0707 1453 0707 1.193 0.597

Kalman

D. TREET-BASED DENSITY ESTIMATION
In this section, we demonstrate how optimized TREET
networks can be used for density estimation - a byproduct
of the TREET optimization procedure that requires no addi-
tional training. Specifically, TREET enables the estimation of
the conditional density function of the observed continuous
process y, namely Py y-1, directly from the learned
netchk Dy”yz_.”yl./lfurthermore, since TREET optimizes
both Dy yi-1}7, and Dy, yi-1x17,, it also provides access to
the more informative conditional density Py, |y:-1 x:, enabling
flexible estimation depending on the available context.
Given the optimization of D y,|v-17,> the network outputs
the log-likelihood ratio between the conditional density
Py, y—1 and an explicitly known reference density Py, . Thus,
the true conditional density is recovered via:

o~

PYtlytfl(ytb/t_l) ~ exp (Dyllyl—lllfl(Dnv gy)) . ﬁY,(Yt)-
(33)

This expression defines an_unnormalized density func-
tion, since the optimized DY;IYHHYI approximates the
log-likelihood ratio (up to an additive constant) between
the true conditional density and the reference density,
as guaranteed by the DV representation. Consequently, the
probability given by this equation is not directly normalized.
To obtain a properly normalized conditional density, the
continuous domain of Y; is discretized into a sufficiently
fine grid, evaluate the unnormalized density at each grid
point, and numerically normalize by summing over all points.
In practice, this numerical integration approach provides a
valid approximation of the conditional density.

Our method builds upon previous work [46], which
addressed non-time-related density estimation, and [47],
who proposed a time-related approach based on the DINE
framework. While DINE is designed to capture limiting
(stationary) densities, TREET leverages a fixed memory
length, aligning naturally with memory-aware estimation.

E. FEATURES ANALYSIS IN PHYSIOLOGICAL DATA
Motivated by the results in [4, Chapter 7.1], we tested the
TREET on the Apnea dataset from Santa Fe Time Series
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FIGURE 8. Transfer Entropy estimation on physiological data. The Apnea dataset consists of heart rate and breathing rate measurements.
The information flow for patient diagnosis is diagnosed. Patients with Apnea experience breathing cessation, leading to alterations in heart

rate during sleep.

Competition4 [31], [32]. This is a multivariate data that
have been recorded from a diseased patient of Apnea in a
sleep laboratory, which is a condition characterized by brief,
involuntary pauses in breathing, particularly during sleep.
Each sample consists of three different variables from a
specific time, with a sample rate of 2 Hz. The three features
are heart rate, chest volume (which is the respiration force)
and blood oxygen concentration. A sampled sequence of
heart rate and breath rate (chest volume) is presented in
Fig. 8a.
The hidden and observed processes are modeled as

X =aX—1 + BXi—k + Wi,
Yt = ]/Xt + Vt, (34)

where W;, V; are i.i.d. innovations (either Gaussian, zero
mean and 62 = 0.5, or uniform on [—1, 1]). The process is
stationary (and ergodic) iff every root z of the characteristic
polynomial 1 — az — Bz = 0 lies outside the unit circle,
|z] > 1 [48]. We conduct two experiments - the first is classic
HMM without any state delay (k = 0), with parameters
a=09,8=0y =050} = o} = 0.5, and fix the
memory length of all models to [ = 3. TREET employs this
| = 3 memory parameter for TE estimation, and DINE’s bptt
is likewise truncated to three steps. The second experiment is
memory analysis by applying state-delay, with 8 # 0 and
variate delay k. Set « = 0.001, 8 = 0.9, y = 0.9,
ovzv = O"% = 0.5, and TREET’S memory [ = k + 5 and
compared all but KDE due to computational complexity of
the algorithm for larger ks.

For the classic HMM, TREET compared against several
baselines: DINE; mixture density networks (MDN) [49],
which output a Gaussian mixture model for conditional den-

4https://physionet.org/content/ santa-fe/1.0.0/
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sities; conditional KDE [50], which performs non-parametric
smoothing over the conditioning variables; and the Kalman
filter [51], the optimal solution in the Gaussian HMM
(without delay) setting. To evaluate TREET’s density-
estimation performance, we compare the estimated con-
ditional density of observations Py y1 to the analytical
conditional density Py,|x,, which assumes full access to the
latent state. As metrics, KL divergence is computed and the
total variation (TV) distance between each model’s estimate
and the analytical density.

Table 3 reports these distances for the classic HMM
experiment averaged over ten trials. Under both Gaussian and
uniform noise, TREET matches or exceeds the performance
of DINE, mixture density networks, conditional kernel
density estimation, and the Kalman filter. Table 4 summarizes
the memory—delay analysis. For each state delay k €
{2, 5, 10, 15, 25, 50} we set the memory for each algorithm
tol = k + 5, e.g. TE parameter for TREET and bp#t for
DINE. and report mean KL divergence and TV distance over
ten trials. TREET matches or improves upon DINE’s KL and
TV scores for every state delay, and begins to pull away from
both MDN and the Kalman filter once k£ > 10, demonstrating
its ability to capture long—range dependencies. At very
short delays, however, the Kalman filter and DINE remains
competitive — reflecting their explicit state-update schemes
suited to near-Markovian dynamics.

Overall, these two experiments confirm that TREET
provides accurate, memory—aware conditional density esti-
mates with no additional training beyond TE optimization,
outperforming existing methods even as the required memory
length grows.

Determining the interaction between different physiolog-
ical features is crucial for diagnosing diseases by revealing
causal connections within the human body, enabling targeted
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diagnostics and personalized treatments according to identi-
fied risk factors. Therefore, TREET was applied to determine
the magnitude and direction of information transfer in the
given setting. Both heart rate and breath features were
used to compare the TE measurements TEgreath_s Heart(k» 2)
and TEpeart— Breath(k, 2) for variable length k that is the
Y process’s history observations length. The results are
presented in Fig. 8b and are aligned with the results of [4] (for
k, [ = 2) and extend it with tests on variate history length of
Y process.

Notably, for every considered &, the TE from the breath
process to the heart process is consistently higher, aligning
with the diagnosis of Apnea disorder (abrupt cessation
of breathing during sleep). In terms of information flow,
our results indicate that the breathing process transfers
more information regarding the behavior of the heart rate
process, than the opposite direction, since the value of the
estimated TE is consistently higher in comparison, whereas
in information theory it essentially reflect that the X process
has more to reveal about Y’s current value than Y ’s past itself.

Furthermore, in the influence direction TEgeath—s Hearts
increasing the number of visible heart rate history samples
decreases the information transfer, since a longer history of
heart rate provides more insight into future outcomes than the
instantaneous breath value. However, TEHeart— Breath Shows
that for variate k values, the majority of TE results indicate
that the heart process barely affect the breathing process in
Apnea patients.

The conclusion of this experiment provides valuable
insights and validates established scientific knowledge.
While it is generally understood that an increase in heart
rate corresponds with an increase in breathing rate, patients
with Apnea exhibit a distinct phenomenon: a sudden
cessation of muscle activity during inhalation (i.e., breathing
cessation) significantly affects the heart rate, contrary to the
behavior observed in healthy individuals. This experiment
corroborates the findings presented in [4] and [52] and
further introduces a novel insight - namely, that the estimated
TE decreases with increasing context (history length) of
the process Y. This observation aligns with the theoretical
expectation that incorporating a longer historical context of
Y reduces uncertainty, thus lowering the resulting TE values.

VI. CONCLUSION AND FUTURE WORK

This work presented an attention-based architecture for
estimating TE in ergodic and stationary processes. We devel-
oped a DV-based neural TE estimator, established its
consistency, and introduced a novel modified attention
mechanism tailored for the task. Our extended TE benchmark
demonstrates its superior performance relative to existing
methods. Furthermore, we designed an optimizer for the
estimated TE, which was subsequently applied to channel
capacity estimation, and proved to perform greatly for higher
order TE estimation. In addition, showcased its inherent
probability density estimation functionality, which emerges
directly from the TE estimation training and finally evaluated
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TREET’s capability in causal feature analysis on the Apnea
dataset.

With the increasing popularity of sequential data in
contemporary machine learning, TREET will be leveraged
for information theoretic analysis and architecture design
through the lens of causal information transfer. Potential
applications include enhancing predictive probabilistic mod-
els, refining feature selection processes, reconstructing com-
plex networks, improving anomaly detection capabilities,
and optimizing decision-making in dynamic environments.
Moreover, building on the work in [53], the TREET
optimization scheme will be extended to sequential data
compression tasks.

APPENDIX

A. PROOF OF LEMMA 1

Let X, Y be two jointly stationary processes that pose the
markov property with / € N and m > [, then

TEx—y ()

=1 (x" vy

@1 (xt,: vivi))

21 (xms vy

= TEx—y(m), (35)

where (a) is true from the markovity, and (b) transition is
index shift which valid due to process stationarity. Observing
the DI rate,

I(X - Y)

@ 1«

@ . 1 ivoviel

£ Jim 5 201 (x5 i)
=

tim 5[ (7))

i=1

® lim h (YnlY”_1> —h (mx", Y”—l)
n— o0

= lim I(X"; Y,,|Y"—1)

n—o0

(2 lim TEX_> Y (n)
n— o0

D TEx,y(m), (36)

where the limit in (a) exists whenever the joint process is
stationary, transition (b) is valid because the limit exists
for each series of conditional entropies, and since condi-
tioning reduces entropy, the limit for each normalized sum
of series is lim,_, 5 N (YnlY"_l) ,lim, .o N (Yan", Y”‘l),
respectively [42, Theorem 4.2.1]. Since the limit exists for
the conditional MI, transition (c) is valid by definition
of TE, and the TE with limit of parameter m exists,
and (d) is from (35) for n > m. Concluding the
proof. [
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B. PROOF OF THEOREM 3

The proof following the steps of representation step -
represents TE as a subtraction of two DV potentials, esti-
mation step - proves that the DV potentials is achievable by
empirical mean of a given set of samples, and approximation
step - shows that the estimator converges to TE with the
corresponding memory parameter /. Thus concluding that our
estimator is a consistent estimator for the TE.

Let {Xj,Yi}icz be the two values of a process X,Y
respectively, and P be the stationary ergodic measure over
o(X,Y). Define Px» yn = Plyxn yn as the n-coordinate
projection of P, where o (X", Y") is the o-algebra generated
by (X", Y"). Let D, = (X", Y") ~ Pxnyn. Let Y ~ Qy be
an absolutely continuous PDF, independent of {(X;, Yi)}icz
and its distribution noted as Py. The proof is divided to three
steps - variational representation, estimation from samples
and functional approximation.

1) REPRESENTATION OF TE
In order to write TE as a difference between two KL
divergences, recall Lemma 2 - let,

DYl|Y”1H171 = Dr (PYIIYI*1 | Py, PYI—I) )

DYllyl—lxl”'fI = DKL (PY”Y]’IXI”ﬁY[}PY]*IXI) . (37b)
Then

(37a)

TEX%Y(Z) = DY]\Y171XI||?[ — DYllYlill‘Yl. (38)

This lemma is proved in Appendix C. Estimating the KL
divergence is applicable with the DV representation 2

Dyjjyr-nyy, = sup ]E[fy(Yl)]
HiQy—>R

—logE [ef«'v(ylilyl)] , (39a)

where Q) = yl. For the other term, the DV representation
Dy, yr-1xty7, = sup

1S,
B (x'. 7))
XyiQXXy%R

—logE [ef%y<XI~Y H*Z)] . (3%)

where Qyy =X ' Y!. The next section refers to (39a) but
the claims are the same for (39b).

2) ESTIMATION
By the DV representation, the supremum in (39a) achieved
for

. dPyi
fyi = log (—Y~)
d(Pyi-1 ® Py))

= logpy,|yi-1 — logpy,, (40)

where the last equality holds due to Pyr < Pyi-1 ® ﬁy,,
both measures have Lebesgue densities. Although it is not
mandatory to select the reference measurement as uniform,
choosing a uniform reference measurement can result in
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a constant that can be neutralized to obtain the likelihood
function of ¥;|Y'~!. This approach allows for simplification
and facilitates the estimation process. Empirical means
can estimate the expectations in (39a), while applying the
generalized Birkhoff theorem [54], stated next:

Theorem 4 (The Generalized Birkhoff Theorem): LetT be
a metrically transitive one-to-one measure preserving trans-
formation of the probability space (2, F, P) onto itself. Let
go(w), g1(w), ... be a sequence of measurable functions on 2
converging a.s. to the function g(w) such that E[sup; |g;|] <
oc. Then,

! > 8ilT'w) = Elgl. P—as. (41)
n

=1
By applying Theorem 4 and for any € > 0 and sufficiently
large n, we have

e[ ()] 2 ()| <5
‘log (E [eﬁl(ylil’;')]) (42a)
- log(% ’ge@ (Yf“l’?"“)) < g (42b)

where {fy*l} is the function of [/ time steps, that achieves

the supremum of Dy (PY”YH ||f’y1 ‘Pyl— 1). Convergence
achieved from the generalized Brikhoff theorem, where the
series of functions is the fixed function fy* I

(43a)

e (1)) = L (),
i=0
E, I:ef;[ (Y[_l’?l)] = % geﬁl(yfﬂ_l’zﬂ) ’ (43b)

3) APPROXIMATION

Last step is to approximate the functional space with the

space of transformers. Recall that set of causal transformer
. Y . A@n Ly oxy o (detdy 1 Lvyy)

afchltectures gctf = gctf .,gctf = Gy for

given I, dy, dy, vy, vxy € N. Define

-1
~ 12 "
Dy, yi-1)7, D) := sup — D> & (Yi'+)
8eGy =0

n—1 iy~
_log(%zeé’y(yﬁl 1’Yi+1))’ (44)
i=0

where the DV functions are transformers g, € gcyﬁ, &y €

gé(t{ We want to prove that for a given € > 0

= €
’DYIIYI‘]H?I(D") - DYllYl—'||l~/1’ = 3 (45)
From Theorem 2, we obtain
l -
]E[;’ (Y )] = Dyyi-w» (46a)
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(46b)

Bl (YL E)] =1

Thus, we seek to bound the following subtraction

‘DYIW[ 15 O L]él (Y’!H)]’- By the given identity
log(x) <x — 1,Vx € Rog
’/IjY/IYLlH?z(Dn) —-E |:fy*l (Yl)]

. 1 n—1 )
-l ()] o {1500 0
2veGy "

i=0

-1 . -
(z<))]
i=0

. 1nl
< I—E[fy + sup [nZgy Y’”)
\Eg 0
1 _
_(lnz g Y’* 1Y1+1 )}'
nz 0
<

{60 0]+ {e )
+ supy[; g (Y;'“)

8y€Gy i=0

- (% iegy(yii+ll))7[+1))} ' a7
i=0
Due to (42), there exists N € N such that Vn > N
e ()] - E s ()] < 5 )
([ T0]) g, [ ]| < € ay

Plugging (48) to (47) gives

‘DYI\YFIH?I(D") — Dyyiyy,

i e G R I

D zgy (vi)

20y

n—1 . | =
_ (% Zegy(Y;H— ,Y,-+z))] ‘ (49)
i=0

Since the empirical mean of f;z is converging to the expected
mean, it is uniformly bounded by some M € Rs(. Since
the exponent function is Lipschitz continuous with Lipschitz
constant exp [M] on the interval (—oo, M], we obtain

n . .
* (v +1-1 v, +1-1
1 > ST 7)) (B
n

i=1
1 n
M * (v i+1—1
e Z Lfy,; (Yi+1, Y/t )
— g (T ¥/ | (50)
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Definition 4 is a sub-functions class of the continuous
sequence to sequence functions class, and applies to the
causal transformer. Thus, concludes that the causal trans-
former g € géﬁ’d‘“l’v) also applies for the universal approx-
imation theorem, for continuous vector-values functions.
Moreover, for our case the output sequence is a scalar value,

U c R>*4 2z c R4 _ For given e, M, | and n, denote g €

dy, 1,1, N
Qén;y K the causal transformer, such that the approximation

error is uniformly bounded exp [-M] x € /4 for the final time
prediction out from the model. Finally, combining Theorem 1
we have

)DmYl*‘nYz(Dn) — Dy,

1 « ~ .
M " -1
< (1 +e ); ._E Vy*’ (Yi+17 Y/ )

i+l—1 €
—a (T 77) [+ 5

€
< -. 51
=3 (51

This concludes the proof of (39a). For (39b), note that
. dPyi
fyq = log (—Y~)
d(leyl—l ®PY1)
= logpy,xiyi-1 — logpy,, (52)

achieves the supremum. Following the same claims for
Dyijyi-1xtys, P,

~

DYzIYl 117, (Pn) = Dy, yi- 1X1|\Yl‘ 3 (53)
where

DYIIY’*IX’H?I (Dn)

n—1

= sup ngy (Yz+z Xz+z)

Yy n
g)(yegtf i= 0

3 log (% S egxy(Y,-iH_l’XiiH’?iH)) ) (54)

i=0
With (53) and (51) we end the proof. B

C. PROOF OF LEMMA 2
Recall

DYllylflllil = DKL (PY]|Y171 ”ﬁYl Pylfl) 5

DYl|Y171XlH7I = DKL (PY1|Y’*1XI||PY[‘PYI’IX]) .

By expanding the first term we obtain,

(55a)
(55b)

Dy, vi-17,
=Ep,_, [DKL(Py yi-111P5)]

_/ [/ ) (P(yzly"l))
= og\ —=——
yi-r Ly PO
P(yz|y"1)d<yz>]P<y’—1>d(y’—1>
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P(yzlyl‘l)) o
= 1 —— ) PG')d
s o (F ) o)

_/lellog< 13()71) )P(xy)d(xy), (56)

and the second term,

Dy, vi-1x17,
=Epi1 [DKL(Py, xtyi-111PF)]

o [ ()
Xyt LJy, P(yr)

Py |x’y’—1)d(yz)]P(xlyl—l)d@lyl—l)

. P(y |ty ! 11 1.1
= /lel log (W) P(x'y)d(x'y"), (57

where Py is a reference density function and is absolutely
continuous on ). Subtructing the two terms resulting,

Dy, jyi-1xty7, = Dyvi-1y,

I\,l-1
— [, e (—P(”'” ))P(x’ylw(xly’)
Xyl

P(y |y !
=YY" — nyx'y'h
=TEx-y(). O (58)

D. PROOF OF LEMMA 3
The optimal TE, TE%_, y(!), by non-finite memory process
X, is given by

TEX_y() := lirrolo sup TEx_y (D). (59)

PXI

—n

For any n > 0 we have,

sup TEx_y ()

PXI

—n

= sup
Pyo Pxiixo,

I(Xl; Y1|Yl’1)

= sup / P2 )Py X0,
P XLyl

0 Pyiy0 *
x0 xlix0, n

| (X’; YzIY’_l) d(x'x?,y")
[ —
independent of x(ln

= sup / Pl 01 (X1 Iy 1) ey
PXl Xyl

=sup TEx—y(0), (60)

Py

where (a) follows from the fact that the conditional MI does
not depend on x° , thus we can eliminate the integral of X°,
that does not affect the conditional MI, as for the supremum.

Since (60) is true for any n € N, with (59) we get,
TEYy() =supTEx_y(). O (61)

Pyl
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E. LIST OF SYMBOLS
Table 5 summarizes all primary symbols for quick reference.

TABLE 5. Comprehensive list of symbols used throughout the manuscript.

Symbol Definition

R,Z,N Sets of real numbers, integers, and natural
numbers, respectively.

X Subset of R<, the observation space.

X Stochastic process (X¢)¢ez-

P Probability measure on (2, F).

P(X) Set of Borel probability measures on X.

Pac(X) Subset of P(X) absolutely continuous w.r.t.
Lebesgue measure.

E Expectation operator under P.

hce(P, Q) Cross-entropy between P and Q.

h(X) Differential entropy of X ~ P, ie.
hce(P, P).

DkL(P||Q) Kullback-Leibler divergence between P and
Q.

I(X;Y) Mutual information between random vari-
ables X, Y.

TExy () Transfer entropy from process X to Y with
memory parameter [.

(X —=Y) Directed information from X to Y.

w Weight matrices in neural network layers.

b Bias vectors in neural network layers.

aij Attention weight from position ¢ to j.

Q, K,V Query, key, and value matrices in self-
attention.

Attn(+) Dot-product attention function (Definition 2).

softmax(+) Softmax activation applied columnwise.

Xpe Positional-encoded for input X.

M; 51 Causal mask entry: can be 1 or —oo to include
or ignore positions in the softmax operation.

R (s,5) Attention coefficient weight from query at

time 4 to key at time j.
gffdi’d"”’”) Class of transformers with input dim d;, out-
put dim d,, length [, and width v (Defini-
tion 3).

dg,1,0,0, .
gc(tf” vy) Class of causal transformer architectures for

single-process and joint-process estimation
(Definition 3).
D

Dyilyi-1x1%,

TEx_y(Dn;l) TREET estimator objective for sample set
Dy, and memory [.

YY1y,
Variational KL objectives ((17)).

D _ ~
Y Y=Y,

Dyiivi-1x1 %,
Crr Feedforward channel capacity.

Empirical estimators of KL objectives ((19)).

Crg Feedback channel capacity.

F. IMPLEMENTATION PARAMETERS

For the TE benchmark, channel capacity estimation model,
and density estimation, we trained the optimization procedure
with a limit of 200 epochs. We utilized a batch size of 1024,
a learning rate of 8 x 1073, and the Adam optimizer [55].
The transformer architecture comprises one attention layer
followed by a FF layer. The attention mechanism is
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implemented with a single head, having a dimension of
32 neurons. The dimension of the FF layer is 64, featuring
ELU activation [56]. Typically the order of TE /, was set to
30. The inputs sequence length was set to [ + 30 to calculate
30 series in parallel. Each epoch generates 100K samples of
X, Y with corresponding random noise (default is uniform).
For the cases of optimization, the NDG also employs a
transformer structure with one attention layer and one FF
layer, maintaining the same dimensional specifications. The
learning rate for the NDG is set to 8 x 107*. It is trained
at a rate of once every four epochs. For the Apnea dataset
feature analysis, the learning rate was adjusted to 1 x 107,
Additionally, we configured the model to use 1 head with
a dimension of 16 for the attention mechanism, and the FF
layer dimension was set to 32, with ELU activation. All
experiments were conducted on Nvidia RTX 3090 and RTX
Ada 6000 GPUs.
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