Broadcast Channels with Cooperation: Capacity and Duality for the Semi-Deterministic Case

Ziv Goldfeld, Haim H. Permuter and Gerhard Kramer

Ben Gurion University and Technische Universität München

IEEE Information Theory Wrokshop

April-May, 2015

Outline

- Channel-source duality for BCs
- Semi-deterministic BC with decoder cooperation
- Source coding dual
- Capacity results
- Summary

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan *et al.*, 2003], [Gupta and Verdú, 2011].

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan *et al.*, 2003], [Gupta and Verdú, 2011].

• The solutions are dual - Information measures coincide.

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan *et al.*, 2003], [Gupta and Verdú, 2011].

- The solutions are dual Information measures coincide.
- A formal proof of duality is still absent.

"There is a curious and provocative duality between the properties of a source with a distortion measure and those of a channel..."
(C. E. Shannon, 1959)

PTP Duality: [Shannon, 1959], [Cover and Chiang, 2002], [Pradhan *et al.*, 2003], [Gupta and Verdú, 2011].

- The solutions are dual Information measures coincide.
- A formal proof of duality is still absent.
- ullet Solving one problem \Longrightarrow Valuable insight into solving dual.

Point-to-Point Case:

Fixed-Type Code: $(\mathbf{X},\mathbf{Y})\in\mathcal{T}^{(n)}_{\epsilon}(P_X^{\star}P_{Y|X})$

Probabilistic relations are preserved:

Probabilistic relations are preserved:

Broadcast Channel

 $(\mathbf{X}, \mathbf{Y}_1, \mathbf{Y}_2) \in \mathcal{T}_{\epsilon}^{(n)} \left(P_X^{\star} P_{Y_1, Y_2 \mid X} \right)$

Dual Source Coding Setting

$$(\mathbf{X}_1, \mathbf{X}_2, \mathbf{Y}) \in \mathcal{T}_{\epsilon}^{(n)} \left(P_{X_1, X_2} P_{Y|X_1, X_2}^{\star} \right)$$

Probabilistic relations are preserved:

Broadcast Channel

Dual Source Coding Setting

$$(\mathbf{X},\mathbf{Y}_1,\mathbf{Y}_2) \in \mathcal{T}^{(n)}_{\epsilon}\Big(P_X^{\star}P_{Y_1,Y_2|X}\Big) \qquad \qquad \\ (\mathbf{X}_1,\mathbf{X}_2,\mathbf{Y}) \in \mathcal{T}^{(n)}_{\epsilon}\Big(P_{X_1,X_2}P_{Y|X_1,X_2}^{\star}\Big)$$

e.g., Markov relations, deterministic functions, etc.

Probabilistic relations are preserved:

Broadcast Channel

Dual Source Coding Setting

$$(\mathbf{X},\mathbf{Y}_1,\mathbf{Y}_2) \in \mathcal{T}^{(n)}_{\epsilon}\Big(P_X^{\star}P_{Y_1,Y_2|X}\Big) \qquad \qquad \\ (\mathbf{X}_1,\mathbf{X}_2,\mathbf{Y}) \in \mathcal{T}^{(n)}_{\epsilon}\Big(P_{X_1,X_2}P_{Y|X_1,X_2}^{\star}\Big)$$

e.g., Markov relations, deterministic functions, etc.

Additional Principles:

Probabilistic relations are preserved:

Broadcast Channel

Dual Source Coding Setting

$$(\mathbf{X},\mathbf{Y}_1,\mathbf{Y}_2) \in \mathcal{T}_{\epsilon}^{(n)}\Big(P_X^{\star}P_{Y_1,Y_2|X}\Big) \qquad \qquad \\ \qquad \qquad \\ (\mathbf{X}_1,\mathbf{X}_2,\mathbf{Y}) \in \mathcal{T}_{\epsilon}^{(n)}\Big(P_{X_1,X_2}P_{Y|X_1,X_2}^{\star}\Big)$$

e.g., Markov relations, deterministic functions, etc.

Additional Principles:

Causal/non-causal <u>encoder</u> CSI ←→ Causal/non-causal <u>decoder</u> SI

Probabilistic relations are preserved:

Broadcast Channel

Dual Source Coding Setting

$$(\mathbf{X},\mathbf{Y}_1,\mathbf{Y}_2) \in \mathcal{T}_{\epsilon}^{(n)}\Big(P_X^{\star}P_{Y_1,Y_2|X}\Big) \qquad \qquad \\ \qquad \qquad \\ (\mathbf{X}_1,\mathbf{X}_2,\mathbf{Y}) \in \mathcal{T}_{\epsilon}^{(n)}\Big(P_{X_1,X_2}P_{Y|X_1,X_2}^{\star}\Big)$$

e.g., Markov relations, deterministic functions, etc.

Additional Principles:

- Causal/non-causal <u>encoder</u> CSI ←→ Causal/non-causal <u>decoder</u> SI
- <u>Decoder</u> cooperation ←→ <u>Encoder</u> cooperation

Probabilistic relations are preserved:

Broadcast Channel

Dual Source Coding Setting

$$(\mathbf{X},\mathbf{Y}_1,\mathbf{Y}_2) \in \mathcal{T}_{\epsilon}^{(n)}\Big(P_X^{\star}P_{Y_1,Y_2|X}\Big) \qquad \qquad \\ \qquad \qquad \\ (\mathbf{X}_1,\mathbf{X}_2,\mathbf{Y}) \in \mathcal{T}_{\epsilon}^{(n)}\Big(P_{X_1,X_2}P_{Y|X_1,X_2}^{\star}\Big)$$

e.g., Markov relations, deterministic functions, etc.

Additional Principles:

- Causal/non-causal <u>encoder</u> CSI ←→ Causal/non-causal <u>decoder</u> SI
- <u>Decoder</u> cooperation ←→ <u>Encoder</u> cooperation
- ★ Result Duality: Information measures at the corner points coincide! ★

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]&[Ahlswede-Körner, 1975]

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]&[Ahlswede-Körner, 1975]

BCs with Cooperation:

- Physicaly degraded (PD) [Dabora and Servetto, 2006].
- Relay-BC [Liang and Kramer, 2007].
- State-dependent PD [Dikstein, Permuter and Steinberg, 2014].
- Degraded message sets / PD with parallel conf. [Steinberg, 2015].

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]&[Ahlswede-Körner, 1975]

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]&[Ahlswede-Körner, 1975]

Semi-Deterministic BC

WAK Problem

$$(\mathbf{X},\mathbf{Y}_{1},\mathbf{Y}_{2})\in\mathcal{T}_{\epsilon}^{(n)}(P_{X}^{\star}\mathbb{1}_{\{Y_{1}=f(X)\}}P_{Y_{2}|X}) \quad \Longleftrightarrow \quad (\mathbf{Y},\mathbf{X}_{1},\mathbf{X}_{2})\in\mathcal{T}_{\epsilon}^{(n)}(P_{Y}\mathbb{1}_{\{X_{1}=f(Y)\}}P_{X_{2}|Y}^{\star})$$

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]&[Ahlswede-Körner, 1975]

Semi-Deterministic BC

WAK Problem

$$(\mathbf{X},\mathbf{Y}_{1},\mathbf{Y}_{2}) \in \mathcal{T}_{\epsilon}^{(n)}(P_{X}^{\star}\mathbb{1}_{\{Y_{1}=f(X)\}}P_{Y_{2}|X}) \quad \Longleftrightarrow \quad (\mathbf{Y},\mathbf{X}_{1},\mathbf{X}_{2}) \in \mathcal{T}_{\epsilon}^{(n)}(P_{Y}\mathbb{1}_{\{X_{1}=f(Y)\}}P_{X_{2}|Y}^{\star})$$

Without cooperation: [Gelfand vs. Pinsker, 1980] and [Wyner, 1975]&[Ahlswede-Körner, 1975]

Semi-Deterministic BC

WAK Problem

$$(\mathbf{X},\mathbf{Y}_{1},\mathbf{Y}_{2})\in\mathcal{T}_{\epsilon}^{(n)}(P_{X}^{\star}\mathbb{1}_{\{Y_{1}=f(X)\}}P_{Y_{2}|X}) \quad \Longleftrightarrow \quad (\mathbf{Y},\mathbf{X}_{1},\mathbf{X}_{2})\in\mathcal{T}_{\epsilon}^{(n)}(P_{Y}\mathbb{1}_{\{X_{1}=f(Y)\}}P_{X_{2}|Y}^{\star})$$

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$\mathcal{C}_{\textit{WAK}} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq H(X_1 | V, U) \\ R_2 \geq I(U; X_2 | V) - I(U; X_1 | V) \\ R_1 + R_2 \geq H(X_1 | V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$\mathcal{C}_{\textit{WAK}} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq H(X_1 | V, U) \\ R_2 \geq I(U; X_2 | V) - I(U; X_1 | V) \\ R_1 + R_2 \geq H(X_1 | V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$\mathcal{C}_{W\!AK} = \bigcup \left\{ \begin{array}{c} R_{12} \geq \boldsymbol{I(V; X_1)} - \boldsymbol{I(V; X_2)} \\ R_1 \geq H(X_1|V, U) \\ R_2 \geq \boldsymbol{I(U; X_2|V)} - \boldsymbol{I(U; X_1|V)} \\ R_1 + R_2 \geq H(X_1|V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$\mathcal{C}_{W\!AK} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq H(X_1 | V, U) \\ R_2 \geq \underline{I(U; X_2 | V)} - \underline{I(U; X_1 | V)} \\ R_1 + R_2 \geq H(X_1 | V, U) + I(V, U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Theorem (Coordination-Capacity Region)

For a desired coordination PMF $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$:

$$\mathcal{C}_{\textit{WAK}} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V; X_1) - I(V; X_2) \\ R_1 \geq \pmb{H(X_1|V,U)} \\ R_2 \geq I(U; X_2|V) - I(U; X_1|V) \\ R_1 + R_2 \geq H(X_1|V,U) + I(V,U; X_1, X_2) \end{array} \right\}$$

where the union is over all $P_{X_1,X_2}P_{V|X_1}P_{U|X_2,V}P_{Y|X_1,U,V}$ with $P_{X_2}P_{Y|X_2}\mathbb{1}_{\{X_1=f(Y)\}}$ as marginal.

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12} = I(V; X_1) - I(V; X_2)$	
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$	
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$	

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12} = I(V; X_1) - I(V; X_2)$	$R_{12} = I(V; Y_1) - I(V; Y_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$	
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$	

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12} = I(V; X_1) - I(V; X_2)$	$R_{12} = I(V; Y_1) - I(V; Y_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$ig(H(X_1) \;,\; I(U;X_2 V) - I(U;X_1 V) ig)$	
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$	

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12} = I(V; X_1) - I(V; X_2)$	$R_{12} = I(V; Y_1) - I(V; Y_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$ig(H(X_1) \;,\; I(U;X_2 V) - I(U;X_1 V) ig)$	
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$	

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12} = I(V; X_1) - I(V; X_2)$	$R_{12} = I(V; Y_1) - I(V; Y_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$\Big(H(X_1)\;,\;I(U;X_2 V)-I(U;X_1 V)\Big)$	$\Big(H(Y_1)\;,\;I(U;Y_2 V)-I(U;Y_1 V)\Big)$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$(H(X_1 V,U), I(U;X_2 V) + I(V;X_1))$	

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12} = I(V; X_1) - I(V; X_2)$	$R_{12} = I(V; Y_1) - I(V; Y_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$	$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$\Big(H(X_1 V,U)\;,\;I(U;X_2 V)+I(V;X_1)\Big)$	

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12} = I(V; X_1) - I(V; X_2)$	$R_{12} = I(V; Y_1) - I(V; Y_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$	$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$\Big(H(X_1 V,U)\;,\;I(U;X_2 V)+I(V;X_1)\Big)$	

Cooperative WAK Problem	Cooperative Semi-Deterministic BC
$R_{12} = I(V; X_1) - I(V; X_2)$	$R_{12} = I(V; Y_1) - I(V; Y_2)$
(R_1,R_2) at Lower Corner Point:	(R_1,R_2) at Lower Corner Point:
$(H(X_1), I(U; X_2 V) - I(U; X_1 V))$	$(H(Y_1), I(U; Y_2 V) - I(U; Y_1 V))$
(R_1,R_2) at Upper Corner Point:	(R_1,R_2) at Upper Corner Point:
$\Big(H(X_1 V,U)\;,\;I(U;X_2 V)+I(V;X_1)\Big)$	$\Big(H(Y_1 V,U)\;,\;I(U;Y_2 V)+I(V;Y_1)\Big)$

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$\mathcal{C}_{BC} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V;Y_1) - I(V;Y_2) \\ R_1 \leq H(Y_1) \\ R_2 \leq I(V,U;Y_2) + R_{12} \\ R_1 + R_2 \leq H(Y_1|V,U) + I(U;Y_2|V) + I(V;Y_1) \end{array} \right\}$$

where the union is over all $P_{V,U,Y_1,X}P_{Y_2|X}\mathbb{1}_{\{Y_1=f(X)\}}$.

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$\mathcal{C}_{BC} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V;Y_1) - I(V;Y_2) \\ R_1 \leq H(Y_1) \\ R_2 \leq I(V,U;Y_2) + R_{12} \\ R_1 + R_2 \leq H(Y_1|V,U) + I(U;Y_2|V) + I(V;Y_1) \end{array} \right\}$$

where the union is over all $P_{V,U,Y_1,X}P_{Y_2|X}\mathbb{1}_{\{Y_1=f(X)\}}$.

• Later: Achievability and converse proofs for an alternative region.

Semi-Deterministic BC with Cooperation - Solution

Theorem (Capacity Region)

The capacity region is:

$$\mathcal{C}_{BC} = \bigcup \left\{ \begin{array}{c} R_{12} \geq I(V;Y_1) - I(V;Y_2) \\ R_1 \leq H(Y_1) \\ R_2 \leq I(V,U;Y_2) + R_{12} \\ R_1 + R_2 \leq H(Y_1|V,U) + I(U;Y_2|V) + I(V;Y_1) \end{array} \right\}$$

where the union is over all $P_{V,U,Y_1,X}P_{Y_2|X}\mathbb{1}_{\{Y_1=f(X)\}}$.

- Later: Achievability and converse proofs for an alternative region.
- \bullet $\mathcal{C}_{\mathsf{BC}}$ emphasizes duality.

• Rate Splitting: $M_j=(M_{j0},M_{jj}),\ j=1,2$:

Enc X Channel Y₁ Dec 1

- Rate Splitting: $M_i = (M_{i0}, M_{ij}), j = 1, 2$:
 - (M_{10}, M_{20}) Common message;

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

• Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:

• (M_{10}, M_{20}) - Common message;

• (M_{11}, M_{22}) - Private messages.

• Codebook Structure: Marton (with common

message).

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

 Codebook Structure: Marton (with common message).

u-codebook $\sim P_{U|V}^n$

Enc

- Rate Splitting: $M_i = (M_{i0}, M_{ij}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

Cooperation:

Dec 1

- Rate Splitting: $M_i = (M_{i0}, M_{ij}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

- Codebook Structure: Marton (with common message).
- Cooperation:
 - 1. Partition common message c.b. into $2^{nR_{12}}$ bins.

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

 Codebook Structure: Marton (with common message).

Cooperation:

- 1. Partition common message c.b. into $2^{nR_{12}}$ bins.
- 2. Convey bin number via link.

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

 Codebook Structure: Marton (with common message).

- Cooperation:
 - 1. Partition common message c.b. into $2^{nR_{12}}$ bins.
 - 2. Convey bin number via link.
- User 2 Gain:

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

 Codebook Structure: Marton (with common message).

- Cooperation:
 - 1. Partition common message c.b. into $2^{nR_{12}}$ bins.
 - 2. Convey bin number via link.
- User 2 Gain: Reduced search space of common message c.w. by R_{12} .

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

 Codebook Structure: Marton (with common message).

Cooperation:

- 1. Partition common message c.b. into $2^{nR_{12}}$ bins.
- 2. Convey bin number via link.
- User 2 Gain: Reduced search space of common message c.w. by R_{12} .
 - → More channel resources for private message.

- Rate Splitting: $M_j = (M_{j0}, M_{jj})$, j = 1, 2:
 - \blacktriangleright (M_{10}, M_{20}) Common message;
 - (M_{11}, M_{22}) Private messages.

 Codebook Structure: Marton (with common message).

- Cooperation:
 - 1. Partition common message c.b. into $2^{nR_{12}}$ bins.
 - 2. Convey bin number via link.
- User 2 Gain: Reduced search space of common message c.w. by R_{12} .
 - → More channel resources for private message.

u-codebook $\sim P_{U|V}^n$

• Channel-source duality for BCs.

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
 - ▶ Source coding dual Cooperative WAK problem.

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
 - Source coding dual Cooperative WAK problem.
 - Corner point correspondence.

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
 - ▶ Source coding dual Cooperative WAK problem.
 - Corner point correspondence.
- Achievability via Marton coding with a common message.

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
 - ▶ Source coding dual Cooperative WAK problem.
 - Corner point correspondence.
- Achievability via Marton coding with a common message.
- Full version undergoing review for IEEE Trans. Inf. Theory; available on ArXiV at http://arxiv.org/abs/1405.7812.

- Channel-source duality for BCs.
- Cooperative semi-deterministic BCs:
 - ▶ Source coding dual Cooperative WAK problem.
 - Corner point correspondence.
- Achievability via Marton coding with a common message.
- Full version undergoing review for IEEE Trans. Inf. Theory; available on ArXiV at http://arxiv.org/abs/1405.7812.

Thank you!

State-Dependant Semi-Deterministic BC vs. Dual:

State-Dependant Semi-Deterministic BC vs. Dual:

State-Dependant Semi-Deterministic BC vs. Dual:

State-Dependant Output-Degraded BC vs. Dual:

State-Dependant Output-Degraded BC vs. Dual:

State-Dependant Output-Degraded BC vs. Dual:

Action-Dependant Output-Degraded BC vs. Dual:

Action-Dependant Output-Degraded BC vs. Dual:

Action-Dependant Output-Degraded BC vs. Dual:

Rate	Corner Point 1	Corner Point 2
R_{12}	$I(V;X_1) - I(V;X_2)$	$I(V;X_1) - I(V;X_2)$
R_1	$H(X_1)$	$H(X_1 V,U)$
R_2	$I(U; X_2 V) - I(U; X_1 V)$	$I(U; X_2 V) + I(V; X_1)$

Rate	Corner Point 1	Corner Point 2
R_{12}	$I(V;X_1) - I(V;X_2)$	$I(V;X_1) - I(V;X_2)$
R_1	$H(X_1)$	$H(X_1 V,U)$
R_2	$I(U; X_2 V) - I(U; X_1 V)$	$I(U; X_2 V) + I(V; X_1)$

ullet Cooperation: Wyner-Ziv scheme to convey V via cooperation link.

Rate	Corner Point 1	Corner Point 2
R_{12}	$I(V; X_1) - I(V; X_2)$	$I(V; X_1) - I(V; X_2)$
R_1	$H(X_1)$	$H(X_1 V,U)$
R_2	$I(U;X_2 V) - I(U;X_1 V)$	$I(U; X_2 V) + I(V; X_1)$

- ullet Cooperation: Wyner-Ziv scheme to convey V via cooperation link.
- Corner Point 1: V is transmitted to dec. by Enc. 1 within X_1 .

Rate	Corner Point 1	Corner Point 2
R_{12}	$I(V; X_1) - I(V; X_2)$	$I(V; X_1) - I(V; X_2)$
R_1	$H(X_1)$	$H(X_1 V,U)$
R_2	$I(U; X_2 V) - I(U; X_1 V)$	$I(U;X_2 V) + I(V;X_1)$

- ullet Cooperation: Wyner-Ziv scheme to convey V via cooperation link.
- Corner Point 1: V is transmitted to dec. by Enc. 1 within X_1 .
- Corner Point 2: V is explicitly transmitted to dec. by Enc. 2.

AK Problem with Cooperation - Proof Outline

Converse:

AK Problem with Cooperation - Proof Outline

Converse:

Standard techniques while defining

$$V_i = (T_{12}, X_1^{n \setminus i}, X_{2,i+1}^n),$$

 $U_i = T_2,$

for every $1 \le i \le n$.

AK Problem with Cooperation - Proof Outline

Converse:

Standard techniques while defining

$$V_i = (T_{12}, X_1^{n \setminus i}, X_{2,i+1}^n),$$

 $U_i = T_2,$

for every $1 \le i \le n$.

Time mixing properties.

$\begin{tabular}{ll} Semi-Deterministic BC with Cooperation - Achievability \\ Outline \end{tabular}$

• Rate Splitting: $M_j=(M_{j0},M_{jj}),\ j=1,2$: X^n Channel Y_1^n Dec 1 Y_2^n Dec 2

• Rate Splitting: $M_j = (M_{j0}, M_{jj})$, j = 1, 2:
• (M_{10}, M_{20}) - Public message;

Enc X^n Channel Y_1^n Dec 1 Y_2^n Dec 2

• Rate Splitting: $M_j = (M_{j0}, M_{jj})$, j = 1, 2:

• (M_{10}, M_{20}) - Public message;

• (M_{11}, M_{22}) - Private messages.

• Enc X^n Channel Y_2^n Dec 2

• Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:
• (M_{10}, M_{20}) - Public message;
• (M_{11}, M_{22}) - Private messages.
• Channel

• Codebook Structure: Marton:

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:

 (M_{10}, M_{20}) Public message;

 (M_{11}, M_{22}) Private messages.

 Channel

 Codebook Structure: Marton:
 - Codebook Structure. Warton.
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow \mathbf{V}$.

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:

 (M_{10}, M_{20}) Public message;

 (M_{11}, M_{22}) Private messages.

 Channel

 Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow \mathbf{V}$.
 - Private Messages Superposed on V:

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), \ j = 1, 2$:

 (M_{10}, M_{20}) Public message;

 (M_{11}, M_{22}) Private messages.

 Channel

 Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow \mathbf{V}$.
 - Private Messages Superposed on V:
 - 1. $M_{11} \longrightarrow \mathbf{Y}_1$;

- Rate Splitting: $M_i = (M_{i0}, M_{ij}), j = 1, 2$: $\xrightarrow{Y_1^n}$ Dec 1 \blacktriangleright (M_{10}, M_{20}) - Public message; • (M_{11}, M_{22}) - Private messages. Enc • Codebook Structure: Marton:
 - - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow \mathbf{V}$.
 - Private Messages Superposed on V:
 - 1. $M_{11} \longrightarrow \mathbf{Y}_1$:
 - 2. $M_{22} \longrightarrow \mathbf{U}$.

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.

- Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow \mathbf{V}$.
 - Private Messages Superposed on V:
 - 1. $M_{11} \longrightarrow \mathbf{Y}_1$;
 - 2. $M_{22} \longrightarrow \mathbf{U}$.

u-codebook $\sim P_{U|V}^n$

Enc

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - \blacktriangleright (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.

- Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow \mathbf{V}$.
 - ► Private Messages Superposed on V:
 - 1. $M_{11} \longrightarrow \mathbf{Y}_1$;
 - 2. $M_{22} \longrightarrow \mathbf{U}$.
- Decoding: Joint typicality decoding.

Enc

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.

- Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow \mathbf{V}$.
 - ► Private Messages Superposed on V:
 - 1. $M_{11} \longrightarrow \mathbf{Y}_1$;
 - 2. $M_{22} \longrightarrow \mathbf{U}$.
- Decoding: Joint typicality decoding.
- Cooperation: Bin number of V^n $2^{nR_{12}}$ bins.

 y_1 -codebook $\sim P_{V, |V}^n$

- Rate Splitting: $M_j = (M_{j0}, M_{jj}), j = 1, 2$:
 - (M_{10}, M_{20}) Public message;
 - (M_{11}, M_{22}) Private messages.

- Codebook Structure: Marton:
 - ▶ Public Message: $(M_{10}, M_{20}) \longrightarrow \mathbf{V}$.
 - ► Private Messages Superposed on V:
 - 1. $M_{11} \longrightarrow \mathbf{Y}_1$;
 - 2. $M_{22} \longrightarrow \mathbf{U}$.
- Decoding: Joint typicality decoding.
- Cooperation: Bin number of V^n $2^{nR_{12}}$ bins.
- **Gain:** Dec. 2 reduces search space of V by R_{12} .

Via telescoping identities:

1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n\epsilon_n$$

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n\epsilon_n \le I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12})$$

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_2) - n\epsilon_n \le I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12})$$

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$H(M_{2}) - n\epsilon_{n} \leq I(M_{2}; Y_{2}^{n} | M_{12}) + I(M_{2}; M_{12})$$

$$= \sum_{i=1}^{n} \left[I(M_{2}; Y_{2,i}^{n} | M_{12}, Y_{1}^{i-1}) - I(M_{2}; Y_{2,i+1}^{n} | M_{12}, Y_{1}^{i}) \right] + I(M_{2}; M_{12})$$

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$\begin{split} &H(M_2) - n\epsilon_n \leq I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12}) \\ &= \sum_{i=1}^n \Big[I(M_2; Y_{2,i}^n | M_{12}, Y_1^{i-1}) - I(M_2; Y_{2,i+1}^n | M_{12}, Y_1^i) \Big] + I(M_2; M_{12}) \\ &= \sum_{i=1}^n \Big[I(M_2; Y_{2,i} | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) - I(M_2; Y_{1,i} | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) \Big] \\ &\quad + I(M_2; M_{12}) \end{split}$$

Via telescoping identities:

- 1. Auxiliaries: $V_i = (M_{12}, Y_1^{i-1}, Y_{2,i+1}^n)$ and $U_i = M_2$.
- 2. Telescoping identities [Kramer, 2011], e.g.,

$$\begin{split} &H(M_2) - n\epsilon_n \leq I(M_2; Y_2^n | M_{12}) + I(M_2; M_{12}) \\ &= \sum_{i=1}^n \Big[I(M_2; Y_{2,i}^n | M_{12}, Y_1^{i-1}) - I(M_2; Y_{2,i+1}^n | M_{12}, Y_1^i) \Big] + I(M_2; M_{12}) \\ &= \sum_{i=1}^n \Big[I(M_2; Y_{2,i} | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) - I(M_2; Y_{1,i} | M_{12}, Y_1^{i-1}, Y_{2,i+1}^n) \Big] \\ &\quad + I(M_2; M_{12}) \end{split}$$

★ Replaces 2 uses of Csiszár Sum Identity.