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Abstract—This work addresses the problem of direction- of-
arrival (DOA) estimation in the presence of non-Gaussian,
heavy-tailed, and spatially-colored interference. Conventionally,
the interference is considered to be Gaussian-distributed and
spatially white. However, in practice, this assumption is not guar-
anteed, which results in degraded DOA estimation performance.
Maximum likelihood DOA estimation in the presence of non-
Gaussian and spatially colored interference is computationally
complex and not practical. Therefore, this work proposes a
neural network (NN) based DOA estimation approach for spa-
tial spectrum estimation in multi-source scenarios with a-priori
unknown number of sources in the presence of non-Gaussian
spatially-colored interference. The proposed approach utilizes
a single NN instance for simultaneous source enumeration and
DOA estimation. It is shown via simulations that the proposed
approach significantly outperforms conventional and NN-based
approaches in terms of probability of resolution, estimation
accuracy, and source enumeration accuracy in conditions of low
SIR, small sample support, and when the angular separation
between the source DOAs and the spatially-colored interference
is small.

Index Terms—Array Processing, DOA Estimation, Source
Enumeration, Spatially-Colored Interference, Non-Gaussian In-
terference, Neural Networks, Deep Learning, Machine Learning,
MVDR, MDL, AIC, Radar.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation using a sensor array
is required in multiple applications, such as radar, sonar,
ultrasonic, wireless communications, and medical imaging [1].
In real-world applications, the signal received at the sensor
array is a superposition of signals from the sources of interest,
interference, and receiver thermal noise. In radars, the received
signal consists of a target echo, clutter, and thermal noise. In
multiple scenarios, the radar clutter has a spatially-colored,
heavy-tailed non-Gaussian distribution [2], which can signifi-
cantly degrade the performance of conventional estimators.

Minimum-variance-distortionless-response (MVDR) [3], is
a conventional adaptive beamforming approach for DOA es-
timation. MVDR estimates the spatial spectrum and obtains
the source DOAs via a one-dimensional peak search on a
predefined grid. The estimation of signal parameters using
rotational invariance techniques (ESPIRIT) [4], multiple signal
classification (MUSIC) [5], and root-MUSIC (R-MUSIC) [6]
are additional widely used DOA estimation approaches. These
approaches involve received signal autocorrelation matrix
processing, which conventionally is performed via the sam-
ple autocorrelation matrix estimation [3]–[6]. However, the
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performance of the sample autocorrelation matrix estimator
degrades in small sample support or non-Gaussian scenarios.
Furthermore, these methods use the second-order statistics
only and omit the higher-order statistics on non-Gaussian-
distributed interference. In addition, ESPRIT, MUSIC, and R-
MUSIC approaches require a-priori knowledge of the number
of sources (or targets), which limits their practical use.

The problem of DOA estimation in the presence of non-
Gaussian interference is of great practical interest. The max-
imum likelihood estimator (MLE) for DOA estimation in the
presence of non-Gaussian interference does not have a closed-
form analytical solution [7], [8]. Multiple model-based DOA
estimation approaches have been intensively studied in the
literature [7]–[18].

Robust covariance matrix-based DOA estimation and source
enumeration methods have been studied in the literature. For
complex elliptically symmetric (CES) distributed data, the
authors in [9] showed that a scatter matrix-based beamformer
is consistent, and the semiparametric lower bound and Slepian-
Bangs formula for DOA estimation were derived in [10].
In [11], a generalized covariance-based (GC) approach for
the covariance matrix estimation in scenarios with impulsive
alpha-stable noise was proposed for MUSIC DOA estimation.
However, these methods consider a specific family of distri-
butions, such as the CES or alpha-stable, and are therefore,
limited in the case of model mismatch. In [12], a probability
measure transform (MT) based covariance matrix estimator
was proposed for MUSIC-based DOA estimation and mini-
mum descriptive length (MDL) based source enumeration. The
MT-based covariance estimator was also adopted for robust
MVDR beamformer [13]. These methods are usually based
on setting a parameter that determines the tradeoff between
the level of robustness and performance.

The problem of DOA estimation in the presence of a mix-
ture of spatially-white K-distributed and Gaussian-distributed
noise under a deterministic and unknown (conditional) source
model was studied in [7]. An iterative MLE-based approach
for the conditional and joint likelihood of interference distri-
bution’s parameters was derived in [14], [15]. This approach
was further extended in [16] to marginal likelihood function.
However, this approach is computationally complex due to
numerical integral evaluation that involves a 2M dimensional
grid search for M targets [8]. Therefore, [8] proposed a kernel
minimum error entropy-based adaptive estimator and a novel
criterion to reduce the estimator’s computational complexity.
The expectation-maximization (EM) with a partial relaxation-
based DOA estimation algorithm under the conditional model
assumption was proposed in [17]. In [18] a sparse Bayesian
learning (SBL) approach for outlier rejection of impulsive
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and spatially-white interference was proposed. This EM-based
approach does not require a-priori knowledge of the number
of sources and was shown to resolve highly-correlated and co-
herent sources. However, none of these model-based DOA es-
timation approaches considered an a-priori unknown number
of sources and spatially-colored interference and therefore are
limited for real-world applications. Although source enumera-
tion methods, such as MDL and Akaike information criterion
(AIC) [19] can be used, they assume signal Gaussianity, and
can therefore be inaccurate in non-Gaussian scenarios.

Deep learning and machine learning approaches were re-
cently adopted for radar signal processing. Three types of
NN-based DOA estimation approaches have been introduced
in literature [20]. The first approach assumes a-priori known
number of sources, and uses a NN, which is optimized to
output a vector of the estimated DOAs [21]–[27]. The second
approach does not assume a-priori known number of sources
and uses a NN for source enumeration [25]–[31]. The third
approach uses a NN to estimate source presence probability
at each DOA on a predefined angular grid and obtains the
source DOAs via a peak search [32]–[41]. However, all these
approaches have not addressed non-Gaussian and spatially-
colored interference [20]–[41].

The cases of non-Gaussian and/or spatially-colored inter-
ference have been addressed using machine learning-based
approaches. For massive MIMO cognitive radar, a reinforce-
ment learning-based approach for multi-target detection un-
der heavy-tailed spatially-colored interference was proposed
in [42]. In [43], authors addressed the MIMO radar target
detection under non-Gaussian spatially-colored interference
by using a CNN architecture that is optimized according to
a novel loss. A radial-basis-function (RBF) NN [44] and a
convolutional neural network (CNN) [45] architectures were
proposed for DOA estimation in the presence of non-Gaussian
impulsive noise. In [46], a CNN-based architecture that in-
cludes denoising NN, source enumeration NN, and DOA esti-
mation sub-NNs, was introduced. However, [44]–[46] consider
spatially-white noise and are suboptimal for scenarios with
spatially-colored interference.

This work addresses the problem of DOA estimation of a-
priori unknown number of sources in the presence of non-
Gaussian, heavy-tailed, spatially-colored interference at a low
signal-to-interference ratio (SIR) and small sample size. The
contribution of this work include:

1) A novel NN-based processing mechanism is used for
array processing within non-Gaussian spatially-colored
interference. The proposed NN architecture utilizes the
structure of information within the set of received com-
plex snapshots.

2) The proposed NN is optimized to output an interference-
mitigated spatial spectrum, and is used for simultaneous
source enumeration and DOA estimation of sources
within non-Gaussian spatially-colored interference.

The proposed approach outperforms conventional adaptive
beamforming and competing straightforward NN-based meth-
ods in terms of probability of resolution and estimation
accuracy in scenarios with non-Gaussian spatially-colored
interference. In addition, the proposed approach outperforms

conventional source enumeration techniques in scenarios char-
acterized by non-Gaussian spatially-colored interference.

The following notations are used throughout the paper.
Roman boldface lower-case and upper-case letters represent
vectors and matrices, respectively while Italic letters stand for
scalars. IN is the identity matrix of size N × N and 1N

is a column vector of length N whose entries are equal to
one. E(·), (·)T , and (·)H are the expectation, transpose, and
Hermitian transpose operators, respectively. Vec(·), diag(·),
and | · | stand for the vectorization, diagonalization, and
absolute value operators, respectively. [a]n and [A]n,m are the
n-th and n,m-th elements of the vector a and the matrix A,
respectively.

The remainder of this paper is organized as follows. The
addressed problem is stated in Section II. Section III intro-
duces the proposed NN-based DOA estimation approach. The
proposed approach is evaluated via simulations in Section IV.
Our conclusions are summarized in Section V.

II. PROBLEM DEFINITION

This work considers the problem of DOA estimation using
an array of L receiving elements and M distinct and unknown
sources with DOAs, Θ = {θ1, . . . , θM}. The measurements
contain K spatial snapshots, {xk}Kk=1:

xk = A (Θ) sk + σcck + nk , (1)

=

M∑
m=1

a (θm) sk,m + σcck + nk , k = 1, . . . ,K ,

where A (Θ) =
[
a (θ1) · · · a (θM )

]
, with a (θm) ∈ CL

denoting the steering vector for source at direction θm,
and sk ≜

[
sk,1 · · · sk,M

]T
is the source signal vector.

We assume an unconditional model [47], where {sk}
i.i.d.∼

CN
(
0M , diag

(
σ2
1 , . . . , σ

2
M

))
, is temporally uncorrelated be-

tween pulses. The targets are assumed to be spatially distinct.
The receiver thermal noise, denoted by nk, is considered to be
complex Gaussian-distributed {nk}

i.i.d.∼ CN
(
0L, σ

2
nIL

)
. The

heavy-tailed non-Gaussian and spatially-colored interference is
modeled by the interference amplitude σc, and the interference
component ck ∈ CL. The considered compound-Gaussian
distributed interference, {ck}

i.i.d.∼ K (ν, θc) represents a non-
Gaussian interference with angular spread around an unknown
direction θc, such that c ∼ K (ν, θc) implies

c =
√
τz , (2)

τ |= z, τ ∼ Γ (ν, ν) , z ∼ CN (0L,Mθc) .

The compound-Gaussian statistical model is conventionally
used in the literature to model heavy-tailed non-Gaussian
interference [7], [8], [14], [16], [43], [48]. The texture com-
ponent, τ ∈ R+, determines the heavy-tailed behavior and
is characterized by, ν. The speckle component, z ∈ CL,
determines the spatial distribution of the interference and
is characterized by the covariance matrix, Mθc . The spatial
covariance matrix of the interference upholds:

E
[
σ2
ccc

H
]
=σ2

cE [τ ]E
[
zzH

]
= σ2

cMθc , (3)
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where Mθc can be modeled as [14]–[16], [43], [48]:

[Mθc ]m,l = ρ|m−l|ej(m−l)π sin θc . (4)

The model in (3) and (4), represents the spatial interference,
characterized by ρ, with a spread around the interference DOA,
θc.

III. THE PROPOSED DAFC-BASED NEURAL NETWORK

The proposed approach generalizes the NN architecture that
was introduced for linear-frequency-modulated (LFM) radar
target detection in the range-Doppler domain [49]. In the
following, the data pre-processing and the proposed NN-based
processing mechanism are introduced in Subsections III-A and
III-B. The proposed NN architecture and loss function are
detailed in Subsections III-C and III-D, respectively.

A. Pre-Processing

The input matrix, X ∈ CL×K is constructed from the set
of K snapshots in (1), {xk}:

X =
[
x1 x2 · · · xK

]
, (5)

where the k-th column of X contains the k-th snapshot.
The variation between the columns of X is induced by the
statistical characteristics of the source signal sk, interference
signal ck, and thermal noise nk. Therefore, each column in
X can be interpreted as a complex “feature” vector containing
essential information for DOA estimation. The set of columns
in X can be interpreted as “realizations” of that feature.

The complex-valued matrix, X, is converted into real-valued
representation needed for the NN-based processing. To keep
consistency with [49], we apply a transpose operator to the
input matrix, such that the snapshots are stacked in rows. The
output of the pre-processing denoted by Z0 ∈ CK×2L, is:

Z0 =
[
Re

{
XT

}
, Im

{
XT

}]
. (6)

B. Dimensional Alternating Fully-Connected

The dimensional alternating fully-connected (DAFC) block
was introduced to process measurements in a form similar to
the model in Section II [49]. Fig. 1 schematically shows the
DAFC mechanism.

For arbitrary dimensions D1, D2, D3, the formulation of a
general fully-connected (FC) layer applied to each row in a
given matrix Z ∈ RD1×D2 can be represented by the transform
F (·):

F : RD1×D2 → RD1×D3 , (7)

F (Z) ≜ h
(
ZW + 1D1

bT
)
.

This matrix-to-matrix transformation is characterized by the
“learnable” weight matrix, W ∈ RD2×D3 , the bias vector,
b ∈ RD3 , and a scalar element-wise activation function, h(·).

Let Fr (·) and Fc (·) be two separate, and not necessarily
identical instances of F (·) from (7), and Zin be an arbitrary
input matrix. The DAFC mechanism is formulated by the
following operations:

Dimensional Alternating Fully Connected

• Input: Zin ∈ RH×W

Fr : RH×W → RH×W ′

Fc : RW ′×H → RW ′×H′

1) Apply a single FC layer to each row in Zin:

Zr = Fr (Zin)

2) Apply a single FC layer to each column in Zr:

Zc = Fc

(
ZT

r

)
3) Transpose to keep orientation:

Zout = ZT
c

• Output: Zout ≜ S (Z) ∈ RH′×W ′

In the following, three DAFC design principles are detailed.
1) Structured transformation
The input to the first DAFC block is the pre-processed, Z0,

given in (6). Therefore, the first FC layer, Fr, of the first DAFC
block extracts spatial-related features from each row in Z0.
The second FC layer, Fc, of the first DAFC block, introduces
an interaction between transformed rows. This implies that
a) Fr performs “spatial-feature” extraction by transforming
the pre-processed i.i.d. snapshots (the rows of Z0) to a
high-dimensional feature space, and b) the Fc performs a
nonlinear transformation of the extracted features (the columns
of Fr (Z0)) from each snapshot. In this way, the DAFC utilizes
both spatial and statistical information. In addition, it can
exploit high-order statistics-related features. Thus, the DAFC
mechanism can contribute to estimating the source DOAs and
mitigating the interference when incorporated into a NN.

2) Sparsity
Conventional DOA estimation considers the input data as

the collection of measurement vectors (the snapshots {xk}) in
a matrix form. One straightforward approach to processing
the input data using a NN is to reshape it and process it
via an FC-based architecture. In this way, each neuron in the
layer’s output interacts with every neuron in the input. On
the other hand, the DAFC block transforms the data using
a structured transformation, which is significantly sparser in
terms of learnable parameters compared to the straightforward
FC-based approach.

This parameter reduction can be observed in the following
typical case. Consider an input matrix Z1 ∈ RD1×D1 , which
is transformed to an output matrix Z2 ∈ RD2×D2 . The
number of learnable parameters in the FC- and the proposed
DAFC-based approaches is of the order of O

(
D2

1D
2
2

)
, and

O (D1D2), respectively. Notice that the DAFC-based transfor-
mation complexity grows linearly with the number of learnable
parameters compared to the quadratic complexity growth of
the straightforward, FC-based approach.

The contribution of learnable parameters dimension reduc-
tion is twofold. First, the conventional NN optimization is
gradient-based [50]. Therefore, a significant reduction in the
learnable parameter dimension reduces the degrees of freedom
in the optimizable parameter space and improves the gradient-
based learning algorithm convergence rate. Second, reduction
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Figure 1: The DAFC mechanism concept. Each row of dimen-
sion W in Zin, represented by the red color, is transformed by
Fr to a row of dimension W ′ in the middle matrix, represented
by the transparent red color. Next, each column of dimension
H in the middle matrix, represented by the blue color, is
transformed by Fc to a column of dimension H ′ in Zout,
represented by the transparent blue color.

in the learnable parameter dimension can be interpreted as
increasing the “inductive bias” of the NN model [51], which
conventionally contributes to the NN statistical efficiency and
generalization ability, thus, reducing the NNs tendency to
overfit the training data.

3) Nonlinearity
The proposed DAFC considers an additional degree of

nonlinearity compared to the straightforward FC-based ap-
proach. A straightforward matrix-to-matrix approach includes
an interaction of every neuron in the output matrix with
every neuron in the input matrix, followed by an element-wise
nonlinear activation function. On the other hand, the proposed
DAFC consists of two degrees of nonlinearity, in Fr and Fc.
Although the weight matrices applied as part of Fr and Fc

are of lower dimension than the weight matrix used in the
straightforward approach, the extra degree of nonlinearity can
increase the NN’s capacity [50]. Therefore, a NN architecture
with the proposed DAFC is capable of learning a more abstract
and rich transformation of the input data.

C. NN Architecture

The continuous DOA space is discretized into a d-
dimensional grid: ϕ =

[
ϕ1 ϕ2 · · · ϕd

]T
. This implies

that the entire field-of-view (FOV) is partitioned into d DOAs,
{ϕi}di=1, determined by the selected grid resolution, ∆ϕ ≜
ϕi+1 − ϕi. The proposed NN is designed to represent a
mapping from the input set of snapshots, {xk} given in (1),
into the probability of source present in the DOAs {ϕi}di=1.
The proposed NN architecture is formulated as follows:

Z0 = P (X) , (8)
zvec = Vec (S6 (. . .S1 (Z0))) ,

ŷ = G3 (G2 (G1 (zvec))) ,

Operator Output
Dimension Activation # Parameters

P K × 2L - -

S1 64× 256
tanh-
ReLu 9,536

S2 128× 512
tanh-
ReLu 139,904

S3 256× 1024
tanh-
ReLu 558,336

S4 64× 512
tanh-
ReLu 541,248

S5 16× 256
tanh-
ReLu 132,368

S6 4× 128
tanh-
ReLu 32,964

vec 512 - -

G1 1024 tanh 525,312

G2 256 tanh 262,400

G3 d sigmoid 31,097

Table I: Specification of the proposed NN architecture for
K = 16, L = 16, d = 121. “tanh-ReLu” activation stands
for tanh in Fr and ReLU in Fc of each DAFC block. The
number of total learnable parameters is 2, 233, 165.

where Z0 is the output of the pre-processing procedure,
denoted as P (·) and detailed in Section III-A, and X is the
input matrix in (5).

In the next stage, six DAFC instances, represented by
S1 (·) , . . . ,S6 (·), of different dimensions with tanh activa-
tion for the row transform (Fr in Section III-B) and ReLu
activation for the column transform (Fc in Section III-B), are
used to generate the vectorized signal zvec. Our experiments
showed that this configuration of row and column activation
functions provides the best performance. At the last stage, the
signal, zvec, is processed by three FC layers, where the first
two use tanh activation, and the final (output) layer of equal
size to the DOA grid dimension, d, uses sigmoid activation
function to output ŷ ∈ [0, 1]

d. Thus, {[ŷ]i}di=1 represent the
estimated probabilities of a source presence at {ϕi}di=1. Table I
and Fig. 2 summarize the parameters and architecutre of the
proposed NN-based approach.

The estimated source DOAs are extracted from the spatial
spectrum via peak search and applying 0.5 threshold:

{i1, . . . , iN̂} = peak search
(
{[ŷ]i}

d
i=1

)
(9)

Θ̂ =
{
ϕin : [ŷ]in > 0.5

}N̂

n=1
.

Namely, the set of estimated DOAs, Θ̂, consists of the grid
points corresponding to the peaks of ŷ that exceed the 0.5
threshold. The number of peaks that exceed this threshold is
used for source enumeration, and therefore the proposed NN
can be utilized as a source enumeration method as well.

The dimensionality of the hidden layers in the proposed
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Figure 2: Proposed NN architecture. The pre-processing P is described in Section III-A and appears in yellow. The purple
matrices denote the concatenation of DAFC blocks, which is detailed in Section III-B. The blue vector represents a vectorization
of the last DAFC output, and the orange vectors stands for FC layers with tanh activation function. The last green vector is
the output of the last FC layer, which consists of sigmoid activation function and yields the estimated spatial spectrum ŷ.

NN architecture expands in the first layers and then reduces.
This trend resembles the NN architecture presented in [49] and
characterizes both the DAFC-based and FC-based processing
stages. This expansion-reduction structure can be explained
by a) the early NN stages need to learn an expressive and
meaningful transformation of the input data by mapping it to
a higher dimensional representation and b) the late stages need
to extract significant features from the early mappings, and are
therefore limited in dimensionality. In addition, the late stages
are adjacent to the output vector and therefore need to be of
similar dimension.

D. Loss Function

The label used for the supervised learning process, y ∈
{0, 1}d, is defined as a sparse binary vector with the value 1,
at the grid points that correspond to the source DOAs, and
0, otherwise. In practice, the DOAs in Θ do not precisely
correspond to the grid points. Therefore, for each DOA in
Θ, the nearest grid point in {ϕi}di=1 is selected as the
representative grid point in the label. Each training example
is determined by the input-label pair, (X,y). Using the NN
feed-forward in (8), X is used to generate the output spatial
spectrum, ŷ, which is considered as the estimated label.

The loss function, L, is a weighted mean of the binary cross
entropy (BCE) loss computed at each grid point:

L (y, ŷ, t) =
1

d

d∑
i=1

w
(t)
i BCE ([y]i , [ŷ]i) , (10)

BCE (y, ŷ) = −y log (ŷ)− (1− y) log (1− ŷ) ,

where w
(t)
i represents the loss weight of the i-th grid point at

the t-th epoch. The loss value for equally-weighted BCEs eval-
uated per grid point (w(t)

i = 1 in (10)) does not significantly
increase in the case of a large error in source/interference esti-
mated probability, due to the sparsity of the label y. This forces
the NN convergence into a sub-optimal solution that is prone
to “miss” the sources. Therefore, the loss weights, {w(t)

i }di=1,
are introduced to “focus” the penalty on source/interference
grid points.

The loss weight of the i-th grid point, w(t)
i , is determined

by the presence of source or interference in the corresponding
label entry [y]i. This relation is defined using the epoch and
label dependent factors e

(t)
0 , e

(t)
1 , according to:

w
(t)
i =

{
1/e

(t)
1 , if ϕi contains source or interference

1/e
(t)
0 , else

.

(11)

For t = 0, the factor e
(0)
1 is determined by the fraction of

label grid points that contain source or interference out of
the total label grid points in the training set, and e

(0)
0 is the

corresponding complement. For subsequent epochs, the factors
are updated according to a predefined schedule, similarly to a
predefined learning rate schedule. The loss weights are updated
Nw times with spacing of ∆t epochs during training. The
update values are determined by updating e

(t)
0 , e

(t)
1 , according

to the following decaying rule:

e(t)q = (1− β(l))e(l∆t)
q + β(l), l∆t ≤ t < (l + 1)∆t (12)

q = 0, 1, l = 1, . . . , Nw,
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where l is the loss weight update iteration, and {β(l)}Nw

l=1

represent the loss weight update factors which uphold, 0 ≤
β(l) ≤ 1. Note that for Nw∆t ≤ t, the weight factor
remains e

(Nw∆t)
i during the rest of the training stage. No-

tice that as β(l) → 1, the corresponding loss weights will
tend to be equally distributed across the grid points, i.e.,
e
(t)
1 ≈ e

(t)
0 . In this case, an erroneously estimated proba-

bility for source/interference containing grid point is equally
weighted to a neither-containing grid point. On the other
hand, as β(l) → 0, the corresponding factors will uphold
e
(t)
1 ≪ e

(t)
0 , yielding a significantly larger contribution of

source/interference containing grid points to the loss value.
The rule in (12) enables a “transition of focus” throughout
the training. That is, during the early epochs β(l) → 0, which
contributes more weight to the source/interference containing
areas in the estimated label ŷ (i.e., the estimated spatial spec-
trum) to focus the NN to being correct for source/interference.
During the later epochs, β(l) is incrementally increased, which
relaxes the focus on source/interference from early epochs.
Thus, reducing erroneously estimated sources in areas that do
not contain source/interference (i.e. “false-alarms”).

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
DAFC-based NN approach and compares it to the conventional
approaches, summarized in Subsection IV-A1. The data for
all considered scenarios is simulated using the measurement
model from Section II.

A. Setup & Training
This work considers a uniform linear array (ULA) with

half-wavelength-spaced L elements. Each simulated example
consists of the input-label pair, (X,y), where the input X is
defined in (5), and the label y is defined in Section III-D.
The simulation configurations are detailed in Table II. The
performance of the proposed approach is evaluated using
a single NN instance. Therefore, a single NN model is
used for various signal-to-interference ratios (SIRs), signal-
to-noise ratios (SNRs), interference-to-noise ratios (INRs),
DOAs, interference distribution, and the number of sources for
joint DOA estimation and source enumeration. The following
definitions for the m-th source are used in all experiments:

INR =
E[∥c∥2]
E[∥n∥2]

= σ2
c/σ

2
n , (13)

SNRm =
E[∥a(θm)sm∥2]

E[∥n∥2]
= σ2

m/σ2
n , (14)

SIRm =
E[∥a(θm)sm∥2]

E[∥c∥2]
= σ2

m/σ2
c . (15)

The NN optimization for all evaluated architectures is
performed using the loss function in (10) and Adam opti-
mizer [52] with a learning rate of 10−3, and a plateau learning
rate scheduler with a decay of 0.905. The set of loss weight up-
date factors, {β(l)}Nw

l=1, in (12) is chosen as the evenly-spaced
logarithmic scale between 10−5 and 10−2 with Nw = 6, that
is {10−5, 7.25 · 10−5, 5.25 · 10−4, 3.8 · 10−3, 2.78 · 10−2, 0.2}.
The chosen batch size is 512, the number of epochs is 500,
and early stopping is applied according to the last 200 epochs.

Notation Description Value

Mmax
Maximal number of
sources 4

L Number of sensors 16

K Number of snapshots 16

d Angular grid dimension 121

∆ϕ Angular grid resolution 1◦

FOV Field of view [−60◦, 60◦]

σ2
n Thermal noise power 1

Table II: Simulation Configurations.

1) DOA Estimation Approaches: This subsection briefly
summarizes the conventional DOA estimation approaches. The
performance of the proposed approach is compared to the
conventional MVDR, CNN, and FC-based NN. All the NN-
based approaches were implemented using similar number of
layers and learnable parameters. In addition, the FC-based NN
and CNN were optimized using the same learning algorithm
and configurations.

(a) Conventional Adaptive Beamforming
The MVDR [3] estimator is based on adaptive beamforming,
and it is the maximum likelihood estimator in the presence
of unknown Gaussian interference [53]. The MVDR estimates
DOAs by a peak search on the MVDR spectrum:

PMVDR (ϕ) =
1

aH (ϕ) R̂−1
x a (ϕ)

, (16)

where R̂x = 1
K

∑K
k=1 xkx

H
k is the sample covariance ma-

trix estimator. Notice that the MVDR spectrum utilizes only
second-order statistics of the received signal xk. For Gaussian-
only interference (i.e. ck = 0 in (1)), the second-order statistics
contains the entire statistical information. However, for non-
Gaussian interference, information from higher-order statistics
is needed.

(b) CNN Architecture
We consider a CNN-based DOA estimation approach using a
CNN architecture that is similar to the architecture provided
in [38]. The input to the CNN of dimension L × L × 3
consists of the real, imaginary, and angle parts of R̂x. The
CNN architecture consists of 4 consecutive CNN blocks,
such that each block contains a convolutional layer, a batch
normalization layer, and a ReLu activation. The convolutional
layers consist of [128, 256, 256, 128] filters. Kernel sizes of
3 × 3 for the first block and 2 × 2 for the following three
blocks are used. Similarly to [38], 2 × 2 strides are used
for the first block and 1 × 1 for the following three blocks.
Next, a flatten layer is used to vectorize the hidden tensor,
and 3 FC layers of dimensions 1024, 512, 256 are used
with a ReLu activation and Dropout of 30%. Finally, the
output layer is identical to the proposed DAFC-based NN
as detailed in Subsection III-C. The considered loss function
is identical to the proposed DAFC-based approach in (10).
The number of trainable parameters in the considered CNN
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architecture accounts for 3, 315, 449. Notice that the CNN-
based architecture utilizes the information within the sample
covariance matrix and therefore, is limited to second-order
statistics only.

(c) FC Architecture
A straightforward implementation of an FC-based architecture,
as mentioned in Subsection III-B, was implemented. The
data matrix, X, is vectorized, and the real and imaginary
parts of the values were concatenated to obtain a 2KL-
dimension input vector. The selected hidden layers are of
sizes: [512, 512, 1024, 1024, 512, 256] where each hidden layer
is followed by a tanh activation function. The output layer
is identical to the proposed DAFC-based NN approach as
detailed in Subsection III-C. The considered loss function
is (10), and the number of trainable parameters in the FC-
based NN accounts for 2, 787, 449. Notice that the FC-based
NN architecture utilizes all the measurements by interacting
with all samples in the input data. However, this processing is
not specifically tailored to the structure of information within
the measurements. On the other hand, the proposed DAFC-
based NN utilizes the information structure to process the input
data. Therefore, for the considered DOA estimation problem,
the “inductive bias” [51] for this approach is improper and can
result in under-fitted NN architecture.

2) Performance Evaluation Metrics: This subsection dis-
cusses the criteria for the performance evaluation of the
proposed DOA estimation approach. In this work, similarly
to [38], the DOA estimation accuracy of a set of sources
is evaluated by the Hausdorff distance between sets. The
Hausdorff distance, dH between the sets, A, and B, is defined
as:

dH (A,B) = max {d (A,B) , d (B,A)} , (17)
d (A,B) = sup {inf {|α− β| : β ∈ B} : α ∈ A} .

Notice that d (A,B) ̸= d (B,A). Let Θ = {θm}Mm=1 and Θ̂ =

{θ̂m}M̂m=1 be the sets of true and estimated DOAs, respectively.
The estimation error is obtained by evaluating the Hausdorff
distance, dH(Θ, Θ̂). We define the root mean squared distance
(RMSD) for an arbitrary set of N examples (e.g., test set),{
X(n),y(n)

}N

n=1
, with the corresponding true and estimated

DOAs,
{
Θ(n), Θ̂(n)

}N

n=1
as:

RMSD ≜

√√√√ 1

N

N∑
n=1

d2H

(
Θ(n), Θ̂(n)

)
. (18)

Angular resolution is one of the key criteria for DOA
estimation performance. The probability of resolution is com-
monly used as a performance evaluation metric for angular
resolution. In the considered problem, resolution between two
sources and between source and interference are used for
performance evaluation. For an arbitrary example with M
sources, the resolution event Ares is defined as:

Ares

(
Θ, Θ̂

)
≜

{
1,

⋂M
m=1 ξm ≤ 2◦ and |Θ̂| ≥ M

0, else
,

(19)

ξm ≜ min
θ̂∈Θ̂

|θm − θ̂|, m = 1, . . . ,M .

For example, a scene with M sources is considered success-
fully resolved if for each true DOA a) there exists a close-
enough estimated DOA, θ̂ ∈ Θ̂, that is at most 2◦ apart, and
b) there exists at least M DOA estimations. According to (18),
the probability of resolution, can be defined as:

Pres =
1

N

N∑
n=1

Ares

(
Θ(n), Θ̂(n)

)
. (20)

3) Data Sets: This subsection describes the structure and
formation of Training & Test sets.

(a) Training Set
The considered training set contains Ntrain = 10, 000
examples re-generated at each epoch. For each exam-
ple, i.e. an input-label pair (X,y), the number of DOA
sources, M , is generated from uniform and i.i.d. distribution,
{1, . . . ,Mmax}. The training set contains 10% of interference-
free examples and 90% of interference-containing. Out of the
interference-containing examples, 90% generated such that the
source DOAs, {θm}Mm=1, and the interference’s DOA, θc, are
distributed uniformly over the simulated FOV. The remaining
10% are generated such that θc is distributed uniformly over
the FOV, and the source DOAs, {θm}Mm=1, are distributed
uniformly over the interval [θc − 8◦, θc + 8◦]. This data set
formation enables to “focus” the NN training on the chal-
lenging scenarios where the source and interference DOAs are
closely spaced. The generalization capabilities of the proposed
NN to variations in interference statistics are achieved via the
interference angular spread parameter, ρ, from the uniform dis-
tribution, U ([0.7, 0.95]), and the interference spikiness param-
eter, ν, from the uniform distribution, U ([0.1, 1.5]). The INR
for each interference-containing example and {SIRm}Mm=1 or
{SNRm}Mm=1 are drawn independently according to Table III.

(b) Test Set
The test set consists of Ntest = 20, 000 examples. The results
are obtained by averaging the evaluated performance over 50
independent test set realizations. Considering the low-snapshot
support regime, the number of snapshots is set to K = 16,
except for experiment (c) in IV-B2. Considering heavy-tailed
interference, the spikiness parameter is set to ν = 0.2. The
INR is set to INR = 5 dB, and the interference angular spread
parameter is set to ρ = 0.9. The signal amplitude was set to be
identical for all sources, σ1 = · · · = σm, except for experiment
(b) in IV-B2.

B. Experiments

1) Single Source Within Interference: In this scenario, the
ability to resolve a single source from interference is evaluated.
Let M = 1 with θ1 = 0.55◦, and θc = θ1 + ∆θc such
that ∆θc is the angular separation between the single source
and interference. The 0.55◦ offset is considered to impose
a realistic off-grid condition. Fig. 3 shows the RMSD and
probability of resolution for all evaluated approaches.

Fig. 3a shows that the FC-based NN approach does not
manage to resolve the single source from the interference
for all evaluated angular separations. This result supports the
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(a) (b)

Figure 3: Scenario with a single source at θ1 = 0.55◦ and interference located at θc = θ1 +∆θc. (a) probability of resolution
and (b) RMSD.

Notation Description Value

ρ
Interference angular
spread parameter ∼ U ([0.7, 0.95])

ν
Interference
spikiness parameter ∼ U ([0.1, 1.5])

INR INR ∼ U ([0, 10]) [dB]

SIRm SIR of m-th source ∼ U ([−10, 10]) [dB]

SNRm SNR of m-th source ∼ U ([−10, 10]) [dB]

Table III: Training set parameters. SNRm distribution applies
to interference-free examples.

under-fitting limitation of the FC-based NN approach for the
DOA estimation, which can be explained by the architecture
that processes the input data as-is, without any structured
transformation or model-based pre-processing.

The MVDR and CNN performance in terms of the resolu-
tion are similar since both rely only on second-order statistics,
which is sufficient in scenarios with widely separated sources
and interference. Fig. 3a shows that the proposed DAFC-based
NN approach outperforms all other considered approaches in
low angular separation scenarios. This can be explained by the
fact that the DAFC uses the high-order statistics needed for
the resolution of closely spaced sources and interference.

Fig. 3b shows the RMSD of all considered DOA estimation
approaches. The proposed DAFC-based NN approach outper-
forms the other tested approaches in low SIR. At high SIR
and small angular separation, ∆θc = 5◦, the interference
is negligible with respect to the strong source signal, and
therefore, the DAFC-based, CNN, and MVDR approaches
obtain similar performance. For large angular separation,
∆θc = 30◦, the source and the interference are sufficiently
separated, and therefore, DOA estimation errors are mainly
induced by the interference DOA, θc. The MVDR spectrum
contains a peak at θc = 30.55◦, and therefore, MVDR’s

RMSD = 30◦ is approximately constant. The NNs are trained
to output a 0-probability for the interference, therefore, the
NN-based approaches: FC, CNN, and DAFC achieve a smaller
DOA estimation error. The DAFC-based NN and CNN utilize
structured transformations, which better fit the input data, and
therefore, they outperform the FC-based NN approach in terms
of RMSD.

2) Resolving Two Sources from Interference: This subsec-
tion evaluates the performance of the tested DOA estimation
approaches in scenarios with two sources within AWGN and
interference.

(a) Resolution of Equal-Strength Sources
In the following experiment, the resolution between two equal-
power sources, M = 2, with θ1 = −∆θ

2 + 0.55◦, and θ2 =
∆θ
2 +0.55◦, is evaluated. The off-grid additional 0.55◦ offset to

the ∆θ angular separation between the sources represents the
practical scenario. The interference at θc = 0.55◦ influences
the two sources similarly. Fig. 4 shows the probability of
resolution of the tested approaches in scenarios with (a) the
AWGN only and (b) spatially-colored interference.

The FC-based NN approach does not resolve the two targets
in both evaluated scenarios. Subplot (a) in Fig. 4 shows
that the proposed DAFC-based NN approach outperforms the
MVDR and the CNN at low-SNR and small angular separation
scenarios due to its generalization ability to spatially-white
interference. Subplot (b) in Fig. 4 shows that at low SIR
of SIR = −5 dB, the performances of MVDR and CNN
significantly degrade compared to the proposed DAFC-based
NN approach. Comparing subplots in Fig. 4, notice that at
SIR = −5 dB, the MVDR fails to resolve the sources with
angular separation ∆θ < 20◦ due to the presence of the heavy-
tailed spatially-colored interference in the proximity of the
sources. However, the proposed DAFC-based NN approach
mitigates this interference and resolves the sources, and hence,
outperforms other tested approaches at both SIR = 0 dB and
SIR = −5 dB.

Subplot (b) in Fig. 4 shows the non-monotonic trend of
CNN and MVDR performance at 4◦ < ∆θ < 18◦ and
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(a) (b)

Figure 4: Probability of resolution for two sources located at θ1,2 = θc ±∆θ/2, and interference located at θc = 0.55◦. (a)
AWGN-only scenario and (b) interference-containing scenario.

(a) FC (b) MVDR

(c) CNN (d) DAFC

Figure 5: Spatial spectrum, two sources with SIR = −5 dB
located at θ1,2 = θc ±∆θ/2 with ∆θ = 12◦ and θc = 0.55◦.
The dashed blue lines represent the mean spatial spectrum,
and the color fill represents the standard deviation around the
mean obtained from 2, 000 i.i.d. examples. The solid vertical
orange lines represent the true source DOAs, and the dashed
vertical green line represents the interference DOA.

SIR = −5 dB. For 4◦ < ∆θ < 8◦ the sources are closer
to the peak of the interference’s lobe and are therefore less
mitigated by it. As ∆θ initially increases, 8◦ < ∆θ < 12◦,
the sources reach DOAs which are in the proximity of the
interference lobe’s “nulls” which explains the reduction in
resolution, and as ∆θ further increases, 16◦ < ∆θ, the
sources are sufficiently separated from the interference such
that the resolution increases. As a result, MVDR and CNN-
based approaches that use second-order statistics only, can not

resolve the sources in the vicinity of a stronger interference.
Fig. 5 shows the average spatial spectrum of all tested

approaches for ∆θ = 12◦ and SIR = −5 dB. The average
spatial spectrum of the FC-based NN approach does not show
two prominent peaks, which results in its poor probability of
resolution in Fig. 4. The MVDR “bell-shaped” spatial spec-
trum does not contain the two prominent peaks at θ1,2 since the
interference “masks” the two sources. The CNN and proposed
DAFC-based NN approaches show two peaks at the average
spatial spectrum. The peaks at the CNN’s average spatial
spectrum are lower, resulting in a low-resolution probability.
The average spatial spectrum of the proposed DAFC-based
NN approach contains two high peaks, resulting in a superior
probability of resolution in Fig. 4.

(b) Resolution of Unequal-Power Sources
Fig. 6 shows the probability of resolution in a scenario
with two sources, M = 2, at θ1 = −∆θ/2 + 0.55◦, and
θ2 = +∆θ/2 + 0.55◦ with interference located between the
sources at θc = 0.55◦. The signal strength of the second
source is set to SIR1 = SIR2 + 10 dB. Comparing Fig. 6 to
Fig. 4b, the competing methods show similar trends, except
the degradation of the CNN’s probability of resolution for the
SIR = 0 dB case. On the other hand, the proposed DAFC-
based NN approach outperforms other tested approaches in
terms of the probability of resolution. Therefore, Fig. 6 demon-
strates the generalization ability of the proposed DAFC-based
NN approach to a variance between source strengths.

(c) Effect of the Number of Snapshots on the Resolution
This experiment investigates the influence of the number
of snapshots, K, on the ability to resolve two proximate
sources from heavy-tailed spatially-colored interference. The
equal-strength resolution scenario is repeated using K =
4, 8, 16, 32, 64 with different instances of NN training for
each K value. Fig. 7 shows the probability of resolution for
two equal-strength sources at θ1,2 = θc±∆θ/2 for ∆θ = 12◦

and θc = 0.55◦.
The FC-based NN approach fails to resolve the two sources.

For SIR = 0 dB, the MVDR, CNN, and DAFC-based NN
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Figure 6: Probability of resolution for two sources located at
θ1,2 = θc±∆θ/2, and interference located at θc = 0.55◦. The
SIR in the legend represents the SIR of the first source, SIR1.
The SIR of the second source is set to SIR2 = SIR1+10 dB.

approaches achieve a monotonic increasing probability of
resolution with increasing K. The proposed DAFC-based NN
approach slightly outperforms other tested approaches. At low
SIR of SIR = −5 dB, the proposed DAFC-based NN ap-
proach significantly outperforms the other tested approaches.
This can be explained by the fact that increasing K increases
the probability for outliers to be present in the input data
matrix, X. Therefore, the estimated autocorrelation matrix,
R̂x, is more likely to be biased by the interference-related
outliers, which results in interference “masking” the sources.
The proposed DAFC-based NN approach is immune to these
outliers and successfully exploits the information from the
additional snapshots to improve the probability of resolution.

Figure 7: Probability of resolution for two sources located at
θ1,2 = θc ±∆θ/2 with ∆θ = 12◦, and interference located at
θc = 0.55◦, as a function of the number of snapshots, K.

Figs. 4, 5, 6, and 7 show the ability of the proposed
DAFC-based NN approach to utilize the information structure
of the input data by exploiting the higher-order statistics
and performing the domain-fitted transformation in order to
provide superior resolution ability in the case of proximate
heavy-tailed spatially-colored interference, low SIR and small
sample size.

3) Multiple Source Localization: The performances of the
tested DOA estimation approaches are evaluated and compared
in a multi-source scenario. Four sources, (M = 4) were
simulated with angular separation, ∆θ: {θ1, θ2, θ3, θ4} =
θc + {−2∆θ,−∆θ,∆θ, 2∆θ}, where θc = 0.51◦ represents
a realistic off-grid condition. The RMSD of evaluated meth-
ods is depicted in Fig. 8. The proposed DAFC-based NN
approach outperforms the other tested approaches at low SIR
(SIR < 0 dB) for large and small angular separations. For
high SIR and low angular separation, ∆θ = 5◦, the MVDR
achieves the lowest RMSD. The reason is that for this case, the
interference is negligible with respect to the lobe of the strong
source in the MVDR’s spectrum. However, at high angular
separation, ∆θ = 20◦, the proposed DAFC-based NN ap-
proach significantly outperforms the other tested approaches.
This is explained by Fig. 9, that shows the spectrum of the
tested DOA estimation approaches. Notice that the proposed
DAFC-based NN mitigates interference, while the spectra of
other tested approaches contain high peaks at the interference
DOA, θc. These peaks increase the Hausdorff distance in (17),
increasing the RMSD of other tested approaches in Fig. 8.

Figure 8: RMSD in scenarios with M = 4 sources located at
{θ1, θ2, θ3, θ4} = θc + {−2∆θ,−∆θ,∆θ, 2∆θ}, where θc =
0.51◦.

4) Multiple Source Enumeration: The source enumeration
performance is evaluated in this experiment. The DOAs of
the sources are selected from the set of following values:
{10.51◦,−9.49◦,−19.49◦, 10.51◦} such that for M sources,
the DOAs are selected to be the first M DOAs. The interfer-
ence is located at θc = 0.51◦. The proposed DAFC-based NN
approach is compared to the MDL and AIC [19]. Fig. 10 shows
the source enumeration confusion matrices for the MDL, AIC,
and the proposed DAFC-based NN with SIR = 0 dB.

Figs. 10a, 10b show that in both the MDL and the AIC, the
predicted number of sources has a constant bias for each true
M due to the spatially-colored interference. Fig. 10c shows the
source enumeration performance of the proposed DAFC-based
NN approach in the presence of spatially colored interference.
The DAFC-based NN identifies the interference and does not
count it as one of the sources by outputting a low probability
for angular grid points near θc, resulting in a better source
enumeration performance.
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(a) FC (b) MVDR

(c) CNN (d) DAFC

Figure 9: Spatial spectrum, four sources with SIR = 0 dB
located at {θ1, θ2, θ3, θ4} = θc + {−2∆θ,−∆θ,∆θ, 2∆θ},
where θc = 0.51◦ and ∆θ = 20◦. The dashed blue lines rep-
resent the mean spatial spectrum, and the color fill represents
the standard deviation around the mean obtained from 2, 000
i.i.d. examples. The solid vertical orange lines represent the
true source DOAs and the dashed vertical green line represents
the interference DOA.

5) Loss Weights: This experiment evaluates the effect of the
loss weight update factors, {β(l)}Nw

l=1, introduced in (12), on
the confidence level in the spatial spectrum. Let B̃ denote the
set of {β(l)}Nw

l=1 values used in the proposed approach. The
loss weights, {w(t)

i }di=1, are defined by the factors e
(t)
0 , e

(t)
1

according to (11), and are introduced to provide a trade-off
between the penalty obtained on source/interference and the
penalty obtained for the rest of the output spatial spectrum.

For comparison, we set B0 = {10−6, 3.98 · 10−6, 1.58 ·
10−5, 6.31 · 10−5, 2.51 · 10−4, 10−3}, and B1 = {10−3, 3.98 ·
10−3, 0.0158, 0.063, 0.25, 0.1} as two sets of loss weight up-
date factors. For B0, the loss weight update factors are closer
to 0, hence the loss weights emphasize the source/interference,
since e

(t)
1 ≪ e

(t)
0 which, according to (11), translates to larger

w
(t)
i for source/interference grid points. For B1 the values are

closer to 1, hence the loss weights are more equally distributed
among grid points, since e

(t)
1 ≈ e

(t)
0 . The experiment in IV-B1

is repeated here for the DAFC-based NN approach with the
two additional B0,B1 values mentioned above.

Let p̂1 represent the probability assigned for the source-
containing grid point in the estimated label ŷ. Let p̂0 represent
the maximum over probabilities assigned for non-source grid
points in ŷ, excluding a 5-grid point guard interval around the
source. Fig. 11 shows p̂1 and p̂0 for various angular separations
between the source and interference for SIR = −5 dB. For
B0, the source’s contribution to the loss value is substan-
tially higher, which results in a higher probability for the

(a) MDL

(b) AIC

(c) DAFC

Figure 10: Confusion matrix for source enumeration, SIR =
0 dB, sources located at {10.51◦,−9.49◦,−19.49◦, 10.51◦}.
(a) MDL, (b) AIC, (c) proposed DAFC-based NN.

source-containing grid point. However, this results in a higher
probability obtained for non-source grid points, since their
contribution to the loss value is negligible compared to the
source-containing grid point, increasing “false-alarm” peaks
in the spatial spectrum, subsequently increasing the estimation
error. Correspondingly, for B1 the source’s contribution to the
loss value is less significant, which results in low probability
assigned for the source-containing grid points, as well as low
probability for non-source grid points.

V. CONCLUSION

This work addresses the problem of DOA estimation and
source enumeration of an unknown number of sources within
heavy-tailed, non-Gaussian, and spatially colored interference.
A novel DAFC-based NN approach is proposed for this
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Figure 11: Loss weight update factor impact on probability
levels obtained in the DAFC-based NN’s spatial spectrum,
single target at θ1 = 0.55◦ with interference at θc = θ1+∆θc,
SIR = −5 dB. p̂1 represents the probability obtained for
source-containing grid points. p̂0 represents the probability
obtained for non-source grid points.

problem. The DAFC mechanism applies a structured transfor-
mation capable of exploiting the interference non-Gaussianity
for its mitigation while retaining a low complexity of learnable
parameters. The proposed DAFC-based NN approach is opti-
mized to provide an interference-mitigated spatial spectrum
using a loss weight scheduling routine, performing DOA
estimation and source enumeration using a unified NN.

The performance of the proposed approach is compared to
MVDR, CNN-based, and FC-based approaches. Simulations
showed the superiority of the proposed DAFC-based NN ap-
proach in terms of probability of resolution and estimation ac-
curacy, evaluated by RMSD, especially in weak signal power,
small number of snapshots, and near-interference scenarios.
The source enumeration performance of the proposed DAFC-
based NN approach was compared to the MDL and AIC. It was
shown that in the considered scenarios, the proposed approach
outperforms the MDL and the AIC in the source enumeration
accuracy.
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