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This work addresses the problem of range–Doppler multiple target
detection in a radar system in the presence of slow-time correlated
and heavy-tailed distributed clutter. Conventional target detection al-
gorithms assume Gaussian-distributed clutter, but their performance
is significantly degraded in the presence of correlated heavy-tailed
distributed clutter. Derivation of optimal detection algorithms with
heavy-tailed distributed clutter is analytically intractable. Further-
more, the clutter distribution is frequently unknown. This work pro-
poses a deep learning-based approach for multiple target detection
in the range–Doppler domain. The proposed approach is based on a
unified neural network (NN) model to process the time-domain radar
signal for a variety of signal-to-clutter-plus-noise ratios (SCNRs) and
clutter distributions, simplifying the detector architecture and the NN
training procedure. The performance of the proposed approach is
evaluated in various experiments using recorded radar echoes, and
via simulations, it is shown that the proposed method outperforms
the conventional cell-averaging constant false-alarm rate (CFAR), the
trimmed-mean CFAR, and the adaptive normalized matched-filter
detectors in terms of probability of detection in the majority of tested
SCNRs and clutter scenarios.
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I. INTRODUCTION

Target detection in range–Doppler map is one of the
major radar tasks [1], [2]. Conventionally, the decision on
target presence is made by comparing the energy within
the cell-under-test (CUT) with a threshold, which is calcu-
lated according to the energy at neighboring cells [3]. The
presence of spiky clutter in the cells used for the detection
threshold calculation increases the threshold level, and thus,
compromises the target detection performance [3].

Considering the detector input as a 1-D complex signal
that contains slow-time samples of received radar echoes
in each range bin, the task of radar target detection within
correlated heavy-tailed clutter is conventionally formulated
as a binary hypotheses decision task. Under this formula-
tion, the hypotheses H0 and H1 represent the cases where
there is no target and the target is present within the CUT,
respectively [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22]. In [4],
[5], [6], [7], [8], [9], and [10], the problem of radar target
detection was formulated as a binary hypothesis testing,
where the optimum detectors were derived under certain
conditions. The design for a regularized covariance ma-
trix estimation in the adaptive normalized matched-filter
(ANMF) was introduced in [11] to maximize the asymptotic
probability of detection while retaining a constant false-
alarm rate (CFAR). The properties of CFAR detectors in
the presence of correlated heavy-tailed clutter were studied
in [18]. The problem of range-migrating target detection
within heavy-tailed clutter was addressed in [16] in which a
fast-converging amplitude estimation algorithm for target
detection was proposed. An orthogonal-projection-based
approach to suppress the sea clutter at each range cell in
combination with cell-averaging CFAR (CA-CFAR) was
proposed in [22]. Fortunati et al. [21] addressed the tar-
get detection within heavy-tailed clutter using massive
multiple-input multiple-output radar. Therein, a detector
was proposed for the asymptotic regime with increasing
number of antennas, and its robustness to the unknown
clutter distribution was demonstrated.

However, these model-based approaches were designed
considering a specific measurement model, and their per-
formance may degrade in the case of model mismatch.
Alternatively, the data-driven machine learning approaches
have been proposed in [12], [13], [14], [15], [19], [20],
and [23]. In these approaches, target detection is performed
using features extracted from the data. Thus, they enable
detectors’ robustness to environmental and clutter statistics’
variations. K-nearest neighbors (KNN) based approaches
using various feature space transforms of the raw 1-D com-
plex signal were proposed in [12], [13], [14], [15], and [19]
to address the binary hypothesis decision task. In particular,
Coluccia et al. [12], [14] proposed to obtain a KNN-based
decision rule from simulated data and evaluated the pro-
posed methods using the IPIX database [24] of recorded
radar echoes that contain correlated heavy-tailed sea clutter.
Wang et al. [23] used support vector machine to switch
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between conventional CFAR methods and perform target
detection in an environment containing clutter edges and/or
multiple interfering targets under white Gaussian noise. The
work in [20] extended the work in [21] to angle dimension
and proposed a reinforcement learning based approach to
design the beamforming matrix in a cognitive radar setup.

The binary hypothesis-based approaches in [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], and [22] assume under the H1 hypothesis
the presence of a single target within each CUT and the
availability of target-free secondary data, which are used
for clutter covariance matrix estimation. However, practical
scenarios may include multiple targets with similar azimuth,
range, and Doppler. Therefore, the performances of these
methods degrade in such scenarios. In addition, the methods
in [4], [5], [6], [7], [8], [9], [10], [12], [13], [14], [15],
[16], [17], [18], [19], [22], and [23] use the data after
range matched-filter processing, which linearly projects
each fast-time received pulse to range bins [3]. This linear
transformation fails to suppress the clutter echo signals
since these are not orthogonal to the projection signals that
correspond to each range bin.

Recently, deep neural networks (DNNs) with various
network architectures have been introduced for radar target
detection, where the network input consists of the samples
of the received radar echo [17], [25], [26], [27]. Considering
a 1-D problem with a priori known signal, a multilayer
perceptron-based detector for binary hypothesis detection
within non-Gaussian noise was proposed in [17]. A fully
connected (FC) architecture for multiple target detection
in the presence of homogeneous Rayleigh-distributed clut-
ter was utilized in [25]. A single-target detection within
additive white Gaussian noise (AWGN) using convolu-
tional neural network (CNN) based architecture for range–
Doppler target detection and azimuth–elevation estimation
was proposed in [26]. However, the works in [25], [26],
and [27] assume white Gaussian-distributed clutter, whereas
a more realistic clutter model would be correlated and
non-Gaussian. Although the work in [17] addresses the non-
Gaussian clutter, it also assumes the binary hypothesis de-
cision task, which has limitations as previously mentioned.

Neural network (NN) based processing using range–
Doppler map input was also studied in the literature, and the
majority of these works invoke computer vision methods
for radar target detection within AWGN [28], [29], [30],
[31]. An FC NN architecture for multiple target detection
within heavy-tailed clutter was proposed in [32]. A residual
block [33] was proposed in [29] for background noise
estimation in the range–Doppler map for the conventional
CFAR detector. In [30], a model-based data augmenta-
tion technique was proposed for linear frequency modu-
lated (LFM) radar detector in the 3-D range–Doppler-angle
domain. The proposed technique was used to generate
a synthetic dataset for U-net [34] training, considering
a single target in the azimuth–elevation domain at each
range–Doppler region-of-interest (ROI). The work in [31]
extended [30] by utilizing the absolute value of the range–
Doppler map for additional data augmentation.

Contrary to previous works described above, which
address the radar target detection within heavy-tailed clutter
as a 1-D binary hypothesis decision task for each range bin,
this work addresses the problem of radar target detection
within heavy-tailed clutter as a 2-D (range–Doppler) de-
tection problem with multiple targets in unknown ranges
and radial velocities (Doppler). Furthermore, in practical
radar scenarios characterized by correlated clutter, the con-
ventional range–Doppler transform designed for AWGN
model fails to suppress the clutter since the clutter signal
is correlated in slow-time and can be spread over multiple
range bins. Therefore, the range–Doppler map-based DNN
approaches mentioned above do not fully exploit the power
of DNNs to learn highly abstract nonlinear transformations
for suppressing the clutter. To that aim, this work proposes
to leverage DNNs ability to learn highly complex nonlinear
functions in order to transform the complex time-domain
radar echo samples into the range–Doppler domain while
suppressing the correlated clutter.

The contributions of this work are as follows.

1) A novel neural processing block named dimensional-
alternating fully connected (DAFC) block is pro-
posed to process raw time-domain radar echoes for
the task of multiple target detection. A DNN archi-
tecture that utilizes this block is proposed to map
radar signals to either range or Doppler domains
while suppressing correlated heavy-tailed clutter.

2) The proposed DNN architecture is utilized as a part
of a novel range–Doppler multiple target detector
that is evaluated in the presence of correlated heavy-
tailed clutter.

3) The proposed method significantly outperforms the
conventional methods and proves to be more robust
in various aspects: multiple targets within AWGN
and correlated heavy-tailed clutter, varying clut-
ter conditions/“spikiness” measure, and detection
threshold sensitivity to clutter “spikiness.”

4) The proposed method proves to generalize well to
unseen data based on the experiments involving
recorded real data.

The following notations will be used throughout the
article. Roman boldface lowercase and uppercase letters
represent the vectors and matrices, respectively. Nonbold
italic letters stands for scalars. IN and 0N are the identity
matrix and zero matrix of size N × N , respectively.E, super-
script T , and superscript H are the expectation, transpose,
and Hermitian transpose operators, respectively. Vec, | · |,
and I stand for the vectorization, set size, and indicator
operators, respectively. [a]n and [A]n,m are the nth and n, mth
elements of the vector a and the matrix A, respectively.
[A][·,:] and [A][:,·] represent an arbitrary row and column in
the matrix A, respectively.

The rest of this article is organized as follows. The ad-
dressed problem is stated in Section II. Section III presents
the proposed DAFC-based radar target detection approach.
The performance of the proposed approach is evaluated via

FEINTUCH ET AL.: NEURAL NETWORK-BASED MULTITARGET DETECTION 5685

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on February 08,2024 at 14:13:20 UTC from IEEE Xplore.  Restrictions apply. 



simulated data and recorded real data in Section IV. Finally,
Section V concludes this article.

II. PROBLEM STATEMENT

The measurement model is described in Section II-A,
and the multiple target detection problem in the range–
Doppler domain is formulated in Section II-B.

A. Measurement Model

Consider the baseband fast-time × slow-time model of
a single received radar echo

X = S (T ) + C + W (1)

where X, S(T ), C, W ∈ C
N×K , T = {(r j, v j ) : (r j, v j ) ∈

[rmin, rmax] × [vmin, vmax]} denotes the set of targets present
in the frame, and [rmin, rmax] and [vmin, vmax] are the intervals
of targets’ ranges and radial velocities, respectively. The
matrices S(·), C, and W represent the target echo signal, the
clutter, and the additive noise. The targets’ matrix S(·) is
defined as follows:

S (T ) =
{∑

(r,v)∈T S̃(r, v), T �= ∅
0N×K , T = ∅ (2)

where S̃(r, v) is the radar echo matrix received from a single
target at range r and radial velocity v, and is defined as
follows [3]:

S̃(r, v) = Arve jφrv r(r)vT (v) (3)

where 0N×K dentoes the N × K zero matrix, φrv ∼
U([0, 2π ]) is the unknown phase, Arv ∈ R

+ represents the
received signal amplitude and depends on the target radar
cross section and the propagation path loss.

Notice that the model in (1) represents the radar echo of
both the pulse-Doppler and the LFM-CW radars with the
appropriate range and radial velocity steering vectors, r(·)
and v(·). Thus, for LFM-CW radar

r(r) =
[
1 e− j2π 2Br

cN . . . e− j2π 2Br
cN (N−1)

]T

v(v) =
[
1 e− j2π

2 fcv

c T0 . . . e− j2π
2 fcv

c T0(K−1)
]T

(4)

where N is the number of samples per LFM chirp, K is
the number of chirps per dwell, B is the transmit signal
bandwidth, fc is the carrier frequency, c is the speed of
light, and T0 stands for the pulse repetition interval (PRI).

Conventionally, slow-time radar clutter is statistically
modeled as a random vector at each range bin [12], [24],
[35]. Let {cr ∈ C

K}r∈R denotes the group of 1-D slow-time
clutter vectors. Then, the clutter matrix C in (1) can be
obtained by converting {cr}r to the fast-time × slow-time
representation by

C =
∑
r∈R

r(r)cT
r (5)

whereR is the set of range bins that partition the continuous
range space to grid points spaced by the range resolution
�r = c/(2B). The clutter signal matrix C in (1) is a sum
of |R| “clutter echoes,” one per range bin. According to

(5), each column in C is a linear combination of the range
steering vectors corresponding to the range bins in R.
Therefore, by projecting the fast-time vectors (i.e., columns)
in (5) to the range steering vectors representing the range
bins in R, we will obtain the set of original clutter vectors
{cr}r , one per range bin.

The fast-time×slow-time noise matrix W in (1) is de-
fined by w̃ = Vec(W), where w̃ is modeled as an AWGN
vector

w̃ ∼ CN
(
0NK , σ 2INK

)
. (6)

Let s̃(r, v) � Vec(̃S(r, v)) and c̃ � Vec(C) be the vector-
izations of a target and clutter matrices in (3) and (5),
respectively. The clutter-to-noise ratio (CNR) for a given
frame and signal-to-clutter-plus-noise ratio (SCNR) for a
given target within the frame are defined as follows:

CNR = E
[‖c̃‖2

]
E

[‖w̃‖2
]

SCNR = E
[‖s̃(r, v)‖2

]
E

[‖c̃ + w̃‖2
] . (7)

B. Range–Doppler Detection Formulation

The sets of range and Doppler bins are denoted by
R and V , respectively. The range bins defined earlier and
the Doppler bins V partition the continuous Doppler space
to grid points spaced by the Doppler resolution �v = c/
(2 fcKT0). The set of range–Doppler bins is obtained by the
Cartesian productR × V . A range–Doppler detector can be
formulated as a mapping between the received signal in (1)
to a per-bin decision in the range–Doppler domain

Ŷ = H (X) ∈ {0, 1}dR×dV (8)

where dR = |R|, dV = |V|, and H(·) is a mapping from a
fast-time × slow-time input frame X to a range–Doppler
decision matrix Ŷ.

Let [m, l] denotes a coordinate in the discrete range–
Doppler space R × V . The decision on target presence
in the range–Doppler bin corresponding to the coordinate
[m, l] is defined using entries in the range–Doppler decision
matrix Ŷ {

Target, [Ŷ]m,l = 1

No target, [Ŷ]m,l = 0.

An optimum detector maximizes the probability of detec-
tion PD for a fixed probability of false-alarm PFA.

The conventional range–Doppler transform, which
maps the received signal in (1) to the range–Doppler do-
main, can be obtained by taking the absolute squared value
of the 2-D fast Fourier transform (FFT) of X. Fig. 1 shows
an example of the conventional range–Doppler transform
of simulated radar signal consisting of multiple targets,
correlated heavy-tailed clutter, and AWGN. Note that there
is a nonhomogeneous clutter that is observed around the
Doppler velocity of 4 m/s and is present in the majority
of the range bins. This example visually exemplifies the
limitations of conventional range–Doppler processing in
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Fig. 1. Example of range–Doppler map containing simulated targets,
clutter, and noise. The targets are circled in red, with the marked SCNRs.

The nonhomogeneous clutter is present at the vicinity of the 4 m/s
Doppler velocity in the majority of the range bins.

suppression of correlated clutter. Therefore, suppression
of correlated heavy-tailed clutter involves nonlinear
range–Doppler transforms, as proposed in this work.

Conventional range–Doppler detectors, such as CA-
CFAR and TM-CFAR, operate on the output of the con-
ventional range–Doppler transform (absolute square of
2D-FFT). The decision for target presence in each range–
Doppler bin is based on calculating an adaptive threshold by
utilizing the energy information in the surrounding bins [3].
Correlated heavy-tailed clutter can induce spikes and/or
high levels in these surrounding cells, and thus compromise
the range–Doppler detector’s performance.

III. PROPOSED APPROACH

The proposed approach for target detection within
heavy-tailed clutter is detailed in this section. This article
proposes a data-driven approach, and for this purpose, the
dataset generation method is described in Section III-A.
Next, the preprocessing and innovative DAFC block are
introduced in Section III-B and III-C. Finally, the NN
architecture and the proposed range–Doppler detector are
detailed in Section III-D and III-E.

A. Dataset Generation

The dataset generation is schematically shown in Fig. 2.
First, the simulated radar echoes of clutter and noise are
generated using the clutter signals, {cr}r∈R, to build the
matrix C in (5) along with AWGN, W. Next, the set of
targets T is used to build the signal matrix, S(T ) in (2).
The received radar input frame, X, is generated according
to (1). The range–Doppler label matrix Ytrue ∈ {0, 1}dR×dV

is a binary matrix with the following entries:

[Ytrue]m,l =
{

1, [m, l] ∈ A (T )

0, else
(9)

where A(T ) is the set of matrix indices that represent the
closest range–Doppler bins to the true targets in T .

This work proposes to transform an input fast-
time×slow-time frame to range or Doppler domains and
detect targets using an NN-based approach. It is proposed
to use two separate and identical NN models for range
and Doppler domains. These models are trained accord-
ing to the supervised learning framework. The range la-
bel used to train the range model (i.e., range NN) is
yr,true = I(

∑
l [Ytrue][:,l] ) and the Doppler label used to

train the Doppler model (i.e. Doppler NN) is yv,true =
I(

∑
m [Ytrue][m,:] ).

The clutter signal matrix C in (1) consists of |R| clutter
slow-time vectors {cr}r∈R. Both simulated and recorded
radar echoes are used for these clutter vectors.

1) Simulated clutter: This work adopts the commonly
used K-distributed spherically-invariant random vector
(SIRV) model for correlated heavy-tailed clutter slow-time
vector at each range bin [12], [35]

c ∼ K (ν, M) , c = √
sz ∈ C

K

s ∼ �(ν, ν ), z ∼ CN (0, M)

[M][p,q] = exp −2π2σ 2
f (p − q)2 − j(p − q) fd T0 (10)

where �(ν, ν ) denotes the Gamma distribution with shape ν

and rate ν, σ 2
f is inversely related to the clutter correlation,

and fd is the clutter’s Doppler frequency shift [12]. The
shape parameter, ν, controls the “spikiness” measure of the
clutter amplitude distribution [12], [35]. A set of indepen-
dent, identically distributed (i.i.d.) simulated clutter vectors

for each range bin inR is generated as {cr}r∈R
i.i.d.∼ K(ν, M).

2) Recorded real data clutter: We use the Grimsby IPIX
database of recorded echoes from radar clutter [24]. This
database contains high-resolution radar echoes collected
using the McMaster IPIX radar in Grimsby on the shore
of Lake Ontario. Each file in the database contains 60 000
pulses of radar echoes, recorded during 60 s. Each file con-
tains radar echoes from Lake Ontario collected at various
dates, hours, azimuths, and range sections. A set {cr}r∈R of
recorded clutter slow-time vectors for each range bin in R
is created by cropping K consecutive pulses from all range
bins at a random offset within a file.

B. Preprocessing

In this work, the real-valued NNs were considered.
The preprocessing is used to convert the complex-valued
input signal X from (1) to a real-valued representation
that is appropriate for an NN processing and target de-
tection in range or Doppler and is composed of three
steps.

Preprocessing Flow

• Input: X ∈ C
N×K , detection parameter

p ∈ {“range,”“Doppler”}
1) Reshape input:

X0 =
{

XT , ; p = “range”

X, ; p = “Doppler.”
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Fig. 2. Dataset generation scheme.

2) Center features over rows:

[X1][·,:] = [X0][·,:] − xT .

3) Concatenate real and imaginary terms:

Z0 = [Re{X1}, Im{X1}] .

• Output: Z0 = P (X) ∈ {RN×2K ,RK×2N }

The row vector, [X][·,:], represents a row in X and xT =
1

M0

∑M0
m=1 [X0][m,:], where M0 is the number of rows in X0.

Note that the target echo signal in (3) is an outer product
of two complex sinusoidal vectors such that the range and
Doppler information is encoded in the frequency content
along the corresponding axis. Step 1 transposes the input
frame X such that the column axis represents the parameter
of interest (i.e., the “feature axis”) and the row axis contains
different realizations of that feature. Step 2 centers each
feature and Step 3 concatenates the real and imaginary parts
of the data to real-valued representation, Z0, of dimensions
N × 2K , for p = “ Doppler,” and K × 2N for p = “range.”

C. Dimensional-Alternating FC

This section presents a novel neural processing block
for radar target detection in range or Doppler domains.

Dimensional-Alternating Fully Connected

• Input: Zin ∈ R
H×W

1) FC transform of each row in Zin:

Zr = Fhr ,Wr ,br (Zin) � hr
(
ZinWr + 1H bT

r

)
.

2) FC transform of each column in Zr :

Zout = Ghc,Wc,bc (Zr ) � hc
(
WT

c Zr + bc1T
W ′

)
• Output: Zout = S (Zin) ∈ R

H ′×W ′

Let Fhr ,Wr ,br denote an FC transform applied to
each row in Zin and Ghc,Wc,bc denote an FC transform
applied to each column in Zr . Wr ∈ R

W ×W ′
, br ∈

R
W ′

, Wc ∈ R
H×H ′

, and bc ∈ R
H ′

represent the DAFC

block’s learnable parameters and hr (·) and hc(·) are the non-
linear activation functions, which are applied elementwise.
This block is repeatedly used in a pipeline structure such that
the input to the first block is the output of the preprocessing
flow Z0 = P (X).

The DAFC block is designed according to the three
following ideas:

1) structured transformation;
2) sparsity;
3) nonlinearity.
1) Structured transformation: The proposed radar signal

processing approach is specifically tailored to the conven-
tional radar with the fast-time × slow-time data structure.
From (1), (3), and the preprocessing procedure described
in Section III-B, each row in Z0 encodes the information
about the parameter of interest (i.e., range or Doppler) in
its frequency content. The variation between the rows in Z0

is a result of the interaction between multiple target echo
signals and the statistical variation of the clutter and noise,
and the random phase for each single target echo signal.

With that view of information structure in mind,
Fhr ,Wr ,br is a “feature-extracting” transform that aims to
extract the parameter of interest related features from each
row that will contribute to the detection capability of the
NN. Ghc,Wc,bc , is a “re-calibration” transform that inserts
nonlinear interaction between transformed rows in analogy
to the excitation stage in [36]. This interaction provides
an additional degree of nonlinear processing that can learn
to mitigate clutter-induced interference and enhance the
contribution of the transformed rows. The DAFC operation
also resembles the two parts separable convolution [37],
where an image’s channel dimension and spatial dimension
are processed consecutively.

2) Sparsity: The data processed by the proposed ap-
proach are matrix-shaped. The straightforward approach to
process this type of data is to vectorize each matrix and
invoke a vanilla FC layer. In contrast, the proposed approach
performs a matrix-to-matrix transform by consecutively
processing the data along the two axes (rows and columns)
while using a sparse set of parameters. For example, con-
sider a transform from Zin ∈ R

H1×W1 into Zout ∈ R
H2×W2 and

assume for simplicity that H1 = W1 = M1 and H2 = W2 =
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Fig. 3. NN architecture described in Section III-D. X is the complex-valued fast-time × slow-time input frame, P (X) is the preprocessing flow
described in Section III-B, and Z0 � P (X) is the real-valued matrix output of the preprocessing flow. The row mapping (orange) and column mapping
(magenta) represent steps 1 and 2 from the DAFC in Section III-C with tanh activation function. The dashed lines represent the mapping operation via

an FC transform. The final layer outputs the vector y, which consists of sigmoid activation at each output neuron.

M2. The number of parameters in such a transform is

FC: H2W2(H1W1 + 1) = O(M2
1 M2

2 )

DAFC: W2(W1 + 1) + H2(H1 + 1) = O(M1M2) . (11)

Notice that the DAFCs parameter complexity grows lin-
early with the data dimensions compared with the quadratic
parameter complexity growth of the FC layer. Since NNs
are typically optimized using gradient-based learning [38],
this lower parameter complexity significantly reduces the
dimensionality of the NNs learnable parameter space and,
therefore, can aid in the convergence of the gradient-based
learning procedure.

In addition, the parameter complexity coincides with
the computational complexity. Therefore, the design of the
DAFC block contributes to the applicability of the NN. The
lower complexity also enables higher dimensional repre-
sentations, which can contribute to the capacity [38] of
the NN, hence enabling the NN to represent more complex
and abstract representations that will enhance the detection
capabilities.

3) Nonlinearity: Another interesting attribute of the
DAFC block is the additional degree of nonlinearity. The
straightforward FC-based approach will process the input
matrix via an affine transformation that is followed by a
nonlinear activation function. In contrast, the DAFC inserts
an additional nonlinear activation after applying an affine
map on each row. Although the affine maps in the DAFC
block are of lower dimension, the additional degree of
nonlinearity can contribute to the capacity [38] of the NN,
thus enabling more abstract and complex representations to
be learned.

D. NN Architecture and Training

The proposed NN architecture is selected to provide a
mapping from the complex fast-time × slow-time input to a
probability mass function (pmf) of a target presence in each
range or Doppler bin. To that aim, the preprocessing flow, as
described in Section III-B, and the DAFC neural processing,
as described in Section III-C, are utilized to compose an NN

TABLE I
NN Architecture

architecture that delivers the desired mapping. The selected
NN architecture is formulated as follows:

y = h (X) � F (Vec (S3 (S2 (S1 (P (X)))))) (12)

where P is the preprocessing procedure described in
Section III-B, Sb denotes the enumerated bth DAFC block,
and F is an FC transform (i.e., layer) with sigmoid activa-
tion at each output neuron. Fig. 3 shows the proposed NN
architecture with parameters specified in Table I.

The motivation for the dimensionality expansion in
the early stages is similar to the high-dimensional fea-
ture space rationale used in kernel-support vector machine
(SVM) methods [39]. Namely, the NN learns a high-
dimensional mapping that transforms the input data to a
high-dimensional space in which the expressive characteris-
tics are enhanced and the detection ability is increased. The
dimensionality reduction in later stages is aimed to reduce
the dimension of the latent representation to a dimension
that is closer to the label space dimension. This trend of
dimensionality expansion by early layers and reduction in
later layers is also presented in [40], where Ansuini et al.

FEINTUCH ET AL.: NEURAL NETWORK-BASED MULTITARGET DETECTION 5689

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on February 08,2024 at 14:13:20 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Range–Doppler detection scheme. X is the complex input signal. The NN-based processing (light purple) contains separate instances of NN
architectures described at Section III-D for range and Doppler. The model-based processing projects the inputs signal onto the steering matrices, as
described in Section III-E. The range–Doppler detection (light gray) contains the integration scheme between the NN and model-based outputs, as

detailed in Section III-E, and provides the range–Doppler decision matrix Ŷ.

show that the intrinsic dimensionality of CNNs’ layers
follows the same trend.

The last activation is chosen to be sigmoid since we
choose the NN to produce a pmf of target presence in
each range or Doppler bin. Thus, the multidimensional pmf,
y ∈ [0, 1]d , where d ∈ {dR, dV }, encodes the target presence
probability in each bin. The proposed NN architecture
enables detection of multiple targets at a single inference
cycle, without the need for ROI pooling of range or Doppler
subspaces, similarly to the object detection approach in [41].
Similarly to the article presented in [30], this architecture
considers a sparse label. Therefore, the class-balanced cross
entropy [42] is used as the following loss function:

L (y, ytrue) = − 1

d

d−1∑
j=0

1 − β

1 − βn0

(
1 − [ytrue] j

)
log

(
1 − [y] j

)
+ 1 − β

1 − βn1

(
[ytrue] j

)
log

(
[y] j

)
(13)

where β → 1, y ∈ [0, 1]d , and ytrue ∈ {0, 1}d are the NN
output and true label vector, respectively, d is the dimension
of label vector (dR or dV ). Terms n1 and n0 are proportional
to the number of the target bins and the target-free bins,
respectively, and represent the density of the target labels
within the training dataset.

E. NN-Based Range–Doppler Detector

Let the range and Doppler steering matrices
be R = [r(0) r(�r) . . . r(�r(dR − 1))] and
V = [v(0) v(�v) . . . v(�v(dV − 1))], where r(r)
and v(v) are defined in (4). Let hr (·) and hv (·) denote the
range and Doppler NN models, which are in fact separate
instances of the NN described in Section III-D. Fig. 4
shows the range–Doppler detection scheme detailed in
Algorithm 1.

In Step 1, yr and yv are NN-yielded multidimensional
pmf’s of target presence in each range and Doppler bin,

Algorithm 1: Range–Doppler Detection.

• Input: X ∈ R
N×K , detection threshold t

1) NN feedforward, range–Doppler projection

yr = hr (X) , yv = hv (X) , Z = Abs
(
RH XV∗) .

2) Apply threshold to NN-yielded pmf’s and use
them to filter the projected matrix

ŷr = I (yr > t ) , ŷv = I (yv > t )

U = Z � yryT
v � ŷr ŷT

v

3) Apply threshold to obtain range–Doppler
detection matrix

Ŷ = I

(
1

maxU
U > t

)
• Output: Ŷ ∈ R

dR×dV

and Z is the projection of the input frame on the steering
vectors representing the range and Doppler bins. Step 2
uses yr and yv to detect targets, mitigate clutter, and fac-
torize Z at each range–Doppler bin to obtain U. In Step
3, U is normalized to values in the interval [0,1] such that
the detection threshold t can be used. Note that U is the
combination of the model-based transform (i.e., projection
to range–Doppler steering matrices, which is equivalent to
conventional range–Doppler transform), NN-based trans-
form (to obtain a [0,1] score for each range–Doppler bin
in dR × dV ), and range–Doppler bins, which exceed the
threshold, t , at each NN output (i.e., targets detected by
the NNs).

The detection threshold t determines the tradeoff be-
tween the probability of detection, PD, and the probability
of false-alarm PFA. In this work, the threshold is set em-
pirically for the desired PFA. Although the CFAR property
of the proposed approach is not theoretically guaranteed,
the experiment in Section IV-C4 shows that the proposed
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approach is robust to variation in ν in terms of false-alarm
probability, compared with the CA-CFAR and TM-CFAR
detectors.

The range–Doppler detector in Algorithm 1 contains
a combination of NN-based processing and model-based
processing. The goal of the NNs is to output a pmf for
the presence of target in each range or Doppler bin (yr

and yv) that attains low probability for clutter-containing
and/or target-free bins, whereas high probability for target-
containing bins. Therefore, the proposed NN has the ability
to mitigate the clutter in the detector output since low-
probability bins are filtered by the detection threshold t ,
whereas the model-based projection is not able to suppress
the correlated heavy-tailed clutter’s energy, as explained
in Section II-B. On the other hand, solely relying on the
NNs as range–Doppler detectors suffers from an inherent
ambiguity in the combined range–Doppler space since the
operation yryT

v results in a Cartesian product of all possible
range–Doppler combinations. To that aim, the model-based
projection delivers a signal that contains information re-
garding energy presence in each range–Doppler bin, and
thus compensating for the NN-based ambiguity. The exper-
iment, as described in Section IV-E, shows the significant
gain obtained by this combination.

IV. PERFORMANCE EVALUATION

For all experiments, we have used synthetic simulated
targets according to the target signal model described in
Section II-A. A training dataset of 10 000 frames containing
targets (T �= ∅) and 10 000 frames without targets (T = ∅)
was used in each experiment to keep a balanced training
dataset. For each target-containing frame (i.e., T �= ∅), the
number of targets is |T | ∼ Unif({1, . . . , 8}) with targets’
parameters (range and Doppler) sampled uniformly over
the continuous range–Doppler space

r ∼ Unif ([rmin, rmax]) , v ∼ Unif ([vmin, vmax]) . (14)

For each target in T , the SCNR is sampled from
SCNR[dB] ∼ Unif(−5, 10). In order to enrich the training
dataset, each batch is simulated independently to increase
the number of frames for each NN training. Adam opti-
mizer [43] with learning rate 10−3 and β = 0.99 parameter
was used to train the network, together with L2 regulariza-
tion factor of 5 · 10−4. Batch size of 256 and 300 epochs,
and a plateau learning rate scheduler with 0.905 factor were
selected.

The test dataset in each evaluation scenario contains
4000 fast-time×slow-time frames with T �= ∅ and 2000
frames with T = ∅. For each frame with T �= ∅, the number
of targets is, unless stated else, 4, with equal SCNR for each
target. Range and Doppler values of targets are sampled in
the same manner as the training dataset. The rest of the
datasets’ parameters are detailed in Table II.

In the following sections, the performance of the pro-
posed approach is evaluated in a clutter-free scenario and in
various scenarios with both simulated and recorded radar
clutter. The evaluation is via the probability of detection

TABLE II
Parameters of Generated Datasets

(PD) for a fixed probability of false-alarm (PFA). The per-
formance on 30 independently generated test datasets is
averaged in each experiment in order to display the results.
For each generated dataset, the detection threshold is set to
determine a predefined PFA. Note that in each experiment,
the same range NN instance and the same Doppler NN
instance are used for various SCNRs and various clutter
conditions, as further detailed in the experiments below.

In the following experiments, the performance of the
proposed approach was evaluated and compared with
ANMF, on slow-time signals at each range bin, and CA-
CFAR and TM-CFAR, on the 2-D FFT-based range–
Doppler energy map. The NMF [4] is the generalized like-
lihood ratio test (GLRT) approximation for scenarios with
a single target within a CUT. However, NMF requires the
true clutter covariance matrix and, therefore, is impractical.
The ANMF is the adaptive NMF that utilizes the estimated
clutter covariance matrix [12]. The 	-ANMF [8], [12] es-
timates the clutter covariance matrix using the 	 estimator
and, therefore, is suited for scenarios with non-Gaussian
clutter [8].

CA-CFAR is an optimal detector for targets within a
homogeneous environment in the range–Doppler domain,
and the TM-CFAR is a robust CFAR method that is designed
to operate in a heterogeneous environment in the range–
Doppler domain [3]. The selected window size is 9 × 15
with 3 × 3 guard cells for the CA-CFAR and TM-CFAR
detectors. Similarly to the proposed method, the detection
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threshold for the 	-ANMF, CA-CFAR, and TM-CFAR is
determined empirically according to the desired PFA.

A. Performance Evaluation Metrics

The metrics for the following performance evaluation,
PD and PFA, are defined in this section. Consider a dataset
generated according to the guidelines in Section III-A, and
let (i, j) denote the index of the jth target in the ith example
in the dataset. For each target, (ri, j, vi, j ) denote the indices
of the “closest” range and Doppler bins by [mi, j, li, j]. Define
the “neighboring” box B([mi, j, li, j]) as follows:

B
([

mi, j, li, j
]) = [mi, j, li, j]

⋃{(
[mi, j ± 1, li, j ± 1]

)}
.

(15)

The event of successfully detecting the target at [mi, j, li, j]
is defined as follows:

D
([

mi, j, li, j
])=I

(∃[m, l] ∈ B
([

mi, j, li, j
])

: [Ŷ]m,l = 1
)
.

(16)

In other words, we define successful target detection if the
true target is located atmost one bin away from a predicted
target position. The probability of detection PD is evaluated
by the ratio between the number of successfully detected
targets, according to (16), to the total number of targets in
the dataset

PD = 1∣∣∣⋃i, j

(
ri, j, vi, j

)∣∣∣
∑
i, j

D
([

mi, j, li, j
])

. (17)

Correspondingly, the PFA is evaluated as the number of false-
detected range–Doppler bins

PFA = 1

|B0|
∑

[m,l]∈B0

D ([m, l])

B0 =
⋃

i

⎛⎝{1, . . . , dR} × {1, . . . , dV } \
⋃

j

B
([

ri, j, vi, j
])⎞⎠
(18)

where B0 is the “no-target” space, defined as the set of in-
dices of all range–Doppler bins in the dataset, excluding the
true targets and their corresponding “neighboring” boxes.

B. Clutter-Free Scenario

In this scenario, the performance of the proposed ap-
proach is evaluated in a clutter-free environment. In the
clutter-free single-target scenario, CA-CFAR is an approx-
imation of the GLRT [3]. The TM-CFAR is designed for
multitarget scenario and heterogeneous environments [3].
The NN models in the proposed method are trained using
data with half of the training frames containing AWGN
(C = 0) and half containing clutter, simulated with shape
parameter ν, sampled from ν ∼ Unif(0.1, 1.5).

Fig. 5 compares the receiver operating characteristics
(ROC) of the proposed approach to the conventional CA-
CFAR and TM-CFAR detectors in scenarios with {1, 2, 4, 8}

Fig. 5. ROC of evaluated detectors in clutter-free scenarios with
{1, 2, 4, 8} targets and SCNR = 0 dB.

targets. Notice that, in this scenario, the optimal single-
target CA-CFAR detector attains PD = 1 for all PFA val-
ues. However, with increasing the number of targets, its
PD is degraded as a result of mutual target masking [3],
which is more prominent at lower PFA. TM-CFAR slightly
outperforms CA-CFAR in multiple targets’ scenarios, as it
discards the neighboring targets from the averaging win-
dow [3]. The proposed approach is robust to variation in the
number of targets compared with the CA-CFAR and TM-
CFAR detectors. Furthermore, the NN models used in this
experiment were trained using a dataset that contains also
correlated heavy-tailed clutter. This evidence demonstrates
the generalization capability of the proposed NN-based
detection approach to variation in the interference behavior.

C. Simulated Clutter

In this experiment, the performance of the proposed
approach is evaluated in scenarios with simulated corre-
lated heavy-tailed clutter, as described in Section III-A.
For the proposed approach, the NN models were trained
using training sets with shape parameter ν sampled from
ν ∼ Unif(0.1, 1.5). The evaluation is performed using three
different test sets, generated with shape parameters, ν ∈
{0.2, 0.5, 1.0}.

1) Comparison to ANMF: The ANMF detector is the
GLRT approximation for a single target within SIRV clutter.
For H1 hypothesis, it considers a single target within the
range CUT and the availability of target-free secondary
data. Therefore, the ANMF is implemented via a sequence
of binary hypothesis tests per range bin by scanning the
Doppler values V . The range–Doppler bins with energy
exceeding the detection threshold are declared as containing
detected targets. In this work, we consider a modification
of the 	-ANMF detector, denoted as 	W -ANMF, which
aims to suppress target presence in neighboring range cells.
The 	W -ANMF involves Hanning window applied to each
fast-time signal and taking four guard cells around the range
CUT, prior to the range transform and 	-ANMF. Targets’
Doppler values are drawn from a continuous interval, and
thus, the binary hypothesis test formulation is mismatched
in the desired slow-time signal model.

Fig. 6 shows the ROC of the proposed approach com-
pared with the 	-ANMF [8] for targets that are simulated
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Fig. 6. ROC of multiple targets with simulated clutter, SCNR = 0 dB.

with Doppler values in atmost ± 1.5 m/sec offset from
the clutter’s Doppler, denoted as fd in (10). It shows that
in on-grid scenarios, where the target range and Doppler
values are drawn from R × V , the 	-ANMF performance
is significantly higher comparing to the scenarios where
the target range and Doppler values do not exactly match
the range–Doppler gird. In these scenarios, the high range
sidelobes may compromise the target-free secondary data
assumption. Fig. 6 shows that the proposed approach sig-
nificantly outperforms the 	-ANMF detector since the
measurement model of the ANMF is mismatched in the
considered here scenario.

2) Detection Performance: Using the simulated corre-
lated heavy-tailed clutter, the performance of the proposed
detection approach is evaluated in clutter with targets and
clutter with embedded targets’ scenarios. In the first sce-
nario, the Doppler of targets and clutter is independent,
whereas in the second scenario, the targets’ Doppler is
randomly set to be atmost ±1.5 m/sec offset from the
clutter’s Doppler, represented by fd in (10). Figs. 7 and
8 show the PD of the proposed approach compared with
the CA-CFAR and TM-CFAR detectors in scenarios with
simulated heavy-tailed clutter with ν ∈ {0.2, 0.5, 1} as
a function of SCNR and PFA for the embedded and not
embedded scenarios.

The parameter ν introduced in the model in Section II-
I-A controls the “spikiness” of the simulated clutter ampli-
tude. Figs. 7 and 8 show the robustness of the proposed
approach to the “spikiness” of the simulated clutter. In
both scenarios, TM-CFAR outperforms CA-CFAR due to
its improved ability to address the inhomogeneous envi-
ronments [3]. In Fig. 7, the performance of the proposed
approach significantly degrades for very low SCNR. How-
ever, for higher SCNR, the proposed approach is robust
for variations in clutter spikiness (varying ν), comparing
with the conventional CA-CFAR and TM-CFAR detectors,
whose performance significantly degrades the presence of
spiky clutter. In addition, the PD of the conventional methods
does not always achieve PD = 1 in high SCNR scenarios due
to high sidelobes of the strong targets and possible target
masking. In both Figs. 7 and 8, the proposed approach
outperforms the CA-CFAR and TM-CFAR detectors and
shows a minor degradation between the homogeneous and
inhomogeneous scenarios. These observations demonstrate

the ability of the proposed approach to generalize to various
clutter distribution types (various ν values) and the ability of
the proposed approach to suppress correlated clutter since it
succeeds in “extracting” embedded targets from the clutter.

3) Number of Targets: The sensitivity of the proposed
approach to the number of targets |T | is evaluated in this
experiment using clutter with targets, as defined in Sec-
tion IV-C2. Fig. 9 shows that the CA-CFAR and TM-CFAR
performances degrade with decreasing ν and increasing the
number of targets (due to the mutual target masking [3]). On
the other hand, the proposed approach shows robustness to
clutter “spikiness” variation and demonstrates generaliza-
tion capability to multiple targets.

4) PFA Verification: The proposed approach is evalu-
ated in terms of the detection threshold sensitivity in this
section, via simulations of various types of clutter statistics
determined by the parameter ν.

For each desired PFA, the detection threshold for the
proposed, the CA-CFAR, and TM-CFAR approaches is se-
lected using a validation dataset of 4000 frames withT �= ∅,
and 2000 frames with T = ∅. For frames with T �= ∅,
four targets were considered with ν ∼ Unif(0.1, 1.5). The
thresholds obtained according to this validation dataset are
evaluated on test datasets with various clutter “spikeness”
parameters, ν ∈ {0.2, 0.5, 1}.

Fig. 10 shows that the proposed approach is more robust
than the conventional CA-CFAR and TM-CFAR detectors
in terms of variation in actual PFA. This can be explained by
the fact that the clutter “spikeness” affects the adaptive de-
tection threshold level in the CA-CFAR and TM-CFAR [3]
detectors, and thus, their performances degrade in the PFA

mismatch. In contrast, the NN models in the proposed
approach learn a mapping (specifically a pmf), which is
well generalized to variations in clutter statistics and, there-
fore, do not vary substantially when the clutter “spikeness”
measure is changed. Although the CFAR property of the
proposed approach is not guaranteed, Fig. 10 shows that
the false-alarm probability of the proposed approach is
significantly less affected by the variation of ν compared
with CA-CFAR and TM-CFAR.

D. Recorded Radar Clutter

The performance of the proposed approach is evaluated
in this section using real recorded radar measurements.
The radar clutter signals in each frame {cr}r are generated
using recorded radar clutter from the McMaster IPIX
database [24], as detailed in Section III-A. Records that
definitely do not contain any targets and contain only
clutter-plus-noise echoes were selected. The following data
files with HH and VV polarizations have been chosen for the
3 m and 15 m range resolution, respectively, 34, 36, 49, 52,

57, 86, 87, 88, 90, 98, 102, 103, 104, 105, 106, 156, 165,

166 and 35, 48, 55, 154. The training and evaluation process
was performed in a k − fold cross-validation manner. The
files with 3 m range resolution were split into six groups
of 3, and files with 15 m range resolution were split into
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Fig. 7. Detection results with simulated clutter with targets for various clutter “spikiness” ν ∈ {0.2, 0.5, 1.0}. Subplot (a) considers constant
PFA = 5 · 10−4 and subplot (b) considers SCNR = 0 dB.

Fig. 8. Detection results with simulated clutter with embedded targets for various clutter “spikiness” ν ∈ {0.2, 0.5, 1.0}. Subplot (a) considers
constant PFA = 5 · 10−4 and subplot (b) considers SCNR = 0 dB.

Fig. 9. Detection performance with simulated clutter as a function of
the number of targets with SCNR = 0 dB and PFA = 5 · 10−4 for various

clutter “spikeness” ν ∈ {0.2, 0.5, 1}.

four groups of 1, where at each cross-validation iteration, a
different group was left out from training and used for test.

We have found it beneficial to add a standardization step
in the preprocessing flow, as described in Section III-B,
which divides each element in X1 by the sample standard
deviation computed over the element’s column. For the
15 m range resolution files, the targets’ ranges are sampled
from the corresponding ranges and the chirp bandwidth B is
changed accordingly. A different pair of NN models for each
range resolution and polarization were trained and evaluated
on all considered SCNRs. In addition, the clutter-plus-noise
statistics is unknown since this is real recorded radar data;

Fig. 10. PFA verification for simulated clutter with “spikeness” levels
ν ∈ {0.2, 0.5, 1}. The desired PFA denotes the false-alarm probability
obtained using the validation dataset, and the observed PFA denotes the

false-alarm probability evaluated using the test dataset when the
thresholds are according to the validation dataset.

hence, the SCNR and CNR definitions in (7) are unavailable.
Therefore, we resort to empirical methods to approximate
the clutter-plus-noise energy within each sampled frame by
using the norm of the sampled real recorded data.

Figs. 11 and 12 show the detection performance of the
proposed approach to CA-CFAR and TM-CFAR in clutter
with targets and clutter with embedded targets, similarly
to the experiment detailed in Section IV-C2. Note that
all tested approaches achieve better performance for the
VV polarization. This observation can be explained by the
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Fig. 11. Detection results in scenarios with targets and recorded radar clutter for 3 m and 15 m range resolutions, and VV and HH polarizations.
Subplot (a) considers constant PFA = 5 · 10−4 and subplot (b) considers SCNR = 0 dB.

Fig. 12. Detection results in scenarios with embedded targets and recorded radar clutter for 3 m and 15 m range resolutions, and VV and HH
polarizations. Subplot (a) considers constant PFA = 5 · 10−4 and subplot (b) considers SCNR = 0 dB.

analysis of the polarization effects in the IPIX database [24]
in [44], where it was shown that the HH amplitude is spikier
than the VV amplitude [18]. Both Figs. 11 and 12 show
that the proposed approach outperforms the CA-CFAR
and TM-CFAR detectors for the majority of tested SCNR
values. Similarly to Figs. 7 and 8, it can be observed that
CA-CFAR and TM-CFAR do not reach PD = 1 for high
SCNR, as a result of mutual target masking [3]. Fig. 12(a)
shows a similar trend for the proposed approach in HH
polarizations, but it significantly outperforms the CA-CFAR
and TM-CFAR detectors.

Furthermore, since these results are obtained from a
cross-validation experiment on real data, it is a strong
evidence for the generalization capability of the proposed
approach to unseen data. Each file in the database contains
clutter recordings from various dates, hours, azimuths, and
range sections; hence, the interference statistics contained
in each file are different. Therefore, these results show that
the proposed approach has an ability of generalization to
unseen data and clutter statistics.

E. Combination of NN-Based and Model-Based

The proposed approach combines NNs with model-
based processing (projection to steering vector matrices).
This section demonstrates the significant performance gain
provided by this combination. Fig. 13 shows the ROC of
the proposed approach using simulated radar clutter with

Fig. 13. ROC of various portions of the proposed algorithm with
SCNR = 0 dB and simulated clutter with ν = 0.5.

ν = 0.2. Plots in Fig. 13 show contributions of various
components of the proposed approach. The blue line rep-
resents Algorithm 1, the orange line represents using only
the NN-based performance in Algorithm 1, i.e., Z = 1dR 1T

dV

(where 1d is a column vector of size d whose entries are
equal to one) without normalizing by max in Step 3 and the
green line represents detection using only projection-based
signals in Algorithm 1: yr = 1dR , yv = 1dR which results in
U = Z.

Notice that the NN-only-based detection suffers from
inherent ambiguity since the operation yryT

v results in a
Cartesian product of all possible range–Doppler combi-
nations. On the other hand, projection-based processing
(transform) does not mitigate the correlated clutter. These
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Fig. 14. Label sparsity effect investigation. Average learning curves of
NNs training using recorded radar clutter echoes.

results show the importance of combining the two ap-
proaches (NN- and model-based) since each of them alone
performs poorly, whereas the combination delivers a sub-
stantial gain in the detection performance.

F. Label Sparsity

Evaluating the binary cross-entropy (BCE) criterion on
target/nontarget bins and loss function in (13), over the
training and validation sets at each epoch can be used to
evaluate the capabilities of the proposed approach. Fig. 14
shows the average BCE and loss functions in range and
Doppler domains, trained on the IPIX data and using the
last 5% of each file (3000 pulses) as validation data. The
BCE for target-free bins converges with lower values for
training data. The BCE for target bins shows similar perfor-
mance for validation and training sets. Fig. 14 clearly shows
that the proposed NN architecture in combination with the
class-balanced cross entropy [42] generalizes to unseen data
and overcomes the true labels sparsity challenge.

G. Computational Complexity

The computational complexity of the proposed ap-
proach is evaluated in this section considering n = N =
K = 64 and the range–Doppler map of size N × K . The
computational complexity of the N × K-sized 2D-FFT is
the complexity of applying 1D-FFT per row followed by
1D-FFT per column, which is O(2n · n log n). Considering
n = 64, the 2D-FFT complexity is O(768n). The abso-
lute squared value operator applied per range–Doppler bin
with a complexity of O(n2) adds additional complexity of
O(64n). The total complexity of the conventional range–
Doppler transform is O(832n) for n = 64. For CA-CFAR,
the additional complexity is associated with averaging the
cells in the window, which results in the computational
complexity of O(2n). For the TM-CFAR, the additional
computation complexity is associated with sorting cells
in the window. The TM-CFAR window contains m = 126
cells, and the sorting operation takes O(m log m) complex-
ity, which is equivalent to O(13n) for n = 64. Assuming
parallel execution of CA-CFAR and TM-CFAR per range–
Doppler bin, their complexity is O(832n + 2n) = O(834n)
and O(832n + 13n) = O(845n), respectively.

The proposed approach in Algorithm 1 consists of three
steps. Step 1 contains NN feedforward and model-based

TABLE III
Computational Complexity in Terms of n = N = K = 64

projection, executed in parallel. The DAFC operation con-
sists of two consecutive matrix multiplications and apply-
ing activation functions. Assuming parallel execution of
matrix-vector multiplication, the complexity of Zw, where
Z ∈ R

d1×d2 and w ∈ R
d2 , is O(d2). Namely, we assume

that the dot product between the rows of Z and w is exe-
cuted in parallel. As detailed in Section III-C, the DAFC
operation consists of two consecutive matrix multiplica-
tions. Consider Z ∈ R

d1×d2 and W = [wd1 . . . wd3 ] ∈
R

d1×d3 . Then, ZW = [Zwd1 . . . Zwd3 ] consists of d3

matrix-vector multiplications of O(d2) complexity, which
is O(d2d3). Therefore, the complexity of transforming an
H × W input to an H ′ × W ′ output is O(WW ′ + HH ′).
According to Table I, the complexity of the DAFC blocks is
O(1024 · 2n + 128n) for the first block, O(256 · 16n + 16 ·
2n) for the second block, andO(128 · 4n + 4 · 0.25n) for the
third block. The total complexity of the DAFC operations
sums up to O(6817n). The final FC layer’s complexity is
O(8n). The complexity of bias addition activation functions
was neglected in this analysis since these can also be exe-
cuted in parallel. Therefore, the computational complexity
of a single NN instance consists of O(6825n).

Two NN instances can be executed in parallel, and
the 2D-FFT plus absolute operation exceeds a sin-
gle NN feedforward computational complexity. There-
fore, the computational complexity of Step 1 in Algo-
rithm 1 is O(6825n). The computational complexity of
Step 2 and Step 3 is negligible since it contains per
range–Doppler bin operations, which can be executed in
parallel. In addition, the preprocessing complexity, O(n), is
relatively low and can be executed during the following
frame. Thus, the total computational complexity of the
proposed approach is O(6825n).

The computational complexities of the proposed ap-
proach, the CA-CFAR, and the TM-CFAR are summarized
in Table III.

Although the computational complexity of the proposed
approach is eight times higher than the complexity of the
CA-CFAR and TM-CFAR detectors, the proposed NN ar-
chitecture consists of consecutively performed matrix mul-
tiplications and elementwise activation functions. There-
fore, the proposed method’s computational complexity can
be significantly reduced using an appropriate implementa-
tion of basic linear algebra operations, implemented using
hardware accelerators, such as graphics processing unit or
digital signal processor.

V. CONCLUSION

This work addressed the problem of multiple target
detection in the range–Doppler domain in the presence
of correlated heavy-tailed clutter. An NN-based approach
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was proposed to learn a complex nonlinear transform
for clutter mitigation in LFM radar, and its superiority
over the conventional CA-CFAR, TM-CFAR, and ANMF
detectors was demonstrated. A novel DAFC processing
block was introduced to utilize the structure of infor-
mation encoded in each complex fast-time × slow-time
radar echo and to transform it using a sparse set of pa-
rameters. A unified NN-based architecture incorporating
the DAFC block was proposed for the problem of mul-
tiple target detection in range or Doppler domains, sepa-
rately. The generalization capability of the unified DAFC-
based NNs to various SCNRs and clutter conditions was
demonstrated via multiple tests. This generalization capa-
bility simplifying the NN training reduces implementation
complexity.

The proposed architecture was used to design a range–
Doppler detector that uses the NNs’ outputs as a pmf to
reweight a conventional projection into steering vectors.
The performance of the proposed approach was evalu-
ated using simulated correlated heavy-tailed clutter and a
database of recorded heavy-tailed radar clutter echoes. The
superiority of the proposed approach over the ANMF, the
conventional CA-CFAR, and the robust TM-CFAR detec-
tors was demonstrated in multiple tested scenarios. Ro-
bustness to increasing the number of targets was observed
for the AWGN and correlated heavy-tailed clutter cases.
A significant performance advantage was demonstrated for
various clutter “spikiness” conditions in terms of probability
of detection and detection threshold sensitivity. Real data-
based experiments demonstrated the strong generalization
capabilities of the proposed approach to unseen data, con-
taining various clutter statistics.
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