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Abstract— The secrecy capacity of the type II wiretap chan-
nel (WTC II) with a noisy main channel is currently an open
problem. Herein its secrecy-capacity is derived and shown to be
equal to its semantic-security (SS) capacity. In this setting, the
legitimate users communicate via a discrete-memoryless (DM)
channel in the presence of an eavesdropper that has perfect access
to a subset of its choosing of the transmitted symbols, constrained
to a fixed fraction of the blocklength. The secrecy criterion
is achieved simultaneously for all possible eavesdropper subset
choices. The SS criterion demands negligible mutual information
between the message and the eavesdropper’s observations even
when maximized over all message distributions. A key tool
for the achievability proof is a novel and stronger version of
Wyner’s soft covering lemma. Specifically, a random codebook
is shown to achieve the soft-covering phenomenon with high
probability. The probability of failure is doubly exponentially
small in the blocklength. Since the combined number of messages
and subsets grows only exponentially with the blocklength, SS for
the WTC II is established by using the union bound and invoking
the stronger soft-covering lemma. The direct proof shows that
rates up to the weak-secrecy capacity of the classic WTC with a
DM erasure channel (EC) to the eavesdropper are achievable. The
converse follows by establishing the capacity of this DM wiretap
EC as an upper bound for the WTC II. From a broader
perspective, the stronger soft-covering lemma constitutes a tool
for showing the existence of codebooks that satisfy exponentially
many constraints, a beneficial ability for many other applications
in information theoretic security.

Index Terms— Erasure wiretap channel, information theoretic
security, semantic-security, soft-covering lemma, wiretap channel
of type II .

I. INTRODUCTION

INFORMATION theoretic security has adopted the weak-
secrecy and the strong-secrecy metrics as a standard for

measuring security. Respectively, weak-secrecy and strong-
secrecy refer to the normalized and unnormalized mutual
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information between the secret message and the chan-
nel symbol string observed by the eavesdropper. However,
recent work argues that, from a cryptographic point of
view, both these metrics are insufficient to provide security
of applications [1], [2]. Their main drawback lies in the
assumption that the message is random and uniformly distrib-
uted, as real-life messages are neither (messages may be files,
votes or any type of structured data, often with low entropy).
Semantic-security (SS) [3], [4] is a cryptographic gold stan-
dard that was proposed in [2] as an adequate alternative and
shown to be equivalent to a vanishing unnormalized mutual
information for all message distributions. Adopting SS as our
secrecy measure, we establish the SS-capacity of the wiretap
channel of type II (WTC II) with an noisy main channel, for
which even the secrecy-capacity was an open problem until
now. On top of that, the SS-capacity and the weak-secrecy-
capacity are shown to coincide.

Secret communication over noisy channels dates back to
Wyner who introduced the degraded wiretap channel (WTC)
and derived its weak-secrecy-capacity [5]. Csiszár and Körner
extended Wyner’s result to the non-degraded WTC [6], which
is henceforth referred to as the WTC I. A special instance
of the WTC I is when the eavesdropper’s observation is an
outcome of a discrete-memoryless (DM) erasure channel (EC),
which essentially means that he observes a subset of the
transmitted symbols which is chosen at random by nature.
The WTC II was proposed by Ozarow and Wyner [7] as
a generalization of this instance, where a more powerful
eavesdropper selects which subset to observe and security must
hold versus all possible subset choices. For this reason, the
main challenge in establishing security for the WTC II boils
down to finding a single sequence of codes that work well for
each of the exponentially many subsets the eavesdropper may
choose. In [7], the authors overcome this difficulty when the
main channel is noiseless by relying on a unique randomized
coset coding scheme in the proof of achievability. The derived
rate-equivocation region was also shown to be tight, which
solved the noiseless main channel scenario. The WTC II with
a general (i.e., possibly noisy) DM main channel, however,
remained an open problem ever since.

A recent endeavor at the optimal secrecy rate of the
WTC II with a noisy main channel was presented in [8]
(see also [9]–[12] for related work). Requiring a vanishing
average error probability and security with respect to the
weak-secrecy metric (namely, while assuming a uniformly
distributed message and a normalized mutual information), the
authors of [8] extended the coset coding scheme from [7]
to obtain an inner bound on the rate-equivocation region.
An outer bound was also established by assuming that the
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subset the eavesdropper chooses to observe is revealed to all
parties (i.e., to the legitimate users). Specializing these bounds
to the maximal equivocation results in an inner and an outer
bound on the weak-secrecy-capacity of a general WTC II;
these bounds do not match.

In this work, we strengthen both the reliability and the
security criteria, and derive the SS-capacity of the WTC II
with a noisy main channel under a vanishing maximal error
probability requirement. In the heart of the proof stands
a stronger version of the soft-covering lemma which is
key for the security analysis. Wyner’s original soft-covering
lemma [13, Th. 6.3] is a valuable tool for achievability proofs
of information theoretic security [14]–[17], resolvability [18],
channel synthesis [19], and source coding [20] (see also ref-
erences therein). The result herein sharpens the claim of soft-
covering by moving away from an expected value analysis.
Instead, we show that a random codebook achieves the soft-
covering phenomenon with high probability. The probability
of failure is doubly-exponentially small in the blocklength,
enabling more powerful applications through the union bound.
Specifically, the lemma lets one prove the existence of code-
books that satisfy exponentially many secrecy-related con-
straints, which, in turn, resolves the difficulty in the security
analysis for the WTC II.

As a simple preliminary application of the stronger soft-
covering lemma, we derive the SS-capacity of the DM-WTC I
under a maximal error probability requirement. In [21], this
result was established in terms of source universal coding
based on the expurgation technique (e.g., cf. [22, Th. 7.7.1])
for the broadcast channel with confidential messages [6],
which subsumes the WTC I as a special case. Efficient code
constructions with polynomial complexity that achieve the
SS-capacity under an average error probability constraint were
presented in [2] for the DM scenario and in [23] for the
Gaussian case, while [24] derived the Gaussian SS-capacity
under a maximal error probability constraint. Complexity not
being in the scope of this work, we focus on the funda-
mental limits of semantically-secure communication and give
an alternative proof of the WTC I SS-capacity based on the
stronger soft-covering lemma and classic wiretap codes. Since
the number of secret messages is only exponentially large,
the double-exponential decay the lemma provides ensures SS
with arbitrarily high probability. In other words, even though a
codebook that satisfies exponentially many constraints related
to soft-covering is required, the union bound yields that such
a codebook exists. This code is then amended to be reliable
with respect to the maximal error probability by relying on
the aforementioned expurgation technique.

Somewhat surprisingly, our optimal code construction for
the WTC II is just the same. Here, SS involves a vanishing
unnormalized mutual information (between the message and
the eavesdropper’s observation), when maximized over all
message distributions and eavesdropper’s subset choices. How-
ever, noting that their combined number grows only exponen-
tially with the blocklenght, the stronger soft-covering lemma is
still sharp enough to imply that the probability of an insecure
random wiretap code is doubly-exponentially small. As for
the WTC I, reliability is upgraded to account for maximal

error probability using expurgation. The direct proof shows
that any rate up to the weak-secrecy-capacity of the WTC I
with a DM-EC1 to the eavesdropper, is achievable. The
converse follows by showing that the weak-secrecy-capacity
of this WTC I upper bounds the SS-capacity of the WTC II.
An important consequence of the WTC II SS-capacity proof
is that Wyner’s wiretap codes for the erasure WTC I, are
optimal. The binary version of these codes is, in fact, one of
the few examples for which there are explicit constructions
of practical secure encoders and decoders with optimal
performance [25], [26].

This paper is organized as follows. Section II provides
definitions and basic properties. In Section III we state
the stronger soft-covering lemma and provide its proof.
Section IV describes the WTC I and gives an alterna-
tive stronger soft-covering lemma based derivation of its
SS-capacity. In Section V we define the WTC II, state its
SS-capacity and prove the result. Finally, Section VI summa-
rizes the main achievements and insights of this work.

II. NOTATIONS AND PRELIMINARIES

We use the following notations. Given two real numbers
a, b, we denote by [a : b] the set of integers

{
n ∈ N

∣∣�a� ≤
n ≤ �b�}. We define R+ = {x ∈ R|x ≥ 0}. Calligraphic
letters denote sets, e.g., X , the complement of X is denoted
by X c, while |X | stands for its cardinality. X n denoted the
n-fold Cartesian product of X . An element of X n is denoted by
xn = (x1, x2, . . . , xn); whenever the dimension n is clear from
the context, vectors (or sequences) are denoted by boldface
letters, e.g., x. For any S ⊆ [1 : n], we use xS = (xi )i∈S
to denote the substring of xn defined by S, with respect to
the natural ordering of S. For instance, if S = [i : j ], where
1 ≤ i < j ≤ n, then xS = (xi , xi+1, . . . , x j ).

Let
(
�,F , P

)
be a probability space, where � is the

sample space, F is the σ -algebra and P is the probability
measure. Random variables over

(
�,F , P

)
are denoted by

uppercase letters, e.g., X , with similar conventions for random
vectors. The probability of an event A ∈ F is denoted by
P(A), while P(A

∣∣B) denotes conditional probability of A
given B. We use 1A to denote the indicator function of A.
The set of all probability mass functions (PMFs) on a finite
set � is denoted by P(�). PMFs are denoted by capital
letters, such as P or Q, with a subscript that identifies the
random variable and its possible conditioning. For example,
for a discrete probability space

(
�,F , P

)
and two correlated

random variables X and Y over that space, we use PX , PX,Y

and PX |Y to denote, respectively, the marginal PMF of X , the
joint PMF of (X, Y ) and the conditional PMF of X given Y .
In particular, PX |Y represents the stochastic matrix whose
elements are given by PX |Y (x |y) = P

(
X = x |Y = y

)
. We

omit subscripts if the arguments of the PMF are lowercase
versions of the random variables. The support of a PMF P
and the expectation of a random variable X are denoted by
supp(P) and E

[
X
]
, respectively.

1the erasure probability corresponds to the portion of symbols the eaves-
dropper in the WTC II does not intercept.
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Fig. 1. Coding problem with the goal of making P(Bn)
V ≈ Qn

V .

For a discrete measurable space (�,F), a PMF Q ∈ P(�)
gives rise to a probability measure on (�,F), which we denote
by PQ ; accordingly, PQ

(
A) =∑ω∈A Q(ω), for every A ∈ F .

We use EQ to denote an expectation taken with respect to
PQ . For a random variable X , we sometimes write EX to
emphasize that the expectation is taken with respect to PX .
For a sequence of random variable Xn , if the entries of Xn

are drawn in an independent and identically distributed (i.i.d.)
manner according to PX , then for every x ∈ X n we have
PXn (x) = ∏n

i=1 PX (xi ) and we write PXn (x) = Pn
X (x).

Similarly, if for every (x, y) ∈ X n×Yn we have PY n |Xn (y|x) =∏n
i=1 PY |X (yi |xi ), then we write PY n |Xn (y|x) = Pn

Y |X (y|x).
The conditional product PMF Pn

Y |X given a specific sequence
x ∈ X n is denoted by Pn

Y |X=x.
The empirical PMF νx of a sequence x ∈ X n is

νx(x) � N(x |x)

n
, (1)

where N(x |x) =∑n
i=1 1{xi=x}. We use T n

ε (PX ) to denote the
set of letter-typical sequences of length n with respect to the
PMF PX ∈ P(X ) and the non-negative number ε [27, Ch. 3],
i.e., we have

T n
ε (PX ) =

{
x ∈ X n

∣∣
∣
∣
∣νx(x) − PX (x)

∣
∣ ≤ εPX (x),∀x ∈ X

}
.

(2)

The relative entropy between two probability measures
P and Q on the same σ -algebra F of subsets of the sample
space X , with P � Q (i.e., P is absolutely continuous with
respect to Q) is

D(P||Q) =
∫

X
d P log

(
d P

d Q

)
, (3)

where d P
d Q denotes the Radon-Nikodym derivative between

P and Q. If the sample space X is countable, (3) reduces to

D(P||Q) =
∑

x∈supp(P)

P(x) log

(
P(x)

Q(x)

)
. (4)

III. THE STRONGER SOFT-COVERING LEMMA

Wyner’s soft-covering lemma [13, Th. 6.3] states that the
distribution induced by selecting a u-sequence at random
from an appropriately chosen set Bn and passing it through
a memoryless channel Qn

V |U , results in a good approximation
of Qn

V in the limit of large n, as long as the set is of size
|Bn| = 2nR , where R > I (U ; V ) (Fig. 1). In fact, the
set can be chosen quite carelessly - by random codebook
construction, drawing each sequence independently from the
distribution Qn

U .
The soft-covering lemmas in the literature use a distance

metric on distributions (commonly total variation or relative
entropy) and claim that the distance between the induced

distribution P(Bn )
V and the desired distribution Qn

V vanishes
in expectation over the random selection of the set.2 In the
literature, [18] studies the fundamental limits of soft-covering
as “resolvability”, [28] provides rates of exponential conver-
gence, [19] improves the exponents and extends the frame-
work, [29] and [30, Ch. 16] refer to soft-covering simply
as “covering” in the quantum context, [31] refers to it as a
“sampling lemma” and points out that it holds for the stronger
metric of relative entropy, and [32] gives a recent direct proof
of the relative entropy result.

Here we give a stronger claim. With high probability
with respect to the set construction, the distance vanishes
exponentially quickly with the blocklength n. The negligible
probability of the random set not producing this desired result
is doubly-exponentially small.

Let W = [
1 : 2nR

]
and Bn = {

U(w)
}
w∈W be a set

of random vectors that are i.i.d. according to Qn
U . We refer

to Bn as the random codebook. Let Bn = {
u(w,Bn)

}
w∈W

denote a realization of Bn . For every fixed Bn , the induced
distribution is:

P(Bn )
V (v) = 2−nR

∑

w∈W
Qn

V |U
(
v
∣
∣u(w,Bn)

)
. (5)

Lemma 1 (Stronger Soft-Covering Lemma): For any QU ,
QV |U , and R > I (U ; V ), where |V| < ∞, there exist
γ1, γ2 > 0, such that for n large enough

P

(
D
(

P(Bn )
V

∣
∣∣
∣
∣∣Qn

V

)
> e−nγ1

)
≤ e−enγ2

. (6)

More precisely, for any n ∈ N and δ ∈ (0, R − I (U ; V )
)

P

(
D
(

P(Bn )
V

∣
∣∣
∣
∣∣Qn

V

)
> cδn2−nγδ

)
≤ (1 + |V|n)e− 1

3 2nδ
, (7)

where

γδ = sup
α>1

α − 1

2α − 1

(
R − δ − dα(QU,V , QU QV )

)
, (8a)

cδ = 3 log e + 2γδ log 2 + 2 log

(
max

v∈supp(QV )

1

QV (v)

)
, (8b)

and dα(
,�) = 1
α−1 log2

∫
d

( d�

d


)1−α
is the Rényi diver-

gence of order α.
Remark 1: The inequality (7) is trivially true for δ outside

of the expressed range.
The important quantity in the lemma above is γδ, which

is the exponent that soft-covering achieves. We see in (7) that
the double-exponential convergence of probability occurs with
exponent δ > 0. Thus, the best soft-covering exponent that the
lemma achieves with confidence, over all δ > 0, is

γ ∗ = sup
δ>0

γδ = γ0 = sup
α>1

α − 1

2α − 1

(
R − dα(QU,V , QU QV )

)
.

(9)

The double-exponential confidence rate δ acts as a reduction in
codebook rate R in the definition of γδ . Consequently, γδ = 0
for δ ≥ R − I (U ; V ).

2Many of the theorems only claim existence of a good codebook, but all
of the proofs use expected value to establish existence.
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Remark 2 (Total Variation Exponent of Decay): The
stronger soft-covering lemma can be reproduced while replac-
ing the relative divergence with total variation [33]. Although,
relative entropy can be used to bound total variation via
Pinsker’s inequality, this approach causes a loss of a factor
of 2 in the exponent of decay. Alternatively, the proof of
Lemma 1 can be modified to produce the bound on the total
variation instead of the relative entropy. This direct method
keeps the error exponents the same for the total variation case
as it is for relative entropy.

Before proving Lemma 1, we note that the name ‘stronger
soft-covering lemma’ is justified because (6) implies that
the expectation of the relative entropy over the ensemble of
codebooks decays exponentially fast (i.e., Wyner’s notion of
soft-covering). This is stated in the following lemma and
proven in Appendix A.

Lemma 2 (Stronger than Wyner’s Soft-Covering Lemma):
Let γ1, γ2 > 0 be such that (6) holds for n large enough, then
for every such n,

ED
(

P(Bn )
V

∣∣
∣
∣∣
∣Qn

V

)
≤ e−nγ1 + n log

(
1

μV

)
e−enγ2

, (10)

where μV = minv∈supp(QV ) QV (v) > 0.
Proof of Lemma 1: We state the proof in terms of arbitrary

distributions (not necessarily discrete). When needed, we will
specialize to the case that V is finite. For any fixed codebook
Bn , let the Radon-Nikodym derivative between the induced
and desired distributions be denoted as

�Bn (v) �
d P(Bn )

V

d Qn
V

(v). (11)

In the discrete case, this is just a ratio of PMFs. Accordingly,
the relative entropy of interest, which is a function of the
codebook Bn , is given by

D
(

P(Bn )
V

∣
∣
∣
∣
∣
∣Qn

V

)
=
∫

d P(Bn )
V log �Bn . (12)

To describe the jointly-typical set over u- and v-sequences,
we first define information density iQU,V , which is a function
on the space U × V specified by

iQU,V (u, v) � log

(
d QV |U=u

d QV
(v)

)
. (13)

In (13), the argument of the logarithm is the Radon-Nikodym
derivative between QV |U=u and QV . Let ε ≥ 0 be arbitrary,
to be determined later, and define

Aε �
{
(u, v) ∈ Un × Vn

∣
∣
∣
∣
1

n
iQn

U,V
(u, v) < I (U ; V ) + ε

}
,

(14)

and note that

iQn
U,V

(u, v) =
n∑

t=1

iQU,V (ut , vt ). (15)

We split P(Bn )
V into two parts, making use of the indicator

function. For every v ∈ Vn , define

PBn ,1(v) � 2−nR
∑

w∈W
Qn

V |U
(
v
∣
∣u(w,Bn)

)
1{(

u(w,Bn),v
)
∈Aε

},

(16a)

PBn ,2(v) � 2−nR
∑

w∈W
Qn

V |U
(
v
∣
∣u(w,Bn)

)
1{(

u(w,Bn),v
)
/∈Aε

}.

(16b)

The measures PBn,1 and PBn,2 on the space Vn are not
probability measures, but PBn ,1 + PBn ,2 = P(Bn )

V for each
codebook Bn . We also split �Bn into two parts. Namely, for
every v ∈ Vn , we set

�Bn,1(v) � d PBn ,1

d Qn
V

(v) (17a)

�Bn ,2(v) � d PBn ,2

d Qn
V

(v). (17b)

With respect to the above definitions, Lemma 3 states an
upper bound on the relative entropy of interest.

Lemma 3: For every fixed codebook Bn, we have

D
(

P(Bn )
V

∣
∣∣
∣
∣∣Qn

V

)
≤ h

(∫
d PBn,1

)

+
∫

d PBn ,1log�Bn,1+
∫

d PBn,2log�Bn ,2,

(18)

where h(·) is the binary entropy function.
The proof is relegated to Appendix B. Based on Lemma 3,

if the relative entropy of interest does not decay exponen-
tially fast, then the same is true for the terms on the right-
hand side (RHS) of (18). Therefore, to establish Lemma 1,
its suffices to show that the probability (with respect to a
random codebook) of the RHS not vanishing exponentially fast
to 0 as n → ∞, is double-exponentially small.

Notice that PBn ,1 usually contains almost all of the proba-
bility. That is, for any fixed Bn , we have
∫

d PBn ,2

= 1 −
∫

d PBn,1

=
∑

w∈W
2−nR

PQn
V |U

((
u(w,Bn), V

)
/∈ Aε

∣
∣
∣U = u(w,Bn)

)
.

(19)

For a random codebook, (19) becomes
∫

d PBn,2

=
∑

w∈W
2−nR

PQn
V |U

((
U(w, Bn), V

)
/∈ Aε

∣
∣
∣U = U(w, Bn)

)
.

(20)

The RHS of (20) is an average of exponentially many i.i.d.
random variables bounded between 0 and 1. Furthermore,
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the expected value of each one is the exponentially small
probability of correlated sequences being atypical:

EBn PQn
V |U

((
U(w, Bn), V

)
/∈ Aε

∣
∣
∣U = U(w, Bn)

)

= PQn
U,V

((
U, V

)
/∈ Aε

)

= PQn
U,V

(
n∑

t=1

iQU,V (Ut , Vt ) ≥ n
(
I (U ; V ) + ε

)
)

(a)= PQn
U,V

(
2λ
∑n

t=1 iQU,V (Ut ,Vt ) ≥ 2nλ(I (U ;V )+ε)
)

(b)≤
EQn

U,V
2λ
∑n

t=1 iQU,V (Ut ,Vt )

2nλ(I (U ;V )+ε)

=
(

EQU,V 2λiQU,V (U,V )

2λ(I (U ;V )+ε)

)n

(c)= 2
nλ

(
1
λ log2 EQU,V

[
2
λiQU,V

(U;V )]−I (U ;V )−ε

)

(d)= 2nλ
(

dλ+1(QU,V ,QU QV )−I (U ;V )−ε
)
, (21)

where (a) is true for any λ ≥ 0, (b) is Markov’s inequal-
ity, (c) follows by restricting λ to be strictly positive,
while (d) is from the definition of the Rényi divergence of
order λ + 1. We use units of bits for mutual information and
Rényi divergence to coincide with the base two expression of
rate. Now, substituting α = λ + 1 into (21) gives

EBn PQn
V |U

((
U(w, Bn), V

)
/∈ Aε

∣
∣
∣U = U(w, Bn)

)
≤ 2−nβα,ε ,

(22a)

where

βα,ε = (α − 1)
(
I (U ; V ) + ε − dα(QU,V , QU QV )

)
, (22b)

for every α > 1 and ε ≥ 0, over which we may optimize.
The optimal choice of ε is apparent when all bounds of the
proof are considered together (some yet to be derived), but the
formula may seem arbitrary at the moment. Nevertheless, fix
δ ∈ (0, R − I (U ; V )

)
, as found in the statement of the lemma,

and set

εα,δ =
1
2 (R − δ) + (α − 1)dα(QU,V , QU QV )

1
2 + (α − 1)

− I (U ; V ).

(23)

Substituting into βα,ε gives

βα,δ � βα,εα,δ = α − 1

2α − 1

(
R − δ − dα(QU,V , QU QV )

)
.

(24)

Observe that εα,δ in (23) is nonnegative under the assump-
tion that R − δ > I (U ; V ), because α > 1 and
dα(QU,V , QU QV ) ≥ d1(QU,V , QU QV ) = I (U ; V ).

Next, we use the following version of the Chernoff bound
to bound the probability of (20) not being exponentially small.

Lemma 4 (Chernoff Bound): Let
{

Xm
}M

m=1 be a collec-
tion of i.i.d. random variables with Xm ∈ [0, B] and

EXm ≤ μ �= 0, for all m ∈ [1 : M]. Then for any c with
c
μ ∈ [1, 2],

P

(
1

M

M∑

m=1

Xm ≥ c

)

≤ e
− Mμ

3B

(
c
μ −1

)2

. (25)

The proof is given in Appendix C.
Using (25) with M = 2nR , μ = 2−nβα,δ , B = 1, and c

μ = 2,
assures that

∫
d PBn ,2 is exponentially small with probability

doubly-exponentially close to 1. That is

P

(∫
d PBn ,2 ≥ 2 · 2−nβα,δ

)
≤ e− 1

3 2n(R−βα,δ )

. (26)

Similarly, �Bn,1 is an average of exponentially many i.i.d.
and uniformly bounded functions, each one determined by one
sequence in the random codebook:

�Bn,1(v)

=
∑

w∈W
2−nR

d Qn
V |U=U(w,Bn)

d Qn
V

(v)1{(
U(w,Bn),v

)
∈Aε

}. (27)

For every term in the average, the indicator function bounds
the value to be between 0 and 2n(I (U ;V )+εα,δ). The expected
value of each term with respect to the codebook is bounded
above by one, which is observed by removing the indicator
function. Therefore, the Chernoff bound assures that �Bn,1 is
exponentially close to one for every v ∈ Vn . Setting M = 2nR ,
μ = 1, B = 2n(I (U ;V )+εα,δ), and c

μ = 1 + 2−nβα,δ into (25),
gives

P

(
�Bn,1(v) ≥ 1 + 2−nβα,δ

)
≤ e− 1

3 2n(R−I (U;V )−εα,δ−2βα,δ )

= e− 1
3 2nδ

, ∀v ∈ Vn, (28)

which decays doubly-exponentially fast for any δ > 0.
At this point, we specialize to a finite set V . Consequently,

�Bn,2 is bounded as

�Bn ,2(v) ≤
(

max
v∈supp(QV )

1

QV (v)

)n

, ∀v ∈ Vn, (29)

with probability 1. Notice that the maximum is only over
the support of QV , which makes this bound finite. The
underlying reason for this restriction is that with probability
one a conditional distribution is absolutely continuous with
respect to its associated marginal distribution.

Having (26), (28) and (29), we can now bound the prob-
ability that the RHS of (18) is not exponentially small. Let
S be the set of codebooks Bn , such that all of the following
are true:

∫
d PBn,2 < 2 · 2−nβα,δ , (30a)

�Bn,1(v) < 1 + 2−nβα,δ , ∀v ∈ Vn, (30b)

�Bn ,2(v) ≤
(

max
v∈supp(QV )

1

QV (v)

)n

, ∀v ∈ Vn . (30c)

First, we use the union bound, while taking advantage of the
fact that the space Vn is only exponentially large, to show
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that the probability of a random codebook not being in S is
double-exponentially small:

P
(
Bn /∈ S

)

(a)≤ P

(∫
d PBn ,2 ≥ 2 · 2−nβα,δ

)

+
∑

v∈Vn

P

(
�Bn ,1(v) ≥ 1 + 2−βα,δn

)

+
∑

v∈Vn

P

(
�Bn ,2(v) >

(
max

v∈supp(QV )

1

QV (v)

)n )

(b)≤ e− 1
3 2n(R−βα,δ ) + |V|n · e− 1

3 2nδ

(c)≤ (
1 + |V|n) e− 1

3 2nδ
, (31)

where (a) is the union bound, (b) uses (26), (28) and (29),
while (c) follows because βα,δ ≤ 1

2 (R − δ).
Next, we claim that for every codebook in S, the RHS

of (18) is exponentially small. Let Bn ∈ S and consider the
following. For every x ∈ [0, 1], h(x) ≤ x log e

x , using which
(30a) implies that

h

(∫
d PBn,1

)
= h

(∫
d PBn ,2

)

< 2
(

log e + βα,δ log 2
)
n2−nβα,δ . (32)

Furthermore, by (30b), we have
∫

d PBn ,1 log �Bn,1 <

∫
d PBn,1 log(1 + 2−nβα,δ )

≤ log(1 + 2−nβα,δ )
(a)≤ 2−nβα,δ log e, (33)

where (a) follows since log(1 + x) ≤ x log e, for every x > 0.
Finally, using (30c) we obtain
∫

d PBn ,2 log �Bn ,2 ≤
∫

d PBn,2 log

(
max

v∈supp(QV )

1

QV (v)

)n

< 2 log

(
max

v∈supp(QV )

1

QV (v)

)
n2−nβα,δ .

(34)

Combining (32)-(34), yields

h

(∫
d PBn ,1

)
+
∫

d PBn,1 log �Bn ,1 +
∫

d PBn,2 log �Bn,2

<

(
2
(

log e + βα,δ log 2
)+ log e

+ 2 log

(
max

v∈supp(QV )

1

QV (v)

))
n2−nβα,δ

(a)= cα,δn2−nβα,δ (35)

where (a) comes from setting

cα,δ � 3 log e + 2βα,δ log 2 + 2 log

(
max

v∈supp(QV )

1

QV (v)

)
.

(36)

This implies that for all α > 1 and δ ∈ (0, R − I (U ; V )
)
,

P

(
D
(

P(Bn )
V

∣
∣∣
∣
∣∣Qn

V

)
≥ cα,δn2−nβα,δ

)

≤ P

(
h

(∫
d PBn ,1

)
+
∫

d PBn,1 log �Bn,1

+
∫

d PBn,2 log �Bn,2 ≥ cα,δn2−nβα,δ

)

≤ P
(
Bn /∈ S

)

(a)≤ (
1 + |V|n) e− 1

3 2nδ
, (37)

where (a) follows from (31). Denoting cδ � supα>1 cα,δ , (37)
further gives

P

(
D
(

P(Bn )
V

∣∣
∣
∣∣
∣Qn

V

)
≥ cδn2−nβα,δ

)
≤ (1 + |V|n) e− 1

3 2nδ
.

(38)

Since (38) is true for all α > 1, it must also be true, with
strict inequality in the LHS, when replacing βα,δ with

γδ � sup
α>1

βα,δ = sup
α>1

α − 1

2α − 1

(
R − δ − dα(QU,V , QU QV )

)
,

(39)

which is the exponential rate of convergence stated in (8a) that
we derive for the strong soft-covering lemma. This establishes
the statement from (7) and proves Lemma 1.

Concluding, if R > I (U ; V ) and for any
δ ∈ (

0, R − I (U ; V )
)
, we get exponential convergence

of the relative entropy at rate O(2−γδn) with doubly-
exponential certainty. Discarding the precise exponents
of convergence and coefficients, we state that there exist
γ1, γ2 > 0, such that for n large enough

P

(
D
(

P(Bn )
V

∣
∣
∣
∣
∣
∣Qn

V

)
> e−nγ1

)
≤ e−enγ2

. (40)

IV. WIRETAP CHANNEL I

As a rather simple application of stronger soft-covering
lemma, we give an alternative derivation of the SS-capacity
of the WTC I [2], [21], [23], [24]. Since the channel to the
legitimate user is the same in both WTCs I and II, the maximal
error probability analysis presented here is subsequently used
to establish reliability for the WTC II.

Our direct proof relies on classic wiretap codes and SS is
established using the union bound while invoking the stronger
soft-covering lemma. In a wiretap code, a subcode is asso-
ciated with each confidential message. To transmit a certain
message, a codeword from its subcode is selected uniformly
at random and transmitted over the channel. Letting these
subcodes be large enough while noting that the number of con-
fidential messages only grows exponentially with the block-
length, the union bound and the double-exponential decay
the lemma provides show the existence of a semantically-
secure sequences of codes. Using these codes, each transmitted
message induces an output PMF at the eavesdropper that
appears i.i.d. and does not depend on the message.
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Fig. 2. The classic wiretap channel, referred to as the WTC I.

Wyner’s soft-covering lemma, that is now a standard tool
for achieving strong-secrecy for the WTC I, comes up short
in providing SS. The classic soft-covering argument says that
on average over the messages, the output at the eavesdropper
will look i.i.d., provided that the size of these subcodes is
large enough. This can be used to claim that the unnormalized
mutual information between the message and the eavesdrop-
per’s output is small, thus ensuring strong-secrecy. However,
for SS, it must be claimed that the output PMF is close the i.i.d.
distribution for all messages, and there are exponentially many
messages. Here is where the stronger soft-covering lemma is
advantageous.

A. Problem Definition

The DM-WTC I is illustrated in Fig. 2. The sender chooses
a message m from the set

[
1 : 2nR

]
and maps it into a sequence

x ∈ X n (the mapping may be random). The sequence x is
transmitted over the DM-WTC I with transition probability
QY,Z |X . The output sequences y ∈ Yn and z ∈ Zn are
observed by the receiver and the eavesdropper, respectively.
Based on y, the receiver produces an estimate m̂ of m. The
eavesdropper tries to glean whatever it can about the message
from z.

Definition 1 (Code Description): An (n, R) WTC I code Cn

has:
1) A message set M = [1 : 2nR

]
.

2) A stochastic encoder f : M → P(X n).
3) A decoding function φ : Yn → M̂, where M̂ = M∪{e}

and e /∈ M.
For any message distribution PM ∈ P(M), the joint PMF

over M×X n ×Yn ×Zn ×M̂ induced by PM and an (n, R)
code Cn is:

P(Cn )(m, x, y, z, m̂) = PM (m) f (x|m)

×QY,Z |X (y, z|x)1{
m̂=φ(y)

}. (41)

Definition 2 (Maximal Error Probability): The maximal
error probability of an (n, R) WTC I code Cn is

e�(Cn) = max
m∈M

em(Cn), (42a)

where

em(Cn) =
∑

x∈X n

f (x|m)
∑

y∈Yn:
φ(y) �=m

Qn
Y |X (y|x). (42b)

Definition 3 (SS Metric): The SS metric associated to an
(n, R) WTC I code Cn is 3

Sem(Cn) = max
PM ∈P(M)

ICn (M; Z), (43)

3Sem(Cn) is actually the mutual-information-security (MIS) metric, which
is equivalent to SS by [2]. We use the representation in (43) rather than the
formal definition of SS (see, e.g., [2, eq. (4)]) out of analytical convenience.

where ICn denotes a mutual information term that is calculated
with respect to the PMF induced by Cn from (41).

Definition 4 (Semantically-Secure Codes): A sequence of
(n, R) WTC I codes

{
Cn
}

n∈N
is semantically-secure if there

is a constants γ > 0 and an n0 ∈ N, such that for every
n > n0, Sem(Cn) ≤ e−nγ .

Remark 3: SS requires that a single sequence of codes
works well for all message PMFs. Accordingly, the mutual
information term in (43) is maximized over PM when the code
Cn is known. In other words, although not stated explicitly, PM

is a function of Cn.
Remark 4: By Definition 4, for a sequence of WTC I codes

to be semantically-secure, the SS metric from (43) must vanish
exponentially fast. This is a standard requirement in the
cryptography community, commonly referred to as strong-SS
(see, e.g., [2, Sec. 3.2]). The coding scheme given in the direct
proof of Theorem 1 achieves this exponential decay of the
SS-metric (see Section IV-C.1). An exponential decay of the
strong-secrecy metric was previously observed in [21], [28],
and [34].

Definition 5 (SS-Achievability): A rate R ∈ R+ is
SS-achievable if there is a sequence of (n, R) WTC I
semantically-secure codes

{
Cn
}

n∈N
with e�(Cn) → 0

as n → ∞.
Definition 6 (SS-Capacity): The SS-capacity of the WTC I,

CSem, is the supremum of the set of SS-achievable rates.

B. Results

As stated in the following theorem, the SS-capacity of
the WTC I under a maximal error probability constraint is
the same as its weak-secrecy-capacity under an average error
probability constraint.

Theorem 1 (WTC I SS-Capacity): The SS-capacity of the
WTC I is

CSem = max
QU,X :

U−X−(Y,Z)

[
I (U ; Y ) − I (U ; Z)

]
, (44)

and one may restrict the cardinality of U to |U | ≤ |X |.
The proof of Theorem 1 is given in Section IV-C.1.

Our achievability proof relies on the stronger soft-covering
lemma to establish the existence of a sequence of semantically-
secure codes with a vanishing average probability of error. The
expurgation technique [22, Th. 7.7.1] is then used to upgrade
the codes to have a vanishing maximal error probability.

Remark 5: The cardinality bound in Theorem 1 was estab-
lished in [35, Th. 22.1].

Remark 6: The direct part of Theorem 1 can also be derived
without using the stronger soft-covering lemma. Instead,
one may invoke the codebook expurgation technique twice.
By removing a certain portion of the messages, any sequence
of codes that ensures strong-secrecy and a vanishing average
error probability, can be upgraded to provide SS and reliability
with respect to the maximal error probability with negligible
rate-loss. In the original codes, the fraction of messages
that induce an error probability greater than three times the
average, is less than 1

3 . Similarly, the fraction of messages
with secrecy distance greater than three times the average is
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less than 1
3 . Therefore, the fraction of offending messages is

less than 2
3 . By removing them one obtains a new sequence of

codes that is semantically-secure and has a vanishing maximal
error probability. Finally, the rate of the n-th code in the new
sequence is R− log(3)

n (here R stands for the rate of the original
codes), and the loss is negligible for large n.

Remark 7: The expurgation method is insufficient for estab-
lishing SS for the WTC II because the messages that need to
be removed might differ from one choice of the eavesdropper’s
observations to the next. It also does not work in other settings
such as the multiple access WTC, where expurgation is prob-
lematic in general. On the other hand, even for that setting,
an achievability proof that relies on the stronger soft-covering
lemma goes through by similar steps to those presented below.
Thus, strong-secrecy can be upgraded to SS even in situations
where vanishing average error probability cannot be upgraded
to vanishing maximum error probability (via expurgation).

C. Proofs

1) Theorem 1: For the converse, let
{
Cn
}

n∈N
be a

sequence of (n, R) semantically-secure WTC I codes with
e�(Cn) → 0. Since both e�(Cn) → 0 and Sem(Cn) → 0 hold
for any message distribution PM ∈ P(M), in particular, they
hold for a uniform PM . The converse thus follows since CSem
in (44) coincides with the secrecy-capacity of the WTC I under
a vanishing average error probability criterion and the weak-
secrecy constraint.

For the direct part, we first establish the achievability of (44)
when U = X . Then, a standard channel prefixing argument
extends the proof to any U with U − X − (Y, Z).

Fix ε > 0, a PMF QX ∈ P(X ), and let M and W
be independent random variables uniformly distributed over
M and W �

[
1 : 2nR̃

]
, respectively. M represents the

choice of the message, while W stands for the stochastic
part of the encoder. Thus, we start by imposing a uniform
distribution over the set of messages and use this to show the
existence of a semantically-secure sequence of (n, R) codes
with a vanishing average error probability. Afterwards, the
uniform message distribution assumption is dropped using the
expurgation technique [22, Th. 7.7.1], which allows upgrading
reliability to achieve a vanishing maximal error probability,
while preserving SS.

Codebook Bn: Let Bn be a random codebook given by a col-
lection of i.i.d. random vectors Bn = {X(m, w)

}
(m,w)∈M×W ,

each distributed according to Qn
X . A realization of Bn is

denoted by Bn �
{
x(m, w,Bn)

}
(m,w)∈M×W , with respect to

which a classic wiretap code is constructed.
Encoder f : To send m ∈ M the encoder randomly and

uniformly chooses W = w from W and transmits x(m, w,Bn)
over the WTC I.

Decoder φ: Upon observing y ∈ Yn , the decoder searches
for a unique pair (m̂, ŵ) ∈ M × W such that

(
x(m̂, ŵ,Bn), y

) ∈ T n
ε (QX,Y ). (45)

If such a unique pair is found, then set φ(y) = m̂; otherwise,
φ(y) = e.

The triple (M, f, φ) defined with respect to the
codebook Bn constitutes an (n, R) WTC I code Cn . When a
random codebook Bn is used, we denote the corresponding
random code by Cn .

Average Error Probability Analysis: By standard joint typ-
icality arguments we show that the average error probability,
when expected over the ensemble of codebooks, is arbitrarily
small. For every fixed codebook Bn and (m̃, w̃) ∈ M × W ,
define the event

E(m̃, w̃,Bn) =
{(

x(m̃, w̃,Bn), Y
) ∈ T n

ε (QX,Y )
}
, (46)

where Y ∼ Qn
Y |X=x(m̃,w̃,Bn) is the random sequence observed

at the receiver when the transmitted sends (m̃, w̃). We have

ECn

1

|M|
∑

m∈M
em(Cn)

= ECn PCn

(
M̂ �= M

)

≤ ECn PCn

(
(M̂, Ŵ ) �= (M, W )

)

(a)= ECn PCn

(
(M̂, Ŵ ) �= (1, 1)

∣∣M = 1, W = 1
)

(b)= EBn P

⎛

⎝E(1, 1, Bn)
c ∪
⎧
⎨

⎩

⋃

(m̃,w̃) �=(1,1)

E(m̃, w̃, Bn)

⎫
⎬

⎭

∣∣
∣
∣
∣
Bn

⎞

⎠

(c)≤ PQn
X,Y

(
(X, Y) ∈ T n

ε (QX,Y )
)

︸ ︷︷ ︸
P1

+
∑

(m̃,w̃) �=(1,1)

PQn
X ×Qn

Y

(
(X, Y) ∈ T n

ε (QX,Y )
)

︸ ︷︷ ︸
P2

, (47)

where (a) uses the symmetry of the codebook construction
with respect to m and w, (b) follows by the decoding rule,
while (c) takes the expectation over the ensemble of codebooks
and uses the union bound.

By the law of large numbers P1 → 0 as n → ∞, while
P2 → 0 as n grows provided that4

R + R̃ < I (X; Y ). (48)
Thus, we have

ECn

1

|M|
∑

m∈M
em(Cn) −−−→

n→∞ 0. (49)

Security Analysis: For any fixed Bn (which, in turn,
fixes Cn), we denote by P(Cn )

M,Z the joint distribution of M and
Z induced by the code Cn (see (41)). For any Bn , we first have

max
PM ∈P(M)

ICn (M; Z)

(a)= max
PM ∈P(M)

D
(

P(Cn )
Z|M

∣
∣
∣
∣
∣
∣P(Cn )

Z

∣
∣
∣PM

)

(b)≤ max
PM ∈P(M)

D
(

P(Cn )
Z|M

∣∣
∣
∣∣
∣Qn

Z

∣∣
∣PM

)

= max
PM ∈P(M)

∑

m∈M
P(m)D

(
P(Cn )

Z|M=m

∣
∣
∣
∣
∣
∣Qn

Z

)

≤ max
PM ∈P(M)

∑

m∈M
P(m) max

m̃∈M
D
(

P(Cn )
Z|M=m̃

∣
∣
∣
∣
∣
∣Qn

Z

)

= max
m∈M

D
(

P(Cn )
Z|M=m

∣
∣
∣
∣
∣
∣Qn

Z

)
, (50)

4All subsequent mutual information terms in the proof are calculated with
respect to QU,X QY,Z |X or its marginals.
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where (a) uses the relative entropy chain rule, while is because
for any PM ∈ P(M), we have

D
(

P(Cn )
Z|M

∣
∣
∣
∣
∣
∣P(Cn )

Z

∣
∣
∣PM

)

=
∑

m∈M
P(m)

∑

z∈Zn

P(Cn )(z|m) log

(
P(Cn )(z|m)

P(Cn )(z
) · Qn

Z (z)

Qn
Z (z)

)

= D
(

P(Cn )
Z|M

∣
∣
∣
∣
∣
∣Qn

Z

∣
∣
∣PM

)

−
∑

m∈M
P(m)

∑

z∈Zn

P(Cn )(z|m) log

(
P(Cn )(z)
Qn

Z (z)

)

= D
(

P(Cn )
Z|M

∣
∣
∣
∣
∣
∣Qn

Z

∣
∣
∣PM

)
− D

(
P(Cn )

Z

∣
∣
∣
∣
∣
∣Qn

Z

)

≤ D
(

P(Cn )
Z|M

∣
∣
∣
∣
∣
∣Qn

Z

∣
∣
∣PM

)
. (51)

Now, let γ̃ be an arbitrary positive real number to be
determined later and consider the following probability.

P

({
Sem(Cn) ≤ e−nγ̃

}c
)

(a)≤ P

({
max
m∈M

D
(

P(Cn )
Z|M=m

∣
∣
∣
∣
∣
∣Qn

Z

)
≤ e−nγ̃

}c
)

= P

({
∀m ∈ M, D

(
P(Cn )

Z|M=m

∣∣
∣
∣∣
∣Qn

Z

)
≤ e−nγ̃

}c
)

= P

(
∃m ∈ M, D

(
P(Cn)

Z|M=m

∣
∣∣
∣
∣∣Qn

Z

)
> e−nγ̃

)

= P

( ⋃

m∈M

{
D
(

P(Cn )
Z|M=m

∣∣
∣
∣∣
∣Qn

Z

)
> e−nγ̃

})

≤
∑

m∈M
P

(
D
(

P(Cn )
Z|M=m

∣
∣
∣
∣
∣
∣Qn

Z

)
> e−nγ̃

)
, (52)

where (a) follows from (50) and (50).
By the stronger soft-covering lemma, if

R̃ > I (X; Z), (53)

then there are γ1, γ2 > such that

P

(
D
(

P(Cn )
Z|M=m

∣
∣
∣
∣
∣
∣Qn

Z

)
> e−nγ1

)
≤ e−enγ2

, (54)

for any m ∈ M and sufficiently large n. Inserting (54) into
(52) while setting γ̃ = γ1, we have

P

({
Sem(Cn) ≤ e−nγ1

}c
)

≤
∑

m∈M
e−enγ2

= 2nR · e−enγ2

� ηn −−−→
n→∞ 0, (55)

and therefore,

P

(
Sem(Cn) ≤ e−nγ1

)
≥ 1 − ηn −−−→

n→∞ 1. (56)

Inequality (56) implies that if R̃ satisfies (53), the probabil-
ity that a randomly generated sequence of codes meets the
SS criterion for large n is arbitrarily close to 1. In fact,
because (55) decays so rapidly, the Borel-Cantelli lemma
implies that almost every sequence of realizations of

{
Cn
}

n∈N

is semantically-secure.

SS-Achievability: To establish the existence of a sequence
of (n, 2nR) reliable and semantically-secure codes

{
Cn
}

n∈N
,

we reproduce the Selection Lemma [36, Lemma 2.2].
Lemma 5 (Selection Lemma): Let

{
An
}

n∈N
be a sequence

of random variables, where An takes values in An. Let{
f (1)
n , f (2)

n , . . . , f (I )
n
}

n∈N
be a collection of I < ∞ sequences

of bounded functions f (i)
n : An → R+, i ∈ [1 : I ]. If

E f (i)
n (An) −−−→

n→∞ 0, ∀i ∈ [1 : I ], (57a)

then there exists a sequence {an}n∈N, where an ∈ An for every
n ∈ N, such that

f (i)
n (an) −−−→

n→∞ 0, ∀i ∈ [1 : I ]. (57b)

For completeness, the proof of Lemma 5 is given in
Appendix D. Applying Lemma 5 to the random vari-
ables

{
Cn
}

n∈N
and the functions 1

|M|
∑

m∈M em(Cn) and
1{

Sem(Cn)>e−nγ1
}, while using (49) and (55), we have that

there is a sequence of (n, R) WTC I codes
{
Cn
}

n∈N
, for which

1

|M|
∑

m∈M
em(Cn) −−−→

n→∞ 0, (58a)

1{
Sem(Cn )>e−nγ1

} −−−→
n→∞ 0. (58b)

Since the indicator function in (58b) takes only the values 0
and 1, to satisfy the convergence there must exist an n0 ∈ N,
such that

1{
Sem(Cn)>e−nγ1

} = 0, ∀n > n0, (59)

and therefore,

Sem(Cn) ≤ e−nγ1, ∀n > n0. (60)

The final step is to amend
{
Cn
}

n∈N
to be reliable

with respect to the maximal error probability (as defined
in (42a)). This is done using the expurgation technique
(see, e.g., [22, Th. 7.7.1]). Namely, we discard the worst half
of the codewords in each codebook Bn . Denoting the amended
sequence of codebooks by

{
B�

n

}
n∈N

and their corresponding
sequence of codes by

{
C�

n

}
n∈N

, we have

e�(C�
n) −−−→

n→∞ 0. (61)

Note that in each C�
n there are 2nR−1 codewords, i.e., throw-

ing out half the codewords has changed the rate from R
to R − 1

n , which is negligible for large n. Further note
that because

{
Cn
}

n∈N
is semantically-secure, so is

{
C�

n

}
n∈N

.
Combining (48) with (53), we have that every

0 ≤ R < max
Q X

[
I (X; Y ) − I (X; Z)

]
(62)

is SS-achievable.
To establish the achievability of CSem from (44), we prefix

a DM-channel (DMC) QX |U to the original WTC I QY,Z |X to
obtain a new channel QY,Z |U , where

Qn
Y,Z |U (y, z|u) =

∑

x∈X n

Qn
X |U (x|u)Qn

Y,Z |X (y, z|x). (63)
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Fig. 3. The type II wiretap channel.

Using a similar analysis as above with respect to QY,Z |U , any
R ∈ R

+ satisfying

R < max
QU,X :

U−X−(Y,Z)

[
I (U ; Y ) − I (U ; Z)

]
(64)

is achievable.

V. WIRETAP CHANNEL II

The WTC II scenario considers communication between
two legitimate parties in the presence of an eavesdropper that
can choose to observed any subset of the transmitted sequence,
while being limited in quantity. The challenge in this setting is
that the eavesdropper knows the codebook when it selects the
subset to observe. Therefore, secrecy will only be achieved
if it is achieved uniformly for all selections of packets, of
which there are exponentially many possibilities. Furthermore,
SS being our goal, secrecy must be ensured for each one of
the exponentially many confidential messages. Nonetheless,
as the combined number of subsets and messages grows only
exponentially with the blocklenght, using the stronger soft-
covering lemma we show that rates all the way up to the weak-
secrecy-capacity of the DM erasure WTC I are achievable
even in this more stringent setting. Then, we establish the
secrecy-capacity of this WTC I as an upper bound on the
considered WTC II, thus characterizing the SS-capacity of the
latter.

A. Problem Definition

The WTC II is illustrated in Fig. 3. The sender chooses a
message m from the set

[
1 : 2nR

]
and maps it into a sequence

x ∈ X n (the mapping may be random). The sequence x is
transmitted over a point-to-point DMC with transition proba-
bility QY |X . Based on the received channel output sequence
y ∈ Yn , the receiver produces an estimate m̂ of m. The
eavesdropper noiselessly observes a subset of its choice of
the n transmitted symbols. Namely, the eavesdropped chooses
S ⊆ [1 : n], |S| = μ ≤ n, and observes z ∈ (

X ∪ {?})n ,
where

zi =
{

xi , i ∈ S
?, i /∈ S.

(65)

Based on z, the eavesdropper tries to learn as much as possible
about the message.

With some abuse of notation (reusing notations from
Section IV-A), we introduce the following definitions.

An (n, R) WTC II code Cn and the corresponding
maximal error probability e�(Cn) are defined similarly to
Definitions 1 and 2, respectively.

Definition 7 (SS Metric): The SS metric with respect to an
(n, R) WTC II code Cn is

Semμ(Cn) = max
PM ∈P(M),

S⊆[1:n]: |S|=μ

ICn (M; Z), (66)

where ICn denotes that the mutual information term is calcu-
lated with respect to

P(Cn ,S)
M,Z (m, z) = P(m)

∑

x∈X n

f (x|m)1{
zi=xi ,i∈S

}
∩
{

zi =?,i /∈S
}.

Remark 8: As explained in Remark 3, the code Cn is known
when the mutual information term in (66) is maximized. Thus,
the observed subset S ⊆ [1 : n] and the message PMF PM are
both functions of Cn. Although, for the sake of simplicity, this
dependence is omitted from our notations, the reader should
keep in mind that a single codebook is required to works well
for all choices of subsets and message PMFs.

Definition 8 (Semantically-Secure Codes): Let α ∈ [0, 1]
and μ = �αn�, a sequence of (n, R) WTC II codes

{
Cn
}

n∈N

is α-semantically-secure if there is a constants γ > 0 and an
n0 ∈ N, such that for every n > n0, Semμ(Cn) ≤ e−nγ .

Definition 9 (SS-Achievability): Let α ∈ [0, 1] and
μ = �αn�, a rate R ∈ R+ is α-SS-achievable if there
is a sequence of (n, R) α-semantically-secure WTC II codes{
Cn
}

n∈N
with e�(Cn) → 0 as n → ∞.

Definition 10 (SS-Capacity): For any α ∈ [0, 1], the
α-SS-capacity of the WTC II CSem(α) is the supremum of the
set of α-SS-achievable rates.

B. Results

The following proposition is subsequently used for the
converse proof of the WTC II SS-capacity. The proposi-
tion states that the strong-secrecy-capacity of a WTC I with
a DM-EC to the eavesdropper is an upper bound on the
strong-secrecy-capacity of the WTC II. To formulate the
result, slight modifications of some of the definitions from
Sections IV-A and V-A are required. Specifically, we rede-
fine the achievable rates for each setting with respect to a
strong-secrecy requirement (instead of SS).

Definition 11 (Strong-Secrecy Achievability for WTC I):
A rate R ∈ R+ is strong-secrecy-achievable for the WTC I

if there is a sequence of (n, R) codes
{
C1,n

}
n∈N

with

e�
(
C1,n

) −−−→
n→∞ 0 (67a)

IC1,n

(
M; Z

) −−−→
n→∞ 0, (67b)

where M is uniformly distributed over the message set M.
Definition 12 (Strong-Secrecy Achievability for WTC II):

Let α ∈ [0, 1] and μ = �αn�, a rate R ∈ R+ is α-strong-
secrecy-achievable for the WTC II if there is a sequence of
(n, R) codes

{
C2,n

}
n∈N

with

e�
(
C2,n

) −−−→
n→∞ 0 (68a)

max
S⊆[1:n]:
|S|=μ

IC2,n

(
M; Z

) −−−→
n→∞ 0, (68b)

where M is uniformly distributed over the message set M.
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The strong-secrecy-capacity for both setting is defined as
the supremum of the set of strong-secrecy-achievable rates.

Proposition 1 (WTC I Upper Bounds WTC II): Let α ∈
(0, 1] and C II

S (α) be the α-strong-secrecy-capacity of the
WTC II with a main channel Q(2)

Y |X . Furthermore, let
β ∈ [0, α) and C I

S(β) be the strong-secrecy-capacity of the
WTC I with transition probability Q(1)

Y,Z |X = Q(2)
Y |XE

(β)
Z |X , where

E (β)
Z |X is a DM-EC with erasure probability β̄ = 1 − β, i.e.,

E (β)
Z |X (z|x) =

{
β, z = x

β̄, z = ?
, ∀x ∈ X . (69)

Then

C II
S (α) ≤ C I

S(β) = max
QU,X :

U−X−Y

[
I (U ; Y ) − β I (U ; X)

]
. (70)

See Section V-C.1 for the proof. Proposition 1 is subse-
quently combined with the following lemma to to establish
the converse for the α-SS-capacity of the WTC II.

Lemma 6 (Continuity of WTC I Capacity): As a function
of β,

C I
S(β) = max

QU,X :
U−X−Y

[
I (U ; Y ) − β I (U ; X)

]
(71)

is continues inside (0, 1).
The proof of Lemma 6 is relegated to Appendix E. The

SS-capacity of the WTC II with a noisy main channel is stated
next.

Theorem 2 (WTC II SS-Capacity): For any α ∈ [0, 1],
CSem(α) = max

QU,X :
U−X−Y

[
I (U ; Y ) − α I (U ; X)

]
, (72)

and one may restrict the cardinality of U to |U | ≤ |X |.
The converse and direct parts of Theorem 2 are established

in Sections V-C.2 and V-C.3, respectively. As oppose to
the SS-capacity of the WTC I (where achievability may be
derived without using Lemma 1 - see Remark 6), for the
WTC II, the stronger soft-covering lemma is essential for the
direct proof. Specifically, via the union bound, the double-
exponential decay that Lemma 1 provides is leveraged to show
the existence of a sequence of codes that satisfies the vanishing
information leakage requirement for all choices of S and PM .

Remark 9 (Generalized WTC II SS-Capacity): The proof
of Theorem 2 is robust and readily extends to a more
general setting where the eavesdropper’s observed symbols
are corrupted by random noise. Specifically, we refer to
the scenario where the eavesdropper first chooses a subset
of indices S ⊆ [1 : n] of size μ = �αn�, then xS is
passed through a DMC QZ |X and the eavesdropper receives
Zi ∼ QZ |X=xi , for i ∈ S, and Z =? otherwise. The
α-SS-capacity for this case is

C(Noisy)
Sem (α) = max

QU,X :
U−X−(Y,Z)

[
I (U ; Y ) − α I (U ; Z)

]
, (73)

and recovers (72) by setting Z = X. Both the direct and
the converse proofs of (73) follow by a verbatim repetition
of the arguments from Section V-C, with two minor changes.

First, for the converse, the classic DM-EC from Proposition 1
(proven in V-C.1) is replaced with a cascade of the DM-EC
and the DMC QZ |X . Second, for the SS analysis in the direct
proof (Section V-C.3) we replace the rate bound from (110)
with R̃ > α I (U ; Z) (the reliability analysis goes through
without changes).

Remark 10: The cardinality bound in Theorem 2 is estab-
lished using the convex cover method [35, Appendix C]. The
details are omitted.

Remark 11: Theorem 2 recovers the achievability result
from [8, eq. (7)] by setting U = X and taking X to be
uniformly distributed over X . Furthermore, in [8] secrecy
was established while assuming a uniform distribution over
the message set, i.e., on average over the messages. Although
we require security with respect to a stricter metric (SS versus
weak-secrecy), we achieve higher rates than [8, eq. (7)] and
show their optimality. Moreover, to achieve (72), we use classic
wiretap codes and establish SS using the stronger soft-covering
lemma, making the (rather convoluted) coset coding scheme
from [8] (inspired by [7]) no longer required.

C. Proofs

1) Proposition 1: The equality in (70) follows by evaluating
the strong-secrecy-capacity formula of a general WTC I, i.e.,

max
QU,X :

U−X−(Y,Z)

[
I (U ; Y ) − I (U ; Z)

]
, (74)

for the case where the transition probability matrix is
Q(1)

Y,Z |X = Q(2)
Y |XE

(β)
Z |X . Let � ∼ Ber(β̄) be a random variable,

such that its i.i.d. samples define the erasure process of
the DM-EC with erasure probability β̄. Accordingly, � is
independent of X and

Z =
{

X, � = 0

?, � = 1.
(75)

First note that � is determined by Z since ? /∈ X .
Combining this with the Markov relation U − X − (Y, Z)
implies that the chain U − X − (Y, Z ,�) is also Markov.
Along with the independence of X and �, this implies that U
and � are also independent. Consequently, for every QU,X ,
where U − X − (Y, Z) forms a Markov chain, we have

I (U ; Z)
(a)= I (U ; �, Z)
(b)= I (U ; Z |�)
(c)= β I (U ; X) + β̄ I (U ; ?)

= β I (U ; X), (76)

where (a) follows since � is defined by Z , while (b) and (c)
follows by the independence of � and U . Since (76) holds
for every QU,X as above, we conclude that

C I
S(β) = max

QU,X :
U−X−Y

[
I (U ; Y ) − β I (U ; X)

]
. (77)

To prove the inequality in (70), we show that for any α ∈
(0, 1] and β ∈ [0, α), an α-strong-secrecy-achievable rate for
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the WTC II is also achievable for the WTC I with erasure
probability β̄.

Fix α, β as above and let R ∈ R+ be an α-strong-secrecy-
achievable rate for the WTC II. Furthermore, let

{
C2,n

}
n∈N

be
the corresponding sequence of (n, R) codes satisfying (68).
Since the channel to the legitimate receiver and the definition
of the maximal error probability are the same for both versions
of the WTC (see (67a) and (68a)),

{
C2,n

}
n∈N

is also reliable
when using it to transmit over the WTC I. Therefore, to
establish (70), it suffices to show that for every ε > 0, there
is an n� ∈ N, such that for every n > n�

IC2,n

(
M; Z1

) ≤ ε, (78)

where Z1 denoted the channel output sequences observed by
the eavesdroppers of the WTC I. In other words, we show that
the sequence of codes

{
C2,n

}
n∈N

, designed to achieve strong-
secrecy for the WTC II, also achieves strong-secrecy for the
WTC I.

Let Z2 be the channel output observed by the eavesdroppers
of the WTC II, fix ε > 0 and let n0 ∈ N be such that for every
n > n0,

max
S⊆[1:n]:
|S|=μ

IC2,n

(
M; Z2

) ≤ ε

2
. (79)

For every z ∈ Zn , where Z � X ∪ {?}, define

A(z) �
{
i ∈ [1 : n]∣∣zi =?

}
, (80)

and let �(Z) be

�(Z) � 1{|A(Z)|≤�ᾱn�
}. (81)

Namely, � indicates if the number of erasures in a sequence
z ∈ Zn is greater than or equal to �ᾱn� or not.

By conditioning the mutual information term from (78) on
�(Z1), we distinguish between the two cases of Z1 being
better or worse than Z2 in terms of the number of erased
symbols. When �(Z1) = 0, i.e., Z1 is worse that Z2, security
for the WTC I is ensured since

{
C2,n

}
n∈N

achieve security for
the WTC II. Otherwise, for the case that �(Z1) = 1, where
Z1 is better than Z2, we use Sanov’s Theorem to show that the
probability of such an event exponentially decreases with the
blocklength n, while the mutual information grows linearly at
most. For any n ∈ N, we have

IC2,n

(
M; Z1

) (a)= IC2,n

(
M; �

(
Z1
)
, Z1

)

(b)= IC2,n

(
M; Z1

∣
∣
∣�
(
Z1
))

= P

(
�
(
Z1
) = 0

)
IC2,n

(
M; Z1

∣∣
∣�
(
Z1
) = 0

)

︸ ︷︷ ︸
I0

+ P

(
�
(
Z1
) = 1

)
IC2,n

(
M; Z1

∣
∣
∣�
(
Z1
) = 1

)

︸ ︷︷ ︸
I1

,

(82)

where (a) is because �
(
Z1
)

is a function of Z1, while (b)
follows since the number of erasures in the output sequence

of a DM-EC is defined by an i.i.d. process that is independent
of the message.

For I0, taking any n > n0, (79) implies that

IC2,n

(
M; Z1

∣
∣∣�
(
Z1
) = 0

)
≤ max

S⊆[1:n]:
|S|=μ

IC2,n

(
M; Z2

) ≤ ε

2
. (83)

To upper bound I1, first note that

IC2,n

(
M; Z1

∣
∣
∣�
(
Z1
) = 1

)
≤ n log

(|X | + 1
)
, (84)

holds for every n ∈ N. Now, fix any δ ∈ (β, α); there exists
an n1(δ) ∈ N, such that for all n > n1(δ)

�ᾱn� ≤ δ̄n < β̄n. (85)

Thus, for every n > n1(δ) Sanov’s Theorem [22, Th. 11.4.1]
implies

P

(
�
(
Z1
) = 1

)
≤ P

(∣∣A(Z1)
∣∣ ≤ δ̄n

)
≤ (n + 1)2 · 2−nDb(δ,β),

(86)

where Db(δ, β) = α log (δ/β) + δ̄ log
(
δ̄/β̄
)

is the relative
entropy between the PMFs of two binary random variables
distributed according to Ber(δ) and Ber(β), respectively. Since
δ �= β, we have that Db(δ, β) > 0, and therefore, there is an
n1(δ) < n2 ∈ N, such that for every n > n2,

I2 ≤ (n + 1)2 · 2−nDb(δ,β) · n log
(|X | + 1

) ≤ ε

2
. (87)

Set n� = max{n0, n2}. Based on (83) and (87), for every
n > n�, we have

IC2,n

(
M; Z1

) = I0 + I1 ≤ ε, (88)

which completes the proof.
2) Theorem 2 - Converse: For the converse, we first show

that with respect to the notations used in Proposition 1,

C II
S (α) ≤ C I

S(α) = max
QU,X :

U−X−Y

[
I (U ; Y ) − α I (U ; X)

]
, (89)

for any α ∈ [0, 1]. For α = 0, 1, the relation is straightforward
as

C I
S(0) = max

Q X
I (X; Y ) = C II

S (0) (90a)

C I
S(1) = 0 = C II

S (1). (90b)

For α ∈ (0, 1), (89) is established by relying on Proposition 1
and the continuity argument from Lemma 6. Namely, by taking
the limit of (70) as β ↑ α establishes (89).

Having this, the converse follows by arguments similar to
those presented in Section IV-C.1. Fix α ∈ [0, 1] and let
R ∈ R+ be an α-SS-achievable rate for the WTC II and{
Cn
}

n∈N
be its corresponding (n, R) sequence of codes. By

the definitions in (42a) and (66),
{
Cn
}

n∈N
are reliable and

α-semantically-secure for every message distribution, and in
particular, for a uniform message distribution. This implies

CSem(α) ≤ C II
S (α) ≤ max

QU,X :
U−X−Y

[
I (U ; Y ) − α I (U ; X)

]
(91)

and completes the converse proof.
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Remark 12: Our converse proof relies on the achiev-
ability being defined in terms of a limit as n → ∞
(see Definition 9). Namely, we show that in the limit, the
eavesdropper in the WTC I setting is likely to be within a
slightly higher channel-observation budget than this of the
WTC II, which by continuity won’t result in much extra rate.
The chance of having too many channel observations is too
small to provide non-negligible extra information. If, however,
the blocklength n can be chosen as a design parameter,
then it may be possible that a finite n results in a higher
achievable secrecy-rate. For instance, notice that the optimal
code of length 2n in not necessarily better than the optimal
code of length n, since when the blocklenght is longer the
eavesdropper has more flexibility in choosing his observations.

3) Theorem 2 - Direct Part: As before, we start by showing
the achievability of (72) when U = X . After doing so, we use
channel prefixing to extend the proof to any U with U −X −Y .

Fix α ∈ [0, 1], ε > 0 and a PMF QX on X . Letting M
and W be independent random variables uniformly distributed
over M and W = [1 : 2nR̃], respectively, we repeat the code
construction from Section IV-C.1. A similar analysis of the
average error probability shows that if

R + R̃ < I (X; Y ), (92)

then

EBn

1

|M|
∑

m∈M
em(Cn) −−−→

n→∞ 0, (93)

where Cn is the random code that corresponds to the random
codebook Bn .

Security Analysis: Fix S ⊆ [1 : n] with |S| = μ = �αn�,
recall that Z � X ∪{?} and define the following PMF on Zn ,



(S)
Z (z) =

∏

j∈Sc

1{
z j =?

}
∏

j∈S
IZ (z j ), ∀z ∈ Zn, (94)

where IZ is the average output PMF of the identity DMC on
X , i.e.,

IZ (z) =
∑

x∈X
QX (x)1{z=x} =

{
QX (z), z ∈ X
0, z =?.

(95)

For any Cn (defined by fixing Bn) and PM ∈ P(M), the
relative entropy chain rule implies

ICn (M; Z) = D
(

P(Cn ,S)
Z|M

∣
∣
∣
∣
∣
∣P(Cn ,S)

Z

∣
∣
∣PM

)

= D
(

P(Cn ,S)
Z|M

∣
∣
∣
∣
∣
∣
(S)

Z

∣
∣
∣PM

)

−D
(

P(Cn ,S)
Z

∣
∣∣
∣
∣∣
(S)

Z

∣
∣∣PM

)
, (96)

and therefore

max
PM ∈P(M)

ICn (M; Z)

≤ max
PM ∈P(M)

D
(

P(Cn ,S)
Z|M

∣
∣
∣
∣
∣
∣
(S)

Z

∣
∣
∣PM

)

≤ max
PM ∈P(M)

∑

m∈M
P(m) max

m̃∈M
D
(

P(Cn ,S)
Z|M=m̃

∣
∣
∣
∣
∣
∣
(S)

Z

)

= max
m∈M

D
(

P(Cn ,S)
Z|M=m

∣
∣∣
∣
∣∣
(S)

Z

)
. (97)

For any ∅ �= A ⊆ [1 : n] and z ∈ Zn , recall that
zA � (zi )i∈A is the sub-vector of z indexed by the elements of
A. The relative entropy chain rule further simplifies the RHS
of (97) as follows. For any m ∈ M, we have

D
(

P(Cn ,S)
Z|M=m

∣
∣
∣
∣
∣
∣
(S)

Z

)
= D

(
P(Cn ,S)

ZS ,ZSc |M=m

∣
∣
∣
∣
∣
∣
(S)

ZS ,ZSc

)

= D
(

P(Cn ,S)

ZS |M=m

∣
∣∣
∣
∣∣
(S)

ZS

)

+ D
(

P(Cn ,S)

ZSc |M=m,ZS

∣
∣
∣
∣
∣
∣
(S)

ZSc

∣
∣
∣P(Cn ,S)

ZS |M=m

)

(a)= D
(

P(Cn ,S)

ZS |M=m

∣
∣
∣
∣
∣
∣
(S)

ZS

)

(b)= D
(

P(Cn ,S)

ZS |M=m

∣
∣
∣
∣
∣
∣Iμ

Z

)
, (98)

where (a) is because P(Cn ,S)

ZSc |M=m,ZS=zS = 1{
Zi=?, i∈Sc

} =



(S)

ZSc , for every zS ∈ Z |S|, and (b) follows from (94).
Combining (96)-(98), we have that for every Cn and S ⊆

[1 : n], with |S| = μ = �αn�,

max
PM ∈P(M)

D
(

P(Cn ,S)
Z|M

∣
∣
∣
∣
∣
∣P(Cn ,S)

Z

∣
∣
∣PM

)

≤ max
m∈M

D
(

P(Cn ,S)

ZS |M=m

∣
∣
∣
∣
∣
∣Iμ

Z

)
. (99)

In particular, (99) also holds when maximizing over the
substes S, which gives

Semμ(Cn) ≤ max
m∈M,

S⊆[1:n]: |S|=μ

D
(

P(Cn ,S)

ZS |M=m

∣∣
∣
∣∣
∣Iμ

Z

)
. (100)

Having (100), let δ̃ be an arbitrary positive real number to
be determined later and consider the following probability.

P

({
Semμ(Cn) ≤ e−nδ̃

}c
)

= P

⎛

⎜
⎝ max

PM ∈P(M),
S⊆[1:n]: |S|=μ

D
(

P(Cn ,S)
Z|M

∣
∣
∣
∣
∣
∣P(Cn ,S)

Z

∣
∣
∣PM

)
> e−nδ̃

⎞

⎟
⎠

(a)≤ P

⎛

⎝ max
m∈M,

S⊆[1:n]: |S|=μ

D
(

P(Cn ,S)

ZS |M=m

∣
∣∣
∣
∣∣Iμ

Z

)
> e−nδ̃

⎞

⎠

= P

⎛

⎜
⎜
⎝

⋃

m∈M,
S⊆[1:n]: |S|=μ

{
D
(

P(Cn,S)

ZS |M=m

∣
∣
∣
∣
∣
∣Iμ

Z

)
> e−nδ̃

}
⎞

⎟
⎟
⎠

(b)≤
∑

m∈M,
S⊆[1:n]: |S|=μ

P

(
D
(

P(Cn ,S)

ZS |M=m

∣
∣
∣
∣
∣
∣Iμ

Z

)
> e−nδ̃

)
, (101)

where (a) uses (100), and (b) is the union bound.
Each term in the sum on the RHS of (101) falls into the

framework of the stronger soft-covering lemma, with respect
to a blocklength of μ and the identity channel. Noting that

|W| = 2nR̃ = 2μ n R̃
μ , we have that as long as

n R̃

μ
> H (X), (102)
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there exist δ1, δ2 > 0 that for sufficiently large n satisfy

P

(
D
(

P(Cn ,S)

ZS |M=m

∣
∣
∣
∣
∣
∣Iμ

Z

)
> e−nδ1

)
≤ e−enδ2

. (103)

Since μ = �αn� ≤ αn, taking

R̃ > αH (X), (104)

is sufficient to satisfy (102) for every n ∈ N.
Setting δ̃ = δ1 and plugging (103) into (101), gives

P

({
Semμ(Cn) ≤ e−nδ1

}c
)

≤
∑

m∈M,
S⊆[1:n]: |S|=μ

e−enδ2

≤ 2n · 2nR · e−enδ2

� κn −−−→
n→∞ 0.

Invoking Lemma 5 once more, we have that if (92)
and (102) are satisfied, then there is a sequence of (n, R)
α-semantically-secure codes

{
Cn
}

n∈N
, with

ECn

1

|M|
∑

m∈M
em(Cn) −−−→

n→∞ 0. (105)

The pruning argument from Section IV-C.1 again upgrades{
Cn
}

n∈N
to be reliable with respect to the maximal error

probability. Combining (92) and (102) shows the achievability
of

R < max
Q X

[
I (X; Y ) − αH (X)

]
. (106)

Finally, we prefix a DMC QX |U to the original WTC II to
obtain a new main channel QY |U , given by

Qn
Y |U (y|u) =

∑

x∈X n

Qn
X |U (x|u)Qn

Y |X (y|x). (107)

Furthermore, 

(S)
Z from (94) is redefined as



(S)
Z (z) =

∏

j∈Sc

1{
z j =?

}
∏

j∈S
QZ (z j ), ∀z ∈ Zn, (108)

where QZ is given by

QZ (z) =
∑

(u,x)∈U×X
QU (u)QX |U (x |u)1{z=x}

=
{∑

u∈V QU (u)QX |U (z|u), z ∈ X
0, z =?.

Repeating a similar analysis as above shows that reliability is
achieved if

R + R̃ < I (U ; Y ), (109)

while the rate needed for the stronger soft-covering lemma is

R̃ > α I (U ; X). (110)

Putting (109)-(110) together yields that any rate R ∈ R+
satisfying

R < max
QU,X :

U−X−Y

[
I (U ; Y ) − α I (U ; X)

]
, (111)

is strongly α-SS-achievable and concludes the proof.

VI. SUMMARY AND CONCLUDING REMARKS

We derived the SS capacity of the WTC II with a noisy
main channel. The SS metric ensures that the unnormalized
mutual information between the message and the eavesdrop-
per’s observation is arbitrarily small, even when maximized
over all message distributions and all possible choices of
the eavesdropper’s observation. The main tool used in the
direct proof is a novel and stronger version of Wyner’s soft
covering lemma, that states that a random codebook achieves
the soft-covering phenomenon with high probability as long
as its rate is higher than the mutual information between the
input and output of the DMC. Furthermore, the probability of
failure is doubly-exponentially small in the blocklength, thus
making the lemma advantageous in proving the existence of
codebooks that satisfy exponentially many constraints. A code
that achieves SS for the considered WTC II should do just
that.

The SS capacity was achieved by using classic Wyner’s
wiretap codes. Since the combined number of messages and
subsets grows only exponentially with the blocklength, SS
was established by applying the union bound and invoking
the stronger soft-covering lemma. The direct proof showed
that rates up to the weak-secrecy capacity of the WTC I with
a DM-EC to the eavesdropper are achievable. The converse
followed by showing that the capacity of this WTC I is an
upper bound on the SS capacity of the WTC II.

As a preliminary and simple application of the stronger soft-
covering lemma, it was used to achieve SS for the WTC I.
A main goal in doing so was to emphasize the advantage
of this approach over other methods for achieving SS for
this scenario, such as the expurgation technique. While the
expurgation method fails to generalize to some multiuser
settings, such as the multiple access WTC, an achievability
proof that relies on the stronger soft-covering lemma goes
through by similar steps to those presented here. Thus making
the stronger soft-covering lemma a tool by which the common
weak-secrecy and strong-secrecy results can be upgraded to
SS. Furthermore, the lemma might prove useful in any other
scenario in which performance is measures with respect to an
exponential number of constraints.

APPENDIX A
PROOF OF LEMMA 2

Let n0 ∈ N be such that (6) holds for any n > n0. For these
values of n we have

EBn D
(

P(Bn )
V

∣
∣∣
∣
∣∣Qn

V

)

= EBn

[
D
(

P(Bn )
V

∣
∣
∣
∣
∣
∣Qn

V

)(
1{

D
(

P(Bn )
V

∣
∣
∣
∣Qn

V

)
≤e−nγ1

}

+1{
D
(

P(Bn )
V

∣
∣
∣
∣Qn

V

)
>e−nγ1

}
)]

(a)≤ e−nγ1 + n log

(
1

μV

)
P

(
D
(

P(Bn )
V

∣
∣
∣
∣
∣
∣Qn

V

)
> e−nγ1

)

(b)≤ e−nγ1 + n log

(
1

μV

)
e−enγ2

, (112)
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where (a) follows because for every fixed Bn

D
(

P(Bn )
V

∣∣
∣
∣∣
∣Qn

V

)
=
∑

z∈Zn

P(Bn )(z) log

(
P(Bn )(v)

Qn
V (v)

)

≤ n log

(
1

μV

)
,

and μV = minv∈supp(QV ) QV (v), while (b) follows from (6).

APPENDIX B
PROOF OF LEMMA 3

Fix a codebook Bn and define

� = 1{(
U(W,Bn),V

)
/∈Aε

} + 1. (113)

Note that for θ = 1, 2, we have

P(Bn )
� (θ) =

∫
d P(Bn)

V

∑

w∈W
2−nR Qn

V |U=u(w,Bn)

×
[
1{

θ=1
}
∩
{(

u(w,Bn),V
)
∈Aε

}

+1{
θ=2
}
∩
{(

u(w,Bn),V
)
/∈Aε

}
]

=
∫

d PBn,θ , (114)

and consequently, for every measurable A ⊆ Vn ,

P
P(Bn)

V,�

(
V ∈ A,� = θ

)
= PPBn ,θ

(
V ∈ A

)

=
∫

A
d PBn ,θ . (115)

For simplicity of notation, denote P(Bn )
V � P , PBn,1 � P1,

PBn ,2 � P2, Qn
V � Q and P(Bn )

� � 
�, and consider

D(P||Q) =
∫

d P log

(
d P

d Q

)

(a)=
∫

d Q
d P

d Q
log

(
d P

d Q

)

(b)=
∫

d QE
�

[
1


�(�)
· d P�

d Q

]

× log

(
E
�

[
1


�(�)
· d P�

d Q

])

(c)≤
∫

d QE
�

[
1


�(�)
· d P�

d Q
·

× log

(
1


�(�)
· d P�

d Q

)]

=
∑

θ=1,2


�(θ)

∫
d Q

1


�(θ)
· d Pθ

d Q

× log

(
1


�(θ)
· d Pθ

d Q

)

(d)=
∑

θ=1,2

log

(
1


�(θ)

)∫
d Pθ

+
∑

θ=1,2

∫
d Pθ log

(
d Pθ

d Q

)

(e)= h

(∫
d P1

)
+
∑

θ=1,2

∫
d Pθ log �Bn,θ , (116)

where:
(a) follows since for any two measures μ, λ with μ � λ and
a μ−integrable function g, we have

∫
gdμ =

∫
g

dμ

dλ
dλ; (117)

(b) follows from (115) and the law of total probability;
(c) follows by applying Jensen’s inequality to the convex
function x �→ x log(x);
(d) follows by the properties of the logarithm and (117);
(e) follows from (114) and the definition of �Bn,θ , for
θ = 1, 2, in (17).

APPENDIX C
PROOF OF THE CHENOFF BOUND - LEMMA 4

Let X have the same distribution as X1. For any λ > 0,
we have

P

(
1

M

M∑

m=1

Xm ≥ c

)
(a)≤ Eeλ

∑M
m=1 Xm

eλcM

=
(

EeλX

eλc

)M

(b)≤
(

1 + eλB−1
B EX

eλc

)M

≤
(

1 + eλB−1
B μ

eλc

)M

(c)≤
⎛

⎝e
eλB−1

B μ

eλc

⎞

⎠

M

= e
−M

(
λc+ μ

B − μeλB

B

)

, (118)

where (a) is the Chernoff bound, (b) uses the fact that eλx ≤
1 + eλB−1

B x , for x ∈ [0, B] due to convexity, and (c) uses
1 + x ≤ ex .

Optimizing the RHS of (118) over λ given λ� = 1
B ln c

μ
as the minimizer, as long as c

μ ≥ 1. Plugging this into (118)
yields

P

(
1

M

M∑

m=1

Xm ≥ c

)

≤ e
− Mμ

B

(
c
μ

(
ln c

μ −1
)
+1

)

, ∀ c

μ
≥ 1.

(119)

This is a good bound when μ � B , as it is in our
case. If c/μ is shrinking, then to further simplify the bound
consider the third order Tayler expansion of x(ln x − 1)
about x = 1,

x(ln x − 1) + 1 ≥ 1

2
(x − 1)2 − 1

6
(x − 1)3, ∀x ≥ 1.

(120)

The LHS in (120) is a lower bound because the fourth
derivative is positive for all x ≥ 1. Furthermore, if x − 1 ≤ 1,
we have

1

2
(x − 1)2 − 1

6
(x − 1)3 ≥ 1

3
(x − 1)2, ∀x ∈ [1, 2]. (121)
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Putting it all together gives

P

(
1

M

M∑

m=1

Xm ≥ c

)

≤ e
− Mμ

3B

(
c
μ −1

)2

, ∀ c

μ
∈ [1, 2]. (122)

APPENDIX D
PROOF OF LEMMA 5

Since
{

f (i)
n
}

n∈N
, i ∈ [1 : I ], are bounded and by (57a),

there exists a sequence {δn}n∈N such that

E f (i)
n (An) ≤ δn, ∀i ∈ [1 : I ], n ∈ N, (123)

and δn → 0 as n → ∞. We have

P

(
I⋃

i=1

{
f (i)
n (An) ≥ (I + 1)δn

})

≤
I∑

i=1

P

(
f (i)
n (An) ≥ (I + 1)δn

)

(a)≤
I∑

i=1

E f (i)
n (An)

(I + 1)δn

(b)≤ I

(I + 1)

< 1. (124)

Therefore, there exists a realization {an}n∈N of
{

An
}

n∈N
such

that

f (i)
n (an) < (I + 1)δn � δ̃n, ∀i ∈ [1 : I ], n ∈ N. (125)

Since I < ∞ independently of n, we have δ̃n → 0
as n → ∞.

APPENDIX E

PROOF OF LEMMA 6

We prove the continuity of C I
S(β) inside (0, 1) by showing

that it is bounded and convex. Let β1, β2 ∈ (0, 1), λ ∈ [0, 1]
and observe that

C I
S(λβ1 + λ̄β2)

= max
QU,X :

U−X−Y

[
(λ + λ̄)I (U ; Y ) − (λβ1 + λ̄β2)I (U ; X)

]

≤ λ max
QU,X :

U−X−Y

[
I (U ; Y ) − β1 I (U ; X)

]

+λ̄ max
QU,X :

U−X−Y

[
I (U ; Y ) − β2 I (U ; X)

]

= λC I
S(β1) + λ̄C I

S(β2). (126)

Furthermore, for every β ∈ (0, 1),

C I
S(β) ≤ max

Q X
I (X; Y ) ≤ log |Y| < ∞. (127)
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