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Abstract—We consider the problem of optimal probing of states
of a channel by transmitter and receiver for maximizing rate
of reliable communication. The channel is discrete memoryless
(DMC) with i.i.d. states. The encoder takes probing actions depen-
dent on the message. It then uses the state information obtained
from probing causally or noncausally to generate channel input
symbols. The decoder may also take channel probing actions as
a function of the observed channel output and use the channel
state information thus acquired, along with the channel output,
to estimate the message. We refer to the maximum achievable
rate for reliable communication for such systems as the “Probing
Capacity”. We characterize this capacity when the encoder and
decoder actions are cost constrained. To motivate the problem,
we begin by characterizing the trade-off between the capacity
and fraction of channel states the encoder is allowed to observe,
while the decoder is aware of channel states. In this setting of ‘to
observe or not to observe’ state at the encoder, we compute certain
numerical examples which exhibit a pleasing phenomenon, where
encoder can observe a relatively small fraction of states and yet
communicate at maximum rate, i.e., rate when observing states at
encoder is not cost constrained.

Index Terms—Actions, channel with states, cost constraints,
Gel’fand-Pinsker channel, probing capacity, Shannon channel.

I. INTRODUCTION

S HANNON showed the importance of availability of
channel state at the encoder for communication system

in his seminal paper [1], where he computed capacity of
DMC with i.i.d. states available causally to the encoder. This
spawned an active research in the area of channel coding
and was extended to various scenarios, notably for storage in
computer memory. Kuznetsov and Tsybakov in [2] constructed
defect-correcting codes for coding in computer memory with
defective cells. Gel’fand and Pinsker in [3], extended work in
[1] to the case where channel states are available noncausally
to the encoder, again with applications for computer memories,
which was further researched by Heegard and El Gamal in
[4]. Keshet et al. presented a detailed survey in [5] on channel
coding in the presence of state information, where the channel
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state information (CSI) signal is available at the transmitter
(CSIT) or at the receiver (CSIR), or both.

The notion of actions in source coding context is introduced
in [6]. Their setting is a generalization of the Wyner-Ziv source
coding with decoder side information ([7]), where now the de-
coder can take actions based on the index obtained from the en-
coder to affect the formation or availability of side information.
Authors in [8], studied the channel coding dual where the trans-
mitter takes actions that affect the formation of channel states.
This framework captures various new coding scenarios which
include two stage recording on a memory with defects, moti-
vated by similar problems in magnetic recording and computer
memories. Kittichokechai et al. in [9] studied a variant of the
problem in [6] and [8], where encoder and decoder both have ac-
tion dependent partial side information. However, in the source
coding formulation of [6], they restricted the actions to be taken
by decoder while in the channel coding scenario of [8] and [9],
actions were taken only by the encoder.

In this paper, we revisit channel coding scenarios but now
cost constrained actions are taken to acquire any partial or com-
plete channel state information by the encoder, the decoder or
both. Our framework is aimed at capturing and understanding
the tradeoffs involved in natural scenarios where the acquisition
of channel state information is associated with expenditure of
costly system resources. The encoder and decoder actions are
cost constrained creating tension between achievable rate and
the cost of acquisition of the channel state (or the defect) in-
formation. Note that our framework differs from those of [8]
and [9] where actions affect the channel, followed by channel
encoding. In our scenario channel statistics are not affected,
i.e., nature generates the state sequence i.i.d . Our work
is novel in the sense that not only the encoder but the decoder
also takes actions to acquire channel state information. Encoder
takes actions ( ) depending on messages. Decoder also takes
actions ( ) depending upon observed channel output. Using
their respective actions, encoder and decoder observe partial
states, and through discrete memoryless channel (DMC),

. The encoder can causally or noncausally use its
partial state information to generate the channel input symbols.
In this paper, we characterize the fundamental limit of such a
framework and call it Probing Capacity. When the actions are
not taken by the decoder, there is an equivalence between our
setting and that of channels with action dependent states as in
[8], which we make explicit in Section III.

The rest of the paper is organized as follows. We begin with
a motivating scenario in Section II, where decoder knows the
complete state and the encoder takes message dependent binary
actions to observe or not to observe the channel state. This is
generalized in Section III, when only encoder takes actions. This
section also establishes the equivalence between our framework
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Fig. 1. Encoder takes message dependent actions to observe state, encodes using available partial state information noncausally while decoder knows the complete
channel state sequence.

of optimal probing and that of channels with action dependent
states in [8]. Motivated by the framework of communication
over slow fading channels, where the information of channel
states is to be exploited on the fly, we have in Section IV char-
acterization of the probing capacity where encoder takes ac-
tions to get channel states and use them causally to construct
channel inputs and decoder takes actions strictly causally de-
pendent on channel outputs. Note that in this section, we char-
acterize a novel and a generalized setting, where both encoder
and decoder take costly actions to get channel state information.
Later in this section, inspired by coding on computer memory
with defects, we explain the noncausal case, i.e., when channel
states are used noncausally by the encoder to generate channel
input symbols and decoder waits for the entire channel output
before taking actions to get channel states. This in general is a
hard problem and we show its equivalence to a relay channel
problem with infinite lookahead at the relay. In Section V, we
work out several examples, with some surprising implications.
The paper is concluded in Section VI with directions of future
research.

II. TO OBSERVE OR NOT TO OBSERVE

CHANNEL STATES AT ENCODER

We begin by explaining the notation to be used throughout
this paper. Let upper case, lower case, and calligraphic letter
denote, respectively, random variables, specific or determin-
istic values which random variables may assume, and their
alphabets. For two jointly distributed random variables, and

, let , and , respectively, denote the marginal
of , joint distribution of and conditional distribu-
tion of given . is a shorthand for tuple

. We impose the assumption of
finiteness of cardinality on all alphabets, unless otherwise
indicated.

In this section, we consider the problem of optimal probing
where encoder takes a ‘costly’ action depending upon message
and use it to probe the channel and observe or not the channel
state. The actions are binary, hence while action, cor-
responds to the case when encoder observes the channel state,
action, implies no acquired state information. We further
assume decoder knows the complete state information and that
the encoder uses partial state information noncausally to gen-
erate channel input symbol.

A. Problem Setup

The setting is depicted in Fig. 1: Message is selected uni-
formly from a uniform distribution on the message set

. Nature generates states sequence

i.i.d , independent of message. A code consists
of:

• Probing Logic: such that the
action sequence satisfies the cost constraints

(1)

where is the cost function while is the cost con-
straint. Given nature generated state sequence and mes-
sage dependent action sequence , encoder receives par-
tial state information through a deter-
ministic channel characterized by

(2)

(3)

where stands for erasure or no information of state
symbol. Thus, corresponds to an observation of
the channel state while to a lack of an observation.
Without loss of generality we can assume, .

• Encoding: , i.e., encoder
uses the partial state information noncausally to generate
channel input symbols.

• Decoding: , where
the channel output .

The joint PMF on induced by a
given scheme is

(4)

The probability of error is calculated as
. The rate is said to be achievable if there exists

a sequence of codes for increasing block lengths
satisfying the cost constraints (1) with and

.

B. Probing Capacity

Theorem 1: The cost constrained ‘probing capacity’ of the
system in Fig. 1 with channel inputs constructed using the ob-
served state sequence noncausally while decoder has complete
information of the state is given by

(5)
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Fig. 2. Equivalence of our setting of probing the channel state at the encoder to that of channels with action dependent states in [8].

where maximization is over all joint distributions of the form

(6)

for some such that .
Proof: We state theorems for generalized settings in

Section III by drawing equivalence from [8, Theorems 1 and
2] and show how they can be used to prove this theorem.
However for a standalone proof with a simpler achievability,
see Appendix A.

Note 1 (Causal Probing): Note that the capacity is the same
if we now consider the setting where the encoder generates
channel input sequences using observed state causally. The
converse for the noncausal setting provides the converse for
the causal setting. As in the achievability of fading channels
in [10], here also the achievability for noncausal probing uses
the channel state symbols in an i.i.d manner, i.e., channel input
symbol depends on the state only through the current state
symbol. Hence the achievability remains same for the causal
case. This establishes that causal probing capacity equal the
noncausal probing capacity. Note that in general capacity for
causal and noncausal probing might not be the same, it holds
for our specific setting considered in Fig. 1.

Note 2 (Probing Independent of Messages): If action se-
quence is taken independent of message, time sharing is
optimal. This is because when action sequence is independent
of message, the setting is equivalent to the case when decoder
knows the action. Let and denote the capacity at
cost and , respectively. The capacity in this case is

(7)

(8)

(9)

III. EQUIVALENCE BETWEEN ENCODER PROBING AND

CHANNELS WITH ACTION-DEPENDENT STATES

In the previous section, we motivated the basic problem of
characterizing the capacity when observation of the channel

TABLE I
EQUIVALENCE OF SETTING IN [8] TO OUR FORMULATION OF

OPTIMAL PROBING AT ENCODER

state at the encoder comes at a price. We had further assumed
that the decoder knew the complete state information. In this
section, we point out the equivalence of general setting of ac-
tion dependent channel probing at the encoder with the setting
of channels with action dependent states considered in [8]. In
our generalized setting, actions are taken in an alphabet and
encoder observes through a DMC . The setting in
[8] and [9] is as follows. Given a message , encoder takes
actions , which affect the formation of channel
states. These states are then used by the encoder causally or
noncausally to generate channel input.

First consider the case when decoder does not know the
channel states. Now in our setting we are given from nature

, but this is equivalent to
since is not available at encoder or decoder and hence can
be averaged out. This establishes the equivalence as depicted in
Table I and Fig. 2. If the decoder now knows the channel state

through DMC we can replace in Fig. 2 with
to compute capacity.

Hence, using the proven equivalence, we invoke and list the-
orems from [8] transformed for our setting.

Theorem 2 (Equivalent to Theorem 1 in [8].): The cost con-
strained ‘probing capacity’ when the encoder generates channel
inputs using partial state information noncausally as in Fig. 2
with cost constraint (as in (1)), is given by

(10)

(11)
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where maximization is over all joint distributions of the form

(12)

for some such that and
.

Theorem 3 (Equivalent to Theorem 2 in [8].): The cost
constrained “probing capacity” when the encoder generates
channel inputs using partial state information causally as in
Fig. 2 with cost constraint (as in (1)), is given by

(13)

where maximization is over all joint distributions of the form

(14)

for some such that and
.

Note 3: Note that auxiliary variable has an increased cardi-
nality as compared to equivalent setting in [8]. This stems from
the following:

• Output is replaced with , hence in causal setting
we have following the arguments in [8].

• To preserve , in both causal and noncausal
setting we have . In causal
setting, four more elements are needed, one to preserve

, one to preserve independence of with
and two more each to preserve markov chains

and .
In non causal setting, four more elements (other than

) are needed, one to preserve
, one to preserve independence

of with and two more to preserve markov chains,
and .

Deriving Theorem 1 using Theorems 2 and 3
Theorems 2 and 3 generalize the setting in Theorem 1, hence

here we would like to derive the capacity results in Theorem
1 from Theorems 2 and 3. We have already pointed out that
capacity of the setting in Fig. 1 is the same whether encoder
encodes using partial information causally or noncausally (call
it ). (Subscripts ‘ ’ and ‘ ’ stand
for capacity for causal and noncausal encoding of partial state
information). We claim to prove the result

using Theorems 2 and 3.
For noncausal encoding (using Theorem 2)

(15)

(16)

(17)

(18)

(19)

(20)

where
• follows from the fact that and

and that is independent of .
• follows from the DMC ( ) assumption and that

is a Markov Chain.
This maximization is over joint distribution

(21)

(22)

(23)

(24)

where follows from the fact that knowing im-
plies knowing . Hence, we have from (20) and (24).

.
Now for causal encoding (using Theorem 3)

(25)

(26)

(27)

(28)

(29)

(30)

where follows from the fact that and are independent
and follows from the relation . This maximization
is over joint distribution

(31)

We will now show that joint distribution of the form in Theorem
1 is contained in (31). So the joint distribution in Theorem 1

(32)

Now

(33)

(34)

where follows from the Functional Representation Lemma
([11]), is independent of and (g) follows from defining

. Hence by (30) and (34) we have shown that
. But . This completes

the claim.
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Fig. 3. Encoder and decoder both take actions to observe partial state information and use it for encoding and decoding.

IV. OPTIMAL PROBING AT BOTH ENCODER AND DECODER

In earlier sections, we considered the framework where only
encoder was allowed to take actions. In this section we further
generalize the setting where decoder can also take actions based
on the channel output and then obtain its own partial state infor-
mation which is used to construct estimate of the transmitted
message. We motivate this general setting in the framework of
communication over slow fading Channels.

Consider a point to point communication system where in
each time epoch channel state is i.i.d. . In the
next epoch the information of this present state is lost, hence
encoder and decoder have to exploit whatever information is
available to them causally to get the best achievable rate. More
precisely, consider the setup as depicted in Fig. 3: Message is
selected uniformly from a uniform distribution on the message
set . Nature generates states sequence

i.i.d , independent of message. A code
consists of:

• Probing Logic:
— Encoder Probing Logic .
— Decoder Probing Logic ,

where channel output .
Further the encoder and decoder actions are cost
constrained,

(35)

where is the cost function while is the cost con-
straint. Given nature generated state sequence , mes-
sage dependent encoder action sequence and channel
output dependent decoder action sequence , encoder ac-
quires partial state information (which we will
call CSIT, i.e., Channel State Information at Transmitter)
and decoder (which we will call CSIR, i.e.,
Channel State Information at Receiver), through a DMC

.
• Encoding: .

• Decoding: .
The joint PMF on induced by
a given scheme is

(36)

1) Probing Capacity:

Theorem 4: The cost constrained “probing capacity” for the
scenario depicted in Fig. 3 is given by

(37)

where maximization is over all joint distributions of the form

(38)

for some such that and
.

Proof:
Achievability: Fix which achieve

. Encoder and decoder decide on a sequence , i.i.d
. By similar arguments as in achievability of previous

theorems using typical average lemma, constraints are satisfied.
Now using Theorem 3 if , error free communication
is achieved if . Hence since encoder
and decoder both know , we achieve .
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Converse: Suppose rate is achievable. Now consider
a sequence of codes for which we have .
Consider

(39)

(40)

By Fano’s Inequality ([12])

(41)

where . Now consider

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

where
• follows from the fact that and

.
• follows by defining

.
• follows from the fact that is concave in . This is

proved in Appendix B.
• follows from the fact that is non decreasing in

, which can be argued easily as larger implies a larger
feasible region and hence larger capacity.

We note the following relations:
• is independent of , it follows from

proof of markov chain MC1 in Appendix C.
• We have the Markov Chains

— .
— .
— .

— .
— .
These are proved in Appendix C.

• As contains , maximization is unaffected if
we replace with . Note that

is convex in . This is due to the
following standard arguments. Note
is convex in for a fixed

. This implies
,

as is fixed. But a convex combination of convex
functions is indeed convex, this proves the claim or
is convex. Convexity of in
implies convexity in . Hence again, maximum
would be unaffected if general is replaced
with .

• Cardinality Bounds on That set needs no more
than follows from arguments in [13]. Also,

needs to preserve
(which preserves , one

element to preserve , one element to
preserve independence of and and three more to
preserve the markov chains, ,

and .
The proof is then completed by using (40), (41) and (49) and
letting .

Note 4: The result of Theorem 4 indicates that the se-
quence is acting like a time sharing sequence, on which will
be embedded, highlighting the asymmetry between and .
This also suggests that need not depend on the channel out-
puts at all as it is acting like a time sharing sequence.

Note 5: Note that our analysis easily carries over to the case
where there are multiple constraints, say with cost functions

with cost constraints . A special
case then would be when , and and

, which is the setting with separate cost
constraints on encoder and decoder actions.

Note 6: We can consider a more general setting where
encoder and decoder feedback logic depend upon the re-
spective past state observations, i.e., encoder takes actions,

, while decoder takes actions, .
While the achievability remains unchanged as in The-
orem 4, it is easy to see the converse also holds with

.
Note 7: (Computer Memory with Defects: Non-causal

Probing at both Encoder and Decoder): Consider a computer
memory with defects, as in what the encoder writes, and
what the decoder reads, are related to each other through a
discrete memoryless channel, , where state models
defects. If there are no cost constraints to acquire the informa-
tion about defects, encoder and decoder are better-off by coding
and decoding using this entire state sequence as it is avail-
able before writing and reading on the memory. Note that we
assume neither the writing nor the reading operation changes
the state. However when acquisition of this state information by
the encoder as well as the decoder is cost constrained, encoder
can take actions, to get partial state information
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Fig. 4. Decoder takes actions dependent upon the entire observed channel output sequence and uses the actions to aquire partial channel state information. Encoder
has no knowledge of channel states.

Fig. 5. Equivalence of setting in Fig. 4 with Relay with Infinite Lookahead.

and then write while decoder can wait for entire
memory to be written and then take actions, . It will
then obtain its side information . Hence the setup remains
similar as depicted in Fig. 3, the only difference from the
setup in Section IV is that encoder now uses the partial state
information, CSIT, noncausally to generate input symbols, i.e.,

, while decoder takes action based on
entire channel output sequence, i.e., .
Also in order to avoid issues of instantaneous dependency, we
must have

(50)

Equivalence to Relay Problem: The above problem is in gen-
eral a hard one. In fact even most of the special cases are open.
For instance, consider a special case where is binary, with
cost function , so there are no constraints
on the action taken by the decoder . Note ,

and we are interested in computing capacity as a func-
tion of cost constraint, . Under this special case too,
the corner cases of zero cost and unity cost are open.

• For zero cost, the system is a special case of “Relay
Channel with Infinite Lookahead”, which is an open
problem with only bounds known as in [11, Chapter 17].
We show the equivalence of this problem at zero cost to
that of Relay with Infinite Lookahead, as depicted in Fig. 5
and Table II. In a standard relay, the relay encoder gen-
erates symbols strictly causally, i.e.,
(See Fig. 5), in case of a relay with lookahead, relay
encoding is in general for a lookahead

. While corresponds to the case of causal relay

TABLE II
EQUIVALENCE OF SETTING IN FIG. 4 WITH RELAY

WITH INFINITE LOOKAHEAD [11]

or relay without delay, in the case of relay with infinite
lookahead or noncausal relay, relay encoding can depend
on the entire sequence, .

• When cost is unity, similar to that of zero cost, the setting
can be shown equivalent to the case of relay channel with
states known noncausally to the encoder and relay has infi-
nite lookahead. This problem too is in general open. When
states are also available noncasually to the relay which in-
stead of infinite lookahead has zero lookahead (the case of
standard relay), authors in [14](cf Theorem 2.1) derive a
lower bound on the capacity.

V. NUMERICAL EXAMPLES

A. Discrete Channels

1) (Noncausal Probing): To Observe or Not to Observe
Channel State at Encoder:

Example 1: (Binary States, channel and , Decoder
observes complete channel state): Consider the communication
system shown in Fig. 6 with binary input and output. Decoder
knows the state completely. Actions are binary which corre-
spond to observe or not to observe state at encoder. Also the cost
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Fig. 6. Example 1.

Fig. 7. Cost-capacity tradeoff for Example 1. Time sharing is strictly suboptimal.

function, , for actions, . We compute the ca-
pacity using Theorem 1. and .
We assume the following:

(51)

(52)

(53)

As is non decreasing in . . We obtain for

(54)

We compute the above expression numerically (Fig. 7). Note
here that decoder knows the complete state, hence by the note
at the end of Theorem 1, the capacity remains the same even if
there is causal probing.

Note 8 ( in Fig. 7): An observation
from this example which is perhaps somewhat surprising is that
in order to achieve the maximum capacity (which is at )
one needs to only observe a fraction of . This
threshold however can also be theoretically derived. Essentially,
we find out the range of for which the capacity
achieving joint distribution in induces exactly the same
marginals, as when the cost is unity. Let , , and
be optimal distributions for cost as in (54). The marginals are
equal to

(55)

(56)

For , we can easily compute
and . Therefore, for the marginals to be
same

(57)

(58)

or

(59)
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Fig. 8. Cost-capacity tradeoff for Example 2 for � � ����. The dotted straight line is obtained by time sharing between zero cost and unit cost capacity.

Since , it is easy to see that if the cost ,
we can find such that . At ,
optimal scheme is , and
otherwise. Note that this kind of phenomenon is particular to
the example we consider here, in general it would be dependent
on the channel parameters of the problem.

Example 2: Binary States, Multiplier Channel with Power
Constraints. Decoder has complete state information: Consider
a multiplier channel with binary inputs, outputs and states,

where . Again note that actions are binary
with and corresponds to an observation of the
channel state while to a lack of an observation. Let

(60)

(61)

(62)

We see that capacity under the power constraint

(63)

is

(64)

For , we have

(65)

(66)

The plot for is shown in Fig. 8.

Note that in both the above examples, the decoder knows
complete state, hence by Note 1 capacity remains the same when
there is causal probing.

2) (Causal Probing): To Observe or Not to Observe Channel
State at Encoder:

Example 3: (Binary States, channel and , De-
coder has no access to the state): Consider the communica-
tion system shown in Fig. 9 with binary input and output with

, and . Here, states are not known to the
decoder and encoder uses partial state information causally to
generate channel input symbols. Actions are binary with cost,

. corresponds to an observation of the channel
state while to a lack of an observation. The evaluation of
capacity expression involves an auxiliary random variable. We
compute its lower bound on capacity numerically using The-
orem 3 as shown in Fig. 10. Here also, time sharing is clearly
not optimal.

Note 9: Note the interesting phenomenon in this example too
(as in Example 1), where we just need to observe roughly a
fraction of to obtain the capacity at unit cost. This
can be reasoned in a similar manner as reasoned for Example 1.

B. Continuous Channels

1) “Learning” to Write on a Dirty Paper: Using standard
arguments, it can be shown that the capacity results carry over to
the case of continuous channels with power constraints on input
symbols. Let us recall the setting in Dirty Paper Coding. Costa
in [15] considered the communication system as in Fig. 11.

The output of the channel is given as
, where

• Channel state or Interference is i.i.d.
independent of i.i.d. noise, .

• Channel state or interference is known to the en-
coder noncausally. Encoder hence generates channel
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Fig. 9. Example 3.

Fig. 10. Cost-capacity tradeoff for Example 3. The dotted straight line is obtained by time sharing between zero cost and unit cost capacity (Scheme 1). Time
sharing between a scheme for which � � ���� � � in Theorem 3 (call it Scheme 2) and Scheme 1 gives a lower bound on the capacity indicated by solid line.
It is evident that naive Scheme 1 (time sharing scheme between extreme capacities at zero and unit cost) is strictly sub-optimal.

inputs which are cost constrained, i.e.,
.

• Decoder has no knowledge of channel state or interference.
It was shown that the capacity of this channel is

which is equal to the capacity of a standard
Gaussian channel with signal to noise ratio . This is strictly
larger than the capacity when is unknown to both encoder
and decoder, i.e., .

We now consider the setting as in Fig. 12. While in Writing
on Dirty Paper, it was assumed that interference or channel state
was completely available, but this might not be true in real sys-
tems one might have to pay a price to acquire this information.
Hence, in contrast to writing on a paper where intensity and po-
sitions of all dirt spots are known, we have to take action to
learn where the paper is most dirty, hence the name Learning to
Write on a Dirty Paper. Actions are binary, with cost function,

. Here also corresponds to an observation of
the channel state while to a lack of an observation. Also,

(67)

(68)

where stands for erasure or no information.
Invoking Theorem 2, we have the capacity

(69)

(70)

where maximization is over joint distribution

(71)

such that and . We give a lower
bound on this capacity by considering a simple power splitting
achievable scheme. Let us assume and

. Clearly is maximized when
. Therefore, we have from power constraints

(72)
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Fig. 11. Dirty Paper Coding as in [15].

Fig. 12. Learning to write on a Dirty Paper.

Further we assume, given action , channel input is indepen-
dent of . Let

(73)

(74)

where . Since , we have

(75)

(76)

Hence .
Considering this distribution gives the following lower bound on
capacity:

(77)

(78)

(79)

(80)

where
• follows from the fact that is just erasure for ,

while for is equal to . denotes the differential
entropy of a continuous random variable with distribution

.
• follows from the fact that when

(81)

(82)

(83)

while for following the similar steps as in [15, Eqs.
3–7] we obtain

(84)

Fig. 13 shows the plot of with for
, which indeed performs better than naive time sharing

between and .
2) Fading Channels With Power Control: We revisit the set-

ting of fading channels with encoder and decoder state infor-
mation as in [10], but now the encoder takes actions to acquire
the channel state from receiver state estimation, while decoder
already knows the channel state. This is depicted in Fig. 14.
Here denotes the i.i.d. channel states which take value in
a finite state, with equal probability. is i.i.d.
Gaussian noise . Bandwidth for communication
is . and are signal to noise ratios,
such that . Actions are binary which correspond
to observe or not to observe state at encoder with cost functions

and cost constraint . is defined as in Theorem 1,
i.e, if else is an era-
sure, i.e., we do not know what is the channel state . From
results in [10], we know that:

• Capacity when only decoder knows the state information

(85)

• Capacity when encoder also knows the channel state (pos-
sibly through a noiseless feedback from decoder) in addi-
tion to decoder

(86)



7328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER 2011

Fig. 13. Power Splitting lower bound on capacity for Learning to Write on Dirty Paper in Fig. 12.

Fig. 14. Fading channels with encoder taking actions to acquire channel state for adaptive power control.

The above capacities form the extreme cases of zero and unit
cost respectively for the communication system in Fig. 14.
Using Theorem 1, we have the capacity for the communication
system in Fig. 14 with bandwidth as

(87)

(88)

such that and . Clearly maximum is
attained for . To obtain a lower bound, we assume
the following:

(89)

(90)

(91)

This implies
and

, with power constraints

(92)

Hence, a lower bound on capacity is

We plot as a function of for , and
, in Fig. 15.

VI. CONCLUSION

In this work, we obtain “Probing Capacity” of systems which
are characterized as follows:

• Channel is DMC with i.i.d states.
• Encoder takes costly actions and probes the channel for

channel state information. This may be used causally or
noncausally to generate channel input symbols.

• Decoder takes costly actions and probes the channel to ob-
tain state information which is then used to construct mes-
sage estimate.
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Fig. 15. Lower bound on fading channel communication system in Fig. 14. Time sharing is evidently highly suboptimal.

We also worked out examples of discrete and continuous chan-
nels in cases where only encoder probed the channel for states.
We not only showed that a naive time sharing scheme is strictly
suboptimal but also showed a pleasing phenomenon (see Ex-
ample 1 in Section V) where one needs to observe only a frac-
tion of states to obtain maximum rate of transmission i.e., rate
when cost of state observation at encoder is not constrained.

As directions of future work, the following are important
questions/conjectures worth spending time and energy:

1. What if encoder actions depend on past sampled state, i.e.,
for the case when partial state

information is to be used noncausally? Can capacity be
increased?

2. What about probing capacity for channels with memory?
3. Does the Example 4 on ‘Learning to write on a dirty paper’

also support the pleasing phenomenon when we can ob-
serve only a fraction of states and still achieve Costa’s dirty
paper coding capacity, ?

4. What if we take action to sample or not feedback at encoder
or decoder for channels with memory?

Some of the results concerning sampling or not the feedback
for finite state channels (FSC) have been characterized in [16],
while the rest are under investigation.

APPENDIX A
PROOF OF THEOREM 1

1) Achievability: We use Rate-Splitting and Multiplexing
to achieve capacity (for a similar scheme refer to [10]). Note that
in this problem while knowing , we know , hence we would
show achievability with replaced by . Without
loss of generality we assume , hence

. Fix which achieve . We
split message of rate into two messages and of
rate and , respectively.

• Generation of Codebooks:
— Generate codebook of -tuples

i.i.d. . To send message , if
( are typical in the sense of [17]),

then action is taken, else
is taken. If , then by typical average
lemma [11], constraints are satisfied as

(93)

— For every , generate a codebook of

-tuples such that , are
i.i.d. respec-
tively. Also generate a codebook of codewords

i.i.d. .
• Encoding:

— Given a message , encoder decides
to take actions or depending whether

is in or not. If
encoder finds , and then sends

using the following multiplexing:

(94)

(95)

If , encoder sends .
• Decoding: We perform Successive Decoding and Demulti-

plexing. By successive decoding we mean that actions are
decoded first by decoder and then the actual codewords.
— On obtaining the channel output sequence

and channel state sequence decoder finds the
smallest value of for which
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. If there is no such , decoder assumes
.

— Once the decoder decodes the value of , if
, it knows and

hence, using the codebook , it demultiplexes

to construct sequences as

(96)

(97)

— After demultiplexing, if ,
decoder finds the smallest value of for
which

. If there is no such ,
decoder assumes . If ,
decoder finds the smallest value of for which

, else is
assumed.

• Analysis of Probability of Error: Without loss of generality,
we can assume was sent. We
have the following error events:
— .
— for .
—

.
—

for .
Let . Hence

(98)

(99)

Since is the actual message being sent and action and
channel input sequences are generated i.i.d., ,

and will be jointly typical as , to be
more precise by the LLN (law of large numbers) arguments
([11]), as .
Note in the following arguments the limit of the probabil-
ities is taken as , this being implied we will omit
using repeatedly for the sake of brevity. We will
now show that . Let
and . By Law of Large Numbers, (LLN,
([11]), . By Packing Lemma ([11]),

if which
implies by union bound

.
Similarly by LLN, and by Packing
Lemma if
which implies by the union bound

. Hence, the
total probability of error

(100)

(101)

if and . Therefore,
we obtain for vanishing probability of error that

(102)

(103)

(104)

(105)

(106)

where is due to our channel assumption which is ex-
pressed in joint PMF of any induced scheme [cf (4)]. Proof
of achievability is completed by taking .
2) Converse: Suppose rate is achievable. Now consider

a sequence of codes for which we have .
Consider

(107)

(108)

(109)

By Fano’s Inequality ([12])

(110)

where . Now Consider

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

where
• follows from the fact that message is independent of

state sequence.
• follows from the fact that ,

and .
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• follows from the fact that conditioning reduces en-
tropy and from the Markov chain,

which is due to the in-
duced joint probability distribution as in (4).

• follows from the fact that is concave in . This
is proved as follows. Let and be respectively
achieved at joint and . Let
and be the corresponding joint distributions. Since

is nondecreasing in (which can be argued easily as
larger implies a larger feasible region and hence larger
capacity), therefore we have

(119)

(120)

Now consider a joint distribution .
Clearly

(121)

Now observe that is concave in which
is linear in . Hence, is concave in

. Thus denoting as the value of
at joint , we have

which proves the concavity of in .
• follows from the fact that is non decreasing in ,

as explained in above.
We further note the following relations and Markov Chains:

• is independent of as state sequence
is independent of message and actions are functions of
message.

• . This can be reasoned as follows.
Since , it suffices to prove

. We observe the joint distribution can be
factorized as,

(122)

(123)

(124)

which implies the Markov Chain
, which in turn implies

.
• follows from the DMC assump-

tion on the channel which implies the induced joint proba-
bility distribution as in (4).

Hence by using (109), (110) and (118), and letting we
have .

APPENDIX B
CONCAVITY OF CAPACITY IN COST

We prove the concavity of cost constrained capacity in
Theorem 4 by concavification argument. Consider “concavifi-
cation” of capacity in Theorem 4 as

(125)

where maximization is over all joint distributions of the form

(126)

for some such that
. Clearly, . Left is to prove

(127)

(128)

(129)

where last equality follows from the defining .
Proof is completed by noting that the joint distribu-
tion of is same as that of

.

APPENDIX C
PROOF OF MARKOV CHAINS IN THEOREM 4

We will prove the following Markov chains:
MC1 .
MC2 .
MC3 .
MC4 .
MC5 .

MC3 and MC5 follow from the DMC assumption in problem
definition. Now for the rest consider the induced probability
distribution by the given encoding and decoding scheme on

(130)
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Averaging over ,
we get the induced joint probability distribution on

(131)

(132)

(133)

Equation (132) implies is independent of while (133)
implies markov chain which in turn
implies MC1. MC2 is straightforward as contains .

Now averaging over
in (130),

we obtain the joint probability distribution on

(134)

(135)

(136)

This implies the Markov Chain,
, which implies MC4.
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