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Abstract—In this paper, we consider a multiple-access channel
(MAC) with partial cribbing encoders. This means that each of the
two encoders obtains a deterministic function of the output of the
other encoder with or without delay. The partial cribbing scheme
is especially motivated by the additive noise GaussianMAC, where
perfect cribbing results in the degenerated case of full coopera-
tion between the encoders and requires an infinite entropy link.We
derive a single-letter characterization of the capacity of the MAC
with partial cribbing for the cases of causal and strictly causal crib-
bing. Several numerical examples, such as those of quantized crib-
bing, are presented. We further consider and derive the capacity
region where the cribbing depends on actions that are functions
of the previous cribbed observations. In particular, we consider a
scenario where the action is taken to decide “to crib or not to crib”
and show that a naive time-sharing strategy is not optimal.

Index Terms—Backward decoding, block-Markov coding, crib-
bing encoders, cribbing with actions, Gaussian multiple-access
channel (MAC), partial cribbing, quantized cribbing, rate split-
ting, superposition codes, “To crib or not to crib”.

I. INTRODUCTION

I Nhis remarkable dissertation [1],Willems introduced a new
problem of the multiple-access channel (MAC) with crib-

bing encoders and derived its capacity region using a novel de-
coding technique called “backward decoding.” “Cribbing en-
coder” (or equivalently “perfect cribbing encoder”) refers to
the encoder which knows the output of the other encoder per-
fectly, possibly with delay or lookahead. The work by Willems
onMACs with cribbing encoders has been extended to the inter-
ference channel [2], and to state-dependent MAC [3]. However,
for the Gaussian case, where the encoder output takes values in
a continuous alphabet, the problem of perfect cribbing is degen-
erate [4] as it implies full cooperation between the encoders, re-
gardless of the delay in the cribbing. This is due to the fact that
in a single epoch, a noiseless continuous signal may transmit
an infinite amount of information. Motivated by this fact, we
introduce “partial cribbing” in this paper, where one encoder
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only knows a quantized version, or more generally, a determin-
istic function of the coded output of the other encoder.
In this paper, we consider two kinds of partial cribbing: causal

and strictly causal. Causal partial cribbing refers to the setting
where at time , the encoder observes (and uses) the partial crib-
bing signal without delay, i.e., . Strictly causal partial cribbing
means that at time , the encoder observes the partial cribbing
with a delay, i.e., . We derive the capacity region for two
different cases according to the causality or the strictly causality
of the cribbing.

Case A: The cribbing for both encoders is strictly causal.
Case B: The cribbing for one encoder is causal and for the
other encoder is strictly causal.

Fig. 1 depicts the case where one encoder has causal partial crib-
bing and the other strictly causal partial cribbing, i.e., Case B.
To some extent, the partial cribbing problem is related to the
semideterministic relay channel [5], which was solved using the
“partial decode and forward” technique [6]. When Encoder 2
has no message, the setup is that of a deterministic relay channel
and Encoder 2 plays the role of a relay. However, the MACwith
partial cribbing is different from the semideterministic relay in
the sense that Encoder 2 has its ownmessage to transmit in addi-
tion to its role of relaying information from Encoder 1. Another
related problem is the semideterministic broadcast channel [7],
where one of the receivers obtains a deterministic function of
the input channel. In our problem, Encoder 1 “is broadcasting”
to Encoder 2 and to the decoder. Thus, this part of the com-
munication resembles the semideterministic broadcast channel.
However, in our problem of partial cribbing only the decoder is
actually required to decode the message error-free.
The coding scheme presented here for the partial cribbing

uses similar techniques to those that were used for the case of
perfect cribbing, i.e., block Markov coding, Shannon’s strate-
gies, superposition coding, and backward decoding. In addition,
we use rate splitting on top of the rate splitting that is inherited
in the block-Markov coding. Rate splitting is needed as Encoder
2 can decode only part of the message transmitted by Encoder 1.
Recently, several problems on “action” in information theory

have been considered in [8]–[11]. In these problems, the side
information is not freely available, but it depends on a cost-con-
strained action taken by the encoder or the decoder. In this paper,
we also consider the case where the cribbing is action depen-
dent. Namely, there is an action that is a function of the previ-
ously cribbed observations and this action determines the cur-
rent cribbing function. These kinds of questions may be raised
in cognitive communication systems where sensing other users’
signals is a resource with a cost. In particular, we show through a
simple example, where the action is “to crib or not to crib,” that
a naive time-sharing action scheme is not necessarily optimal.

0018-9448/$31.00 © 2012 IEEE
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Fig. 1. Partial (deterministic-function) cribbing. Each encoder observes a deterministic function of the other encoder with or without delay. Encoder 1 observes
the cribbing in a strictly causal way, i.e., with delay, and Encoder 2 observes the cribbing causally, i.e., without delay. The setting corresponds to Case B in this
paper.

The remainder of this paper is organized as follows. In
Section II, we introduce the setting of MAC with partial crib-
bing and state the capacity region for the strictly causal case
(Case A), as well as the case of mixed causal and strictly causal
cribbing (Case B). In Sections III and IV, respectively, we
provide the converse and achievability proofs of the capacity
region for each case. In Section V, we consider the case where
a common message, known to the encoders, needs to be trans-
mitted to the decoder in addition to the private messages. We
show that no additional auxiliary random variable is needed
to characterize the capacity region since the partial cribbing is
utilized via generating a common message between the users.
In Section VI, we consider the case where one of the encoders
has no message to send. Hence, it becomes a special case of
the semideterministic relay channel with and without delay.
We show that, indeed, the region obtained via partial cribbing
and the region obtained via a semideterministic relay channel
coincide. In Section VII, we consider a Gaussian MAC with
quantized cribbing. We provide a simple achievable scheme
and show numerically that even with a quantizer of a few
bits, we obtain an achievable region that is very close to the
perfect cribbing capacity region. In Section VIII, we consider a
scenario where a limited-resource action controls the cribbing.
In particular, we investigate an example where the action is “to
crib or not to crib” and solve it analytically. In Section IX, we
conclude this paper and suggest some research directions that
have yet been solved, such as noncausal partial cribbing, noisy
cribbing, and a few action-related problems.

II. PROBLEM DEFINITION AND MAIN RESULTS

The MAC setting consists of two transmitters (encoders) and
one receiver (decoder). Each transmitter chooses an
index uniformly from the set and indepen-
dently of the other transmitter. The input to the channel from
encoder is denoted by . En-
coders 1 and 2 obtain a deterministic function of the output of
Encoders 2 and 1, respectively, of the form ,
and . The output of the channel is denoted by

. The channel is characterized by a conditional
probability . The channel probability does not
depend on the time index and is memoryless, i.e.,

(1)

where the superscripts denote sequences in the following
way: , . Since the set-
tings in this paper do not include feedback from the receiver
to the transmitters, i.e.,

, (1) implies that

(2)

Definition 1: A code with partial cribbing,
as shown in Fig. 1, at time , consists of an encoding function at
Encoder 1

(3)

and an encoding function at Encoder 2 that changes according
to the following case settings:

(4)

and a decoding function

(5)

The average probability of error for the code
is defined as

(6)
A rate is said to be achievable for the encoders with
partial cribbing if there exists a sequence of
codes with . The capacity region of the MAC is the
closure of all achievable rates.
Let us define the following regions , , which are con-

tained in , i.e., the set of nonnegative 2-D real numbers:

(7)
Throughout the paper, the distributions , and

are restricted to the forms
and ,

where is the indicator function, and this is because as part
of the problem settings and .
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The region is defined with the same set of inequalities as
in (7), only that the second inequality in (7) is replaced by

(8)

and the joint distributions are of the form

(9)

where and
.

The following theorem describes the capacity region of a
MAC with partial cribbing for two different cases of causality.

Theorem 1 (Capacity Region): The capacity regions of the
MAC with strictly causal partial cribbing (Case A), and with
mixed causal and strictly causal partial cribbing (Case B), as
described in Definition 1, are and , respectively.

Lemma 2: To exhaust and , it is enough to restrict the
alphabet of as follows:

(10)

The proof of Theorem 1 and Lemma 2 is given in the next
section.

III. CONVERSE PROOF

Here, we provide the converse proof of Theorem 1 for the two
cases, A and B.
Converse Proof of Case A: Let us assume that we

have a code as in Definition 1, Case
A. We will show the existence of a joint distribution

that satisfies the inequalities of (7) within some , where
goes to zero as . Consider

(11)

where (a) follows from Fano’s inequality, (b) from the fact
that is a deterministic function of and
the Markov chain , and (c) from

the Markov chain . Now
consider

(12)

where (a) follows from the fact that are deterministic
functions of , (b) from Fano’s inequality, (c) follows
from the Markov Chain ,
and (d) from the following definition of the random variable

(13)

Furthermore, consider

(14)
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where (a) follows from the fact that the messages and
are independent of each other, (b) follows from the fact that

is a deterministic function of , (c) follows from
Fano’s inequality, and (d) from the fact that is a determin-
istic function of and is a deterministic function
of which implies that is also a deterministic
function of . Step (e) follows from theMarkov chain

and from the fact
that conditioning reduces entropy. Similarly to (14), we obtain

(15)

Now let us verify that the three Markov chains

(16)

hold. The first Markov chain is due to the Markov chain
or, equivalently,

and the second Markov chain is due
to the Markov chain
or, equivalently, . The
Markov chain follows
from the joint distribution

and the observation that can be
expressed as (17), given at the bottom of the page,
and, therefore, it does not depend on . Similarly,

also does not depend on and therefore
holds. The third Markov chain is an

exchange between the indices 1 and 2, namely,
is exchanged with , respectively. Finally, let
be a random variable independent of , and
uniformly distributed over the set . We define the

random variables and obtain that the region given
in (7) is an outer bound to any achievable rate.

Once Case A has been proved, Case B follows in a straight-
forward manner using the following modification.
Converse Proof for Case B: We repeat the same steps as in the

converse proof for Case A, except for the bound on which

needs a different treatment that takes into account the causal
cribbing. Consider

(18)

where step (c) follows from steps (a)–(c) in (14), replacing index
1 with index 2. Step (d) follows from the fact that and
are deterministic functions of , and is a deter-
ministic function of . Step (e) follows from theMarkov
chain and from the
fact that conditioning reduces entropy. Step (f) follows from the
definition of the auxiliary random variable given in (13). The
rest of the inequalities are obtained as in Case A, i.e., (11), (12),
and (14). In the final step, we need to show that it suffices to con-
sider a set of distributions of the form given in (9). Hence, we
need to show that theMarkov chain
holds (rather than as in Case A). Since
for Case B, the Markov chain holds [the
proof is similar to (17)], it follows that

holds too.

Now we prove Lemma 2 which allows us to bound the cardi-
nality of the auxiliary random variable without affecting the
rate regions .

Proof of Lemma 2: We show the proof for Case A;
the proof for Case B is similar and hence omitted. We in-
voke the support lemma [12, p. 310]. The external random
variable must have elements to preserve
and four more to preserve the expressions

, ,
, and .

Alternatively, the external random variable must have
elements to preserve and three more

(17)
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to preserve the expressions ,
,

. Hence, the cardinality of may be bounded by
.

IV. ACHIEVABILITY PROOF OF THEOREM 1

In this section, we provide the achievability proof of Theorem
1 for the two cases: Case A and Case B. The achievability of
Case A can be seen as a special case of the achievable region of
MACwith generalized feedback which was derived byWillems
et al. [1, Th. 7.1], [13] and can be also found in [14, Ch. 11]. We
present here the proof of Case A since it will be the basis for the
achievability proof of Case B.
Throughout the achievability proofs in the paper,

we use the definition of a strong typical set. The set
of -typical -sequences is defined by

, where
is the number of appearances of in the -se-
quence . Additionally, we will use the following
well-known lemma [12], [14]–[16].

Lemma 3 (Joint Typicality Lemma): Consider a joint distri-
bution and suppose . Let be
distributed according to . Then

(19)
where .
For the achievability proof, we use the rate-splitting coding

technique in addition to the techniques used by Willems [17],
i.e., block Markov coding, superposition coding, Shannon’s
strategies, and backward decoding. The rate-splitting technique
introduces additional rate variables which are redundant and
we eliminate them using the Fourier–Motzkin elimination [18].
Achievability Proof of Case A: Let us split rate into two

rates and such that and, similarly,
into and such that . Let

, , , and
. Note that there is a one-to-one mapping

between and and between and .
Code Construction: Divide a block of length into

blocks of length . We use random coding to generate inde-
pendently the code for each sub-block . Construct
codewords1 according to i.i.d. . For every codeword
, construct codewords according to i.i.d.

and similarly codewords according to i.i.d. .
Furthermore, generate codewords according to i.i.d.

1It would be more precise to denote the codewords in block by , ,
rather than just , , . Since it is clear from the context that we are

dealing with codewords in block , we have omitted the subscript for the sake
of brevity.

and similarly codewords according to
i.i.d. . The Markov structure of the code is

(20)

Encoding at the Transmitters: At block ,
encode the message
using , encode conditioned on

using , and encode con-
ditioned on using .
Similarly, encode conditioned on
using , and encode conditioned on

using . We assume
that and which allow for
a backward decoding scheme as explained next.
Decoding at the Transmitters: In the encoding procedure,

we assumed that at block , Transmitter 1 knows and
Transmitter 2 knows . This is possible due to cribbing
as follows. At the end of block , Transmitter 1 looks for

such that

(21)

where is the cribbed signal received in block and
is the codeword associatedwith and .

Note that is known since it is a function of
that are known at block . Similarly, Transmitter 2 looks for

such that

(22)

where is the cribbed signal received in block and
is the codeword associatedwith and .

If a pair index that satisfies (21) and (22) does
not exist, an arbitrary message is used (and an error is declared)
and if there exists more then one such pair, the smallest calli-
graphic index is chosen (and an error is also declared).
Decoding at the Receiver: The receiver waits until the end

of the block and starts decoding each message in the sub-
blocks going backwards . At block
, we assume that is already known to the receiver
from block and it needs to decode , ,
and . The decoder uses joint typicality decoding at block
to look for , and such that we

have (23), given at the bottom of the page. If no such triplet
or more than one such triplet is found, an error is declared at
block and, therefore, at the whole superblock (we consider

as an index in ).

(23)
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Error Analysis: The following lemmawill enable us to bound
the probability of error of the superblock by bounding the
probability of error of each block.

Lemma 4: Let be a set of events and let denotes
the complement of the event . Then

(24)

Proof: For simplicity, let us assume that . In a
straightforward manner, the proof extends to any number of sets
. For any three sets of events , , , we have

(25)

Using Lemma 4, we bound the probability of error in the
super block by the sum of the probability of having an error
in each block given that in previous blocks, ,
the messages were decoded correctly.
First let us bound the probability that for some , Transmitter

1 decodes the message incorrectly or Transmitter 2 de-
codes the message incorrectly at the end of block . Using
Lemma 4, it suffices to show that the probability of error de-
coding in each block goes to zero, assuming that all previous
messages in block were decoded correctly.
Let be the event that Transmitter 1 has an error in de-

coding and let be the event that Transmitter 2 has an
error in decoding . The term
is the probability that either Transmitters 1 or 2 incorrectly
decoded and , respectively, given that and

were decoded correctly. Without loss of generality,
let us assume that . An error occurs if
and only if there is another message that maps to
the same codeword as or there is another message

that maps to the same codeword as . The
probability that where and where

and was generated

according to is bounded by , where
goes to zero as goes to zero. Hence

(26)

where inequality (a) follows from the union bound. Now we
bound the probability that the receiver decodes the messages

or or incorrectly at block , given
that at block the messages were decoded cor-
rectly and given that Transmitters 1 and 2 encode the right mes-
sages in block . Without loss of generality,
assume (for simplicity, we index both
messages by one index), and . Let us define
the event (27), given at the bottom of the page. An error occurs
if either the correct codewords are not jointly typical with the
received sequences, i.e., , or if there exists a different

tuple such that occurs. Let be
the error decoding at block given that in blocks ,
there was no error decoding. From the union bound, we obtain
that

(28)

Now let us show that each term in (28) goes to zero as the block-
length of the code goes to infinity.
1) Upper-bounding : Since we assume that the
Transmitters 1 and 2 encode the right
and that the receiver decoded the right
in block , by the law of large numbers (LLN)

.
2) Upper-bounding : The
probability that , which is generated according
to , is jointly
typical with , which was generated according
to , where

(27)
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is bounded by
(Lemma 3)

(29)

Hence, we obtain

(30)
3) Upper-bounding : Similarly to
(30), we obtain

(31)
4) Upper-bounding by

(32)

5) Upper-bounding by

(33)

To summarize, we obtain that if , ,
, and satisfy

(34)

then there exists a sequence of codes with a probability of error
that goes to zero as the block length goes to infinity. Using the
Fourier–Motzkin elimination [18] first for , we obtain

(35)

and applying Fourier–Motzkin elimination also for , we ob-
tain

(36)

which is equivalent to the region of Case A in (7).

Achievability for Case B: The achievability of Case B is very
similar to Case A, only that and in each sub-block need
to be generated according to codetrees rather than codewords
where the branches of the codetree are controlled by . The
codetrees (also called strategies by Shannon in [19]) in Case B
give to Transmitter 2 the flexibility to generate codewords that
depend causally on the cribbed signal, thereby having a random
code generated by the conditional distribution
rather than as in Case A. Here, we explain the parts
of the proof that differ from Case A.
Code Design: The division into sub-blocks in Case B is the

same as in Case A and the code design of Transmitter 1 in Case
B is identical to the one in Case A. The difference is only in the
code design of Transmitter 2.
In Case A in sub-block for a fixed ,

we generated a codeword according to
for each . Then,

for a fixed and fixed ,
we generated codewords according to

for each . The
codeword is illustrated in the left part of Fig. 2.
However, for Case B, for any , we gen-

erate codetrees rather then codewords that are associated with
and . The branch at time in the codetree is chosen

according to . The codetree that is associated with message
, where is fixed, is generated ac-

cording to the probability . The codetree that is
associated with message , where and

are fixed, is generated according to .
An illustration of the codetree and its comparison with the
codeword is given on the right side of Fig. 2.
Encoding at Transmitter 1: Identical to Case A.
Encoding at Transmitter 2: Given a message and

, is the sequence that results from the
path in the codetree that is associated with . Further-
more, given , and the
output of the second transmitter is the sequence due to the
path determined by in the codetree that is associated with

Decoding at the Transmitters (At the End of Block ): The
decoding scheme of Transmitter 2 is identical to the decoding
scheme in Case A, i.e., it looks for
such that

(37)

where is the cribbed signal received in block and
is the codeword associatedwith and .

Note that is known, since it is a function of
that are known at block .
The decoding scheme of Transmitter 1 is slightly different

from the scheme in Case A. Transmitter 1 looks for
such that

(38)

where is the cribbed signal received in block , is the
output of Transmitter 1 in block and is obviously known
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Fig. 2. Illustration of two coding schemes where (a) a message is mapped to codewords (like in Case A) and (b) with a codetree (like in Case B), where and
are binary. The tree branches at every time instant within the block and there exists a codetree for each block , each cloud center , and each

message that is encoded.

to Transmitter 1, and is the codeword asso-
ciated with and the cribbed signal .
Decoding at the Receiver: As in Case A, we use backward

decoding and joint typicality decoding. At block , we assume
that is already known to the receiver from block

and it needs to decode , , and . At
block , the decoder looks for , and
for which we have (39), given at the bottom of the page.
Error analysis: We denote , , and

as in Case A. The only difference in the analysis is in
, which is the probability that Trans-

mitter 1 incorrectly decoded given that and
were decoded correctly. Without loss of gener-

ality, let us assume that . An error occurs if
and only if there is another message that maps
to the same codeword as . The probability
that where and
where and
was generated according to is bounded by

, where goes to zero as goes to
zero. Hence

(40)

Invoking the error analysis of the other events, we obtain a se-
quence of equations as in (34), except that the second inequality
is replaced by

(41)

and after Fourier–Motzkin elimination, we obtain the region
.

V. COMMON MESSAGE

Let us now consider the case where a common message,
, is known to Encoders 1 and 2 and

needs to be transmitted to the decoder in addition to the private
messages . Hence, Encoder 1 is given by the function

(42)
and Encoder 2 is given by the functions

(43)
Remarkably, no additional auxiliary random variable is needed
to characterize the capacity region, since the partial cribbing is
used for generating a commonmessage. Let the rate regions
and be defined exactly as and except that the last
inequality in (7), i.e., , is replaced by

(44)

Theorem 5 (Capacity Region in the Case of a Common Mes-
sage): The capacity regions of the MAC with strictly causal
(Case A), and mixed causal and strictly causal (Case B) partial
cribbing with a commonmessage are and , respectively.
Note that if there is no cribbing, i.e., and are constant,

we obtain the capacity region of the MAC with a common mes-
sage as derived by Slepian and Wolf [20]. We sketch here only
the differences between the proof of Theorems 1 and 5.

Proof of Theorem 5: Converse: Similar to the sequence of
inequalities in (11), we have

(45)

(39)
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Adding conditioning on in the sequence of inequalities (12),
we obtain

(46)

where the last step is due to the new definition of as

(47)

Similarly, adding conditioning on in the sequence of in-
equalities (14), we obtain

(48)

In a similar way, we obtain the inequality for as in (15).
Achievability: The achievability proof is similar to that

in Theorem 1, except that we generate
codewords according to i.i.d. , rather than

, and wherever we have in the achievability
proof of Theorem 1 , we should now have

. Hence, we obtain the same sequence
of inequalities as in (34), except that the last inequality (which
corresponds to an error in all messages) is

(49)

VI. SPECIAL CASE OF PARTIAL CRIBBING: SEMIDETERMINISTIC
RELAY CHANNEL

As a special case of the partial cribbing encoders, let us con-
sider the case where Encoder 2 has no message to send, i.e.,

, and only Encoder 2 cribs from Encoder 1, i.e.,
is a constant. We show here that, indeed, the region obtained
via partial cribbing when and the region obtained via
semideterministic relay channel coincide.
Case A, Semideterministic Relay With a Delay: This case

becomes a special case of the semideterministic relay channel,
which was introduced and solved by El-Gamal and Aref [5],

where Encoder 2 plays the role of a relay. In this case, the region
becomes

(50)
Clearly,

. Hence, the region we obtained
is
for some . Now consider

(51)

where step (a) follows from the Markov chain
and step (b) from the fact that conditioning reduces entropy and
from the Markov chain . By choosing

, we obtain the upper bound of (51) and the expression
does not decrease. Hence, the capacity region is

(52)

for some . Equation (52) coincides with the result in
[5].
Case B, Semideterministic Relay Without Delay: In this case,
becomes the set of rates that satisfy

(53)

for some . The case of relays without
delay was investigated by El-Gamal et al. in [21], where it was
shown that the capacity region for the semideterministic relay
without delay, which is denoted by , is

(54)

Furthermore, it was shown byWillems and van der Meulen [22]
that the result can be simply obtained using the regular relay
with delay and Shannon strategies.
At first glance, the expression in (53) seems to be different

from the expression in (54), but with some simplemanipulations
one can show that the expressions are equivalent. In particular,
the first term in (54) can be written as

(55)
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Fig. 3. Gaussian MAC with quantized cribbing. The cribbing that Encoder 2 observes is the quantized signal from Encoder 1. There exist power constraints
and .

where step (a) follows from the fact that is a function of
and step (b) follows from the fact that is a function of
. The second term in (54) may be written as

(56)

where step (a) follows from the fact that is a function
of and step (b) follows from the Markov chain

. Now, to conclude that (53) and (54) are
equivalent, we need to show that it suffices to consider only dis-
tributions where is a function of in (53). It follows
from [23, Lemma 1] that there exists a random variable in-
dependent of that satisfies
such that is a deterministic function of .
Therefore

(57)

where . Hence, it suffices to consider that is
a function of and it emerges that (53) is equivalent to
(54).

VII. GAUSSIAN MAC WITH QUANTIZED CRIBBING

In this section, we consider the additive Gaussian noiseMAC,
i.e., , where is a memoryless Gaussian
noise with variance , i.e., . We assume
power constraints and on the inputs from Encoders 1
and 2, respectively. If the encoders do not cooperate, then the
capacity is given by

(58)

If there is perfect cribbing from Encoders 1 to 2, either with or
without delay, the capacity is the same as if Encoder 2 knows the
message of Encoder 1, since Encoder 1 can send the message in
a single epoch. Hence, the capacity is the union over
of the regions

(59)

Fig. 4. Two-bit quantizer’s boundaries are designed such that if the input signal
has a normal distribution with variance , then the output values from the
quantizer have equal probability. The input to the 2-bit quantizer is and the
output is .

Note that for a Gaussian additive MAC, the gap between the
sum-rate of perfect cribbing and no cribbing is at most 1 bit,
which might be larger if there are multiple frequencies (like
OFDM) or multiple antenna.
Now, let us consider the case where Encoder 2 observes a

quantized version of the signal from Encoder 1 without delay.
The setting is depicted in Fig. 3. We assume that the quantizer
is a scalar quantizer designed such that under a Gaussain input
with variance the discrete values have the same proba-
bility (see Fig. 4 for an example of 2-bit quantizer).
Next, we consider a specific choice of distribution for the

achievable scheme for the Gaussian MACwith a quantizer crib-
bing without delay, where the power constraints are
and the noise variance is . We evaluate the region
given by (7) and (9) for the case where , , are con-
stants, , and is a quantized version of
such that each value has equal probability. The input distribu-
tion is ,
where and is independent of and . Note that
under these assumptions and, therefore, satisfies
the power constraint. Fig. 5 depicts a simple achievable scheme
for different quantizers. The blue line in Fig. 5 represents the
capacity region where there is no cribbing, evaluated according
to (58). The red line represents the capacity region where there
is perfect cribbing, evaluated according to (59). The lines in be-
tween are achievable regions according to the simple scheme
we have described above. One can see that the main gain is al-
ready due to a 1-bit quantizer and that the difference between
the achievable scheme with a 4-bit quantizer and the capacity
region where there is perfect cribbing appears negligible.
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Fig. 5. Achievable regions of Gaussian MAC with a quantizer cribbing.

Fig. 6. Achievable regions of Gaussian MAC with quantizer cribbing versus
the capacity region of Gaussian MAC with conferencing encoders.

It is also interesting to compare the performance of 1-bit crib-
bing with the performance of 1-bit conferencing. MAC with
1-bit conferencing is a setting where Encoder 1 may transmit
through a noiseless link at a rate of 1-bit to Encoder 2. This set-
ting was introduced and solved by Willems [24] for the general
case using auxiliary random variables. Willems showed that it
is optimal to generate a common message through the confer-
encing link and then use a Sleipan–Wolf coding for MAC with
common message [20]. Recently Bross et al. [25], [26] showed
that for the GaussianMAC its enough to consider only Gaussian
joint distribution and derived an analytical expression for the ca-
pacity [25, Th. 1].
Fig. 6 depicts the capacity region of the additive MAC

with 1-bit conferencing from Encoders 1 to 2 versus the inner
bound of the additive Gaussian MAC with 1-bit quantizer
cribbing from Encoders 1 to 2. As expected, 1-bit cribbing
performs worse than 1-bit conferencing (this can be shown
operationally). However, as can be seen from the figure, the
difference is small compared to the difference with non coop-
erative encoders, namely, when there is no conferencing and
no cribbing.

VIII. CONTROLLED CRIBBING

Here, we consider the case where the cribbing is controlled by
an action which depends on previously cribbed signals. In this
study, only Encoder 2 cribs causally or strictly causally. More
precisely, there is a controller that is an entity which takes action

at time , which controls the cribbed signal from Encoders
1 to 2. The cribbed signal is given by , as

shown in Fig. 7. The function is a fixed func-
tion given as a part of problem description. The action at time
depends on past cribbed observations, i.e., , and is
a part of the coding scheme design. The action is a limited re-
source, namely, there is a restriction that
, where is a cost of taking action , and is the action
cost constraint.
Let us now formally define a controlled code.

Definition 2: A code with controlled partial
cribbing, as shown in Fig. 7, consists at time of an encoding
function at Encoder 1

(60)

and an encoding function at Encoder 2 that changes according
to the following cases:

(61)

and a controller that takes actions according to the function

(62)

and a decoding function

(63)

The code needs to satisfy the constraint
. The probability of error, achievable rate pairs, and capacity

regions are defined in the usual way for MAC as presented in
Definition 1.
Let us now define the regions , , which are contained

in , i.e., the set of nonnegative 2-D real numbers:

(64)

where is the set of all distributions of the form
such that

. Note that satisfies
, where

is given as a part of the problem description.
The region is defined with the same set of inequalities
as in (64), but is the set of all distributions of the form

such that
and .

Theorem 6 (Capacity Region): The capacity regions of the
MAC with actions and with strictly causal case (Case A), and
mixed causal and strictly causal case (Case B), as described in
Definition 2, are , and , respectively.
The proof is based on a minor modification of the proof of

the capacity region of the MAC with partial cribbing presented
in Theorem 1.

Proof: Achievability: Consider the achievability proof of
Theorem 1 and replace with the pair . Note that in
the proof of Theorem 1, when there is cribbing only from Trans-
mitter 1 to Transmitter 2, in block is a function of .
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Fig. 7. Partial cribbing with actions. The action at time is and is determined by previous cribbed observations, i.e., . The cribbed signal from
Encoders 1 to 2 is given by the deterministic function . There exists a constraint on the actions of the form .

Fig. 8. Example of deterministic cribbing with actions. The relay (Encoder 2) takes an action at time that depends on previous cribbing, i.e., . The
cribbing signal equals to if and is constant otherwise. The cribbing is a limited resource. Hence, there exists a constraint on the portion of time
that Encoder 2 can crib the signal from Encoder 1, namely, . The output channel is randomly chosen with equal probability to be either

or .

Furthermore, in the current setting, the controller is an entity that
decides on the actions as a function of previous cribbed signals.
From previous cribbed signals, it is able to decode at the
end of block , and therefore, one can treat as part of
in the achievability part.2

Converse: Consider the converse proof of Theorem 1. Fol-
lowing identical steps as in (11)–(15), we obtain

(65)

Using the fact that is a function of and by denoting

and, finally, using the auxiliary random variable

2Note that in (64) the auxiliary r.v. and the action appears always
jointly and it is tempting to merge into auxiliary r.v. . However, in the
constraint and in the probability structure

, the action variable appears separately from the
auxiliary r.v. . Hence, this merging step is not possible.

as in the converse proof of Theorem 1, we obtain the converse
proof.

Example 1 (Deterministic Relay With Actions): Consider the
case where only Encoder 1 has a message to transmit and En-
coder 2 has no message of its own to transmit, but helps to in-
crease the rate of Encoder 1. Encoder 2, which plays the role
of a relay, takes an action that is a function of the observed
signal up to time , i.e., . If , then ,
and otherwise, is a constant. The cribbing signal is ob-
served at Encoder 2 with a delay. There exists a constraint that

. In addition, Encoder 2 transmits a
signal through the channel at time , where is a func-
tion of . The output channel is randomly chosen with
equal probability to be either or . This example is illus-
trated in Fig. 8 and is a special case of the setting presented in
Fig. 7.
The next lemma establishes the capacity region of a deter-

ministic relay with actions, which is a special case of MACwith
partial cribbing and actions where .

Lemma 7: The capacity region of partial deterministic crib-
bing with actions, where only Encoder 1 sends a message, i.e.,

, and there exists a delay in the cribbing (Case A), is
given by (66), shown at the bottom of the page. If there is no
delay in the cribbing (Case B), i.e., , then we have (67),
given at the bottom of the next page.

(66)
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Proof: Since , it follows from (64) by replacing
with a constant and denoting as that

(68)

For the case where there is a delay in the cribbing
(case A), the set of joint distributions is of the form

and is a function of
and . Manipulating the first term in the minimum in (68), we
obtain

(69)

where step (a) follows from the Markov chain
and step (b) from the fact that conditioning reduces

entropy and from the Markov chain .
By choosing , the first term of (68) becomes the upper
bound in (69); hence, (66) is the capacity region.
When there is no delay in the cribbing, the capacity region

is simply (68) where the set of joint distribution is of the
form and is a determin-
istic function of and .

For the case of a delay in the cribbing, the action can be
seen as part of the output signal from Encoder 2 to the channel,
and indeed, by replacing in (52) with , we obtain
(66). Note that (52) holds for the semideterministic relay and

fits the semideterministic relay setting, when
is the output of the relay and is the input to

the relay. However, in the case of no delay in the cribbing i.e.,
, the replacement of is not possible since the action

must have a delay i.e., .
To obtain a numerical solution, when there is a delay in the

cribbing, namely, evaluating (66) for the example in Fig. 8, we
can assume, without loss of optimality, that

(70)

The reason one can assume is as follows: if
this is not the case, and one has a code where the portion of

is smaller than , one can add actions for
some portion of the time without decreasing the performance
of the code. Furthermore, since the channel is symmetric with
respect to 0 and 1 (by exchanging 0 and 1 for the inputs to the
channel the performance of the code remains the same), only

the probability is important (a rigorous proof of
this claim is given in the Appendix). Furthermore, based on the
same reasons, one can also assume that and are

without loss of optimality. Nowwe shall compute
the terms in (66) as follows:

(71)

(72)

(73)

where step (a) in (73) is due to the fact that
and, therefore,

where is the binary entropy,
i.e., for . Hence, the
capacity of the setting in Fig. 8 as a function on the constrain
of the action is given by (74), shown at the bottom of the
page. The capacity is depicted in Fig. 9 and can be found
simply using a grid search on , or using convex
optimization tools. In the case that , is independent
of the message . Therefore, we obtain that at any time , the
channel from Encoder 1 to the output behaves as a -channel
if and as an channel if and the capacity
of these two channels are , and therefore,

. For the case that , we obtain from (74) that
. The that maximizes the

expression of is the one that solves the equation
. From Fig. 9, we note that the capacity curve is strictly

concave, and this implies that a naive time sharing between no
cribbing and cribbing is strictly suboptimal.

IX. CONCLUSION AND FURTHER RESEARCH DIRECTIONS

We have considered the problem of MACs with partial
cribbing encoders, where in a two-encoder MAC, the observed
cribbed signal at an encoder is a deterministic function of the
output of the other encoder. We have characterized the capacity
region for the two cases where the partial cribbing is causal or
strictly causal. Rate splitting is the main additional technique
used in the achievability proof over the techniques used for
perfect cribbing by Willems and van der Meulen [17]. The
extension of perfect cribbing to partial cribbing resembles the

(67)

(74)
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Fig. 9. Capacity of setting in Fig. 8 as a function of the action constraint . For the case where , the capacity can be solved analytically since it is the capacity
of the channel. The capacity where is the simple expression , which can be solved numerically by solving . Note
that the capacity curve is strictly concave; hence, time sharing between cribbing and not-cribbing is suboptimal.

extension of the decode-and-forward technique for the relay to
the partial-decode-and-forward technique [16]. The method we
used for partial cribbing may also be used for noisy cribbing,
although in general the capacity region of noisy cribbing is an
open question. Another question that has not been solved yet
is the noncausal partial cribbing. For the perfect cribbing case,
Willems and van der Meulen [17] solved the noncausal case
simply by showing that causal and noncausal perfect cribbing
results in the same capacity region.
Solving the partial cribbing setting motivated us to solve an

action-dependent cribbing problem. In this paper, we consid-
ered the case where the action is only a function of the previ-
ously observed cribbing. However, the case in Fig. 7, where the
action is a function of the previously observed cribbing and the
message of the cribbing encoder, i.e., , remains
open. Issues of this nature arise naturally in the sphere of cogni-
tive communication systems where sensing other users’ signals
is a resource with a cost.

APPENDIX
CLAIM OF SYMMETRY IN THE SOLUTION OF EXAMPLE 1

In the process of finding the capacity of the deterministic
relay channel with actions, we claim that only the probabilities

and should be
considered due to symmetry. In other words, we claim that it
suffices to consider probabilities of where

(75)

and similar equalities hold for .
One can prove such a claim using convexity of the objective

or using the converse proof, as we will do here. In the converse
proof (Theorem 6), we show that , , and is actually

, , and , respectively, where is chosen uniformly
over .
Consider the operational code as given in Definition 2.

(76)

(77)

The code needs to satisfy the constraint
, and the probability of error is given by . Now, we design

a code that is symmetric in the sense that any input 0 is replaced
by 1 and any input 1 is replaced by 0. The symmetric code is
given by

(78)

(79)

where denotes the complementary value over the binary set
. Note that the symmetric code is a valid code and has

the same error performance as the original code because of the
symmetry of the channel. Therefore, the concatenation of these
two codes is also a valid code, and also note that for the con-
catenated code, we have

(80)

ACKNOWLEDGMENT

The authors are grateful to Tsachy Weissman for very helpful
discussions and for supporting the work through NSF grants
CCF-1049413, Award-1049413 and 4101–38047, and to Yossef
Steinberg for pointing out to us the motivation of partial crib-
bing for the Gaussian case and for additional helpful discus-
sions. In addition, the authors would like to thank the associate
editor and the anonymous referees for their suggestions, which
helped them to significantly improve the clarity of the paper.

REFERENCES
[1] F.M. J.Willems, “Information-theoretical results for the discrete mem-

oryless multiple access channel,” Ph.D. dissertation, Katholieke Univ.
Leuven, Haverlee, Belgium, 1982.

[2] S. I. Bross, Y. Steinberg, and S. Tinguely, “The causal cognitive inter-
ference channel,” presented at the Int. Zurich Semin. Commun., Mar.
2010.

[3] S. I. Bross and A. Lapidoth, “The state-dependent multiple-access
channel with states available at a cribbing encoder,” in Proc. IEEE
26th Convent. Electr. Electron. Eng. Israel, 2010, pp. 665–669.

[4] F. M. J. Willems, “The multiple-access channel with cribbing en-
coders revisited,” presented at the Workshop Math. Relay. Cooperat.
Commun. Netw., Tutorial Lecture at Math. Sci. Res. Inst., Berkeley,
CA, Apr. 10–12, 2006.



2266 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 4, APRIL 2013

[5] A. A. E. Gamal and M. R. Aref, “The capacity of the semideterministic
relay channel,” IEEE Trans. Inf. Theory, vol. IT-28, no. 3, p. 536, May
1982.

[6] T. M. Cover and A. E. Gamal, “Capacity theorems for the relay
channel,” IEEE Trans. Inf. Theory, vol. IT-25, no. 5, pp. 572–584,
Sep. 1979.

[7] S. I. Gelfand and M. S. Pinsker, “Capacity of a broadcast channel with
one deterministic component,” IEEE Trans. Inf. Theory, vol. 16, pp.
24–34, 1980.

[8] T. Weissman, “Capacity of channels with action-dependent states,”
IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5396–5411, Nov. 2010.

[9] H. H. Permuter and T. Weissman, “Source coding with a side informa-
tion “vending machine”,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp.
4530–4544, Jul. 2011.

[10] H. Asnani, H. H. Permuter, and T.Weissman, “Probing capacity,” IEEE
Trans. Inf. Theory, vol. 57, no. 11, pp. 7317–7332, Nov. 2011.

[11] H. Asnani, H. H. Permuter, and T. Weissman, “To feed or not to feed
back,” 2010 [Online]. Available: arxiv.org/abs/1011.1607

[12] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. New York: Academic, 1981.

[13] F. Willems, E. C. Van Der Meulen, and J. P. M. Schalkwijk, “An
achievable rate region for the multiple access channel with generalized
feedback,” in Proc. Commun., Control, Comput. (Allerton), Oct. 2010,
pp. 284–292.

[14] G. Kramer, “Topics in multi-user information theory,” Found. Trends
Commun. Inf. Theory, vol. 4, no. 4/5, pp. 265–444, 2007.

[15] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
ed. New-York: Wiley, 2006.

[16] A. E. Gamal and Y.-H. Kim, Network Information Theory, 2nd ed.
New York: Cambridge Univ. Press, 2011.

[17] F. M. J. Willems and E. C. van der Meulen, “The discrete memory-
less multiple-access channel with cribbing encoders,” IEEE Trans. Inf.
Theory, vol. IT-31, no. 3, pp. 313–327, May 1985.

[18] N. Lauritzen, Lectures on convex sets 2010, http://home.imf.au.dk/
niels/lecconset.pdf.

[19] C. E. Shannon, “Channels with side information at the transmitter,”
IBM J. Res. Devel., vol. 2, pp. 289–293, 1958.

[20] D. Slepian and J. K. Wolf, “A coding theorem for multiple-access
channel with correlated sources,” Bell Syst. Tech. J., vol. 51, pp.
1037–1076, 1973.

[21] A. E. Gamal, N. Hassanpour, and J. P. Mammen, “Relay networks with
delays,” IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3413–3431, Oct.
2007.

[22] F. Willems and E. C. van der Meulen, “Strategy results for the relay
channel without delay,” in Proc. 29th Symp. Inf. Theory, Benelux, May
29–30, 2008, pp. 113–120.

[23] J. Wang, J. Chen, L. Zhao, P. Cuff, and H. H. Permuter, “A random
variable substitution lemma with applications to multiple description
coding,” 2009 [Online]. Available: arxiv.org/abs/0909.3135

[24] F. M. J. Willems, “The discrete memoryless multiple channel with par-
tially cooperating encoders,” IEEE Trans. Inf. Theory, vol. IT-29, no.
3, pp. 441–445, May 1983.

[25] S. I. Bross, A. Lapidoth, and M. A. Wigger, “The Gaussian MAC with
conferencing encoders,” in Proc. IEEE Int. Symp. Inf. Theory, Toronto,
ON, Canada, Jul. 2008, pp. 2702–2706.

[26] S. I. Bross, A. Lapidoth, and M. A. Wigger, The Gaussian MAC with
conferencing encoders 2008, Arxiv: abs/0805.0516.

HimanshuAsnani (S’11) is currently a Ph.D. candidate in Information Systems
Lab, Electrical Engineering Department at Stanford University. He is advised by
Prof. Tsachy Weissman and co-advised by Prof. Balaji Prabhakar. His research
interests include information theory, probability theory and statistical learning.
He received his B.Tech. from IIT Bombay and M.S. from Stanford University
in 2009 and 2011, respectively. He is a Stanford Graduate Fellow (SGF) and
recipient of Best Paper Award at MobiHoc 2009. He was also finalist for Student
Paper award in ISIT 2011, Saint Petersburg, Russia.

Haim H. Permuter (M’08) received his B.Sc. (summa cum laude) and M.Sc.
(summa cum laude) degree in Electrical and Computer Engineering from the
Ben-Gurion University, Israel, in 1997 and 2003, respectively, and Ph.D. de-
grees in Electrical Engineering from Stanford University, California in 2008.
Between 1997 and 2004, he was an officer at a research and development unit

of the Israeli Defense Forces. He is currently a senior lecturer at Ben-Gurion
university.
Dr. Permuter is a recipient of the Fulbright Fellowship, the Stanford Grad-

uate Fellowship (SGF), Allon Fellowship, and the 2009 U.S.-Israel Binational
Science Foundation Bergmann Memorial Award.


