
8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016

The Feedback Capacity of the Binary Erasure
Channel With a No-Consecutive-Ones Input

Constraint
Oron Sabag, Student Member, IEEE, Haim H. Permuter, Senior Member, IEEE,

and Navin Kashyap, Senior Member, IEEE

Abstract— The input-constrained erasure channel with
feedback is considered, where the binary input sequence
contains no consecutive ones, i.e., it satisfies the (1, ∞)-RLL
constraint. We derive the capacity for this setting, which can
be expressed as Cε = max0≤ p≤0.5

(1−ε)Hb( p)
1+(1−ε) p , where ε is the

erasure probability and Hb(·) is the binary entropy function.
Moreover, we prove that a priori knowledge of the erasure
at the encoder does not increase the feedback capacity. The
feedback capacity was calculated using an equivalent dynamic
programming (DP) formulation with an optimal average-reward
that is equal to the capacity. Furthermore, we obtained an
optimal encoding procedure from the solution of the DP, leading
to a capacity-achieving, zero-error coding scheme for our
setting. DP is, thus, shown to be a tool not only for solving
optimization problems, such as capacity calculation, but also
for constructing optimal coding schemes. The derived capacity
expression also serves as the only non-trivial upper bound
known on the capacity of the input-constrained erasure channel
without feedback, a problem that is still open.

Index Terms— Feedback capacity, constrained coding, dynamic
programming, binary erasure channel, runlength-limited (RLL)
constraints.

I. INTRODUCTION

MEMORYLESS channels have been the focus of research
activity in information theory since they were intro-

duced in 1948 by Shannon [2]. The capacity of a mem-
oryless channel has an elegant, single-letter expression,
C = supp(x) I (X; Y ), and this can be calculated for a broad
range of channels [3], [4]. When considering a memoryless
channel with input that is constrained, the capacity is given
by the maximum mutual information rate between the input
and output sequences. The capacity calculation of such chan-
nels involves a calculation of the entropy rate of a Hidden
Markov Model (HMM), since the transmission of a con-
strained sequence through a memoryless channel results in an

Manuscript received March 15, 2015; revised October 13, 2015; accepted
October 13, 2015. Date of publication October 27, 2015; date of cur-
rent version December 18, 2015. This work was supported by the Joint
UGC–Israel Science Foundation Research Grant. O. Sabag and H. H. Permuter
was supported by the European Research Council Starting Grant. This paper
was presented at the 2015 Information Theory Workshop [1].

O. Sabag and H. H. Permuter are with the Department of Elec-
trical and Computer Engineering, Ben-Gurion University of the Negev,
Beersheba 8410501, Israel (e-mail: oronsa@post.bgu.ac.il; haimp@bgu.ac.il).

N. Kashyap is with the Department of Electrical Communication Engi-
neering, Indian Institute of Science, Bangalore 560012, India (e-mail:
nkashyap@ece.iisc.ernet.in).

Communicated by J. Chen, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2015.2495239

Fig. 1. System model for an input-constrained memoryless channel with
perfect feedback.

output sequence that is described by an HMM. This makes the
capacity of input-constrained memoryless channels difficult to
compute [5]–[8].

Constrained coding arises naturally in many communication
and recording systems [9], [10]; a common constraint that
is useful in magnetic and optical recording is the (d, k)-
runlength limited (RLL) constraint. A binary sequence satisfies
this constraint if the number of zeros between any pair of
successive ones is at least d and at most k. This constraint has
also recently appeared in code designs for energy harvesting
systems, where communication is used not only for informa-
tion transfer but also for charging the receiver’s battery [11].
In this paper, we focus on the special case of the (1,∞)-RLL
constraint, in which no consecutive ones are allowed.

It is well known that feedback does not increase the capacity
of a memoryless channel, as shown by Shannon [12]. However,
Shannon’s argument does not apply to memoryless channels
with constrained inputs, and special tools are required to deter-
mine the capacity of such channels with or without feedback.

We consider an (1,∞)-RLL input-constrained binary era-
sure channel (BEC) with feedback, represented pictorially in
Fig. 1, with the channel depicted in Fig. 2. Based on the mes-
sage M and the previous channel outputs, yi−1, the encoder
chooses the input Xi , such that the input constraint is satisfied.
The mechanism of the BEC is simple: each transmitted bit
is transformed into an erasure symbol with probability ε or
received successfully with its complementary probability. The
decoder estimates the message M̂ with low probability of error
as a function of the output sequence Y n . In this paper, we
derive the explicit expression for the feedback capacity of the
(1,∞)-RLL input-constrained BEC.

The feedback capacity that is derived here also
serves as an upper bound on the capacity of the
(1,∞)-RLL input-constrained BEC without feedback,
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Fig. 2. Erasure channel with erasure probability ε.

a problem that is still open. A lower bound on the capacity of
the non-feedback setting was derived in [13] by considering
an input that is restricted to first-order Markov process
(first-order capacity). The lower bound in [13] and our
feedback capacity are presented in Fig. 3, and it can be seen
that maximal gap is attained at ε = 0.71, where the first-order
capacity is approximately 0.2354 while the feedback capacity
is approximately 0.2547. Based on the plots in Fig. 3, it
is tempting to conjecture that feedback does not increase
capacity in this input-constrained setting, however, this is
not true at least for certain values of ε, as will be discussed
in Section VIII.

The relation between feedback-capacity calculation and
dynamic programming (DP) first appeared in Tatikonda’s
thesis [14]. Chen and Berger were the first to present in [15]
a DP formulation of finite state channel with feedback that
is computable. They established a recursive formula for the
capacity of finite state channels with feedback where the
state is a function of the output, and showed that the solu-
tion of the recursion is stationary, under mild conditions
of the channels. The DP formulation of feedback capac-
ity was also extended to several other channel models,
such as channels with state that is determined by the
channel input [16], Markov channels [17] and power-
constrained Gaussian noise channels with memory [18].
To apply algorithms from DP, such as value and policy
iteration, quantization is required, and therefore, only lower
bounds were derived in the above papers.

In [19] and [20], the feedback capacities of the trapdoor
and Ising channels, respectively, were found by solving their

Fig. 3. Lower and upper bounds on the capacity of the input-constrained
BEC without feedback.

corresponding Bellman equations. The idea is that the feed-
back capacity is equal to the optimal reward of the DP, and
therefore, it suffices to find a solution which satisfies the
Bellman equation [21]. Besides reward optimality verification,
the Bellman equation also establishes a mechanism for optimal
policy verification, which is a significant additional benefit.

The novelty in our work is the derivation of the opti-
mal input distribution from the Bellman equation solution.
The optimal solution of the DP is then utilized to under-
stand how the dynamic program evolves under an optimal
policy. We show that converting the DP solution into channel
coding terms results in a straightforward interpretation of
optimal encoding procedure. This encoding procedure led us
to an innovative and zero-error coding scheme for our input-
constrained setting. This establishes that DP as a tool that is
good not only for solving optimization problems, but also for
deriving optimal coding schemes.

We also consider an input-constrained BEC where the
encoder knows ahead of time if there is an erasure in
the channel. Clearly, this non-causal setting is superior in
terms of capacity compared to the feedback setting. We have
managed to show that the capacity of this setting coincides
with our feedback capacity expression, and therefore, a priori
knowledge of the erasure in the channel does not increase
the feedback capacity. Although this finding and the coding
scheme for the feedback setting are sufficient for the feedback-
capacity derivation, we argue that the capacity-achieving
coding scheme is hard to construct without the DP solution.

The remainder of the paper is organized as follows.
Section II includes notation and description of the problem.
Section III states the main results of this paper. In Section IV,
we provide a brief review of infinite-horizon DP and present
the DP formulation of the feedback capacity. In Section V, the
DP for the erasure channel is calculated, evaluated numerically
and, finally, we prove that the Bellman equation is satisfied.
In Section VI, we present the derivation of the optimal scheme
from the solution of the DP. In Section VII, we derive the
capacity of non-causal input-constrained BEC. Finally, the
paper is concluded in Section VIII.

II. NOTATION AND PROBLEM DEFINITION

Throughout this paper, random variables will be denoted
by upper-case letters, such as X , while realizations or
specific values will be denoted by lower-case letters,
e.g., x . Calligraphic letters will denote the alphabets of
the random variables, e.g., X . Let Xn denote the n-tuple
(X1, . . . , Xn). Let xn denote vectors of n elements,
i.e. xn = (x1, x2, . . . , xn), and x j

i denote the ( j − i + 1)-tuple
(xi , xi+1, . . . , x j ) when j ≥ i , and an empty set otherwise.
For any scalar α ∈ [0, 1], ᾱ stands for ᾱ = 1 − α. Let
Hb(α) denote the binary entropy for scalar α ∈ [0, 1],
i.e., Hb(α) = −α log2 α − ᾱ log2 ᾱ. Let Hter(α1, α2, α3)
denote the ternary entropy for scalars α1, α2, α3 ∈ [0, 1] such
that

∑
i αi = 1, i.e., Hter(α1, α2, α3) = ∑

i −αi log2 αi .
The communication setting of a memoryless channel with

feedback is described in Fig. 1. A message M is drawn
uniformly from the set {1, . . . , 2nR} and made available to the
encoder. The encoder at time i knows the message m and
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the feedback samples yi−1, and produces a binary output,
xi ∈ {0, 1}, as a function of m and yi−1. The sequence
of encoder outputs, x1x2x3 . . . , must satisfy the (1,∞)-RLL
input-constraint of the channel, namely, no two consecutive
ones are allowed. The channel is memoryless in the sense
that the output at time i , given the existing information in the
system, depends only on the current input, i.e.,

p(yi |xi , yi−1) = p(yi |xi), ∀i. (1)

We focus on the erasure channel, shown in Fig. 2. The
input alphabet is X = {0, 1}, while the output can take values
in Y = {0, 1, ?}. The probability for erasure in the channel
is ε and can take any value in [0, 1].

Definition 1: A (n, 2nR , (1,∞)) code for a constrained-
input channel with feedback is defined by a set of encoding
functions:

fi : {1, . . . , 2nR} × Y i−1 → X , i = 1, . . . , n,

satisfying fi (m, yi−1) = 0 if fi−1(m, yi−2) = 1 (the mapping
f1(·) is not constrained) for all (m, yi−1) , and a decoding
function:

� : Yn → {1, . . . , 2nR}.
In addition, we define the non-causal (1,∞)-RLL BEC. For

this setting, all definitions remain the same as in the previous
setting, but the encoder knows ahead of time whether there is
an erasure in the channel. Formally, define θi as the indicator
that corresponds to erasure in the channel at time i , namely,
θi = 0 if xi = yi and θi = 1 otherwise. The set of encoding
functions for this setup is then defined as:

fi : {1, . . . , 2nR} × Y i−1 × {0, 1} → Xi , i = 1, . . . , n,

satisfying fi (m, yi−1, θi ) = 0 if fi−1(m, yi−2, θi−1) = 1 for
all (m, yi−1, θi−1, θi ).

The average probability of error for a code is defined
as P(n)

e = Pr(M �= �(Y n)). A rate R is said to be
(1,∞)-achievable if there exists a sequence of

(n, 2nR , (1,∞)) codes, such that limn→∞ P(n)
e = 0.

The capacity, C fb
ε , defined to be the supremum over all

(1,∞)-achievable rates, is a function of the erasure
probability ε. Let Cnc

ε denote the capacity for the non-causal
(1,∞)-RLL BEC. From operational considerations of the
encoding functions for both settings, it is clear that Cnc

ε ≥ C fb
ε .

III. MAIN RESULTS

The following is our main result concerning the capacity of
the (1,∞)-RLL constrained BEC with feedback.

Theorem 1: The capacity of the (1,∞)-RLL input-
constrained erasure channel with feedback is

Cfb
ε = max

0≤p≤ 1
2

Hb(p)

p + 1
1−ε

. (2)

Furthermore, the capacity is achieved by an explicit
zero-error coding scheme that is presented in Section VI-B,
in Algorithm 1 and Algorithm 2.

In Fig. 4, the feedback capacity is evaluated for different
values of erasure probability ε. As can be seen, the capacity is

Fig. 4. The capacity C fb
ε , as a function of ε, of the (1,∞)-RLL

input-constrained BEC with feedback.

a decreasing function for an increasing value of ε. For ε = 0,
the capacity is C fb

0 ≈ 0.6942, which can be represented as
log2 φ, where φ is the golden ratio and is known as the entropy
rate of a binary source with no consecutive ones. For ε = 1,
the capacity value is C fb

1 = 0, as expected.
The capacity of the non-constrained BEC can be expressed

as max0≤p≤ 1
2

Hb(p)
1

1−ε

= 1 − ε. Note that the only difference

between this term and our capacity expression in (2) is the
denominator. This fact hints that the capacity expressions of
other input constraints may share a common structure.

The next theorem states that the non-causal (1,∞)-RLL
input-constrained BEC has the same capacity as the feedback
setting.

Theorem 2: Non-causal knowledge of erasures does not
increase the feedback capacity, i.e.,

Cnc
ε = C fb

ε .

Next, we show the properties of the capacity expression (2).

Lemma 1: Define the function fε(p) = Hb(p)

p+ 1
1−ε

, where

p ∈ [0, 1]. The following properties hold for fε(p):

• The function fε(p) is concave on [0, 1], for any ε ≥ 0.
• The function fε(p) has only one maximum in [0, 1],

which is the only real solution of the equation p
1

1−ε =
(1 − p)1+ 1

1−ε . This maximum lies in [0, 1
2 ].

• Denote by pε the argument that achieves the maximum
of fε(p). The capacity can also be expressed by

Cfb
ε = − log2(pε)

1 + 1
1−ε

.

The proof of Lemma 1 is presented in Appendix B.

IV. FEEDBACK CAPACITY AND DYNAMIC PROGRAMMING

The directed information was introduced by Massey in [22]
as I (Xn → Y n) = ∑n

i=1 I (Xi ; Yi |Y i−1). Massey showed that
the maximum normalized directed information upper bounds
the capacity of channels with feedback, and subsequently,
it was proved that this expression indeed characterizes the
feedback capacity for a broad class of channels [17], [19],
[23]–[26]. The next theorem provides a multi-letter expression
using the directed information for the case of memoryless
channels with an (1,∞)-RLL input constraint.
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Theorem 3: The capacity of an (1,∞)-RLL input-
constrained memoryless channel with feedback can be
written as:

Cfb = sup lim inf
N→∞

1

N

N∑

t=1

I (Xt ; Yt |Y t−1), (3)

where the supremum is taken with respect to
{p(xt |xt−1, yt−1) : p(xt = 1|xt−1 = 1, yt−1) = 0}t≥1.

The proof of Theorem 3 appears in Appendix A. Having
written the capacity of the input constrained channel with
feedback as (3), we proceed to show that calculating the
capacity can be formulated as an average-reward DP.

A. Average-Reward Dynamic Programs

Each DP is defined by the tuple (Z,U,W, F, PZ , Pw, g).
We consider a discrete-time dynamic system evolving accord-
ing to:

zt = F(zt−1, ut , wt ), t = 1, 2, . . .

Each state, zt , takes values in a Borel space Z , each action, ut ,
takes values in a compact subset U of a Borel space, and each
disturbance, wt , takes values in a measurable space W . The
initial state, z0, is drawn from the distribution PZ , and the
disturbance, wt , is drawn from Pw(·|zt−1, ut ). The history,
ht = (z0, w

t−1
1 ), summarizes all the information available to

the controller at time t , prior to the selection of the t th action.
The controller at time t chooses the action, ut , by a function
μt that maps histories to actions, i.e., ut = μt (ht ). The
collection of these functions is called a policy and is denoted as
π = {μ1, μ2, . . . }. Note that given a policy, π , and the
history, ht , one can compute the actions vector, ut , and the
past states of the system, z1, z2, . . . , zt−1.1

Our objective is to maximize the average reward given a
bounded reward function g : Z×U → R. The average reward
for a given policy π is given by:

ρπ = lim inf
N→∞

1

N
Eπ

[
N∑

t=1

g(Zt−1, μt (ht ))

]

,

where the subscript π indicates that actions ut are generated
by the policy π . The optimal average reward is defined as

ρ∗ = sup
π

ρπ .

B. Formulation of the Feedback Capacity as DP

The state of the dynamic programming, zt−1, is defined
as the conditional probability vector whose components are
the elements βt−1(xt−1) = p(xt−1|yt−1), for xt−1 ∈ X . The
action space, U , is the set of stochastic matrices, p(xt |xt−1),
satisfying the input constraint. For a given policy and an initial
state, the encoder at time t (prior to the selection of the channel
input) can calculate the state, zt−1, since the tuple yt−1 is
available from the feedback. The disturbance is taken to be
the channel output, wt = yt , and the reward gained at time t
is chosen as I (Yt ; Xt |yt−1). The formulation is summarized
in Table I.

1Further details on the DP setting can be found at [27, Sec. 2.1], as our
DP formulation follows their definitions.

TABLE I

FORMULATION OF CAPACITY AS DP

1) Existence of System: We need to show that for a given
policy, π = {μ1, μ2, . . . }, the state zt can be calculated from
the tuple (zt−1, ut , yt ). Consider the next chain of equalities
for some xt ∈ X ,

βt (xt )

= p(xt |yt)

=
∑

xt−1

p(xt , xt−1|yt )

=
∑

xt−1
p(xt , xt−1, yt |yt−1)

p(yt |yt−1)

=
∑

xt−1
p(xt−1|yt−1)p(xt |xt−1, yt−1)p(yt |yt−1, xt , xt−1)

∑
x ′

t ,xt−1
p(yt , x ′

t , xt−1|yt−1)

(a)=
∑

xt−1
p(xt−1|yt−1)p(xt |xt−1, yt−1)p(yt |xt)

∑
x ′

t ,xt−1
p(xt−1|yt−1)p(x ′

t |xt−1, yt−1)p(yt |x ′
t )

=
∑

xt−1
βt−1(xt−1)ut (xt , xt−1)p(yt |xt )

∑
x ′

t ,xt−1
βt−1(xt−1)ut (x ′

t , xt−1)p(yt |x ′
t)

, (4)

where (a) follows from the memoryless property (1).
Therefore, there exists a function F such that
βt (x ′

t ) = F(zt−1, ut (x ′
t , xt−1),wt ), for all x ′

t ∈ X .
2) Disturbance: Let us show that the disturbance distrib-

ution depends on the current state and action only, with no
dependence on past information, i.e., p(wt |wt−1, zt−1, ut ) =
p(wt |zt−1, ut ). Consider,

p(wt |wt−1, zt−1, ut )

= p(yt |yt−1, β t−1, ut )

=
∑

xt ,xt−1

p(yt , xt , xt−1|yt−1, β t−1, ut )

(a)=
∑

xt ,xt−1

p(xt−1|yt−1, β t−1, ut ))

×p(xt |xt−1, yt−1, β t−1, ut )p(yt |xt )

(b)=
∑

xt ,xt−1

p(xt−1|βt−1, ut p(xt |xt−1, βt−1, ut )p(yt |xt )

=
∑

xt ,xt−1

p(yt , xt , xt−1|βt−1, ut )

= p(yt |βt−1, ut )

= p(wt |zt−1, ut ),
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where (a) follows from the fact that the channel is mem-
oryless, and (b) follows from the fact that the value of
p(xt−1|yt−1, β t−1, ut ) is determined by βt−1(xt−1), and the
fact that xt depends only on the triplet (xt−1, βt−1, ut ).

3) Reward: We need to show that the reward,
I (Yt ; Xt |yt−1), that is achieved at time t is a function
of the current state, zt−1, and of the chosen action ut . Note
that the term of the reward depends on the conditional
distribution p(yt , xt |yt−1) only.

Let us show that the reward achieved at time t depends on
the current state, action and the channel characterization,

p(yt , xt |yt−1) =
∑

xt−1

p(yt , xt , xt−1|yt−1)

(a)=
∑

xt−1

p(xt−1|yt−1)p(xt |xt−1, yt−1)p(yt |xt )

=
∑

xt−1

βt−1(xt−1)ut (xt , xt−1)p(yt |xt ),

where (a) follows from the chain rule and the memoryless
property (1). Recall that the term p(yt |xt) is given by the
channel characterization, and thus, the reward depends on the
DP state, zt−1 (which contains all elements of the vector βt−1),
and the chosen action, ut . Therefore, the reward at time t can
be written as:

g(zt−1, ut ) = I (Yt ; Xt |zt−1, ut ).

It then follows that the optimal average reward of the defined
DP is:

ρ∗ = sup
π

lim inf
N→∞

1

N

N∑

t=1

Iπ (Yt ; Xt |Y t−1),

where the subscript π indicates that the mutual information
is calculated with respect to the policy π . As ρ∗ is equal
to the feedback capacity of the input-constrained memoryless
channel in Theorem 3, one can conclude that the optimal
average reward for the above DP formulation is equal to the
capacity.

V. SOLUTION FOR THE ERASURE CHANNEL

This section is organized as follows: Section V-A formulates
feedback capacity of the BEC as DP using the notation from
Section IV-B. In Section V-B, we evaluate a numerical solution
using the value iteration algorithm, and finally, in Section V-C,
we present the Bellman equation and its solution for the BEC.
The solution of the Bellman equation concludes the derivation
of the feedback capacity expression in Theorem. 1.

TABLE II

THE CONDITIONAL DISTRIBUTION p(xt , xt−1, yt |zt−1, ut )

A. Formulation of the Erasure Channel as DP

The state of the DP at time t − 1, zt−1, is the probability
vector [p(xt−1 = 0|yt−1), p(xt−1 = 1|yt−1)]. With some
abuse of notation, we refer from now on to zt−1 � p(xt−1 =
0|yt−1) as the first component of the vector, which also
determines the second component, since they sum to 1. Each
action, ut , is a constrained 2×2 stochastic matrix, p(xt |xt−1),
of the form:

ut =
[

p(xt = 0|xt−1 = 0) p(xt = 1|xt−1 = 0)
1 0

]

.

The disturbance wt is the channel output, yt , and can take
values in {0, 1, ?}. With the above definitions, and the system
equation that is given in (4), the state of the DP is calculated
at the bottom of this page in (5); Substituting specific values
of yt into (5) gives the explicit system equation:

zt =

⎧
⎪⎨

⎪⎩

1 if wt = 0,

1 − zt−1 + zt−1ut (1, 1) if wt =?,

0 if wt = 1.

(6)

At this point, to simplify notations we note that
1 − zt−1 + zt−1ut (1, 1) can be written as 1 − zt−1ut (1, 2).
We denote δt � zt−1ut (1, 2), and this implies the constraint
0 ≤ δt ≤ zt−1, since ut , by definition, must be a stochastic
matrix. Furthermore, when investigating the relation of DP
and encoding procedures, ut has to be recovered from δt ,
given zt−1. This calculation is trivial for zt−1 �= 0, while for
zt−1 = 0, we note that ut (1, 2) has no effect on the DP, and
therefore, ut (1, 2) can be fixed to zero.

To calculate the reward, the conditional distribution
p(xt , xt−1, yt |zt−1, ut ) is described in Table II, and it follows
that the reward is:

g(zt−1, ut ) = I (Yt ; Xt |zt−1, ut )

= H (Yt |zt−1, ut ) − H (Yt |Xt , zt−1, ut )
(a)= Hter((1 − δt )ε̄, ε, δt ε̄) − Hb(ε)
(b)= Hb(ε) + ε̄Hb(δt ) − Hb(ε)

= ε̄Hb(δt ), (7)

where (a) follows from the marginal distribution
p(yt |zt−1, ut ) in Table II and the definition of δt ,

zt = p(xt = 0|yt)

=
∑

xt−1
βt−1(xt−1)ut (xt = 0, xt−1)p(yt |xt = 0)

∑
x ′

t ,xt−1
βt−1(xt−1)ut (x ′

t , xt−1)p(yt |x ′
t )

= zt−1ut (1, 1)p(yt |xt = 0) + (1 − zt−1)ut (2, 1)p(yt |xt = 0)

zt−1[ut (1, 1)p(yt |xt = 0) + ut (1, 2)p(yt |xt = 1)] + (1 − zt−1)ut (2, 1)p(yt |xt = 0)
(5)
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Fig. 5. Value iteration evaluation for the erasure channel with ε = 0.5. The
algorithm was implemented with 20 iterations and quantization of 5000 points
for both action and state.

while (b) follows from an easily verifiable identity:
Hter(ab̄, āb̄, b) = Hb(b) + b̄Hb(a), for all a, b ∈ [0, 1].

To apply the value iteration in the next subsection, it is
convenient to define the operator of the DP:

(T h)(z) = sup
u∈U

g(z, u) +
∫

PW (dw|z, u)h(F(z, u, w)),

(8)

for all functions h : Z → R. Note that the disturbance W
takes values in the finite set Y , therefore, one can replace the
Lebesgue integration with a summation over the conditioned
disturbance distribution.

By substituting the reward from (7), the marginal condi-
tioned distribution from Table II, and the system function
from (6), we can calculate (8) as follows:

(T hε)(z)

= sup
u∈U

g(z, u) +
∫

PW (dw|z, u)hε(F(z, u, w))

= sup
0≤δ≤z

ε̄Hb(δ)+(1−δ)ε̄hε(1)+εhε(1−δ)+δε̄hε(0), (9)

for all hε : [0, 1] → R, parameterized by ε.

B. Numerical Evaluation

Now that we have the DP formulation for our problem, we
can apply the value iteration algorithm to estimate the opti-
mal average reward. The value iteration algorithm is simply
applying the DP operator from (9) successively, and it has
the form hk(z) = (T hk−1)(z) with h0(z) = 0. The state of the
DP and the values in the action matrices are continuous, which
cannot be implemented by a finite-precision computer. To this
end, a quantization of 5000 points in the unit interval for both
zt and δt was performed, and the results after 20 iterations are
presented in Fig. 5 for erasure probability ε = 0.5.

We also simulated the system with the estimated optimal
action δ20. The initial state, z0, was chosen to be zero and the
action was taken according to δ20 which led to a gained reward.
The disturbance was generated randomly according to the
induced distribution from Table II. Having in hand the current
state, action and disturbance, the new state was calculated and
the process was repeated 106 times. This simulation led to an

Fig. 6. Histogram of system states after 106 runs.

approximate average reward of 0.4056 and the histogram of
the states is shown in Fig. 6. The significant importance of
a discrete histogram will be discussed in Section VI, where
it is explained how the DP simulation leads us to derive an
optimal coding scheme for our channel setting.

C. The Bellman Equation

In dynamic programming, the Bellman equation suggests
a sufficient condition for average reward optimality. This
equation establishes a mechanism for verifying that a given
average reward is optimal. The next result encapsulates the
Bellman equation and can be found in [27].

Theorem 4 [27, Th. 6.2]: If ρ ∈ R and a bounded function
h : Z → R satisfies for all z ∈ Z:

ρ + h(z) = sup
u∈U

g(z, u) +
∫

PW (dw|z, u)h(F(z, u, w)),

(10)
then ρ∗ = ρ. Furthermore, if there is a function μ : Z → U
such that μ(z) attains the supremum for each z, then ρ∗ = ρπ

for π = {μ0, μ1, . . . } with μt (ht ) = μ(zt−1) for each t.
This result is a direct consequence of [27, Th. 6.2];

specifically, the triplet (ρ, h(·), μ(·)) is a canonical triplet by
Theorem 6.2 since it satisfies (10). Now, as a canonical triplet
defines the N-stage optimal reward and policy under terminal
cost h(·), for all N , it can be concluded that a canonical
triplet also defines the optimal reward and policy in the infinite
horizon regime, since in this case the bounded terminal cost
has a negligible affect.

As our DP formulation is parameterized with the
parameter ε, it is clear from the context that one should solve
the Bellman equation for all values of ε. Moreover, note that
the right hand side of (10) coincides with the DP operator
definition in (8).

Let us denote two constants ρ̃ε and pε ,

ρ̃ε = max
0≤p≤ 1

2

Hb(p)

p + 1
1−ε

,

pε = arg max
0≤p≤ 1

2

Hb(p)

p + 1
1−ε

, (11)

and a bounded function,

h̃ε(z) =
⎧
⎨

⎩

ε̄Hb(z) − zε̄ Hb(pε)

pε+ 1
1−ε

if 0 ≤ z < pε

Hb(pε)

pε+ 1
1−ε

if pε ≤ z ≤ 1.
(12)
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Fig. 7. State diagram of the DP for the input-constrained BEC under an
optimal policy.

We proceed to show the DP solution by explicitly solving (10)
for our problem.

Theorem 5: The constant ρ̃ε and the function h̃ε(z) given in
(11) and (12), respectively, satisfy the Bellman equation (10)
for each ε. Therefore, ρ̃ε is the optimal average reward.

As the optimal average reward is equal to the capacity
expression (2), Theorem 5 concludes the proof for the first
part of Theorem 1. The proof of Theorem 5 is presented
in Appendix C.

VI. DERIVATION OF THE CAPACITY-ACHIEVING CODING

SCHEME FROM THE DP SOLUTION

In this section, we derive the optimal coding scheme
using the DP solution and finally show that this leads
to a capacity-achieving coding scheme. The method com-
prises recovering the optimal constrained input distributions
{p(xt |xt−1, yt−1)}t≥1 from the solution of the DP.

A. Relation of the Coding Scheme to DP Results

The histogram for ε = 0.5, in Fig. 6, shows that under
an optimal policy, δ∗, the system evolves between three
steady states. Moreover, the solution of the Bellman equation
indicates that there exists an optimal stationary policy, and
therefore, we look at the stationary phase of the DP. The
states, z, take values in the finite set {0, 1− p, 1}, with p � pε

(Eq. (11)); the subscript ε is omitted for convenience, but
all details are discussed for a fixed ε ∈ [0, 1] and its
corresponding pε . For each state, the optimal policy, δ∗, is
known from the Bellman equation and arrows can be drawn
between the states as a function of the disturbance. The state
diagram for our DP is presented in Fig. 7.

Converting the state diagram in Fig. 7 into channel coding
terms, using the formulation described in Table I, results in
an encoding procedure as described in Fig. 8. Specifically,
the states, p(xt−1 = 0|yt−1), take values from {0, 1 − p, 1}.
Each state has its corresponding action, p(xt = 1|xt−1 = 0),

Fig. 8. Optimal encoding procedure for the input-constrained BEC. This
encoding procedure was achieved from Fig. 7 by converting states, actions
and disturbances into their corresponding channel coding terms.

and the encoding procedure evolves as a function of the
output yt . Recall that p(xt = 0|xt−1 = 1) = 1, and therefore,
the action p(xt = 1|xt−1 = 0) is sufficient to determine the
transfer matrix from Xt−1 and Xt .

Let us explain how the encoding procedure evolves.
We refer to the state p(xt−1 = 0|yt−1) = 1 as the ground
state, since this indicates that ‘0’ was received at the decoder
and, therefore, the encoder is allowed to transmit any input
to the channel. For the ground state, the next transmitted bit
is distributed according to Ber(p) and it is shown to be the
optimal action.

Upon receiving yt = 0 at the decoder, the system remains
at the ground state and the encoding procedure starts over
again. When the output is yt = 1, the system moves to the
state p(xt−1 = 0|yt−1) = 0. At this state, since the last
input was necessarily ‘1’, the encoder is forced to transmit ‘0’.
Therefore, the decoder knows that ‘0’ is the only legitimate
input, and the system returns to the ground state regardless of
whether the input was erased or not.

The remaining scenario to examine begins at the ground
state and is followed by yt =?. The optimal action at the lower
state, p(xt−1 = 0|yt−1) = 1− p, suggests that if ‘0’ is erased,
the new transmitted bit should be distributed according to
Ber

(
p

1−p

)
. The term p

1−p is in the unit interval, since p ≤ 1
2 .

Additionally, the input constraint implies that if ‘1’ was erased
then ‘0’ should be transmitted. Upon consecutive erasures, the
encoder continues to transmit bits according to this policy.
When an output is not an erasure, the system returns to the
ground state, and this might take one or two time instances,
depending on whether the (unerased) output bit is ‘0’ or ‘1’.

The main challenge is to understand how this encoding
procedure can be interpreted as transmitting a message by the
encoder. Let the messages be points in the unit interval, i.e.,
messages take values in the set M � { k

2nR }2nR−1
k=0 . At each time

instance, the unit interval contains sub-intervals with labels
that can be ‘0’ or ‘1’, and the input to the channel is simply
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Fig. 9. Example for transmitting the black-dot message using the encoding
procedure in Fig. 8 for 3 time instances. The initial partition at the ground state
is according to p, and the encoder transmits ‘0’ since the black-dot message
falls within [0, p̄). Upon a successful transmission, the encoder moves back
to the ground state and a new procedure begins. In case of erasure, we move
to t = 2, and the interval that was labelled ‘0’ is partitioned according to
q = p

1−p . The input constraint is preserved since the interval [ p̄, 1), that

was labelled ‘1’, is now flipped to ‘0’. The encoder transmits ‘1’ since the
message falls within [ p̄q̄, p̄). In case of another erasure, a partition of q
should be performed for the intervals that are labelled ‘0’. These intervals
are [0, p̄q̄) and [ p̄, 1), which are sum up to 1 − p. Since q = p

1−p , we

simply change the label of [ p̄, 1) (which has length of p) to ‘1’, and the
label of [0, p̄q̄) remains ‘0’. The input-constraint is preserved since [ p̄q̄, p̄)
is re-labelled as ‘0’. Upon another erasures, the labelling will be exchanged
between the ones presented in t = 2 and t = 3 until a successful transmission.
Note that the labelling at t = 1 and t = 3 are essentially the same.

the label of the sub-interval containing the message. Such an
association of messages into a specified interval has been done
before in [28]–[31].

The partition into sub-intervals will be according to parame-
ters p and q � p

1−p , as described in Fig. 8. When performing
a partition at the ground state, the lower interval is labelled ‘0’
while the upper interval is labelled ‘1’. Before providing the
precise encoding algorithm, it will be convenient to understand
the labelling process in the example described in Fig. 9.

As can be seen in Fig. 9, all the proposed partitions in Fig. 8
can be encapsulated into two possible labellings. We denote
the labelling at t = 1 as L1, and the labelling at t = 2 as L2.
The initial labelling at the ground state is chosen as L1, and
upon erasure, the current labelling will be replaced with the
other labelling. Note that changing the labelling Li with L j for
i �= j preserves the input constraint and can be done simply
by exchanging the labels of [ p̄q̄, p̄) and [ p̄, 1), while the label
of [0, p̄q̄) remains ‘0’.

To summarize at this point, at each time instant, we have two
possible labellings (which depend on the value of ε) of the unit
interval which define uniquely the mapping from messages to
the channel input. The current labelling is determined only by
the output tuple, yt−1, and therefore, the decoder and encoder
both agree on the latter.

B. Capacity-Achieving Coding Scheme

At time instance t − 1, the set of possible messages is
defined as Mt−1 = {m ∈ M : p(m|yt−1) > 0}, with
M0 = M. The conditional distribution p(m|yt−1) is cal-
culated using Bayes’ rule, using the fact that the encoding
procedure and both labellings are revealed to all parties before
transmission begins. Note that the set of possible messages can

Algorithm 1 Encoding Procedure
while Set of possible messages contains more than one

message do
Label the unit interval according to L1.
Transmit the label of the sub-interval containing the

message.
while Received symbol is an erasure do

Exchange the labels of [ p̄q̄, p̄) and [ p̄, 1).
Transmit the label of the sub-interval containing the

message.
end while
if Received symbol is ‘0’ then

Denote the messages within sub-intervals which are
labelled ‘0’ as the set of possible messages.

else
Denote the messages within sub-intervals which are

labelled ‘1’ as the set of possible messages
Transmit ‘0’.

end if
Expand the set of possible messages to the unit interval.

end while

Algorithm 2 Decoding Procedure
while Set of possible messages contains more than one

message do
Label the unit interval according to L1.
while Received symbol is an erasure do

Exchange the labels of [ p̄q̄, p̄) and [ p̄, 1).
end while
if Received symbol is ‘0’ then

Denote the messages within sub-intervals which are
labelled ‘0’ as the set of possible messages.

else
Denote the messages within sub-intervals which are

labelled ‘1’ as the set of possible messages.
Ignore the next received symbol.

end if
Expand the set of possible messages to the unit interval.

end while

also be calculated at the encoder, since the output tuple, yt−1,
is available from the feedback.

Any received symbol at the decoder might reduce the
set of potential messages, and a successful transmission is
defined as a transmission where the size of the set of possible
messages is changed, namely, |Mt | < |Mt−1|. Specifically, a
successful transmission can occur in one of two scenarios;
the first is yt = 1, and the second is where yt = 0 and
yt−1 �= 1. Upon a successful transmission, the set of possible
messages is calculated and expanded uniformly to the unit
interval. To be precise, the messages in the set Mt take

values in { k
|Mt | }

|Mt |−1
k=0 . This transmission procedure continues

repeatedly until the set of possible messages contains one
message. The detailed encoding and decoding procedures are
described in Algorithms 1 and 2.
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Rate Analysis: The main feature of this coding scheme is
that the length of the sub-interval that is labelled by ‘1’ is p.
This property is recorded as Lemma 2.

Lemma 2: At any step of the message transmission process,
the lengths of the sub-intervals that are labelled by ‘1’ sum
up to p.

Proof: Throughout transmission, there are two possible
labellings; for L1, the interval [ p̄, 1) that is labelled ‘1’ has
length of p, while for L2, the interval [ p̄q̄, p̄) has length
of p̄q = p.

From Lemma 2, we note that the encoder transmits ‘1’ if
message falls within sub-interval that has length of p. How-
ever, the messages are discrete points and a partition might fall
between two messages. This implies that the transmitted bit
is distributed as Ber(p + ei ), where ei is a correction factor.
In Appendix D, it is shown that the correction factor has a
negligible effect on the rate of the coding scheme. To simplify
the derivations here, with some loss of accuracy, we say that
each transmitted bit is distributed according to Ber(p).

In the next lemma, we show that each successful transmis-
sion reduces the expected number of bits that is required to
describe the set of possible messages by Hb(p).

Lemma 3: With each successful transmission, the expected
number of bits that describe the set of possible messages is
reduced by Hb(p).

Proof: Assume that the set of possible messages is of
size k; upon a successful transmission, if ‘0’ is received then
the new set of possible messages has size p̄k, and if ‘1’ is
received then its new size is pk. The expected number of bits
that is required to describe the new set of possible messages
is p̄ log2( p̄k) + p log2(pk) = log2 k − Hb(p).

The next step is to calculate the expected number of channel
uses for a complete procedure. We define a complete procedure
to consist of all transmissions by the encoder starting at some
time t at which it is in the ground state, and ending at the first
time t ′ > t at which it returns to the ground state. In other
words, a procedure is completed when a ‘0’ or ‘1’ is received
at the decoder, including one extra channel use in the case
when a ‘1’ has been received and has to be followed by ‘0’.

Let N be a random variable corresponding to the number
of channel uses within a complete procedure. The expected
value of N will be calculated by the law of total expectation.
Define an indicator function

θ =
{

0 if the received bit is ‘0’

1 if the received bit is ‘1’,

and consider,

E[N] (a)= E[E[N |θ ]]
(b)= E

[ 1

1 − ε
+ θ

]

(c)= 1

1 − ε
+ p,

where (a) follows from the law of total expectation, (b) fol-
lows from the fact that channel is memoryless and, therefore,

1
1−ε is the expected value of time to receive a symbol which
is not an erasure, and (c) follows from E[θ ] = Pr(θ = 1).

Finally, we prove the second part of Theorem 1, specifically,
the rate of this coding scheme can be arbitrary close to the
capacity expression, C fb

ε .
Proof: It follows from the law of large numbers that

the rate of our coding scheme can be arbitrarily close to the
expected number of received bits within a complete procedure
divided by the expected number of channel uses within a
complete procedure. In Lemma 3, we showed that within
a successful transmission, the expected number of received
bits is Hb(p). Moreover, the expected number of channel
uses within a complete procedure is E[N] = 1

1−ε + p.
Therefore, the rate of the code can be arbitrarily close

to R = Hb(p)

p+ 1
1−ε

.

The above proof and Theorem 5 conclude the proof of our
main result Theorem 1.

VII. NON-CAUSAL CAPACITY

In this section, we prove Theorem 2 by showing that
Cnc

ε = max0≤p≤ 1
2

Hb(p)

p+ 1
1−ε

. Operational considerations of non-

causal and feedback capacities reveal the trivial inequality
Cnc

ε ≥ C fb
ε . Furthermore, we derive in this section an upper-

bound on Cnc
ε , which is equal to C fb

ε , and this concludes the
proof of Theorem 2 with Cnc

ε = C fb
ε .

The next lemma shows that it is sufficient to consider
encoders which transmit ‘0’ if erasure occurs, i.e., xi = 0
if θi = 1. The intuition behind this lemma is that replacing
erased ones with zeros does not affect the output sequence,
while the input-constraint is not violated.

Lemma 4: For any (1, 2nR, (1,∞)) code C with probability
of error P(n)

e , there exists a (n, 2nR , (1,∞)) code C ′ with
probability of error P(n)

e , satisfying

fi (m, yi−1, θi = 1) = 0, i = 1, . . . , n ∀(m, yi−1).

Proof: For any (1, 2nR, (1,∞)) code C consisting of
encoding functions, { fi (·)}n

i=1, and a decoding function �(·)
with probability of error P(n)

e , define a new sequence of
encoding functions as follows:

f̃i (m, yi−1, θi ) =
{

fi (m, yi−1, θi ) if θi = 0,

0 if θi = 1,

for all (m, yi−1) and i = 1, . . . , n. We argue that { f̃i (·)}n
i=1

and the original decoding function �(·) determine a new code

with the same probability of error P(n)
e . First, the set of encod-

ing functions, { f̃i (·)}n
i=1, satisfies the input constraint, since we

replaced ones with zeros. Further, the output sequence is not
affected by our modification, since we replaced only bits that
are erased, and therefore, our new code also has probability
of error P(n)

e .
We introduce (1,∞, Ber(ε))-RLL encoder, which outputs

sequences Xn that satisfies two constraints:
1) The (1,∞)-RLL constraint.
2) Xi = 0 if θi = 1 (the constraint induced by Lemma 4).

The second constraint can be viewed as a “random constraint”
since θi ∼ Ber(ε), while the first constraint is a deterministic
constraint. Thus, the (1,∞, Ber(ε))-RLL encoder combines
both deterministic and random constraints.
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The entropy rate of (1,∞, Ber(ε))-RLL encoder is
measured by limn→∞ 1

n

∑n
i=1 H (Xi |Xi−1, θ i ) since this is the

available information at the encoder. The next lemma provides
an upper bound on the entropy rate of sequences that can be
generated by a (1,∞, Ber(ε))-RLL encoder.

Lemma 5: The entropy rate of sequences that are gener-
ated by a (1,∞, Ber(ε))-RLL encoder is upper bounded by

max0≤p≤ 1
2

Hb(p)

p+ 1
1−ε

.

Proof: Recall that the encoder can choose its output
bit, xi , only if xi−1 = θi = 0; we parameterize this by
p(xi = 1|xi−1 = 0, θi = 0) = p, where p ∈ [0, 1]. Now,
consider the transition probability matrix of the chain Xn ,

Q =
[

ε + ε̄ p̄ ε̄ p
1 0

]

,

where the transition probability ε + ε̄ p̄ was calculated by

p(xi = 0|xi−1 = 0) =
∑

θi

p(xi = 0, θi |xi−1 = 0).

The stationary distribution of this chain is [x∗(0) x∗(1)] =
[ 1

1+ε̄ p
ε̄ p

1+ε̄ p ].
Consider the next upper bound for some i ,

H (Xi |Xi−1, θ i )
(a)≤ H (Xi |Xi−1, θi )
(b)= ε̄H (Xi |Xi−1, θi = 0)
(c)= ε̄H (Xi |xi−1 = 0, θi = 0)p(xi−1 = 0|θi = 0)
(d)= ε̄Hb(p)p(xi−1 = 0) (13)

where (a) follows conditioning reduces entropy, (b) fol-
lows from H (Xi |Xi−1, θi = 1) = 0, (c) follows from
H (Xi |xi−1 = 1, θi = 0) = 0, and (d) follows from
the fact that Xi−1 is independent of θi and substituting the
parameter p.

By substituting the stationary distribution p(xi−1 = 0) =
x∗(0) into (13), we see that the entropy rate of the chain is
upper bounded by ε̄Hb(p)

1+ε̄ p , for some p ∈ [0, 1]. This term

can also be written as Hb(p)
1

1−ε +p
, and the parameter p need be

maximized only on [0, 0.5] from Lemma 1.
The rate of the message M is upper bounded by the entropy

rate of sequences that can be generated by a (1,∞, Ber(ε))-
RLL encoder, and this concludes the proof of Theorem 2 with

Cnc
ε ≤ max

0≤p≤ 1
2

Hb(p)

p + 1
1−ε

= C fb
ε .

VIII. CONCLUSIONS

We considered the setup of an input-constrained erasure
channel with feedback and found its capacity using equiva-
lent DP. We then pursued the complementary derivation of
a simple and error-free capacity-achieving coding scheme,
which we found using the strong relation between optimal
policies in DP and encoding procedures in channel coding.
Moreover, we have shown that the capacity remains the same
even if the erasure is known non-causally to the encoder.

Following the theorem that feedback does not increase the
capacity of a memoryless channel [12], Shannon also argued
that this theorem can be extended to channels with memory
if the channel state can be computed at the encoder. Shannon,
however, omitted the proof of his assertion, so that it remained
a conjecture until now. Very recently, Y. Li used the expression
for feedback capacity in our Theorem 1 along with tools
from [32] to show that Shannon’s conjecture is false [33].
To be precise, Li showed that close to ε = 0, the expression in
Theorem 1 strictly exceeds the corresponding capacity without
feedback. Additionally, in a parallel work [34], Shaviv et
al. gave an example of a finite-state channel model formu-
lated in an energy-harvesting setting, in which it was shown
that the feedback capacity is greater than the feed-forward
capacity.

As Shannon’s conjecture does not hold for our input-
constrained erasure channel, it could be interesting to derive
the capacity of the input-constrained erasure channel with
delayed feedback, namely, when the input to the channel
at time i depends on the message and the tuple Y i−ν ,
where ν is the delay of the feedback. DP formulation for
the delayed-feedback capacity is feasible and could yield
tighter upper bounds on the capacity of the input-constrained
erasure channel without feedback, a problem that is wide
open.

APPENDIX A
PROOF OF THEOREM 3

Recall the statement of Theorem 3:
Theorem 6: The feedback capacity of a (1,∞)-RLL input-

constrained memoryless channel can be expressed as:

Cfb = sup lim inf
N→∞

1

N

N∑

t=1

I (Xt ; Yt |Y t−1),

where the supremum is taken with respect to
{p(xt |xt−1, yt−1) : p(xt = 1|xt−1 = 1, yt−1) = 0}t≥1.

This theorem essentially can be deduced from [19, Th. 1];
however, as it is not a special case of their work, we follow
similar lines to those taken in their proof, and conclude the
capacity expression for our case.

Throughout this section, we use the common
notation of directed information, i.e. I (X N → Y N ) =∑N

t=1 I (Xt ; Yt |Y t−1). The notation Q(x N ||y N−1) =
∏N

t=1 q(xt |xt−1, yt−1) stands for the causal conditioning,
but restricted to satisfy the input constraint. We also
define Q0(x N ||y N−1) as Q(x N ||y N−1) with the initial
condition q(x1 = 0) = 1. In a similar manner, we
define P∞ as the infinite sequence of input distributions
{p(xt |xt−1, yt−1) : p(xt = 1|xt−1 = 1, yt−1) = 0}t≥1, and
P∞

0 is defined as P∞ with p(x1 = 0) = 1.
We also use the notation:

C N � max
Q(x N ||yN−1)

1

N
I (X N → Y N ),

C N � max
Q0(x N ||yN−1)

1

N
I (X N → Y N ),
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where the only difference between the defined sequences is
the maximization domain.

The following lemma establishes upper and lower bounds
on the feedback capacity:

Lemma 6: The capacity can be bounded by:

lim
N→∞ C N ≤ Cfb ≤ lim

N→∞ C N ,

and the limit of both sequences exist.
The proof of Lemma 6 appears in Subsection A of this

appendix.
Proof of Theorem 3: Equations (14)-(17) below summarize

the four main steps of our proof:

C fb = lim
N→∞ max

Q0(x N ||yN−1)

1

N
I (X N → Y N ) (14)

= lim
N→∞ sup

1

N

N∑

t=1

I (Xt ; Yt |Y t−1) (15)

= sup
P∞

0

lim inf
N→∞

1

N

N∑

t=1

I (Xt ; Yt |Y t−1) (16)

= sup
P∞

lim inf
N→∞

1

N

N∑

t=1

I (Xt ; Yt |Y t−1), (17)

where the supremum in (15) is taken over
{

p(xi |xi−1, yi−1) :
p(xi = 1|xi−1 = 1, yi−1) = 0, p(x1 = 0) = 1

}N
i=1.

The first step above (Eq. (14)) will be proven by showing
the equality:

lim
N→∞ C N = lim

N→∞ C N ,

which implies that both bounds provided in Lemma 6
are tight, and are equal to the capacity. We then proceed
to the next steps of the proof with limN→∞ C N instead
of limN→∞ C N , since the exchange of the limit and the
supremum (Eq. (16)) will follow in a direct manner from
[19, Lemma 4]. Finally, in equality (17), we show that restrict-
ing the input distributions to p(x1 = 0) = 1 has no affect on
the limit, and this concludes the derivation with the required
maximization.

Proof of Equality (14): As mentioned, the difference
between the lower and the upper bounds in Lemma 6 is the
maximization domain. We show that the limits are equal by
constructing for each Q(x N ||y N−1), an input distribution from
Q0(x N ||y N−1), such that the limit under both distributions is
equal. For given Q(x N ||y N−1), construct Q0(x N ||y N−1) =∏N

t=1 q0(xt |xt−1, yt−1) as follows:

q0(xt |xt−1, yt−1) =
{
�x1=0 if t = 1,

q(xt−1|xt−2, yt−2) if t = 2, . . . , N.

(18)

We now show that the difference between the normal-
ized directed informations that are induced by the defined

distributions vanishes with N ,

1

N
IQ(X N → Y N ) − 1

N
IQ0(X N → Y N )

(a)= 1

N
IQ(X N → Y N ) − 1

N
IQ(X N−1 → Y N−1)

(b)= 1

N
IQ(X N ; YN |Y N−1)

≤ log |Y|
N

,

where (a) is due to the structure of Q0(x N ||y N−1) in (18),
and (b) follows by decomposing the directed information into
a sum of mutual information instances.

Proof of Equality (15): Each instance in the directed infor-
mation can be expressed as:

I (Xt ; Yt |Y t−1) = H (Yt |Y t−1) − H (Yt |Xt , Y t−1)
(a)= H (Yt |Y t−1) − H (Yt |Xt , Y t−1)

= I (Xt ; Yt |Y t−1),

where (a) follows from the memoryless channel property (1).
Now, when the t th instance is determined by p(xt , yt ) only,

it is sufficient to maximize over {p(xi |xi−1, yi−1) : p(xi =
1|xi−1 = 1, yi−1) = 0, p(x1 = 0) = 1}N

i=1. The proof of this
step is omitted here, and can be found in the justification of
Equality 18 in [19, Th. 3].

Proof of Equality (16): The proof of this step follows
directly from the proof of [19, Lemma 4]. More specifically,
their proof requires two conditions that are satisfied here:

• Super-additive property of the sequence C N , which
follows from the achievability part in the proof of
Lemma 6 (Eq. (19)).

• The concatenation of two input distributions should yield
a new input distribution with the same properties. This
follows from the fact that our input distributions satisfy
x1 = 0 with probability 1; hence, any concatenation of
distributions will satisfy the input constraint as well as
x1 = 0 with probability 1.

Proof of Equality (17): The last step follows from the same
arguments used in equality (14). Specifically, we take the
maximizer in Eq. (17) that is from the set {p(xt |xt−1, yt−1) :
p(xt = 1|xt−1 = 1, yt−1) = 0}t≥1 and concatenate it
with p(x1 = 0) = 1 as its first instance. Clearly, this
new distribution is from the set {p(xt |xt−1, yt−1) : p(xt =
1|xt−1 = 1, yt−1) = 0, p(x1 = 0) = 1}t≥1 and has the same
limiting expression.

A. Proof of Lemma 6

The converse (upper bound) is derived directly in our
setting using Fano’s inequality and the fact that a (1,∞)-
RLL constrained code must induce an input distribution from
Q(x N ||y N−1). For the second part of the achievability, we
define an FSC without input constraint and apply the achiev-
ability from [25] with constrained input distributions, i.e.
Q0(x N ||y N−1). This gives us a design of a code for the defined
FSC, and then we argue that this code can be also implemented
in our constrained setting and achieve the same probability of
error.
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1) Converse: For a (N, 2N R , (1,∞)) code with achievable
rate R, consider the following chain of inequalities

N R
(a)≤ I (X N → Y N ) + NεN
(b)≤ max

Q(x N ||yN−1)
I (X N → Y N ) + NεN ,

where (a) is a standard derivation by using Fano’s inequality
with εN → 0, (b) is due to the fact that any (N, 2N R , (1,∞))
code that satisfies the input constraint induces an input dis-
tribution that is restricted to Q(x N ||y N−1). Let us show this
property precisely by calculating the conditional probability
p(x1 = 1|xi−1 = 1, yi−1) induced by any (N, 2N R , (1,∞))
code (and a random message M), for any output tuple yi−1:

p(xi = 1|xi−1 = 1, yi−1)

=
∑

m

p(m, xi = 1|xi−1 = 1, yi−1)

=
∑

m

p(m|xi−1 = 1, yi−1)p(xi = 1|m, xi−1 = 1, yi−1)

(a)=
∑

m

p(m|xi−1 = 1, yi−1)�{ fi (m,yi−1)=1}∩{ fi−1(m,yi−2)=1}

(b)= 0,

where (a) follows from the notation of encoding functions,
and (b) follows from the code constraints in Definition 1.

The limit existence of C N follows from the sub-additivity
property of the sequence NC N + log |X |, i.e.

NC N + log |X | ≤ lCl + log |X | + (N − l)C N−l + log |X |,
for all integers l, N such that l ≤ N .

This property follows from the following chain of
inequalities,

NC N

= max
Q(x N ||yN−1)

N∑

i=1

I (Xi ; Yi |Y i−1)

≤ lCl + max
Q(x N ||yN−1)

N∑

i=l+1

I (Xi ; Yi |Y i−1)

≤ lCl + max
Q(x N ||yN−1)

N∑

i=l+1

I (Xi ; Yi |Y i−1, Xl) + log |X |

(a)≤ lCl + max
Q(x N ||yN−1)

N∑

i=l+1

I (Xi
l+1; Yi |Y i−1

l+1 , Xl) + log |X |

≤ lCl + max
xl

max
Q(x N

l+1||{yN−1
l+1 ,xl })

N∑

i=l+1

I (Xi
l+1; Yi |Y i−1

l+1 , xl)

+ log |X |
(b)= lCl + max

Q(x N
l+1||{yN−1

l+1 ,xl=0})

N∑

i=l+1

I (Xi
l+1; Yi |Y i−1

l+1 , xl = 0)

+ log |X |

= lCl + max
Q(x N−l ||yN−l−1)

N−l∑

i=1

I (Xi ; Yi |Y i−1) + log |X |

= lCl + (N − l)C N−l + log |X |,

where (a) follows from the fact that conditioning reduces
entropy and the memoryless property of the channel, and (b) is
due to the fact that xl = 1 restricts the maximization domain,
while xl = 0 has no affect on the maximization domain. Thus,
by Fekete’s sub-additive lemma, the limit of the sequence
C N + log |X |

N exists, which proves the existence of the limit
limN→∞ C N .

2) Achievability: In the achievability, we use a slightly
modified version of an existing result on FSCs from
[25, Sec. III]. Specifically, we consider the achievability
in [25] for FSCs but with an input distribution that satisfies
the input constraint, i.e., it has the form of Q(x N ||y N−1).

However, throughout their proof, it is required that a con-
catenation of two constrained input distributions also yield a
constrained input distribution, and this might fail if we use
Q(x N ||y N−1). To this end, we use Q0(x N ||y N−1) which is the
constrained input distribution that begins with the symbol ‘0’
with probability 1. This additional restriction ensures that a
concatenation of any such distributions will result in a third
input distribution that satisfies the input constraint and the
initial condition q0(x1 = 0) = 1.

The FSC we consider has a single state, and the channel
from X to Y is BEC; a direct consequence of applying the
achievability in [25, Sec. III] is the following lower bound on
the capacity of this FSC:

CFSC ≥ lim
N→∞ max

Q0(x N ||yN−1)
min

s0

1

N
I (X N → Y N |s0), (19)

where the existence of the limit above follows from the
superadditivity property, which is shown in [25, eq. (36)].
Now, as there is only one state in the defined FSC, (19) can
be re-written as:

CFSC ≥ lim
N→∞ max

Q0(x N ||yN−1)

1

N
I (X N → Y N )

= lim
N→∞ C N .

Note that each code designed for the FSC can be imple-
mented in our original channel since the input distribution
implies that the input sequence satisfies the input constraint.
Moreover, the channel in the FSC has same characterization
as in our original BEC, and therefore, the probability of error
will remain the same if we implement the same code on our
channel. �

APPENDIX B
PROOF OF LEMMA 1

• A sufficient condition for the concavity of a function
f (p) is that the second derivative is negative for any
value of p. We denote k = 1

1−ε and find a condition on k
such that the second derivative is negative. To simplify
the derivations, we take Hb(·) to be the binary entropy
with the natural logarithm base, since multiplication by
a constant does not effect concavity. Calculation shows
that

d2

dp2

(
Hb(p)

p + k

)

=
(p+k)2

p(p−1) − 2k ln
(

1−p
p

)
− 2 ln(1− p)

p3 .

(20)
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It suffices to examine the sign of the numerator, since

p3 ≥ 0. Define g(p) � (p+k)2

p(p−1)−2k ln
(

1−p
p

)
−2 ln(1−p).

Derivation of the maximum for g(p) shows that it has
only one maximum, which is at p = 1

2 . Substitut-
ing g( 1

2 ) = −4( 1
2 + k)2 + 2 ln 2. It then follows that

g(p) ≤ 0,∀p ∈ [0, 1] if and only if k ≥
√

1
2 ln 2 −

1
2 ∼ 0.088.

• Derivation of the first derivative of f (p) shows
that the derivative is equal to zero if and only if
p

1
1−ε = (1 − p)1+ 1

1−ε holds. The uniqueness of the max-
imum point follows from the fact that p

1
1−ε increases as

p grows, while (1− p)1+ 1
1−ε decreases with a growing p.

Now, assume that the maximum is pm ∈ ( 1
2 , 1]. Sym-

metry of the binary entropy function implies Hb(pm) =
Hb( p̄m), and therefore, it is sufficient to examine the
denominator. Since both arguments pm, p̄m ∈ [0, 1],
it then follows that f (pm) < f ( p̄m), which is a
contradiction.

• This property follows from substituting the relation
p

1
1−ε = (1 − p)1+ 1

1−ε into the function f (p).

APPENDIX C
PROOF OF THEOREM 5

The next lemma is technical and will be useful in the proof
of Theorem 5.

Lemma 7: The function fε(z) = ε̄Hb(z) − zε̄ Hb(pε)

pε+ 1
1−ε

is

concave on [0, 1] and its maximum is at z = pε , where
pε = arg max0≤p≤ 1

2

Hb(p)

p+ 1
1−ε

.

Proof of Lemma 7: The concavity of fε(z) on z ∈ [0, 1]
follows from the concavity of the binary entropy function,
and therefore, it suffices to show that the first derivative of
fε(z) at pε is equal to zero. The definition of pε , (11), and

Lemma 1 imply the relation, d
dz

[
Hb(z)

z+ 1
1−ε

]

z=pε = 0, which is

equivalent to

H ′
b(pε)

(

pε + 1

1 − ε

)

− Hb(pε) = 0. (21)

The first derivative of fε(z) at the point pε is:

d

dz

[

ε̄Hb(z) − zε̄
Hb(pε)

pε + 1
1−ε

]

z=pε

=
(

ε̄H ′
b(z) − ε̄

Hb(pε)

pε + 1
1−ε

)

z=pε

= ε̄H ′
b(z)(pε + 1

1−ε ) − ε̄Hb(pε)

pε + 1
1−ε

(a)= 0,

where (a) follows from (21).
We proceed to the proof of Theorem 5.
Proof of Theorem 5: Recall that the Bellman equation is

satisfied with the pair ρ̃ε and h̃ε(z) if

ρ̃ε + h̃ε(z) = (T h̃ε)(z) (22)

holds; while the left hand side of (22) is given explicitly
in (11)-(12), one should calculate the expression (T h̃ε)(z)
which can be simplified as follows:

(T h̃ε)(z)

= sup
0≤δ≤z

ε̄Hb(δ) + ε̄(1 − δ)h̃ε(1) + εh̃ε(1 − δ) + ε̄δh̃ε(0)

(a)= sup
0≤δ≤z

ε̄Hb(δ) + ε̄(1 − δ)
Hb(pε)

pε + 1
1−ε

+ εh̃ε(1 − δ),

where (a) follows from the definition of h̃ε(z) in (12),
specifically, h̃ε(0) = 0 and h̃ε(1) = Hb(pε)

pε+ 1
1−ε

.

The term h̃ε(1 − δ) is now calculated for two cases:

h̃ε(1 − δ) =
⎧
⎨

⎩

ε̄Hb(δ) − (1 − δ)ε̄ Hb(pε)

pε+ 1
1−ε

if 1 − δ < pε

Hb(pε)

pε+ 1
1−ε

if 1 − δ ≥ pε.

(23)

To complete the proof, we have three cases for calculating the
operator (T h̃ε)(z):

• For 0 ≤ z < pε , the constraint 0 ≤ δ ≤ z implies that
0 ≤ δ < pε , and from (23), we have h̃ε(1−δ) = Hb(pε)

pε+ 1
1−ε

.

Let us show that (22) is satisfied:

(T h̃ε)(z)

= sup
0≤δ≤z

ε̄Hb(δ) + ε̄(1 − δ)
Hb(pε)

pε + 1
1−ε

+ ε
Hb(pε)

pε + 1
1−ε

= sup
0≤δ≤z

ε̄Hb(δ) − δε̄
Hb(pε)

pε + 1
1−ε

+ Hb(pε)

pε + 1
1−ε

(a)= ε̄Hb(z) − zε̄
Hb(pε)

pε + 1
1−ε

+ Hb(pε)

pε + 1
1−ε

= h̃ε(z) + ρ̃ε ,

where (a) follows from Lemma 7.
• For pε ≤ z < 1 − pε , the same calculation as for the

previous interval shows that h̃ε(1 − δ) = Hb(pε)

pε+ 1
1−ε

for all

δ ∈ [0, 1 − pε]. Let us show that (22) is satisfied:

(T h̃ε)(z)

= sup
0≤δ≤z

ε̄Hb(δ) + ε̄(1 − δ)
Hb(pε)

pε + 1
1−ε

+ ε
Hb(pε)

pε + 1
1−ε

= sup
0≤δ≤z

ε̄Hb(δ) − δε̄
Hb(pε)

pε + 1
1−ε

+ Hb(pε)

pε + 1
1−ε

(a)= ε̄Hb(pε) − pεε̄
Hb(pε)

pε + 1
1−ε

+ Hb(pε)

pε + 1
1−ε

= Hb(pε)

pε + 1
1−ε

+ Hb(pε)

pε + 1
1−ε

= h̃ε(z) + ρ̃ε ,

where (a) follows from Lemma 7.
• The last calculation is for 1 − pε ≤ z ≤ 1; in this

case, the expression h̃ε(1− δ) might be equal to different
functions according to the value of δ. However, we show
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the maximization on δ can be restricted to [0, 1 − pε]
which determine uniquely the function h̃ε(1 − δ):

(T h̃ε)(z)

= sup
0≤δ≤z

ε̄Hb(δ) + ε̄(1 − δ)
Hb(pε)

pε + 1
1−ε

+ εh̃ε(1 − δ)

(a)= sup
0≤δ≤1−pε

ε̄Hb(δ) + ε̄(1 − δ)
Hb(pε)

pε + 1
1−ε

+ ε
Hb(pε)

pε + 1
1−ε

(b)= 2
Hb(pε)

pε + 1
1−ε

= h̃ε(z) + ρ̃ε,

where (b) follows from Lemma 7, and (a) follows from
the following upper bound:

sup
1−pε<δ≤z

ε̄Hb(δ) + ε̄(1 − δ)
Hb(pε)

pε + 1
1−ε

+ εh̃ε(1 − δ)

= sup
1−pε<δ≤z

ε̄(1 + ε)Hb(δ) + ε̄ε̄(1 − δ)
Hb(pε)

pε + 1
1−ε

≤ sup
1−pε≤δ≤z

ε̄(1+ε)Hb(δ)+ sup
1−pε≤δ≤z

ε̄ε̄(1−δ)
Hb(pε)

pε+ 1
1−ε

= ε̄(1 + ε)Hb(1 − pε) + ε̄ε̄(1 − (1 − pε))
Hb(pε)

pε + 1
1−ε

= Hb(pε)

pε + 1
1−ε

[2ε̄ pε + 1 + ε]

≤ 2
Hb(pε)

pε + 1
1−ε

= sup
0≤δ≤1−pε

ε̄Hb(δ) + ε̄(1 − δ)
Hb(pε)

pε + 1
1−ε

+ ε
Hb(pε)

pε + 1
1−ε

.

APPENDIX D
ACCURATE RATE ANALYSIS

The rate analysis in Section VI was simplified by assuming
that each transmitted bit is Ber(p). Here, we show precisely
that our coding scheme can be arbitrarily close to C fb

ε . The
idea is to separate the coding scheme into two parts using
a parameter λ, which is a fixed constant. First, we use the
coding scheme from Section VI-B to transmit a large number,
n R −λ, of message bits, while a different coding scheme will
be used to transmit the remaining λ bits. We show that the rate
of the overall scheme is essentially determined by the rate of
the first coding scheme. The next lemma will be used for the
rate analysis of the first coding scheme,

Lemma 8: Each transmitted bit, Xi , can be chosen to be
distributed as Ber(p − ei ), where 0 ≤ ei < 1

|Mi−1| .
Proof: Assume that at time i , a procedure begins and its

corresponding set of possible messages is Mi−1. According
to L1, the number of messages that are labelled ‘1’ is
�p|Mi−1|�, where �·� is the floor operator. The resulting input
distribution is Xi ∼ Ber

( �p|Mi−1 |�
|Mi−1|

)
, which can be written also

as Xi ∼ Ber(p − ei ) since p − 1
|Mi−1| <

�p|Mi−1|�
|Mi−1 | ≤ p.

In case of erasure at time i , recall that the number of
messages that were labelled ‘0’ in L1 is greater than the

number of messages labelled ‘1’, and thus, we are able to
construct the labelling L2 as follows; �p|Mi−1|� messages
that were labelled ‘0’ at the previous transmission are flipped
to ‘1’, and all the remaining messages are labelled ‘0’. It is
clear that the input distribution is preserved in this case, and
upon consecutive erasures, L1 and L2 are being exchanged and
the input distribution is not changed. Note that the choices of
labelling are made in advance and both encoder and decoder
agree on current labelling.

The encoding procedure occurs repeatedly and is over when
the set of possible messages is less or equal than 2λ. Denote
by e1, e2, . . . , ek the correction factors for the k successful
transmissions until the scheme is over. Following the same
derivations in Section VI, it follows that the rate is R̃ =∑k

i=1 Hb(p−ei )

k( 1
1−ε +p)−∑k

i=1 ei
.

For the λ remaining bits, we perform a code where a bit
of message is followed by zero and this pair is transmitted
repeatedly until a successful transmission. Thus, to send the
message bit ‘0’, the pair ‘00’ is repeated until ‘00’ or ‘0?’
are received, and to send the message bit ‘1’, the bits ′10′ are
repeatedly transmitted until a ‘1’ is received. The decoding
for this scheme is straightforward, and calculation of the rate
gives that R̄ = 1−ε

2 .
To summarize, the average rate for the overall coding

scheme is

R =
(

n R − λ

n R

)

R̃ +
(

λ

n R

)

R̄.

Consider the next lower bound on R,

R =
(

n R − λ

n R

) ∑k
i=1 Hb(p − ei )

k( 1
1−ε + p) − ∑k

i=1 ei
+

(
λ

n R

)
1 − ε

2

≥
(

n R − λ

n R

)
k mini Hb(p − ei )

k( 1
1−ε + p) − k mini ei

+
(

λ

n R

)
1 − ε

2

(a)≥
(

n R − λ

n R

)
Hb(p − 2−λ)

1
1−ε + p

+
(

λ

n R

)
1 − ε

2
,

where (a) follows from Lemma 8, namely, ei ∈ [0, 2−λ) for
i = 1, . . . , k.

Letting n → ∞, we see that R∗ = Hb(p−2−λ)
1

1−ε +p
is achievable.

Thus, by choosing λ to be arbitrarily large (but still finite), we
can make R∗ arbitrarily close to the capacity C fb

ε .
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