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Initialization Algorithms for Convolutional
Network Coding

Maxim Lvov, Student Member, IEEE, and Haim H. Permuter , Senior Member, IEEE

Abstract— We present algorithms for initializing a convolu-
tional network coding (CNC) scheme in networks that may con-
tain cycles. An initialization process for finding global encoding
kernels (GEK) is needed if the network is unknown or if local
encoding kernels are chosen randomly. During the initialization
process every source node transmits basis vectors and every sink
node gets the impulse response of the network. The impulse
response is then used to find the GEK, which are needed for a
decoding algorithm and to find the set of all achievable rates.
We present two initialization algorithms that find the GEK and
one algorithm that finds achievable rates from the GEK. In the
first initialization algorithm it is assumed that we can perform
a reset operation on the network at some fixed times, while
the second algorithm does not operate under this assumption.
Unlike acyclic networks, for which it is sufficient to transmit basis
vectors one after another, the initialization of cyclic networks is
more involved, as test symbols from different times interfere with
each other and the impulse response is of infinite duration. Our
algorithms use only a finite number of the initial values of the
impulse response to find the full GEK. This is possible because
a CNC scheme can be described by a state space representation
and, using the Cayley-Hamilton theorem, it is possible to find its
full impulse response from its initial values.

Index Terms— Cayley-Hamilton theorem, convolutional net-
work coding, cyclic networks, linear network coding, system
identification.

I. INTRODUCTION

NETWORK coding is a technique that is used to increase a
network throughput. The idea behind this coding scheme

is that the relay nodes transmit functions of the received
symbols on their output links, rather than simply routing
them. Ahlswede et al. [1] showed that for a one source,
multicast acyclic network, the maximal network throughput
is equal to the minimum cut between the source and any sink
node. For cyclic networks, a CNC scheme was presented by
Li et al. [2], and the existence of an optimal CNC code (one
that achieves the min-cut bound given in [1]) was proved by
Koetter and Médard [3]. Since then, much work has been
devoted to constructing codes for cyclic networks [3]–[7],
but all these code-construction algorithms share one major
drawback; they all need to know in advance the network
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topology. In particular, if the network is large, it might be
difficult to learn the exact network structure.

A randomized linear network coding approach was pre-
sented by Ho et al. [8]. They showed that for a cyclic
network, all sink nodes will be able, with high probability,
to decode the symbols sent by the source nodes, provided
that the transmission rates of all sources satisfy the Min-Cut
Max-Flow condition and that the LEK are chosen randomly
from a large enough field. The Min-Cut Max-Flow condition
states that for every subset A of source nodes, the sum of
source rates

�
s∈A Rs must be less than or equal to the

minimum cut capacity between every sink node and A.
This result makes randomized CNC extremely useful when

the network is dynamic and no central authority for assigning
encoding kernels exists. The LEK can be chosen randomly
from some large enough field and, with high probability, this
will lead to a network that enables source nodes to transmit
symbols at high rates, thereby enabling all sink nodes to
decode the sent symbols. This outcome, however, requires that
the source nodes know which rates are achievable and that the
sink nodes know their GEK, which are needed for a decoding
algorithm. If the network structure or the LEK are not known,
an initialization process is needed.

In this paper, we present two initialization algorithms that
find the GEK of the network, and one algorithm that finds
achievable rates from the GEK. The GEK are found by
sending test basis vectors and obtaining the impulse response
of the network, a method analogous to the one given in
[9, Ch. 19.3.2] for acyclic networks. A direct implementation
of the algorithm that is designed for acyclic networks is
problematic, because of two assumptions that do not hold:
first, the response of the network to an input vector is a single
output vector (in the acyclic delay-free case), while in cyclic
networks with delays the response is an infinite sequence
of vectors (the impulse response). Second, in acyclic delay-
free networks every output vector depends only on the cur-
rently sent input vector, while in cyclic networks with delays,
the impulse response for the current input vector interferes
with the responses to previous input vectors. Although the
impulse response of the network can be of infinite duration,
our algorithms find the GEK using only the initial values of
the impulse response. In the first algorithm, we transmit basis
vectors and obtain the impulse response of the network under
the assumption that the initial symbols sent on the network
are zeros. In the second algorithm, we require neither that
the initial symbols are zeros nor that it is possible to clear
all these symbols at once. Our algorithms do not require the
transmission of any additional headers. This simplifies the
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design of the relay nodes, since they do not operate differently
during and after the initialization process. The method for
finding achievable rates is based on the fact that the connection
between the source and the sink nodes is possible if the GEK
matrix is of full column rank [3].

There are two main decoding algorithms for CNC: the
time-variant decoding algorithm presented by Guo et al. [10]
and the sequential decoder presented by Erez and Feder [7].
The time-variant decoding algorithm allows the sink nodes to
decode the sent message u[n] using the previously decoded

messages {u[k]}n−1
k=0, the received vectors {y[k]}n+δ

k=0 (where δ

is the decoding delay) and the first GEK terms {F[k]}n+δ
k=0 (the

first terms in the power series expansion of the GEK). The
decodability of the network (whether the GEK matrix is of full
column rank) can be checked using the first δ +1 terms of the
GEK, as stated in [11]. In this way, only the first terms of the
GEK are needed (these can be transmitted in the headers of
the messages) in order to decode the transmitted symbol each
time. In [12], Guo et al. present a randomized construction
of a CNC for an unknown network and use the time-variant
decoding algorithm, as the full GEK are not known to the
sink nodes. The sequential decoder, on the contrary, requires
the knowledge of the full GEK for a decoding algorithm. The
full GEK are used to construct a difference equation between
the transmitted and the received symbols, from which the
transmitted symbols can be decoded. Unlike the time-variant
decoding algorithm, the sequential decoder has a decoding
complexity which does not grow with time, and it does not
need to use headers, as the full GEK are known ahead of time.
Our initialization algorithms can be used to find the full GEK,
and then the sequential decoder can be used. The time variant
decoding algorithm can also benefit from the knowledge of the
full GEK, as the GEK terms no longer need to be transmitted
in the headers.

The paper is divided into eight sections and two appendices.
In Section II we outline notations and define the problem.
In Section III we present two algorithms for finding GEK
and one algorithm for finding achievable rates of the network.
In Sections IV, V and VI we expand on how each algorithm
works, one algorithm per section. In Section VII we generalize
the algorithms for CNC with rational LEK. In Section VIII
we show that decoding using a sequential decoder after
applying our algorithms achieves the minimal decoding delay.
Section IX concludes the paper. In Appendix A we give the
proofs for all the theorems and lemmas. In Appendix B we
demonstrate the algorithm implementation with examples.

II. NOTATIONS AND PROBLEM DEFINITION

We represent a communication network by a directed graph
G = (V, E) where V is the set of nodes and E is the set
of edges. Each edge represents a noiseless directed link that
can transmit one symbol per unit time, where the symbols
are scalars from some field F. We assume that every link
has unit time delay between consequent symbol transmissions
(note, we will abandon this assumption in Section VII) and
that transmissions on all links are synchronized.

As in [8], we assume a multi-source multi-cast scenario in
which a set of source nodes transmits information to a set of

Fig. 1. Shuttle network with two users and four relay nodes.

sink nodes. We denote by S the set of all source nodes and by
D the set of all sink nodes. Every source node s ∈ S transmits
Rs symbols per unit time. Every sink node wants to receive all
the symbols sent by all the source nodes. For every edge e ∈ E ,
we say that u = head(e) and v = tail(e) if u, v ∈ V and e is
from v to u. We denote by In(u) = {e ∈ E : u = head(e)}
and Out (u) = {e ∈ E : u = tail(e)}. The symbol that is sent
on the edge e at time n ∈ Z is denoted by xe[n]. We define x[n]
to be the state vector of the network, which is a column vector
of size |E | consisting of all symbols {xe[n]}e∈E organized in
some order. We denote vectors or sequences of vectors by
lowercase bold letters, while matrices are denoted by bold
capital letters. For a sequence of vectors {c[n]}n∈Z we denote
by (c[n]) j the j ’th component of a vector c[n], and by c the
sequence itself. We define the standard basis for the vector
space F

ω as {ek}ωk=1, namely, the components of the vector
ek are zeros except for the k’th component, which is equal to
one. We define the indicator function 1{·} to be

1� =
�

1, statement � is true

0, otherwise.

Each source node s ∈ S generates Rs messages per unit
time us[n] = �

us,1[n], . . . , us,Rs [n]�T , where each message
us,k[n] is a scalar from the field F. We call us the input
sequence of source s. We define the input sequence u[n] =�

uT
s1

[n], . . . , uT
s|S| [n]

�T
. The dimension of the column vector

u[n] is ω = �
s∈S Rs .

For every sink node d , we let yd [n] be a column vector
consisting of all received symbols {xe[n] : e ∈ In(d)} and
the symbols generated by d ,{ud,k[n]}Rd

k=1 if d is also a source
node, again organized in some order. The sequence

�
yd [n]	n∈Z

will be called the output sequence of the sink node d , and the
dimension of every vector in that sequence is ld = Rd +
|In(d)|. We assume also that x[n], u[n] and yd [n] are equal
to zero for n < 0.

Example 1: Consider the shuttle network shown in Fig. 1.
The nodes s1, s2 are both source and sink nodes, and have
the same transmission rates Rs1 = Rs2 = 1. The state
vector is x[n] = (x1[n], x2[n], . . . , x8[n])T , the input sequence
is u[n] = �

us1,1[n], us2,1[n]�T (ω = 2), and the output

sequences are ys1
[n] = �

x5[n], us1,1[n]�T and ys2
[n] =

�
x8[n], us2,1[n]�T . Both ls1 and ls2 are equal to 2. The virtual

links with us1,1 and us2,1 do not exist in the real network, and
they represent the inputs of the network.

For a sequence of scalars {c[n]}n∈Z (with only a finite
number of non zero terms for n < 0) we denote by c(z) its
formal Laurent series representation c(z) = �∞

n=−∞ c[n]zn.
If c[n] = 0 for n < 0, this becomes a formal power series
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representation. We define the formal Laurent series of a vector
sequence in the same way. A power series is called a rational
power series if c(z) can be expanded by long division from a
rational function c(z) = q(z)/ (1 + zp(z)), where q and p are
polynomials. The n’th term in the Laurent series expansion
of c(z) is denoted by (c(z))[n]. For instance, the n’th term of
(zkc(z)) is (zkc(z))[n] = c[n − k]. For that reason, z can also
be thought of as a delay operator acting on a sequence {c[n]}.
For a rational function H (z) = q(z)/ (1 + zp(z)), where
q(z) = �Nq

k=0 qkzk and p(z) = �Np
k=0 pkzk are polynomials

with coefficients from the field F, and a sequence of scalars
{c[n]}n∈Z that satisfies c[n] = 0 for n < 0, the n’th term in
the Laurent series expansion of w(z) = H (z)c(z) is found
iteratively from

w[n] = −
Np


k=0

pkw[n − k − 1] +
Nq


k=0

qkc[n − k], (1)

with w[n] = 0 for n < 0. The coefficients {qk} can
also be m × k matrices over the field F and, in that case,
the sequence {c[n]}n∈Z should be a sequence of k × 1 vectors
and the sequence {w[n]}n∈Z should be a sequence of m × 1
vectors. Two formal Laurent series a(z) and b(z) are equal if
(a(z)) [n] = (b(z)) [n] for every n. We say that a(z) = b(z)
for n > N0 if (a(z)) [n] = (b(z)) [n] for n > N0. We refer the
reader to [9, Ch. 20.2] for further treatment of formal power
series.

We assume there is a CNC scheme in the network, so that
the symbol sent on a link i ∈ Out ( j) is a linear combination
of the symbols received and generated by the node j in the
previous time slot. This relationship can be written as:

xi [n+1]=



e∈I n( j )

ai,exe[n]+
R j


k=1

bi,ku j,k[n], ∀i ∈ E, ∀n ≥0,

(2)

where u j,k[n] is the k’th symbol generated by node j
(if j ∈ S) at time n, and

�
ai,e, bi,k

	
are the LEK for node

j that were chosen in advance (probably randomly) from
the field F. By letting xi [n] depend only on the previously
received symbols, we avoid the problem described in [13] by
Cai and Guo, when the CNC may not be well defined in a
cyclic network. Note that the symbols transmitted by every
source si on its output links are not its input sequence usi

but rather linear combinations of both usi and of the symbols
received by si . We define the matrices A of size |E |× |E | and
B of size |E |×ω as A = �

ai, j
�

i, j∈E and B = �
bi, j

�
i∈E,1≤ j≤ω

,
respectively, where ai, j is the LEK from link j to link i , and

bi, j is the LEK from (u) j to link i . For every sink node d we
define the matrices Cd of size ld ×|E | and Dd of size ld ×ω by
(Cd)i, j = 1 if

�
yd

�
i corresponds to x j and zero otherwise, and

(Dd)i, j = 1 if
�
yd

�
i corresponds to (u) j and zero otherwise.

With these definitions, the network input-output relationship
can be written using state equations, as was introduced by
Fragouli and Soljanin [14]:

x[n + 1] = Ax[n] + Bu[n], x[0] = x0, ∀n ≥ 0, (3)

yd [n] = Cdx[n] + Ddu[n], ∀n ∈ Z. (4)

Fig. 2. Network with one source node, one sink node and one relay node.

If the network has a reset option that clears all the symbols,
we can assume that x0 = 0. The GEK matrix for a sink node d
is given in [14] by Hd (z) = (z/P(z)) Cdad j (I − zA) B+Dd ,
where P(z) = det(I − zA). The input-output relationship can
also be written using formal Laurent series representation:

yd (z) = Hd(z)u(z) + 1

P(z)
Cdad j (I − zA)x0. (5)

Example 2: Consider the network in Fig.2 with one source
node s1 and one sink node d1. By the Min-Cut Max-Flow
Theorem the rate Rs1 = 1 is achievable and the network state
equations are:

x[n + 1] =

⎛

⎜
⎜
⎝

x1[n + 1]
x2[n + 1]
x3[n + 1]
x4[n + 1]

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0 0 0 α1,4
α2,1 0 α2,3 0

0 0 0 α3,4
0 α4,2 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1[n]
x2[n]
x3[n]
x4[n]

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

b1,1
0

b3,1
0

⎞

⎟
⎟
⎠ us1[n],

(6)

yd1[n] = �
0 1 0 0

�
x[n] + 0 · us1[n]. (7)

Note that we have restricted ourselves to the case where
LEK are scalars, while in the general case they can be rational
power series in the delay operator z [9, Ch. 20.2]. This is not a
major restriction, since one can achieve the highest achievable
rates without rational LEK if the field one works with is large
enough [9, Ch. 20.3]. Nevertheless, we treat network codes
with rational power series LEK separately in Section VII.

We are interested in finding the GEK matrix for each sink
node, which is needed to decode the sent symbols {u[n]} from
the received symbols {yd [n]}. The GEK matrices are obtained
in our algorithms by sending test symbols and obtaining the
impulse response of the network. Our algorithms neither need
to know the network topology nor the local encoding kernels,
but just the following parameters of the network:

• The set of source nodes S and upper bounds for their
transmission rates {Rs}s∈S .

• An upper bound for the number of edges in the network,
which will be called N .

Before the initialization process starts, a transmission rate for
every source node should be chosen. If an achievable rate for
a specific source node is not known, it is preferable to set its
rate to Rs = |Out (s)|. After the initialization process ends and
achievable rates are found, they should be somehow delivered
from the sink to the source nodes. Every source node s can
then reduce its rate Rs by sending zeros on some of its input
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sequences. The delivery of achievable rates from the sink to the
source nodes requires a low-capacity communication between
the sink and the source nodes, and it is required both in cyclic
and in delay-free acyclic networks.

We define the rates
�
R�

s

�
s∈S to be achievable for a sink

node d with specific LEK if that sink node can decode the
input sequence u from the output yd with the current LEK
when every source node s transmits symbols on R�

s out of
its input sequences, and zeros on the rest of the (Rs − R�

s)
input sequences. We define the rates

�
R�

s

�
s∈S to be achievable

with specific LEK if they are achievable for every sink node
separately. Note that if the rates

�
R�

s

�
s∈S are achievable by

the Min-Cut Max-Flow condition and the LEK were chosen
randomly from a large enough field then for every sink node
these rates will also be, with high probability, achievable by
our definition and, hence, our definition does not “miss” any
achievable rates. Moreover, if the rates

�
R�

s

�
s∈S are achievable

for every sink node separately then by the Min-Cut Max-Flow
theorem they are also achievable simultaneously. Therefore,
our definition of achievable rates with specific LEK coincides,
with high probability, with the definition by the Min-Cut Max-
Flow condition.

It may happen, however, that the LEK were not chosen
well, and some rates are achievable for different sink nodes
separately but not simultaneously (e.g. if a specific rate is
achievable for sink nodes d1 and d2, but each sink node
requires other inputs to be set to zero). The assignment of zero
to some inputs of a source node s is equivalent to sending the
input sequence us = Bsunew

s , where unew
s is the new input

sequence of the source s (with the reduced rate), and Bs is
a Rs × R�

s matrix for which [Bs ]i, j is equal to 1 if
�
unew

s

�
j

corresponds to (us)i , and zero otherwise. However, instead of
deciding which inputs should be set to zero, every source s
can generate the matrix coefficients [Bs ]i, j randomly (and
independently) from the field F. This will assure that, with
high probability, every sink node will be able to decode unew

s
provided that F is large, a fact that is based on [8, Th. 2]. This
theorem states that if there exist LEK for the entire network
that allow for k sink nodes to decode u from their output
sequences, then by randomizing some of the LEK those sink
nodes will still be able to decode u with a probability of at least
(1 − k/|F|)η, where η is the number of links associated with
random coefficients. After updating the rates, an initialization
process should be run again so that the sink nodes obtain the
new GEK.

III. THE INITIALIZATION ALGORITHMS

In this section, we present two initialization algorithms
that find the GEK for the sink nodes, which are needed for
decoding, and one algorithm that finds achievable rates. The
goal of the first two is to find a difference equation of the
following form:

Pd (z)yd(z) = Gd (z)u(z). (8)

This form describes the relationship between the transmitted
sequence u[n] and the received sequence yd [n] (for every sink
node d). The GEK of a sink node d are Gd(z)/Pd (z). Using a
decoding method similar to the sequential decoder given in [7],

we can show that it is possible to decode the input sequence
from the output when the polynomial Pd (z) is not the zero
polynomial and the transfer matrix Gd(z) is of full column
rank over the polynomial ring F[z].

In the first algorithm it is assumed that we can clear all the
symbols on the network at some fixed times and, therefore, this
algorithm is a bit faster and easier to analyze than the second
algorithm that does not operate under this assumption. The
objective of the third algorithm is to find achievable rates for
all source nodes. This is done by examining the transfer matrix
Gd (z) for every sink node d . To obtain this matrix, one of the
initialization algorithms should be used first.

We now present the first algorithm. Its first part consists of
ω loops. Every loop takes 2N + 1 time units, and after each
loop the symbols on all edges are cleared. Algorithm 1 is
applied in Example 16 in Appendix B.

Algorithm 1 Initialization Algorithm With Network Resetting

1) For i=1 to ω do:

• Transmit the input sequence u[n] =�
ei , if n = 0

0, if 1 ≤ n ≤ 2N
. In order to send this sequence,

the source node that corresponds to the current
iteration should send the symbol 1 on one of its
inputs at time n = 0, and zeros at all other times
and on all other inputs. All other sources should
send only zeros during that iteration.

• Every sink node d should store its received vec-
tors

�
yi

d [n]	n∈{0,..,2N},i∈{1,...,ω}, where the vectors

{yi
d [n]}2N

n=0 are the output sequence at that iteration.
• Reset the network after n = 2N , by setting n = 0

and x[0] = 0.

2) For every sink node d do the following:

• Combine the received vectors into matrices:
Md [n] = �

y1
d [n], . . . , yω

d [n]�.
• Find any non-trivial solution to the system of linear

equations

N


k=0

αd,kMd [k + τ ] = O, ∀τ = 1, . . . , N, (9)

where O is the zero matrix and {αd,k}N
k=0 ⊆ F are

the unknowns. This system has ld ×ω× N equations
and, as will be explained in Section IV, it always has
a non trivial solution.

• For the found solution {αd,k}N
k=0, let Nd = max{k :

αd,k 	= 0}.
3) Construct the polynomial Pd(z) and the matrix Gd(z)

as

Pd (z) =
Nd


k=0

αd,kzNd −k, (10)

Gd(z) =
Nd −1


k=0

Nd


j=k+1

αd, j Md [ j − k]zNd−k

+ Md [0]Pd(z). (11)
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Algorithm 1 (Continued.) Initialization Algorithm With
Network Resetting

4) The difference equation that describes the relationship
between the input and the output sequences u[n] and
yd [n] is given in (8), with the polynomial Pd (z) and the
matrix Gd (z) as defined in (10)-(11). If Gd(z) is of full
column rank over the polynomial ring F[z], then u[n]
can be decoded from yd [n] by solving (8). Otherwise,
either the transmission rates {Rs} of some source nodes
should be reduced, or other LEK should be chosen
(or both).

We now present the second algorithm, in which no resetting
operation is needed. We consider the case when the network
initial state is x[0] = x0, where x0 can be arbitrary and
unknown. Algorithm 2 is needed if the network we are using
is not under our control (except for the source and the sink
nodes) and, hence, we cannot send a reset command to all
nodes, or if the relay nodes do not have a reset option at all
because of cost/performance considerations. Algorithm 2 is
similar to Algorithm 1, except that this algorithm takes an
additional 2N + 1 time units and the expression for obtaining
Gd(z) is a bit different. If, nevertheless, we consider the
case with x0 = 0, then we can skip the operations in
the first (2N + 1) time units since the output vectors will
contain only zeros. After applying Algorithm 2, (8) will
hold only for n > Nd , where Nd will have been defined
in Algorithm 2. Nevertheless, (8) enables the decoding of
the input sequence. Algorithm 2 is applied in Example 18
in Appendix B.

Algorithm 2 Initialization Algorithm Without Network
Resetting

1) Transmit the input sequence u[n] =�ω
k=1 ek1{n=(2N+1)k}, for 0 ≤ n < (ω + 1) (2N + 1).

Note that in order to send that sequence, every source
node s ∈ S should send the symbol 1 on each
of every one of its inputs in turn (us,1, . . . , us,Rs )
at the correct time, and zeros at all other times.
Every sink node should store its received vectors
{yd [n]}0≤n<(ω+1)(2N+1), where each vector yd [n] is of
dimension ld .

2) For every sink node d do the following:

• Find any non trivial solution to the system of linear
equations

N


j=0

αd, j yd [ j +τ ]=0, ∀τ ∈
ω�

p=0

N�

τ̃=1

{(2N +1)p+τ̃},

(12)

where {αd, j }N
j=0 ⊆ F are the unknowns. This system

has ld × N × (ω + 1) equations and, as will be
explained in Section V, it always has a non trivial
solution.

• For the found solution {αd,k}N
k=0, let Nd = max{k :

αd,k 	= 0}.

Algorithm 2 (Continued.) Initialization Algorithm Without
Network Resetting

3) The polynomial Pd (z) and the matrix Gd(z) are defined
as:

Pd (z) =
Nd


k=0

αd,kzNd −k, (13)

gd,i (z) =
Nd


k=0

Nd


j=0

αd, j yd [ j + (2N + 1)i − k]zNd −k,

(14)
Gd (z) = �

gd,1(z), gd,2(z), . . . , gd,ω(z)
�
. (15)

4) The difference equation that describes the relationship
between the input and the output sequences u[n] and
yd [n] is given in (8), with the polynomial Pd(z) and
the matrix Gd(z) as defined in (13)-(15). The equation
holds for terms with n > Nd . If Gd (z) is of full
column rank over the polynomial ring F[z], then u[n]
can be decoded from yd [n] by solving (8). Otherwise,
either the transmission rates {Rs} of some source nodes
should be reduced, or other LEK should be chosen
(or both).

The complexity analyses of Algorithms 1 and 2 are as
follows: There are (2N+1)ω transmissions in Algorithm 1 and
(2N + 1)(ω + 1) transmissions in Algorithm 2. Next, there
is the solution of linear equations which have n1 = N + 1
unknowns and n2 equations, where n2 = ld × ω × N in
Algorithm 1 and n2 = ld × (ω+ 1)× N in Algorithm 2. If the
system of equations is solved with Gaussian elimination, it has
a complexity of O(n2

1n2).
We now present the third algorithm that enables us to find

achievable rates with the chosen LEK. It uses the transfer
matrix Gd(z) from (8) and, hence, Algorithm 1 or 2 should be
used first to find the matrix. At the end of this algorithm, every
sink node d will be able to tell what rates are achievable for it.

Algorithm 3 Finding Achievable Rates

• For every sink node d , split the matrix Gd(z) that was
obtained in Algorithm 1 or 2 into |S| matrices, such that
each matrix Gd,s(z) has the Rs columns of the matrix
Gd(z) that correspond to us and such that the following
will hold:

Gd (z)u(z) = �
Gd,s1(z), . . . , Gd,s|S|(z)

�
⎡

⎣
us1(z)

...
us|S|(z)

⎤

⎦

=



s∈S
Gd,s(z)us(z). (16)

• For every possible |S|-tuple (R�
s)s∈S with integer entries

that satisfy R�
s ≤ Rs , check if for every source node s

there exist R�
s column vectors

�
vs,1, . . . , vs,R�

s

	
in the

columns of the matrix Gd,s(z) such that all the vec-

tors ∪s∈S ∪R�
s

k=1 {vs,k} are linearly independent over the
polynomial ring F[z]. If there are such vectors, the rates
(R�

s)s∈S are achievable for the sink node d .
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Algorithm 3 enables us to find achievable rates with the cur-
rently chosen LEK. It is applied in Example 17 in Appendix B.
An upper bound on the complexity of Algorithm 3 can be
derived as follows: to find out if rates (R�

s)s∈S are achievable,
we need to go over the columns of the matrices Gd,s(z),
in every matrix to choose R�

s out of Rs column vectors (there
are

�Rs
R�

s

�
combinations in every matrix), and to check if the

vectors are linearly independent. There are ω� = �
s∈S R�

s
vectors, each vector of length ld . If ld < ω� then the vectors are
linearly dependent. If ld = ω�, then to check for their indepen-
dence we need to compute a determinant of a ω� × ω� matrix;
each element has a polynomial of degree Nd , where Nd ≤ N .
The complexity in computing this determinant depends on the
algorithm for determinant computation, but, in the worst case,
with Gaussian elimination, it can be O(ω�5 N2

d ) (see [15]).
If ld > ω�, then we need to delete ld −ω� rows from this matrix
(there are

�ld
ω�
�

combinations for this choice), then to compute
its determinant, and if it is not zero then the vectors are linearly
independent. If it is zero, we can choose different vectors from
the matrices Gd,s(z) and/or remove different rows from the
final matrix. In the worst case, we will perform

�ld
ω�
��

s∈S
�Rs

R�
s

�

determinant computations to verify if the rates are achievable.
However, there is a much faster “probabilistic" way which
requires only one determinant computation: we can multiply
the matrices Gd,s(z) from the right by a random matrix Bs and
from the left by a random matrix Qs . The components of these
matrices should be chosen randomly from the field F. The
dimensions of these matrices should be: (Rs × R�

s) for Bs and
(ω� × ld ) for Qs . Then, there is only one way of choosing the
vectors from the matrices {QsGd,s(z)Bs}s∈S (which is to take
all its vectors), and there is only one determinant that should be
computed. Note that if the rates (R�

s)s∈S are achievable, then
choosing specific vectors from the matrix Gd,s(z) is equivalent
to multiplying it from the right by a binary matrix Bs ,
and deleting specific rows from the matrix is equivalent to
multiplying it by a binary matrix Qs from the left. However,
if the matrices Bs and Qs are random, the rates will still be
achievable, with high probability, if the field is large enough.
This follows from [8, Th. 2] which we stated at the end of
Section II.

IV. DERIVATION OF ALGORITHM 1

Our goal is to find a non zero polynomial Pd (z) and a matrix
Gd(z) such that the difference equation (8), from which it is
possible to decode u from yd , will hold. We assume, without
loss of generality, that N is equal to the number of edges
in the network. However, if N is larger, we can assume that
there are an additional 2 (N − |E |) virtual nodes and (N − |E |)
virtual edges between these nodes. The virtual edges are not
connected to the original network and have no influence on it.
The number of edges in the new network is N .

The input-output relationship of the network is given by the
state equations (3)-(4). Their general solution is:

yd [n] = 1{n≥0}Cd Anx0

+
n−1


k=−∞
Cd An−1−kBu[k] + Dd u[n], ∀n ∈ Z, (17)

where the initial state is x0 = 0. Note that u[n] and
yd [n] vanish for n < 0 and, therefore, (17) also holds for
n < 0 and the sum in (17) is finite. The first part of the
algorithm consists of ω loops and in each loop i the input
sequence is

u[n] =
�

ei , n = 0

0, 1 ≤ n ≤ 2N.
(18)

The output sequence of every sink node is given in the
following lemma.

Lemma 3: Let the input sequence u[n] be as given in (18).
The output sequence in that case will be

yi
d [n] =

�
Dd ei , n = 0

CdAn−1Bei , 1 ≤ n ≤ 2N.
(19)

Moreover, if one combines the output vectors into matrices,
as is done in Algorithm 1, Md [n] = �

y1
d [n], . . . , yω

d [n]�, then
the corresponding matrices will be

Md [n] = Cd An−1B, ∀1 ≤ n ≤ 2N,

Md [0] = Dd . (20)

Proof: Follows immediately by substituting the input
sequence from (18) into the general solution given in (17)
and using the fact that the initial state x0 is zero. �

We now state the Cayley-Hamilton Theorem [16, p. 284],
since it plays an important role in our derivation.

Theorem 4 (Cayley-Hamilton Theorem): For a given n × n
matrix A over the field F, let PA(t) = det(tI − A) be the
characteristic polynomial of A. Let {ak}n−1

k=0 be the coefficients
of PA(t), namely PA(t) = tn +�n−1

k=0 aktk . Then the following
holds:

PA(A) = An +
n−1


k=0

akAk = O, (21)

where O is the zero n × n matrix.
In the second step of the algorithm we find a non trivial

solution {αd,k}N
k=0 to the system of linear equations (9). If we

substitute Md from (20) into (9) we get:

∀τ ∈ {1, . . . , N} : O =
N


k=0

αd,kMd [k + τ ] (22)

=
N


k=0

αd,kCdAk+τ−1B (23)

= Cd P̃d (A)Aτ−1B, (24)

where P̃d (t) = �N
k=0 αd,k tk . We see, therefore, that solv-

ing (9) is equivalent to finding a non zero polynomial P̃d(t)
of degree N or less that satisfies Cd P̃d(A)Aτ−1B = 0
for τ ∈ {1, . . . , N}. Using the Cayley-Hamilton theorem,
this system of equations has at least one non trivial solu-
tion, where P̃d(t) is the characteristic polynomial of A. The
next lemma shows that Cd P̃d (A)Aτ−1B = 0 holds also
for τ > N if it holds for τ ∈ {1, . . . , N}. Its proof is
given in Appendix A and is based on the Cayley-Hamilton
Theorem.
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Lemma 5: If a polynomial P̃d (t) satisfies

Cd P̃d (A)Aτ B = O, ∀τ ∈ {0, 1, . . . , N − 1}, (25)

where A is a square N × N matrix, then it also satisfies

Cd P̃d (A)Aτ B = O, ∀τ ∈ N. (26)

We now define a new polynomial Pd (z) = zNd P̃d (z−1),
where Nd is the degree of P̃d (z). Using (17) and Lemma 5
we show in Theorem 6 that

�
Pd (z)yd (z)

� [n] is a linear
combination, with matrix coefficients, of only {u[n − k]}Nd

k=0
and it does not include outcomes from earlier times; hence,
a difference equation between u and yd can be constructed.

Theorem 6: For a given sink node d, let Pd (z) =
zNd P̃d (z−1) and Gd(z) be the polynomial and the matrix
defined in (10)-(11); then (8) holds. Furthermore, it is possible
to decode u from yd if and only if the transfer matrix Gd(z)
is of full column rank over the polynomial ring F[z].

Theorem 6, which is proved in Appendix A, gives us a way
to decode the transmitted symbols and it also assures us that
if the system of linear equations in (8) does not have a unique
solution, then there is no way for us to find u from yd , even
if we know the network topology and the LEK.

V. DERIVATION OF ALGORITHM 2

We are interested, again, in a difference equation between
u and yd , as given in (8), that does not depend on x0.
As described in step 1 of Algorithm 2, the input sequence
u[n] is given by

u[n] =
ω


k=1

ek1{n=(2N+1)k}. (27)

We substitute this input sequence into the general solution of
the network’s state equations (17) to get the output sequence
for every sink node d:

yd [n] = 1{n≥0}Cd Anx0

+
ω


k=1

n−1


i=−∞
CdAn−1−i Bek1{i=(2N+1)k}

+ Dd

ω


k=1

ek1{n=(2N+1)k} (28)

= 1{n≥0}Cd Anx0 +
min

�
ω,
�

n−1
2N+1

��




k=1

CdAn−1−(2N+1)kBek

+ Dd

ω


k=1

ek1{n=(2N+1)k}. (29)

In the second step of the algorithm we find a non triv-
ial solution to the system of linear equations (12). Denote
by P̃d(t) = �N

k=0 αd,ktk a polynomial whose coefficients
are a solution of (12), its degree by Nd and by Pd (t) =
t Nd P̃d (t−1). The next theorem shows that P̃d(t) has important
properties that will be used further. Its proof is outlined in
Appendix A.

Theorem 7: A polynomial P̃d (t) = �N
k=0 αd,ktk satisfies

Cd P̃d (A)Aτ B = O, ∀τ ∈ {0, . . . , N − 1}, (30)

Cd P̃d (A)Aτ+1x0 = 0, ∀τ ∈ {0, . . . , N − 1} (31)

if and only if its coefficients are a solution of (12).
In (30)-(31) O is the ld × ω zero matrix and 0 is the zero

column vector of dimension ld . We see that there is at least one
non trivial solution to (12) where P̃d (t) is the characteristic
polynomial of A. The next lemma shows that (30)-(31) are
also satisfied for τ ≥ N .

Lemma 8: Let P̃d(t) be a polynomial and A a square N×N
matrix. If either of the equations (30) or (31) hold for τ ∈
{0, . . . , N − 1}, then it also holds for all τ ≥ N.

The proof is similar to the proof for Lemma 5 and is
therefore omitted.

Using (17) and Lemma 8 we show in Theorem 9 that�
Pd (z)yd (z)

� [n] is a linear combination, with matrix coef-
ficients, of {u[n − k]}Nd

k=0 and not of u[k] for earlier times
and of x0; thus, a difference equation between u and yd can
be constructed. The equation will hold for any time after the
initialization process ends, even without resetting the state
vector. The proof for Theorem 9 is outlined in Appendix A.

Theorem 9: Let Pd(z) and Gd (z) be, respectively, the poly-
nomial and the matrix defined in (13)-(15). Then the following
difference equation holds:

�
Pd (z)yd

� [n] = (Gd(z)u) [n], ∀n > Nd . (32)

Furthermore, it is possible to decode u from yd if and only
if the transfer matrix Gd (z) is of full column rank over the
polynomial ring F[z].

VI. DERIVATION OF ALGORITHM 3

A direct consequence of Theorems 6 and 9 is the fact
that we can find achievable rates for every source node from
the matrices {Gd (z)}d∈D. If the transmission rates are not
achievable with the given LEK, then at least one sink node d
cannot decode the input sequence u from the output yd and,
therefore, the transfer matrix Gd (z) is not of full column
rank. In Algorithm 3 we examine the columns of the transfer
matrices Gd(z) to see if some columns can be removed so
that Gd(z) will be of full rank. If it is possible, the resulting
rates (after the columns’ removal) are achievable. This result is
stated in the following theorem, the proof of which is outlined
in Appendix A.

Theorem 10: For a given network and a sink node d, let

Pd (z)yd(z) = Gd(z)u(z) =



s∈S
Gd,s(z)us(z) (33)

describe the relationship between the input sequence u and the
output sequence yd that was found in Algorithm 1 or 2. For
every source node s ∈ S, let Rs be the transmission rate of
s that was set before an initialization algorithm was started.
Then, the rates (R�

s)s∈S are achievable for the sink node d
with the current LEK if and only if for every source node
s ∈ S there exist R�

s linearly independent column vectors
vs,1, . . . , vs,Rs from the columns of the matrix Gd,s(z), such

that ∪s∈S ∪R�
s

k=1 {vs,k} is a set of linearly independent vectors
over the polynomial ring F[z].
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VII. GENERALIZATION TO RATIONAL

ENCODING KERNELS

Although we restricted ourselves to the case of scalar LEK,
the above algorithms can be extended to networks that use
CNC with rational power series as LEK [9, Ch. 20.2]. For
each node j ∈ V denote by x j

out [n] the vector of symbols
sent on the output links of node j at time n, and by x j

in [n]
the vector of symbols received by node j at time n. The
components of x j

out [n] are some of the components of x[n],
while the components of x j

in [n] can be components of both
x[n] and u[n] (if j ∈ S). In case the LEK are rational power
series, the relationship between the input and the output of
each node j can be written as:

(1 + q j (z))x
j
out(z) = H j (z)x

j
in(z), (34)

where q j (z) = �M j1
k=1 q j [k]zk is a polynomial and H j (z) =

�M j2
k=0 H j [k]zk is a matrix of polynomials. We say that the

i ’th output link of node j has scalar LEK with delay k ∈
{0, 1, 2, . . .} if the i ’th row of the matrix

�
H j (z)/

�
1 + q j (z)

��

is of the form of azk , where a is a row vector of scalars from
the field F.

The input-output relationship of every difference equation,
and in particular of (34), can also be described using state
equations:

x̃ j [n + 1] = Ã j x̃ j [n] + B̃ j x
j
in[n], x̃ j [0] = x̃ j,0, ∀n ≥ 0,

(35)

x j
out = C̃ j x̃ j [n] + D̃ j x

j
in [n], ∀n ∈ Z, (36)

where the matrices Ã j , B̃ j , C̃ j and D̃ j are determined by the
LEK. We refer the reader to [17, Ch. 3.1] to find possible ways
of constructing state equations from a difference equation.
A construction of state equations from a difference equation
is called a state space realization. We call x̃ j the inner state
vector of node j because it is used solely to describe the
input-output relationship of node j .

Example 11: Consider a node j with two input and two
output links with the following LEK:

x j
out(z) =

� z
1−z ,

1
1−z

α + z, 0

�

x j
in(z). (37)

We find a state space realization for these LEK. First, we write
a difference equation for the input-output relationship of the
node:

x j
out,1[n] = x j

out,1[n − 1] + x j
in,1[n − 1] + x j

in,2[n], (38)

x j
out,2[n] = αx j

in,1[n] + x j
in,1[n − 1]. (39)

where x j
out,k and x j

in,k are the k’th components of x j
out

and x j
in respectively. We take the state vector x̃ j [n] =

�
x j

out,1[n − 1], x j
in,1[n − 1]

�T
. With this state vector the fol-

lowing state equations hold:

x̃ j [n + 1] =
�

x j
out,1[n]

x j
in,1[n]

 

(40)

=
�

x j
out,1[n − 1] + x j

in,1[n − 1] + x j
in,2[n]

x j
in,1[n]

 

(41)

=
!

1, 1
0, 0

"

x̃ j [n]+
!

0, 1
1, 0

"

x j
in [n], ∀n ≥0, (42)

x j
out [n] =

!
1, 1
0, 1

"

x̃ j [n] +
!

0, 1
α, 0

"

x j
in [n]. (43)

For each node j ∈ V denote the state vector of node j in its
minimal realization (with the smallest dimension state vector)
by x̃ j [n], and its dimension by dim(x̃ j [n]). If we concatenate
all state vectors {x̃ j [n]} j∈V into one state vector x̃[n] of dimen-
sion

�
j∈V dim(x̃ j [n]), a global state space representation of

the network can be written:

x̃[n + 1] = Âx̃[n] + B̂u[n], x̃[0] = x̃0, ∀n ≥ 0, (44)

yd [n] = Ĉd x̃[n] + D̂du[n], ∀n ∈ Z, (45)

where Â, B̂, Ĉd and D̂d are defined by the network topology
and the LEK. The derivation of our algorithms is based only
on the fact that the input-output relationship of the network
can be described by state equations with a state vector of
dimension |E |, which is less than or equal to N . In the case
where we use rational power series as LEK, the algorithms
will still apply if we take N to be larger that the dimension
of the state vector x̃:

N ≥



j∈V
dim(x̃ j [n]). (46)

In the first algorithm the state vectors of all nodes x̃ j should be
cleared after every 2N transmissions. Note that to calculate the
right hand side of (46), one needs additional knowledge of the
network, such as an upper bound for the dimension dim(x̃ j [n])
for every node. This can be found if we have an upper bound
for the degree of the numerator and the denominator of the
rational-function-LEK, because a state-space realization can be
constructed with a state vector of a dimension which is equal
to the maximal degree of the numerator and the denominator of
the LEK multiplied by |Out ( j)|, as shown in [17, Ch. 3.1].
Note also that N can be smaller than the number of edges
in the network, if dim(x̃ j [n]) ≤ |Out ( j)| for some nodes
j ∈ V . For example, if a node j has zero delay on all of its
links, it will not have a state vector at all since its input-output
relationship x j

out = H j [0]x j
in does not require one. In that case,

this node will not contribute to N since dim(x̃ j [n]) = 0. If a
node j has k output links with unit time delay and all other
links with zero delay, it will have a state vector of dimension
not larger than k. This is stated in the following theorem,
the proof for which is outlined in Appendix A.

Theorem 12: If a node v has scalar LEK, k output links
with unit time delay and |Out (v)| − k output links with zero
delay, then its input-output relationship can be described by
state equations with a state vector of dimension not larger
than k.

According to Li and Yeung [4], it is sufficient for a network
to have unit time delay on only one link of every cycle for
a network code to be well defined. If that is the case and all
LEK are scalars, then it is enough to take N to be equal to
the number of links with unit time delay, which is not more
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than the number of cycles in the network. We therefore have
the following result:

Corollary 13: If a network (V, E) has a CNC scheme with
scalar LEK and it has k links with unit time delay and |E |− k
links without delay, then Algorithms 1 and 2 will give the
correct GEK, provided that N ≥ k.

The proof for Corollary 13 is outlined in Appendix A.
We apply Algorithm 2 for the shuttle network with non-scalar
LEK in Example 18 in Appendix B.

The upper bound for N that we gave in (46) is not tight,
and often a much smaller value of N can be taken, but this
requires some additional knowledge of the network. If, for
example, we can somehow know that the GEK of every sink
node has its maximum numerator degree not larger than N1
and its denominator degree not larger than N2, and ld is not
larger than L, then for every sink node a state-space realization
can be constructed with a state vector of a dimension not larger
than max(N1, N2)L. In this case, we can take N equal to that
upper bound, and the initialization algorithms will still work
with this value of N .

VIII. DECODING DELAY

At the end of the proofs of Theorems 6 and 9 we gave
a decoding algorithm (which is a small modification of the
sequential decoder presented in [7]) that can be used after
applying Algorithms 1 and 2. In this section we show that the
decoding delay that we achieve is optimal, in the sense that
no other decoding algorithm can achieve a shorter decoding
delay. As a consequence, the decoding delay of our algorithms
does not depend on the specific solution that we choose when
we solve the linear equations (9) or (12).

We briefly recap the decoding algorithm; its full details can
be found in the proofs of Theorems 6 and 9. First, we compute
q(z) from (71) or (109), and then we use the identity q(z) =
Gd(z)u(z) (where Gd(z) is a square matrix of polynomials,
and it is of full column rank), and multiply both sides by
ad j (Gd(z)) to get:

ad j (Gd (z)) q(z) = det (Gd (z)) u(z) (47)

For convenience, we write:

ad j (Gd(z)) = zg
Wmax


k=0

W[k]zk, g ≥ 0, W[0] 	= O, (48)

det(Gd(z)) = zτ β

�

1 +
K


i=1

γi z
i

 

, τ ≥ 0, β 	= 0. (49)

We substitute these forms of ad j (Gd(z)) and det(Gd(z)
into (47), and get:

u[n − τ ] =
�

β−1
Wmax


k=0

W[k]q[n − k − g]
 

−
K


i=1

γi u[n − i − τ ] (50)

The decoding delay to decode u from q in this algorithm is
δc = min(0, τ − g). Recall that q[n] is defined (for all n ≥ 0
in Algorithm 1 and for n > Nd in Algorithm 2) by:

q[n] = �
Pd (z)yd(z)

� [n] (51)

=
Nd


k=0

αd,kyd [n − Nd + k], (52)

and αd,Nd 	= 0. This means that we can find {q[k]}k≤n from
{yd [k]}k≤n and vice versa. Therefore, δc is also the decoding
delay of our algorithm to decode u from yd .

Denote by δmin the minimal decoding delay (in decoding
u from yd or from q) achievable by any decoding algorithm.
From the definition, we have δmin ≤ δc. We will show that
δmin ≥ δc, and this will prove the optimality of our decoding
delay.

Without loss of generality and for convenience, we decode u
from q instead of from yd . We explained above why this does
not change the optimal decoding delay. From the definition
of δmin, it is possible to obtain u[0] from {q[k]}δmin

k=0. Because
the relationship between u(z) and q(z) is linear, and because
the sequence {u[n]}n≥0 can be arbitrary, we can assume,
without loss of generality, that the expression for u[0] from
{q[k]}δmin

k=0 will also be linear, and it is obtained by simply
solving linear equations:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

Gd [0] O O . . . O
Gd [1] Gd [0] O . . . O
Gd [2] Gd [1] Gd [0] . . . O

...
...

...
. . .

...
Gd [δmin] Gd [δmin − 1] Gd [δmin − 2] . . . Gd [0]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u[0]
u[1]
u[2]

...
u[δmin]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q[0]
q[1]
q[2]

...
q[δmin]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(53)

u[0] =
δmin


k=0

Tkq[k] (54)

Now, instead of talking about some “optimal” decoding
algorithm, we will limit ourselves to a rational-power-series
decoder that decodes u from q with a decoding delay δmin.
The following lemma shows that such a decoder exists:

Lemma 14: There exists a rational power series P(z) =�∞
k=0 P[k]zk that satisfies:

zδminu(z) = P(z)q(z) (55)

The proof for this lemma is in Appendix A. In the next
theorem, we prove that δmin ≥ δc. For that, we write the
equality G−1

d (z) = z−δmin P(z), and then we show that if
δmin < δc then P(z) will no longer be a rational power series,
and it will contain negative powers of z in the expansion.

Theorem 15: The following identity holds: δmin ≥ δc

The proof for this theorem is in Appendix A.

IX. SUMMARY

The use of CNC schemes requires the choice of LEK at the
relay nodes that would enable the sink nodes to decode the
transmitted symbols. The coefficients can be chosen randomly
to simplify the network code construction, but this would
make it necessary for the sink nodes to know the GEK of the
network. The algorithms we presented in this paper enable the
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sink nodes to find their GEK that facilitates decoding the trans-
mitted from the received symbols without learning the exact
topology of the network and the chosen LEK. Achievable rates
can also be found from the obtained GEK. The algorithms
require the source nodes to transmit basis vectors and the
sink nodes to solve a system of linear equations. Although
there might be multiple solutions to the linear equations,
every solution is suitable for a decoding algorithm, and the
decoding delay does not depend on the specific solution
that is chosen. The first stage in our algorithms requires
the transmission of test vectors in the first (2N + 1)ω (for
Algorithm 1) or (2N +1)(ω+1) (for Algorithm 2) time units,
where N is proportional to the size of the network (number
of edges or nodes). This number can be quite large for very
large networks, but if the number of transmitted symbols is
very large (compared to N), the time of the initialization
process will be negligible. Future work can check how N can
be decreased for all networks or for some special topologies
of networks, or how it can depend on additional knowledge
of the network, such as the number of disjoint paths from the
source to the sink nodes, the length of the largest cycle in the
network, the length of the longest path from every source to
every sink node, the maximal accumulated delay along every
cycle in the network or along every path from every source
to every sink node, etc. Another direction for future work is
to check whether it is possible to decrease N or the decoding
delay by choosing an appropriate field F or an appropriate
LEK (scalar or rational power series).

APPENDIX A
PROOFS

Proof for Lemma 5: A direct consequence of the Cayley-
Hamilton Theorem is that for every N × N matrix A,
its power Aτ can be written as a linear combination of
I, A, A2, . . . , AN−1 for τ ≥ N . By substituting this linear
combination into (26) we get for every τ ≥ N :

Cd P̃d (A)Aτ B = Cd P̃d (A)

�
N−1


i=0

γi Ai

 

B (56)

=
N−1


i=0

γi

�
Cd P̃d (A)Ai B

�
(57)

= O, (58)

where the last equality holds because P̃d (z) satisfies (25). �
To prove Theorem 6 we first use the state equations general

solution (17) to show that
�
Pd (z)yd (z)

� [n] is a finite lin-
ear combination, with matrix coefficients, of {u[n − k]}∞k=0.
We split this linear combination into two sums, the first
contains the terms {u[n − k]}∞k=Nd +1 and the second contains

{u[n − k]}Nd
k=0. We use Lemma 5 to show that the first sum

vanishes, and we use the definition of Gd(z) from (11) to
show that the second sum is equal to (Gd(z)u(z)) [n].

To prove the second part of the theorem we give a decoding
scheme to find u from yd if Gd (z) is of full rank. If it is not,
we show that there are two different input sequences u[n] that
can lead to the same output sequence yd [n] and, therefore,

decoding in that case is not possible as one cannot be sure
which of the input sequences was transmitted.

Proof for Theorem 6: We examine the sequence�
Pd (z)yd (z) − Pd (z)Ddu(z)

� [n]:
�
Pd (z)

�
yd (z) − Ddu(z)

�� [n] (59)

(a)=
⎛

⎝
Nd


j=0

αd, j z
Nd − j �yd (z) − Dd u(z)

�
⎞

⎠ [n] (60)

=
Nd


j=0

αd, j
�
yd [n + j − Nd ] − Dd u[n + j − Nd ]� (61)

(b)=
Nd


j=0

n+ j−Nd −1


i=−∞
αd, j CdAn+ j−i−Nd −1Bu[i ] (62)

(c)=
n−Nd −1


i=−∞

Nd


j=0

αd, j Cd An+ j−i−Nd −1Bu[i ]

+
n−1


i=n−Nd

Nd


j=i−n+Nd +1

αd, j Cd An+ j−i−Nd −1Bu[i ] (63)

=
n−Nd −1


i=−∞
Cd

⎛

⎝
Nd


j=0

αd, j A j

⎞

⎠An−i−Nd −1Bu[i ]

+
n−1


i=n−Nd

⎛

⎝
Nd


j=i−n+Nd +1

αd, j CdAn+ j−i−Nd −1B

⎞

⎠u[i ]

(d)=
n−Nd −1


i=−∞
Cd P̃d(A)An−i−Nd −1Bu[i ]

+
Nd −1


k=0

⎛

⎝
Nd


j=k+1

αd, j CdA j−k−1B

⎞

⎠u[n + k − Nd ]

(e)= 0 +
Nd −1


k=0

⎛

⎝
Nd


j=k+1

αd, j CdA j−k−1B

⎞

⎠u[n + k − Nd ]
(64)

=
⎛

⎝
Nd −1


k=0

⎛

⎝
Nd


j=k+1

αd, j CdA j−k−1B

⎞

⎠ zNd −ku(z)

⎞

⎠ [n],

(65)

where

(a) is obtained by substituting Pd (z) from (10),
(b) is obtained by substituting yd from (17) and using the

fact that x0 = 0,
(c) is obtained by changing the summation order,
(d) is obtained by changing a summation variable in the sec-

ond sum to k = i − n + Nd ,
(e) follows from Lemma 5, as P̃d (z) satisfies

Cd P̃d (A)Aτ B = O, ∀τ ∈ N. (66)

Therefore, by Lemma 3 and by (11) we get:

Pd (z)yd =
⎛

⎝
Nd −1


k=0

⎛

⎝
Nd


j=k+1

αd, j CdA j−k−1B

⎞

⎠zNd −k + Pd(z)Dd

⎞

⎠u

(67)

= Gd(z)u. (68)
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We now prove the second part of the theorem that states
that it is possible to decode the input sequence from the output
if and only if the matrix Gd (z) is of full column rank over
the polynomial ring F[z]. If it is not, there exists a non zero
vector of polynomials vd(z) such that Gd(z)vd (z) = 0. Let
u(z) = vd(z), where u(z) is the formal Laurent series of the
input sequence. As vd(z) is a vector of polynomials, the input
sequence satisfies u[n] = 0 for n < 0 and, hence, this is a
legal input sequence. Since Pd (z) is not the zero polynomial
and can be written as

Pd (z) = αd,Nd + zqd(z), (69)

where qd(z) is a polynomial and αd,Nd 	= 0, we can divide
(8) by Pd (z) to get yd (z):

yd(z) = 1

Pd (z)
Gd(z)u(z) = 0. (70)

In this case, the output sequence yd [n] will vanish, and no
decoding method will tell if the input sequence was u[n] or a
zero sequence.

On the other hand, if Gd (z) is of full column rank then we
can show that the input sequence can be decoded from the
output sequence. We apply a decoding scheme that is slightly
different to that of the sequential decoder [7]. We modify the
decoding scheme to adapt it to our notations that use the
polynomial Pd (z) instead of det(I − zA). We multiply both
sides of (8) by ad j (Gd(z)) (we can assume that Gd(z) is a
square matrix, since, if it is not, we can remove some of its
linearly dependent rows to make it square) to get

q(z) := Pd (z)yd(z) (71)

w(z) := ad j (Gd (z))q(z) (72)
(a)= ad j (Gd (z))Gd(z)u(z) (73)
(b)= det(Gd (z))u(z) (74)

where
(a) follows from (8),
(b) follows from the fact that for any square matrix G over

the polynomial ring F[z], the following identity holds:
ad j (G)G = det(G)I, where I denotes the identity matrix.

The polynomial det(Gd(z)) is non zero, since we assumed that
Gd(z) is of full column rank and, therefore, it is of the form:

det(Gd (z)) = zτ β

�

1 +
k


i=1

γi z
i

 

, τ ≥ 0, β 	= 0.

If we know the sequence yd [n] we can compute w[n] and
from that find u[n]:

w[n + τ ] = β

�

u[n] +
k


i=1

γi u[n − i ]
 

, (75)

u[n] = (β)−1 w[n + τ ] −
k


i=1

γi u[n − i ]. (76)

�
Proof for Theorem 7: We first prove that if P̃d(t) =�N
j=0 αd, j z j satisfies (30)-(31), then its coefficients are a

solution of (12). Afterwards, we prove the same in the

other direction. First, we remind that the output sequence in
Algorithm 2 is given by:

yd [n] = 1{n≥0}Cd Anx0 +
min

�
ω,
�

n−1
2N+1

��




k=1

Cd An−1−(2N+1)kBek

+ Dd

ω


k=1

ek1{n=(2N+1)k}. (77)

To prove that (12) holds we substitute this expression for
yd [n] into (12) and make use of (30)-(31). For every τ ∈%ω

p=0
%N

τ̃=1{(2N + 1)p + τ̃ } we have:

N


j=0

αd, j yd [ j + τ ] (78)

(a)=
N


j=0

αd, j CdA j+τ x0

+
N


j=0

min
�
ω,
�

j+τ−1
2N+1

��




k=1

αd, j Cd A j+τ−1−(2N+1)kBek

+
N


j=0

ω


k=1

αd, j Ddek1{ j+τ=(2N+1)k} (79)

(b)= Cd P̃d (A)Aτ x0+
N


j=0

�τ/(2N+1)�


k=1

αd, j CdA j+τ−1−(2N+1)kBek

+
N


j=0

ω


k=1

αd, j Ddek1{ j+τ=(2N+1)k} (80)

(c)= Cd P̃d(A)Aτ x0+
�τ/(2N+1)�


k=1

Cd P̃d (A)Aτ−1−(2N+1)kBek +0

(81)
(d)= 0, (82)

where

(a) is obtained by substituting yd from (77),
(b) follows from the fact that 0 ≤ j ≤ N and that

τ =(2N +1)p+τ̃ , where 0≤ p ≤ω, 1 ≤ τ̃ ≤ N, (83)

and, therefore,
&

j + τ − 1

2N + 1

'

=
&

p + j + τ̃ − 1

2N + 1

'

(84)

= p (85)

= �τ/(2N + 1)�, (86)

(c) follows from the fact that j + τ cannot be a multiple of
(2N + 1),

(d) follows from (30)-(31) and from Lemma 8.

We now prove the converse. We assume the coefficients�
αd, j

	N
j=0 of the polynomial P̃d (t) = �N

j=0 αd, j t j satisfy:

N


j=0

αd, j yd [ j +τ ]=0, ∀τ ∈
ω�

p=0

N�

τ̃=1

{(2N + 1)p + τ̃ }, (87)
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and show that P̃d (t) satisfies:

Cd P̃d (A)Aτ B = O, ∀τ ≥ 0, (88)

Cd P̃d (A)Aτ+1x0 = 0, ∀τ ≥ 0. (89)

To prove (89), first note that according to (77) we have

yd [n] = CdAnx0 0 ≤ n ≤ 2N, (90)

so if (87) is satisfied for τ ∈ {1, . . . , N}, then (89) is also
satisfied for τ ∈ {0, . . . , N − 1} and, hence, for all τ ≥ 0
(by Lemma 8).

To prove (88) we prove (by induction on k) that the
following holds:

Cd P̃d (A)Aτ Bek = 0, ∀τ ≥ 0, k ∈ {1, 2, . . . , ω}. (91)

We first prove for k = 1. By (77), for τ ∈
{(2N + 1) + 1, . . . , (2N + 1) + N} we have:

0 =
N


j=0

αd, j yd [ j + τ ] (92)

=
N


j=0

αd, j

�
Cd A j+τ−1−(2N+1)Be1 + CdA j+τ x0

�
(93)

= Cd P̃d(A)Aτ−1−(2N+1)Be1 + Cd P̃d(A)Aτ x0 (94)
(a)= Cd P̃d(A)Aτ−1−(2N+1)Be1 + 0 (95)

where (a) follows from (89). In view of Lemma 8, we see
that (91) holds for k = 1. Assume now that it holds
for all k � ∈ {1, . . . , k − 1}. By (77), for all τ ∈
{(2N + 1)k + 1, . . . , (2N + 1)k + N} we have:

0 =
N


j=0

αd, j yd [ j + τ ] (96)

=
N


j=0

αd, j

�

Cd A j+τ x0 +
k


k�=1

Cd A j+τ−1−(2N+1)k�
Bek�

 

(97)

= Cd P̃d (A)Aτ−1−(2N+1)kBek

+
k−1


k�=1

Cd P̃d (A)Aτ−1−(2N+1)k�
Bek� + Cd P̃d (A)Aτ x0

(a)= Cd P̃d (A)Aτ−1−(2N+1)kBek + 0, (98)

where (a) follows from the induction assumption of (91) on
k � < k and from (89). In view of Lemma 8, we see that (91)
holds for all 0 ≤ k ≤ ω and, therefore, (88) holds as well. �

The proof for Theorem 9 consists of three parts. In the first
part we calculate gd,i(z) from (14) and we substitute

�
yd [n]	

from

yd [n] = 1{n≥0}Cd Anx0 +
min

�
ω,
�

n−1
2N+1

��




k=1

CdAn−1−(2N+1)kBek

+ Dd

ω


k=1

ek1{n=(2N+1)k}. (99)

By substituting (99) into (14) and using Theorem 7 we show
that Gd(z) = �

gd,1(z), . . . , gd,ω(z)
�

is given by

Gd (z) =
Nd −1


k=0

⎛

⎝
Nd


j=k+1

αd, j CdA j−k−1B

⎞

⎠ zNd −k + Pd(z)Dd .

(100)

In the second part of the proof we show that�
Pd (z)yd (z)

� [n] is equal to two sequences. The first sequence
is (Gd(z)u(z)) [n]. The second sequence depends on x0 and
it vanishes for n > Nd , and thus the difference equation (32)
holds.

In the third part of the proof we give a decoding scheme to
find u from yd if Gd(z) is of full rank. If it is not, we show
that there are two different input sequences u[n] that can lead
to the same output sequence yd [n] and, therefore, decoding in
that case is not possible as one cannot be sure which of the
input sequences was transmitted.

Proof for Theorem 9: We begin by calculating gd,i (z) for
all i ∈ {1, 2, . . . , ω}:
gd,i(z) (101)

=
Nd


k=0

Nd


j=0

αd, j yd [ j + (2N + 1)i − k]zNd −k

(a)=
Nd


k=0

Nd


j=0

αd, j Cd A j A(2N+1)i−kx0zNd −k

+
Nd


k=0

Nd


j=0

min{ω,
�

j−k−1
2N+1 +i

�
}




k�=0

αd, j Cd A j−k−1+(2N+1)(i−k�)

× Bek� zNd −k

+
Nd


k=0

Nd


j=0

αd, j

ω


k�=1

Ddek�1{ j+(2N+1)i−k=(2N+1)k� }zNd −k,

(102)

where (a) is obtained by substituting
�
yd [n]	 from (99). The

first part of (102) vanishes because P̃d (t) satisfies (31) by
Theorem 7 and because of Lemma 8:

Nd


k=0

Nd


j=0

αd, j Cd A j A(2N+1)i−k x0zNd −k

=
Nd


k=0

Cd P̃d (A)A(2N+1)i−k x0zNd −k

= 0.

The second part of (102) can be written as:

Nd


k=0

Nd


j=0

min{ω,
�

j−k−1
2N+1 +i

�
}




k�=0

αd, j CdA j−k−1+(2N+1)(i−k�)Bek� zNd −k

(a)=
Nd −1


k=0

Nd


j=k+1

αd, j Cd A j−k−1Bei z
Nd −k

+
Nd


k=0

Nd


j=0

i−1


k�=0

αd, j Cd A j A(2N+1)(i−k�)−k−1Bek� zNd −k
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=
Nd −1


k=0

Nd


j=k+1

αd, j CdA j−k−1Bei z
Nd−k

+
Nd


k=0

i−1


k�=0

Cd P̃d (A)A(2N+1)(i−k�)−k−1Bek� zNd −k

(b)=
Nd −1


k=0

Nd


j=k+1

αd, j CdA j−k−1Bei z
Nd−k , (103)

where

(a) is obtained by splitting the summation over k � from 0 to
i − 1, and for k � = i (only when k < j ).

(b) holds because P̃d (z) satisfies (30) by Theorem 7 and
because of Lemma 8.

The third part of (102) is:

Nd


k=0

Nd


j=0

αd, j

ω


k�=1

Dd ek� 1{ j+(2N+1)(i−k�)−k=0}zNd −k

(a)=
Nd


j=0

αd, j z
Nd − j Ddei

= Pd (z)Ddei , (104)

where (a) holds because 1{ j+(2N+1)(i−k�)−k=0} = 1 only when
k � = i and k = j . By combining all gd,i vectors into a
matrix we get that Gd(z) is given by (100). It has already
been proved (in Theorem 6) that for such a Gd(z) matrix
the difference equation (8) holds between u and yd , provided
that x0 = 0 and (in Theorem 7) that P̃d (z) satisfies (31).
For cases in which the initial state is not zero, the out-
put sequence yd [n] can be written as a sum of the zero
input response yZIR,d [n] = 1{n≥0}CdAnx0 and the zero state
response yZSR,d [n] = �n−1

k=−∞ CdAn−1−kBu[k] + Dd u[n],
which is the output of the network, as if the initial state
was zero. Finally, using Theorem 6 for yZSR,d [n] and (31)
for yZIR,d [n], we get for all n > Nd :
�
Pd (z)yd

� [n] = �
Pd (z)yZIR,d

� [n]+�Pd (z)yZSR,d

� [n] (105)

=
Nd


j=0

αd, j CdAn−(Nd − j )x0+(Gd (z)u) [n]

(106)

= Cd P̃d (A)An−Nd x0 + (Gd (z)u) [n] (107)

= 0 + (Gd (z)u) [n]. (108)

We now prove that it is possible to decode u from yd if
and only if Gd(z) is of full column rank over the polynomial
ring F[z]. If it is not, there exists a non zero vector of
polynomials vd(z) such that Gd(z)vd(z) = 0. Let u(z) =
vd(z)z(2N+1)(ω+1), where u(z) is the formal Laurent series
of the input sequence. As vd(z) is a vector of polynomials,
the input sequence satisfies u[n] = 0 for n < (2N +1)(ω+1)
and, hence, this is a legal input sequence since it starts after
Algorithm 2 ends. The sequence

�
Pd (z)yd (z)

� [n] vanishes for
n > Nd since Gd(z)u(z) = 0, and for n ≤ Nd it is independent
of the input sequence. Since Pd (z) is not the zero polynomial
we can find yd (z) from

�
Pd (z)yd (z)

�
. In that case, the output

sequence yd [n] will be independent of the input sequence,
and no decoding method will tell if the input sequence was
vd (z)z(2N+1)(ω+1) or a zero sequence.

On the other hand, if Gd(z) is of full column rank then we
can show that the input sequence can be decoded from the
output sequence. We define:

q[n] =
�

(Gd(z)u(z)) [n], n ≤ Nd�
Pd(z)yd(z)

� [n], n > Nd
, (109)

where

(Gd (z)u(z)) [n] =
⎛

⎝
Nd


k=0

Gd [k]zku(z)

⎞

⎠ [n] (110)

=
Nd


k=0

Gd [k]u[n − k]. (111)

Since Gd (z) was already found and u[0], . . . , u[Nd ] are
known from (27), q[n] can be computed for all n ∈ Z and
it satisfies

q[n] = (Gd (z)u(z)) [n] ∀n ∈ Z. (112)

Henceforth, the same decoding algorithm (72)-(76) as in the
proof for Theorem 6 can be used. �

Proof for Theorem 10: First, we show that if for every
s ∈ S there are R�

s linearly independent column vectors
vs,1, . . . , vs,Rs from the columns of the matrix Gd,s(z), such

that ∪s∈S ∪R�
s

k=1 {vs,k} is a set of linearly independent vectors,
then the rates (R�

s)s∈S are achievable for the sink node d with
the current LEK. Every source node s can transmit its input
symbols only on the inputs {us,i} that correspond to the vectors�
vs,1, . . . , vs,R�

s

	
and zeros on the other inputs:

us,i

=
�

The zero sequence, if [Gd,s(z)]i /∈ �vs,1, . . . , vs,R�
s

	

A non zero sequence, if [Gd,s(z)]i ∈ �vs,1, . . . , vs,R�
s

	
,

(113)

where [Gd,s(z)]i is the column i of Gd,s(z). In this case (8)
can be simplified to

Pd(z)yd = G̃d(z)ũ, (114)

where ũ[n] is the input sequence with all zero inputs removed
and G̃d (z) is the matrix

G̃d (z) =
(
vs1,1, . . . , vs1,R�

s1
vs2,1, . . . , vs2,R�

s2
, . . . , vs|S|,R�

s|S|

)
.

(115)

From the second part of the proof of Theorem 6 and the third
part of the proof of Theorem 9, we know that it is possible
to decode ũ from yd if and only if the matrix G̃d (z) is of
full column rank, i.e. all of its column vectors are linearly
independent over F[z]. We assumed that the columns of G̃d(z)
are linearly independent and, therefore, the rates (R�

s)s∈S are
achievable for the sink node d .

We now prove the converse of Theorem 10. We assume
that the rates (R�

s)s∈S are achievable for a sink node d and
we show that for every s ∈ S there are R�

s linearly independent
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column vectors vs,1, . . . , vs,R�
s

from the columns of the matrix

Gd,s(z), such that the vectors ∪s∈S ∪R�
s

k=1 {vs,k} are linearly
independent. By the definition of achievable rates, we know
that every source s ∈ S can transmit zeros on (Rs − R�

s)
out of its input sequences, such that the sink node d is able
to decode u from yd . If that is the case, the relationship
between the input and the output sequences is described
by (114), where ũ[n] is the input sequence with all zero inputs
removed, and G̃d(z) is the matrix Gd (z) with removed column
vectors that correspond to the zero input sequences. Since
ũ is decodable, we know that the column vectors of G̃d(z)
are linearly independent over F[z]. The R�

s column vectors
of G̃d(z) that correspond to the non zero inputs of a source
node s are also column vectors of Gd,s(z), since Gd,s(z)
contains all the column vectors of Gd (z) that correspond to
the input sequence us . Therefore, we have shown that for
every source s, there are R�

s linearly independent vectors from
the columns of Gd,s(z), such that all the vectors together are
linearly independent. This completes the proof. �

Proof for Theorem 12: Let a node v have scalar LEK, k
output links with unit time delay and |Out (v)| − k output
links without delay. Denote its output vector by

xv
out =

�
xv

out,1
xv

out,2

�

, (116)

where xv
out,1 is of dimension k and consists of the output

symbols on the delayed links, and xv
out,2 consists of the rest of

the output symbols. Its input-output relationship can be written
by

xv
out [n] =

�
A1xv

in[n − 1]
A2xv

in [n]
�

, (117)

where A1, A2 consist of the LEK. Define a state vector to
be x̃v [n] = xv

out,1[n]. The input-output relationship can be
rewritten using state equations:

x̃v [n + 1] = A1xv
in [n], (118)

xv
out [n] =

�
Ik×k

O

�

x̃v [n] +
�

Ok×k

A2

�

xv
in [n]. (119)

�
Proof for Corollary 13: The dimension of the state vector

of the whole network x̃[n] is
�

j∈V dim
�
x̃ j
�
, where x̃ j is the

state vector of node j . If node j has k j output links with unit
time delay, and all its other output links have no delay, then,
by Theorem 12, it can have a state vector of dimension not
larger than k j . Since there are only k links in the network with
unit time delay, and every link is an output link of only one
node, we must have:

k =



j∈V
k j (120)

≥



j∈V
dim

�
x̃ j
�

(121)

= dim (x̃). (122)

Therefore, if we take N ≥ k then Algorithms 1 and 2 still
apply, as it is sufficient to take N ≥ dim (x̃). �

Proof for Lemma 14: From the definition of δmin, there is a
linear solution for u[0] from {q[k]}δmin

k=0, and it is given in (54).
This is a solution to the linear equations given in (53). Because
the sequence {u[k]}k≥0 is arbitrary, we get the following
identity:

�
T0, T1, . . . Tδmin

�

⎡

⎢
⎢
⎢
⎣

Gd [0] O . . . O
Gd [1] Gd [0] . . . O

...
...

. . .
...

Gd [δmin] Gd [δmin − 1] . . . Gd [0]

⎤

⎥
⎥
⎥
⎦

= �
I, O, . . . O

�
. (123)

We denote T = �
T0, T1, . . . , Tδmin

�
. We use the identity

q(z) = Gd(z)u(z) to expand the following expression, from
which we will get the rational-power-series decoder:

T

⎡

⎢
⎢
⎢
⎣

zδmin

zδmin−1

...
z0

⎤

⎥
⎥
⎥
⎦

q(z)

= T

⎡

⎢
⎢
⎢
⎣

zδmin

zδmin−1

...

z0

⎤

⎥
⎥
⎥
⎦

Gd (z)u(z) (124)

= T

⎡

⎢
⎢
⎢
⎣

zδmin

zδmin−1

...

z0

⎤

⎥
⎥
⎥
⎦

(Gd [0] + Gd [1]z + . . . + Gd [δmin]zδmin

+
Nd


k=δmin+1

Gd [k]zk)u(z) (125)

= T

⎡

⎢
⎢
⎢
⎢
⎣

zδmin Gd [0]+zδmin+1 �Nd
k=1 Gd [k]zk−1

zδmin−1Gd [0]+zδminGd [1]+zδmin+1 �Nd
k=2 Gd [k]zk−2

...
�δmin

k=0 Gd [k]zk + zδmin+1 �Nd
k=δmin+1 Gd [k]zk−δmin−1

⎤

⎥
⎥
⎥
⎥
⎦

× u(z) (126)

= T

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

Gd [0] O . . . O
Gd [1] Gd [0] . . . O

...
...

. . .
...

Gd [δmin] Gd [δmin − 1] . . . Gd [0]

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

zδmin

zδmin−1

...

z0

⎤

⎥
⎥
⎥
⎦

+ zδmin+1

⎡

⎢
⎢
⎢
⎢
⎣

�Nd
k=1 Gd [k]zk−1

�Nd
k=2 Gd [k]zk−2

...
�Nd

k=δmin+1 Gd [k]zk−δmin−1

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

u(z). (127)

Denote the following matrix of polynomials:

R(z) =

⎡

⎢
⎢
⎢
⎢
⎣

�Nd
k=1 Gd [k]zk−1

�Nd
k=2 Gd [k]zk−2

...
�Nd

k=δmin+1 Gd [k]zk−δmin−1

⎤

⎥
⎥
⎥
⎥
⎦

. (128)
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Then we have the following identity:

T

⎡

⎢
⎢
⎢
⎣

zδmin

zδmin−1

...

z0

⎤

⎥
⎥
⎥
⎦

q(z) = [I, O, . . . , O]

⎡

⎢
⎢
⎢
⎣

zδmin

zδmin−1

...

z0

⎤

⎥
⎥
⎥
⎦

u(z)

+ zδmin+1TR(z)u(z) (129)

= (I + zTR(z)) zδminu(z). (130)

The matrix (I + zTR(z)) is invertible, and its inverse is given
by:

(I + zTR(z))−1 =
∞


k=0

(−zTR(z))k . (131)

Therefore, we get the following relationship:

zδmin u(z) =
� ∞


k=0

(−zTR(z))k

 

T

⎡

⎢
⎢
⎢
⎣

zδmin

zδmin−1

...
z0

⎤

⎥
⎥
⎥
⎦

q(z) (132)

= P(z)q(z), (133)

where P(z) is a rational power series matrix. �
Proof for Theorem 15: If δc = 0 then the result is obvious.

Assume, then, that δc > 0. The relationship between u(z) and
q(z) can be written both as:

u(z) = ad j (Gd (z))

det(Gd (z))
q(z) (134)

and as

u(z) = z−δmin P(z)q(z), (135)

where P(z) is a rational power series, as follows from
Lemma 14. The expressions for ad j (Gd (z)) and for
det(Gd (z)) are given in (48-49). The definition of δc is δc =
τ − g, where τ and g are given in in (48-49). From (134-135)
we can write:

P(z) = zδmin
ad j (Gd (z))

det(Gd (z))
(136)

= zδmin
zg �Wmax

k=0 W[k]zk

zτ β
�

1 +�K
i=1 γi zi

� (137)

= zδmin

zδc

�Wmax
k=0 W[k]zk

β
�

1 +�K
i=1 γi zi

� (138)

= zδmin−δcβ−1

�Wmax


k=0

W[k]zk

 ⎛

⎝
∞


j=0

�

−
K


i=1

γi z
i

 j⎞

⎠.

(139)

The first term in this power series expansion is
zδmin−δcβ−1W[0]. Since W[0] is not zero, and P(z) is
a rational power series, the power of zδmin−δc must be
non-negative and, therefore, δmin ≥ δc. �

Fig. 3. Network with two source nodes, one sink node and three relay nodes.

APPENDIX B
EXAMPLES

Example 16 (Application of Algorithm 1): In this example
we apply the first initialization algorithm, find the polynomial
Pd (z) and the transfer matrix Gd (z) (the GEK is found by
dividing Gd (z)/Pd(z)) and give a decoding scheme. Consider
the network shown in Fig.3, with two source nodes s1, s2,
one sink node d and three relay nodes. The field over which
the network operates is F28 with the primitive polynomial
t8 + t4 + t3 + t2 + 1 used to define the field. The elements of
the field F28 are polynomials of the form:

7


k=0

aktk, ∀i : ai ∈ {0, 1}. (140)

For simplicity, we use an integer representation for every
scalar from the field, such that every scalar is represented
by a number between 0 and 255 whose binary representation
(a7, a6, . . . , a0) is given by the components ai from (140).
The reasons for selecting this field were i) this is a commonly
used field since every byte represents a symbol and ii) we
wanted to show that the algorithm also works with large fields.
In Example 18 we use a small prime field F2 to simplify the
computations.

All LEK were generated randomly and are given by

x1[n + 1] = 37x6[n] + 108x3[n], (141)

x2[n + 1] = 234x1[n] + 203x8[n], (142)

x3[n + 1] = 245x7[n] + 168x2[n], (143)

x4[n + 1] = 10x1[n] + 217x8[n], (144)

x5[n + 1] = 239x7[n] + 174x2[n], (145)

x6[n + 1] = 194us1,1[n] + 190us1,2[n], (146)

x7[n + 1] = 101us1,1[n] + 168us1,2[n], (147)

x8[n + 1] = 44us2,1[n]. (148)

All nodes know only the following facts:
• The source nodes list is S = {s1, s2} and the sink node

is d .
• The network has not more than 8 edges (N = 8).
• The number of output links for every source node:

|Out (s1)| = 2 and |Out (s2)| = 1.
Note that even though the rates (Rs1, Rs2) = (2, 1) are
not achievable (they do not satisfy the Min-Cut Max-Flow
condition), we assume for now that this information is not
known a priori. If it was known a priori, we could set the
rates to (Rs1, Rs2) = (1, 1) (by setting us1,2[n] = 0) or to
(Rs1, Rs2) = (2, 0) (by setting us2,1[n] = 0), since these rates
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are achievable. In that case the whole initialization process
would take 34 time units. The initialization process begins
when s1 and s2 send the following input sequence u[n] =�
us1,1[n], us1,2[n], us2,1[n]�T :

u[n] = e1, 0, 0, . . . , 0 0 ≤ n ≤ 16, (149)

where e1 = (1, 0, 0)T and 0 is the zero column vector of
length 3. After n = 16, all the symbols in the network are
cleared, n is set to zero, and the following input sequence is
sent:

u[n] = e2, 0, 0, . . . , 0 0 ≤ n ≤ 16, (150)

where e2 = (0, 1, 0). Again, after n = 16 the network is
cleared, and the sent input sequence is:

u[n] = e3, 0, 0, . . . , 0 0 ≤ n ≤ 16, (151)

where e3 = (0, 0, 1). Meanwhile, the output sequence yd =
(x4, x5)

T received by d is given by

Md [n] =
(
y1

d [n], y2
d [n], y3

d [n]
)

∀n ∈ {1, . . . , 16}

=
�

0 0 0
0 0 0

�

,

�
0 0 231

157 13 0

�

,

�
57 73 0
0 0 228

�

,

�
113 63 0
185 105 0

�

,

�
0 0 228
1 101 0

�

, . . . , (152)

where y1
d , y2

d and y3
d are the received output sequences in the

first, second and third loop of the algorithm respectively. For
n = 0 and 3 ≤ n ≤ 13 we have

Md [0] = O, (153)

Md [n + 3] = 209Md [n] ∀3 ≤ n ≤ 13. (154)

We now solve the system of linear equations given in (9).
We look for some non trivial solution. We can take, for
example,

αd,2 = 209, αd,5 = 1, αd,k = 0 k ∈ {0, 1, 3, 4, 6, 7, 8}.
(155)

This is, indeed, a solution of (9), as can be seen by:

N


k=0

αd,kMd [k + τ ] = 209Md [2 + τ ] + Md [5 + τ ] (156)

= 209Md [2+τ ]+209Md [2+τ ] (157)

= O, ∀τ ≥ 1. (158)

The number Nd , the polynomial Pd (z) and the matrix Gd(z)
given by this solution are:

Nd = 5 (159)

Pd (z) = 1 + 209z3 (160)

Gd(z)

= (209Md [2] + Md [5]) z5 + (209Md [1] + Md [4]) z4

+ (Md [3]) z3 + (Md [2]) z2 + (Md [1]) z

=
�

113z4+57z3, 63z4+73z3, 84z5+231z2

24z5+185z4+157z2, 17z5+105z4+13z2, 228z3

�

.

(161)

If we are interested in finding achievable rates from the
matrix Gd (z), we should apply Algorithm 3, as described
in Example 17. For now, we set the rates to be achievable:
Rs1 = Rs2 = 1 (by sending us1,2[n] = 0), and we get
the following relationship between the input and the output
sequences:

(1+209z3)yd =
�

113z4+57z3 84z5+231z2

24z5+185z4+157z2 228z3

� �
us1,1
us2,1

�

.

(162)

Note that if we had started the initialization process with the
rates Rs1 = Rs2 = 1, we would have obtained the reduced
transfer matrix G̃d (z) given on the right side of (162). We can
solve (162) for u by multiplying both sides of the equation by�

42 · ad j (G̃d(z))
�

, see (163), as shown at the bottom of this

page, where we used the identity

42 · ad j
�

G̃d(z)
�

G̃d(z) = 42 det(G̃d (z))I. (165)

We used the factor 42 to make the coefficient of z4 from the
left side of (163) equal to one. The difference equation for

(105z10+223z9+152z7+149z6+z4)

�
us1,1
us2,1

�

=
�

221z6 + 119z3, 65z8 + 119z5 + 9z2

30z8+208z7+42z5+112z4+241z2, 42z7+112 z6+203z4+212 z3

�

yd ,

(163)
�

us1,1[n − 4]
us2,1[n − 4]

�

= 149

�
us1,1[n − 6]
us2,1[n − 6]

�

+ 152

�
us1,1[n − 7]
us2,1[n − 7]

�

+ 223

�
us1,1[n − 9]
us2,1[n − 9]

�

+ 105

�
us1,1[n − 10]
us2,1[n − 10]

�

+
�

221yd,1[n − 6] + 119yd,1[n − 3]
30yd,1[n − 8] + 208yd,1[n − 7] + 42yd,1[n − 5]

�

+
�

0
112yd,1[n − 4] + 241yd,1[n − 2]

�

+
�

65yd,2[n − 8] + 119yd,2[n − 5] + 9yd,2[n − 2]
42yd,2[n − 7] + 112yd,2[n − 6] + 203yd,2[n − 4] + 212yd,2[n − 3]

�

(165)
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Fig. 4. Shuttle network with one source node s and two sink nodes
r1 and r2.

u[n] is (165), as shown at the bottom of the previous page,
with the initial conditions

u[n] = 0, ∀n < 0, (166)

yd [n] = 0, ∀n < 0. (167)

The decoding delay in this example is 2 since we can decode
u[n − 4] once yd [n − 2] is received.

Example 17 (Application of Algorithm 3): In this example
we apply the third algorithm to find achievable rates for the
network from Example 16. We return to the network in Fig. 3,
with the same field and coefficients as in Example 16. After
applying Algorithm 1 or 2, we get the polynomial Pd(z) and
the transfer matrix Gd(z), as given in (160) and (161). We are
interested in achievable rates for the sources s1, s2, so we
follow the instructions given in Algorithm 3. We split Gd(z)
into two matrices:

Gd,s1(z) =
�

113z4+57z3 63z4+73z3

24z5+185z4+157z2 17z5+105z4+13z2

�

,

(168)

Gd,s2(z) =
�

84z5 + 231z2

228z3

�

. (169)

The rates (Rs1, Rs2) = (1, 1) are achievable, since the vectors

v1 = (113z4 + 57z3, 24z5 + 185z4 + 157z2)T , (170)

v2 = (84z5 + 231z2, 228z3)T , (171)

v1 ∈ Columns of (Gd,s1),

v2 ∈ Columns of (Gd,s2),

are linearly independent over the polynomial ring F[z]. The
rates (Rs1, Rs2) = (2, 0) are also achievable, since Gd,s1 is of
full rank over the polynomial ring F[z].

Example 18 (Shuttle Network): In this example we apply
the second initialization algorithm to a network with non-
scalar LEK, we obtain the GEK of every sink node, we find
achievable rates from the transfer matrices and we give a
decoding algorithm for each sink node based on the found
GEK. Consider the shuttle network in Fig.4, with one source
node s and two sink nodes r1 and r2. This network and its
LEK were taken from [12], where Guo et al presented the

adaptive randomized algorithm (ARCNC) to choose LEK for
unknown networks. The field over which the network operates
is F2. All LEK were generated using the ARCNC algorithm
in [12], and are given by

x1[n] = us,1[n], (172)

x2[n] = us,2[n], (173)

x3[n] = x8[n], (174)

x4[n] = x1[n] + x1[n − 1], (175)

x5[n] = x2[n] + x6[n − 1], (176)

x6[n] = x10[n], (177)

x7[n] = x8[n], (178)

x8[n] = x4[n] + x4[n − 1] + x9[n − 1], (179)

x9[n] = x10[n], (180)

x10[n] = x7[n − 1] + x5[n]. (181)

Note that with these LEK, some links have zero time delay.
This fact helps us, since the state vector of each node j can
now be smaller. For instance, nodes s, v1 and v3 do not have a
state vector at all, since the input-output relationship for them
does not require a state vector:

x j
out [n] =

!
1
1

"

x j
in[n], j ∈ {v1, v3}, (182)

xs
out [n] =

!
1 0
0 1

"!
us,1[n]
us,2[n]

"

. (183)

Nodes r1, r2 and v2 need a state vector with dimension 1, since
their input-output relationship can be written as:

x̃r1[n + 1] = x1[n], n ≥ 0 (184)

x4[n] = x̃r1 [n] + (1, 0)

!
x1[n]
x3[n]

"

, (185)

x̃r2[n + 1] = x6[n], n ≥ 0 (186)

x5[n] = x̃r2 [n] + (1, 0)

!
x2[n]
x6[n]

"

, (187)

x̃v2[n + 1] = x7[n], n ≥ 0 (188)

x10[n] = x̃v2[n] + (1, 0)

!
x5[n]
x7[n]

"

. (189)

Node v4 needs a state vector with dimension 2, since its input-
output relationship can be written as:

x̃v4[n + 1] =
!

x4[n]
x9[n]

"

, n ≥ 0 (190)

x8[n] = (1, 1) · x̃v4[n] + (1, 0)

!
x4[n]
x9[n]

"

. (191)

The state vector x̃[n] of the entire network is the concatenation
of the state vectors x̃r1, x̃r2 , x̃v2, x̃v4 and, hence, its dimension
is dim(x̃) = 5. In our algorithm, every N ≥ 5 will be
satisfactory. Note that N is less than |E |, and this is possible
because some links no longer have unit time delay. We will
take N = 7 to show that the algorithm works even when
N > dim(x̃). To take into account the possibility that x̃[0] 	= 0,
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we will take the following initial state vector for the network:

x̃[0] =

⎛

⎜
⎜
⎝

x̃r1[0]
x̃r2[0]
x̃v2[0]
x̃v4 [0]

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

0
1
0
0
1

⎞

⎟
⎟
⎟
⎟
⎠

. (192)

The source and the sink nodes know only the following
facts:

• There is one source node s and two sink nodes r1 and r2.
• The dimension of the state vector of the network is not

more than 7 (N = 7).
• The number of output links for the source node

|Out (s)| = 2.
We follow the instructions of Algorithm 2 to get difference
equations for u and yr1

= (x1, x3)
T , yr2

= (x2, x6)
T . Initially,

the source node s transmits the following sequences:

us,1[n] =
�

1, n = 15

0, otherwise
0 ≤ n < 45,

us,2[n] =
�

1, n = 30

0, otherwise
0 ≤ n < 45. (193)

The output sequences
�
yr1

[n]	1≤n≤44 ,
�
yr2

[n]	1≤n≤44 are
stored at the sink nodes r1 and r2 respectively. Here are some
of the initial and final values of

�
yr1

[n]	44
n=0 ,

�
yr2

[n]	44
n=0:

yr1
[n] =

!
0
1

"

,

!
0
1

"

,

!
0
0

"

,

!
0
1

"

,

!
0
1

"

, . . .

!
0
1

"

,

!
0
1

"

,

!
0
0

"

,

0 ≤ n ≤ 14, (194)
!

1
0

"

,

!
0
1

"

,

!
0
0

"

,

!
0
0

"

,

!
0
0

"

, . . .

!
0
0

"

,

!
0
1

"

,

!
0
1

"

,

15 ≤ n ≤ 44, (195)

yr2
[n] =

!
0
1

"

,

!
0
0

"

,

!
0
1

"

,

!
0
1

"

,

!
0
0

"

, . . .

!
0
0

"

,

!
0
0

"

,

!
0
0

"

,

0 ≤ n ≤ 29, (196)
!

1
1

"

,

!
0
1

"

,

!
0
0

"

,

!
0
1

"

,

!
0
1

"

, . . .

!
0
1

"

,

!
0
1

"

,

!
0
0

"

,

30 ≤ n ≤ 44. (197)

We now solve the system of linear equations

7


j=0

αri , j yri
[ j + τ ] = 0, ∀τ ∈

2�

p=0

7�

τ̃=1

{15 p + τ̃}. (198)

For both r1 and r2 these equations can be reduced to :

αri ,0 = 0, (199)

αri ,1 + αri ,3 + αri ,4 + αri ,6 + αri ,7 = 0, (200)

αri ,2 + αri ,3 + αri ,5 + αri ,6 = 0. (201)

We seek some non trivial solution. We can take, for example,

αri ,1 = αri ,2 = αri ,3 = 1, (202)

αri ,0 = αri ,4 = αri ,5 = αri ,6 = αri ,7 = 0. (203)

In this case we get the same Nd and Pd (z) for both sink nodes,
but different transfer matrices Gd(z) given by (15-14)

Nr1 = Nr2 = 3 (204)

Pr1(z) = Pr2(z) = z2 + z + 1 (205)

Gr1(z) =
�

z2 + z + 1, 0
z3 + z2 + z + 1, z

�

, (206)

Gr2(z) =
�

0, z2 + z + 1
z3 + z, 1

�

. (207)

Both transfer matrices are of full rank and, hence, the rate
Rs = 2 is achievable for both sink nodes. The GEK matrices
can be found by the division Gri (z)/Pri (z).

For decoding, each sink node first finds

qri
[n] =

��
Gri (z)u(z)

� [n], n ≤ Nri�
Pri (z)yri

(z)
� [n], n > Nri

(208)

=
�

0, n ≤ 3

yri
[n] + yri

[n − 1] + yri
[n − 2], n > 3.

(209)

By Theorem 9 we have

qri
[n] = �

Gri (z)u(z)
� [n], n ∈ Z, i ∈ {1, 2}. (210)

Henceforth, we continue as explained in the last part of the
proof of Theorem 6. We calculate wri (z) = ad j (Gri )qri

(z):

wr1(z) =
�

z, 0
z3 + z2 + z + 1, z2 + z + 1

�

qr1
(z), (211)

wr2(z) =
�

1, z2 + z + 1
z3 + z, 0

�

qr2
(z). (212)

The determinants of Gr1(z), Gr2(z) are:

det(Gr1(z)) = z
�

1 + z + z2
�
, (213)

det(Gr2(z)) = z
�

1 + z + z3 + z4
�
. (214)

The decoding is done as in (76):

u[n] = wr1[n + 1] − (u[n − 1] + u[n − 2]) (215)

= wr2 [n + 1] − (u[n−1] + u[n−3]+u[n−4]). (216)

The decoding delay for both sinks is 1 since once yri
[n] is

known, qri
[n] and wri [n] can be calculated, and, consequently,

u[n − 1] can be found.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Izchak Lewkowicz for
his lectures in Linear Control theory, which were of great help.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[3] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[4] S.-Y. R. Li and R. W. Yeung, “On convolutional network coding,” in
Proc. IEEE Int. Symp. Inf. Theory, Jul. 2006, pp. 1743–1747.

[5] S.-Y. R. Li and Q. T. Sun, “Network coding theory via commutative
algebra,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 403–415, Jan. 2011.

[6] E. Erez and M. Feder, “Efficient network codes for cyclic networks,” in
Proc. IEEE Int. Symp. Inf. Theory, Sep. 2005, pp. 1982–1986.

[7] E. Erez and M. Feder, “Efficient network code design for cyclic
networks,” IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 3862–3878,
Aug. 2010.



LVOV AND PERMUTER: INITIALIZATION ALGORITHMS FOR CNC 5295

[8] T. Ho et al., “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[9] R. W. Yeung, Information Theory and Network Coding. New York, NY,
USA: Springer, 2008.

[10] W. Guo, N. Cai, and Q. T. Sun, “Time-variant decoding of convolutional
network codes,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1656–1659,
Oct. 2012.

[11] Q. T. Sun and S.-Y. R. Li, “On decoding of DVR-based linear net-
work codes,” Appl. Algebra Eng., Commun. Comput., vol. 26, no. 6,
pp. 527–542, 2015.

[12] W. Guo, X. Shi, N. Cai, and M. Médard, “Localized dimension
growth: A convolutional random network coding approach to managing
memory and decoding delay,” IEEE Trans. Commun., vol. 61, no. 9,
pp. 3894–3905, Sep. 2013.

[13] N. Cai and W. Guo, “The conditions to determine convolutional network
coding on matrix representation,” in Proc. IEEE NetCod, Jun. 2009,
pp. 24–29.

[14] C. Fragouli and E. Soljanin, “A connection between network coding
and convolutional codes,” in Proc. IEEE Int. Conf. Commun., vol. 2.
Jun. 2004, pp. 661–666.

[15] W. M. Gentleman and S. C. Johnson, “Analysis of algorithms, a case
study: Determinants of matrices with polynomial entries,” ACM Trans.
Math. Softw., vol. 2, no. 3, pp. 232–241, 1976.

[16] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 2nd ed.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.

[17] G. Gu, Discrete-Time Linear Systems: Theory and Design With Appli-
cations. Secaucus, NJ, USA: Springer, 2012.

Maxim Lvov received his B.Sc. (summa cum laude) degree in Electrical and
Computer Engineering from the Ben-Gurion University, Israel, in 2013, where
he is currently pursuing the M.Sc. degree.

He is currently an algorithm engineer and researcher at AudioCodes Ltd.,
Israel. His current research interests include information theory, machine
learning, signal and image processing, computer vision, speech recognition
and probability theory.

Haim H. Permuter (M’08–SM’13) received his B.Sc. (summa cum laude)
and M.Sc (summa cum laude) degrees in Electrical and Computer Engineering
from the Ben-Gurion University, Israel, in 1997 and 2003, respectively, and the
Ph.D. degree in Electrical Engineering from Stanford University, California
in 2008.

Between 1997 and 2004, he was an officer at a research and development
unit of the Israeli Defense Forces. Since 2009 he is with the department of
Electrical and Computer Engineering at Ben-Gurion University where he is
currently a professor, Luck-Hille Chair in Electrical Engineering. Haim also
serves as head of the communication track in his department.

Prof. Permuter is a recipient of several awards, among them the Fullbright
Fellowship, the Stanford Graduate Fellowship (SGF), Allon Fellowship,
and and the U.S.-Israel Binational Science Foundation Bergmann Memorial
Award. Haim served on the editorial boards of the IEEE TRANSACTIONS ON

INFORMATION THEORY in 2013–2016.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


