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Abstract— The Wyner–Ahlswede–Körner (WAK) empirical-
coordination problem where the encoders cooperate via a finite-
capacity one-sided link is considered. The coordination-capacity
region is derived by combining several source coding techniques,
such as Wyner–Ziv coding, binning, and superposition coding.
Furthermore, a semi-deterministic (SD) broadcast channel (BC)
with one-sided decoder cooperation is considered. Duality prin-
ciples relating the two problems are presented, and the capacity
region for the SD-BC setting is derived. The direct part follows
from an achievable region for a general BC that is tight for
the SD scenario. A converse is established by using telescoping
identities. The SD-BC is shown to be operationally equivalent
to a class of relay-BCs, and the correspondence between their
capacity regions is established. The capacity region of the
SD-BC is transformed into an equivalent region that is shown
to be dual to the admissible region of the WAK problem in the
sense that the information measures defining the corner points
of both regions coincide. Achievability and converse proofs for
the equivalent region are provided. For the converse, we use
a probabilistic construction of auxiliary random variables that
depends on the distribution induced by the codebook. Several
examples illustrate the results.

Index Terms— Channel and source duality, cooperation, empir-
ical coordination, multiterminal source coding, relay-broadcast
channel, semi-deterministic broadcast channel.

I. INTRODUCTION

COOPERATION can substantially improve the perfor-
mance of a network. A common form of cooperation

permits information exchange between the transmitting and
receiving ends via rate-limited links, generally referred to as
conferencing [1]. In this work, conferencing is incorporated in
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Fig. 1. The WAK source coding problem.

a special case of the fundamental two-encoder multiterminal
source coding problem (cf., e.g., [2], [3]). Solutions for several
special cases of the two-encoder source coding problem have
been provided. Among these are the Slepian-Wolf (SW) [4],
Wyner-Ziv (WZ) [5], Gaussian quadratic [6] and Wyner-
Ahlswede-Körner (WAK) [7], [8] problems. The last setting
refers to two correlated sources that are separately compressed,
and their compressed versions are conveyed to the decoder,
which reproduces only one of the sources in a lossless manner.
We consider the WAK problem with conferencing (Fig. 1) in
which a pair of correlated sources (X1,X2) are compressed
by two encoders that are connected via a one-sided rate-
limited link that extends from the 1st encoder to the 2nd. The
compressed versions are conveyed to the decoder that outputs
an empirical coordination sequence Y from which X1 can be
reproduced in a lossless manner.

Source coordination is an alternative formulation for
lossy source coding. Strong coordination was considered
by Wyner [9], while empirical coordination was studied
in [10]–[12]. Cuff et al. extended these results to the multiuser
case [13]. Rather than sending data from one point to another
with a fidelity constraint, in a coordination problem all network
nodes should develop certain joint statistics. Moreover, it was
shown in [13] that rate-distortion theory is a special case of
source coordination. In this work, we consider empirical coor-
dination, a problem in which the terminals, upon observing
correlated sources, generate sequences with a desired empirical
joint distribution. A closely related empirical coordination
problem was presented by Bereyhi et al. [14], who considered
a triangular multiterminal network. In this setting, each of
the two terminals receives a different correlated source that it
compresses and conveys to the decoder. The decoder outputs a
sequence that achieves the desired coordination. Moreover, the
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Fig. 2. SD-BC with one-sided decoder cooperation.

encoders in [14] may share information via a one-sided
cooperation link (see [15] and references therein for additional
work involving cooperation in source coding problems). The
main contributions of [14] comprise inner and outer bounds
on the optimal rate region.

The WAK problem with cooperation considered here is a
special case of the triangular multiterminal network in [14]
where the sequence X1 is losslessly reproduced from the
output coordination sequence. We derive a single-letter charac-
terization of the coordination-capacity region for this problem.
The direct proof unifies several concepts in source coding by
relying on WZ coding [5], binning [16] and superposition
coding [17]. Note that in the classical WAK problem, where
the encoders are non-cooperative, coordination of the output
with the side information (i.e., the sequence X2 in Fig. 1) is
achieved even though it is not required. Therefore, adding such
a coordination constraint to the classic WAK problem does
not alter its solution, which can be obtained as a special case
of the rate region we give here. The non-cooperative version
of the problem in Fig. 1, i.e., where one of the sources is
losslessly reproduced while coordination with the other source
is required, was studied by Berger and Yeung in [18].

To explore duality, we consider a channel coding prob-
lem (Fig. 2) that we show is dual to the WAK problem of inter-
est. By interchanging the roles of the encoders and decoder
of the WAK problem, we obtain a semi-deterministic (SD)
broadcast channel (BC) where the decoders cooperate via
a rate-limited link. This duality naturally extends the well-
known duality between point-to-point (PTP) source and chan-
nel coding problems. PTP duality has been widely treated in
the literature since it was observed by Shannon in 1959 [19]
(see [20]–[22] and references therein). Multiuser duality, how-
ever, remains obscure, despite the attention it attracted in the
last decade [15], [23]–[25]. We provide principles according
to which the two problems can be transformed from one to
the other. Moreover, we show that the admissible rate regions
of the considered SD-BC and WAK problems are dual. The
duality is in the sense that the information measures that define
the corner points of both regions coincide, which extends the
relation between dual results in the PTP situation.

Cooperative communication over noisy channels was exten-
sively treated in the literature since it was introduced by
Willems in the context of a multiple-access channel (MAC),
in which the encoders are able to hold a conference [1]. The
Gaussian case was solved by Bross et al. in [26], followed
by several works involving the compound MAC [27], [28].
Cooperation between receivers in a broadcast channel (BC)
was introduced by Dabora and Servetto [29]. Liang and
Veeravalli generalized the work in [29] by examining the
problem of a relay-BC (RBC) [30]. In both [29] and [30],

the capacity region of the physically degraded BC (PD-BC)
is characterized. Here we combine cooperation in a SD-BC
setting.

The SD-BC without cooperation was solved by Gelfand
and Pinsker [31]. The coding scheme was based on Marton’s
scheme for BCs [32] (see [33] for a generalization of [31]
to the state-dependent case). We derive the capacity region of
the SD-BC with cooperation by first deriving an inner bound
on the capacity region of the cooperative general BC. The
achievable scheme combines rate-splitting with Marton and
superposition coding. The cooperation protocol uses binning
to increase the transmission rate to the cooperation-aided user.
The inner bound is then reduced to the SD-BC case and
shown to be tight by providing a converse. The presented
converse proof takes a simple and compact form by leveraging
telescoping identities [34].

There is a close relation between the SD-BC with cooper-
ation and a class of SD-RBCs considered in [35]. We show
that a SD-RBC with an orthogonal and deterministic relay
is operationally equivalent to the SD-BC with cooperation
(see [36] for a related work on the equivalence between PTP
channels in a general network and noiseless bit-pipes with the
same capacity). Consequently, the capacity regions of the two
problems are the same. However, there are several advantages
to our approach. First, we present a capacity achieving coding
scheme over a single transmission block, while [35] relies on
transmitting many blocks and applying backward decoding.
Thus, our scheme avoids the delay introduced by backward
decoding. Second, our converse proof is considerably simpler
than in [35]. Finally, considering the SD-BC with a one-
sided conferencing link between the decoders gives insight
into multiuser channel-source duality [37].

To show the duality between the optimal rate regions of the
considered source and channel coding problems, an alterna-
tive characterization of the capacity region of the SD-BC is
given. The corner points of the alternative region satisfy the
correspondence to those of the coordination-capacity region
of the WAK problem. The structure of the alternative expres-
sion motivates a converse proof technique that generalizes
classical techniques. Specifically, our converse uses auxiliary
random variables that are not only chosen as a function of
the joint distribution induced by each codebook, but that
are constructed in a probabilistic manner (see [33] for a
deterministic codebook-dependent construction of auxiliaries).
Allowing a probabilistic construction of the auxiliary random
variables introduces additional optimization parameters (i.e.,
a probability distribution). By optimizing over the probability
values, an upper bound on the alternative formulation of the
capacity region is tightened to coincide with the achievable
region. Probabilistic arguments of a similar nature were pre-
viously used in the literature [38]–[40]. The novelty of our
approach is the incorporation of such arguments in a converse
proof to describe the optimal choice of auxiliaries. Moreover,
a closed form formula for the optimal probability values is
derived as part of the converse and highlights the dependence
of the choice of auxiliaries on the codebook.

This paper is organized as follows. In Section II we
describe the two models of interest - the WAK problem with
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encoder cooperation and the SD-BC with decoder cooperation.
In Section III, we state capacity results for the WAK and BC
models. In Section IV we analyse the duality between the two
problems and their capacity regions. In Section V we discuss
the relation of the considered SD-BC to a class of SD-RBCs.
Section VI presents special cases of the capacity region of the
SD-BC, and each case is shown to preserve a dual relation
to the corresponding reduced source coding problem. Finally,
Section VII summarizes the main achievements and insights
of this work.

II. PRELIMINARIES AND PROBLEM DEFINITIONS

We use the following notations. Given two real numbers
a, b, we denote by [a : b] the set of integers

{
n ∈ N

∣
∣�a� ≤

n ≤ �b�}. We define R+ = {x ∈ R|x ≥ 0}. Calligraphic
letters denote sets, e.g., X , the complement of X is denoted
by X c, while |X | stands for its cardinality. X n denotes the
n-fold Cartesian product of X . An element of X n is denoted
by xn = (x1, x2, . . . , xn); whenever the dimension n is
clear from the context, vectors (or sequences) are denoted by
boldface letters, e.g., x. A substring of x ∈ X n is denoted
by x j

i = (xi , xi+1, . . . , x j ), for 1 ≤ i ≤ j ≤ n; when
i = 1, the subscript is omitted. We also define xn\i =
(x1, . . . , xi−1, xi+1, . . . , xn). Random variables are denoted by
uppercase letters, e.g., X , with similar conventions for random
vectors. The probability of an event A is denoted by P(A),
while P(A

∣
∣B) denotes conditional probability of A given B.

We use 1A to denote the indicator function of A. The set of all
probability mass functions (PMFs) on a finite set X is denoted
by P(X ). PMFs are denoted by the capital letter P , with a
subscript that identifies the random variable and its possible
conditioning. For example, for two jointly distributed random
variables X and Y , let PX , PX,Y and PX |Y denote, respectively,
the PMF of X , the joint PMF of (X,Y ) and the conditional
PMF of X given Y . In particular, when X and Y are discrete,
PX |Y represents the stochastic matrix whose elements are
given by PX |Y (x |y) = P

(
X = x |Y = y

)
. We omit subscripts

if the arguments of the PMF are lowercase versions of the
random variables. The expectation of a random variable X
is denoted by E

[
X
]
. We use EP and PP to indicate that an

expectation or a probability are taken taken with respect to a
PMF P (when the PMF is clear from the context, the subscript
is omitted). If the entries of Xn are drawn in an independent
and identically distributed (i.i.d.) manner according to PX ,
then for every x ∈ X n we have PXn (x) = ∏n

i=1 PX (xi) and
we write PXn (x) = Pn

X (x). Similarly, if for every (x, y) ∈
X n × Yn we have PY n |Xn (y|x) = ∏n

i=1 PY |X (yi |xi ), then
we write PY n |Xn (y|x) = Pn

Y |X (y|x). We often use Qn
X or

Qn
Y |X when referring to an i.i.d. sequence of random variables.

The conditional product PMF Qn
Y |X given a specific sequence

x ∈ X n is denoted by Qn
Y |X=x.

For every sequence x ∈ X n , the empirical PMF of x is

νx(a) � N(a|x)
n

(1)

where N(a|x) =∑n
i=1 1{xi=a}. We use T n

ε (PX ) to denote the
set of letter-typical sequences of length n with respect to the
PMF PX and the non-negative number ε [41, Ch. 3], [42],

i.e., we have

T n
ε (PX ) =

{
x ∈ X n

∣
∣∣
∣∣νx(a)− PX (a)

∣∣ ≤ εPX (a),∀a ∈ X
}
.

(2)

Furthermore, for a PMF PX,Y over X×Y and a fixed sequence
y ∈ Yn , we define

T n
ε (PX,Y |y) =

{
x ∈ X n

∣
∣
∣(x, y) ∈ T n

ε (PX,Y )
}
. (3)

A. The WAK Source Coordination Problem With
One-Sided Encoder Cooperation

Consider the source coding problem illustrated in Fig. 1.
Two source sequences x1 ∈ X n

1 and x2 ∈ X n
2 are available

at Encoder 1 and Encoder 2, respectively. The sources are
drawn in a pairwise i.i.d. manner according to the PMF
QX1,X2 .1 Each encoder communicates with the decoder by
sending a message via a noiseless communication link of
limited rate. The rate of the link between Encoder j and
the decoder is R j and the corresponding message is t j ,
where j = 1, 2. Moreover, Encoder 1 can communicate
with Encoder 2 over a one-sided communication link of
rate R12.

Definition 1 (Coordination Code): An (n, R12, R1, R2)
coordination code Ln for the WAK source coordination prob-
lem with one-sided encoder cooperation has:

1) Three message sets: T12 = [
1 : 2nR12

]
, T1 = [

1 : 2nR1
]

and T2 = [1 : 2nR2
]
.

2) An encoder cooperation function:

f12 : X n
1 → T12. (4a)

3) Two encoding functions:

f1 : X n
1 → T1 (4b)

f2 : X n
2 × T12 → T2. (4c)

4) A decoding function:

φ : T1 × T2 → Yn . (4d)

Definition 2 (Total Variation): Let X be a countable space2

and let P, Q ∈ P(X ). The total variation (TV) distance
between P and Q is

||P − Q||T V = 1

2

∑

a∈X

∣
∣P(a)− Q(a)

∣
∣. (5)

Let Q be the set of PMFs defined in (6), as shown at the
top of the next page.

Definition 3 (Coordination Error): Let PX1,X2,Y ∈ Q
and δ > 0. The coordination error eδ(PX1,X2,Y ,Ln) of
an (n, R12, R1, R2) coordination code Ln with respect to
PX1,X2,Y is given in (7), as shown at the top of the next page.

Definition 4 (Coordination Achievability): Let
PX1,X2,Y ∈ Q. A rate triple (R12, R1, R2) is PX1,X2,Y -
achievable if for every ε, δ > 0 there is a sufficiently large

1We usually use Q to denote a PMF that is fixed as part of the problem’s
definition, while P is used for PMFs that we optimize over.

2Countable sample spaces are assumed throughout this work.
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Q =
{

PX1,X2,Y ∈ P(X1 × X2 × Y) ∃ f : Y → X1, PX1,X2,Y = QX2 PY |X21{X1= f (Y )},∑
y∈Y PX1,X2,Y (x1, x2, y) = QX1,X2(x1, x2),∀(x1, x2) ∈ X1 × X2

}
(6)

eδ(PX1,X2,Y ,Ln) � PLn

(∣
∣
∣
∣νX1,X2,Y− PX1,X2,Y

∣
∣
∣
∣
T V ≥ δ

)
=

∑

(x1,x2,y)∈X n
1 ×X n

2 ×Yn :
||νx1,x2 ,y−PX1,X2,Y ||T V ≥δ

Qn
X1,X2

(x1, x2)1{
φ
(

f1(x1), f2

(
x2, f12(x1)

))
=y

}

(7)

e(Cn) � PCn

(
(M̂1, M̂2) �= (M1,M2)

)
= 2−n(R1+R2)

∑

(m1,m2)∈M1×M2

∑

(y1,y2)∈Y1×Y2:
ψ(y1) �=m1 or

ψ(y2,g12(y1)) �=m2

Qn
Y1,Y2|X

(
y1, y1

∣
∣g(m1,m2)

)

(9)

n ∈ N and an (n, R12, R1, R2) coordination code Ln such
that eδ(PX1,X2,Y ,Ln) ≤ ε.

Definition 5 (Coordination-Capacity Region): The coordi-
nation-capacity region RWAK(PX1,X2,Y ) with respect to a PMF
PX1,X2,Y ∈ Q is the closure of the set of PX1,X2,Y -achievable
rate triples (R12, R1, R2).

B. SD-BCs With One-Sided Decoder Cooperation

The SD-BC with cooperation is illustrated in Fig. 2. The
channel has one sender and two receivers. The sender chooses
a pair (m1,m2) of indices uniformly and independently from
the

[
1 : 2nR1

] × [
1 : 2nR2

]
and maps them to a sequence

x ∈ X n , which is the channel input. The sequence x is
transmitted over a BC with transition probability QY1,Y2|X =
1{Y1= f (X)}QY2|X . The output sequence y j ∈ Yn

j , where
j = 1, 2, is received by decoder j . Decoder j produces an
estimate of m j , which is denoted by m̂ j . There is a one-
sided noiseless cooperation link of rate R12 from Decoder 1
to Decoder 2. By conveying a message m12 ∈ [1 : 2nR12

]
over

this link, Decoder 1 can share with Decoder 2 information
about y1, m̂1, or both.

Definition 6 (Code): An (n, R12, R1, R2) code Cn for the
SD-BC with one-sided decoder cooperation has:

1) Three message sets M12 = [
1 : 2nR12

]
, M1 =[

1 : 2nR1
]

and M2 = [1 : 2nR2
]
.

2) An encoding function:

g : M1 × M2 → X n . (8a)

3) A decoder cooperation function:

g12 : Yn
1 → M12. (8b)

4) Two decoding functions:

ψ1 : Yn
1 → M1 (8c)

ψ2 : Yn
2 × M12 → M2. (8d)

Definition 7 (Error Probability): The average error proba-
bility e(Cn) of an (n, R12, R1, R2) code Cn is given in (9), as
shown at the top of this page.

Definition 8 (Achievability): A rate triple (R12, R1, R2) is
achievable if for any ε > 0 there is a sufficiently large n ∈ N

and an (n, R12, R1, R2) code Cn such that e(Cn) ≤ ε.

Definition 9 (Capacity Region): The capacity region CBC of
the SD-BC with one-sided encoder cooperation is the closure
of the set of achievable rate triples (R12, R1, R2).

III. MAIN RESULTS

We state our main results as the coordination-capacity
region of the WAK source coordination problem (Section II-A)
and the capacity region of the SD-BC with cooperation
(Section II-B).

Theorem 1 (WAK Problem Coordination-Capacity): The
coordination-capacity region RWAK(PX1,X2,Y ) of the WAK
source coordination problem with one-sided encoder coopera-
tion with respect to a PMF PX1,X2,Y ∈ Q is the union of rate
triples (R12, R1, R2) ∈ R

3+ satisfying:

R12 ≥ I (V ; X1|X2) (10a)

R1 ≥ H (X1|V ,U) (10b)

R2 ≥ I (U ; X2|X1, V ) (10c)

R1 + R2 ≥ H (X1|V ,U)+ I (V ,U ; X1, X2) (10d)

where the union is over all PMFs QX1,X2 PV |X1

PU |X2,V PY |X1,U,V that have PX1,X2,Y as a marginal.
Moreover, RWAK(PX1,X2,Y ) is convex and one may choose
|V| ≤ |X1| + 3 and |U | ≤ |V| · |X2| + 3.

See Appendix A for the proof of Theorem 1.
Remark 2: For a fixed PMF in Theorem 1, the triples

(R12, R1, R2) at the corner points of RWAK(PX1,X2,Y ) are
(see Fig. 3)

(
I (V ; X1|X2), H (X1), I (U ; X2|X1, V )

)
(11a)

(
I (V ; X1|X2), H (X1|V ,U), I (U ; X2|V )+ I (V ; X1)

)
.

(11b)

The corner point in (11b) is achieved using the coding scheme
from [14] by setting V = 0 in [14, Th. 1]. However, the rate
triple (11a) does not seem to be achievable for that scheme.

Remark 3: The cardinality bounds on the auxiliary random
variables V and U in Theorem 1 are established by standard
application of the Eggleston-Fenchel-Carathéodory theorem
[43, Th. 18] twice. The details are omitted.

The source coordination problem defined in Section II-A
can be transformed into an equivalent rate-distortion problem.
This is done by substituting Y, the output of the coordination
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Fig. 3. Corner points of the coordination-capacity region of the
WAK coordination problem with cooperation at the hyperplane where
R12 = I (X1; V |X2).

problem, with the pair (X̂1, X̂2), where X̂1 is a lossless
reconstruction of the source sequence X1, while X̂2 satisfies
the distortion constraint

E

[
n∑

i=1

d(X2,i , X̂2,i )

]

≤ D (12)

where d : X2 ×X̂2 → R+ is a single-letter distortion measure
and D ∈ R+ is the distortion constraint. The two models are
equivalent in the sense that the rate bounds that describe the
optimal rate regions of both problems are the same; the domain
over which the union is taken, however, is slightly modified.
This gives rise to the following corollary.

Corollary 4 (WAK Problem Rate-Distortion Region): The
rate-distortion region RWAK(D) for the equivalent rate-
distortion problem is the union of rate triples (R12,
R1, R2) ∈ R

3+ satisfying (10), where the union is over all
PMFs QX1,X2 PV |X1 PU |X2,V and the reconstructions X̂2 that
are a functions of (X1,U, V ) such that E

[
d(X2, X̂2)

] ≤ D.
The proof of Corollary 4 is similar to that of Theorem 1

and is omitted. We next state the capacity region of the SD-BC
with cooperation.

Theorem 5 (SD-BC Capacity Region): The capacity region
CBC of the SD-BC with one-sided decoder cooperation is the
union of rate triples (R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ H (Y1) (13a)

R2 ≤ I (V ,U ; Y2)+ R12 (13b)

R1 + R2 ≤ H (Y1|V ,U)+ I (U ; Y2|V )+ I (V ; Y1) (13c)

R1 + R2 ≤ H (Y1|V ,U)+ I (V ,U ; Y2)+ R12 (13d)

where the union is over all PMFs PV ,U,Y1,X QY2|X for which
Y1 = f (X). Moreover, CBC is convex and one may choose
|V| ≤ |X | + 3 and |U | ≤ |X |.

The proof of Theorem 5 is relegated to Appendix B. The
achievable scheme combines Marton and superposition coding
with rate-splitting and binning. The rather simple converse
proof is due to the telescoping identity [34, eqs. (9) and (11)].

Remark 6: The derivation of the capacity region in
Theorem 5 strongly relies on the SD nature of the channel.
Since Y1 = f (X), the encoder has full control over the
message that is conveyed via the cooperation link. This allows
one to design the cooperation protocol at the encoding stage
without assuming a particular Markov relation on the coding
random variables. Our approach differs from the one taken

in [29], where an inner bound on the capacity region of a
BC with two-sided conferencing links between the decoders
was derived. In [29], the decoders cooperate by conveying to
each other a compressed versions of their received channel
outputs (via a WZ-like coding mechanism). Doing so forced
the authors to restrict their coding PMF to satisfy certain
Markov relations that must not hold in general. Consequently,
the inner bound in [29] is not tight for the SD-BC considered
here.

Remark 7: The SD-BC with cooperation is strongly related
to the SD-RBC that was studied in [35]. The SD-BC with
cooperation is operationally equivalent to a reduced version
of the SD-RBC, in which the relay channel is orthogonal and
deterministic. Section V gives a detailed discussion on the
relation between the two problems.

Remark 8: The cardinality bounds on the auxiliary random
variables in Theorem 5 are established using the perturbation
method [44] and a standard application of the Eggleston-
Fenchel-Carathéodory theorem. The details are omitted.

Remark 9: The SD-BC with decoder cooperation and the
WAK problem with encoder cooperation are duals. A full
discussion on the duality between the problems is given in
the following section.

IV. CHANNEL AND SOURCE DUALITY

We examine the WAK coordination problem with encoder
cooperation (Fig. 1) and the SD-BC with decoder coopera-
tion (Fig. 2) from a duality perspective. We show that the
two problems and their solutions are dual to one another
in a manner that naturally extends PTP duality [20]–[22].
In the PTP scenario, two lossy source (or equivalently, source
coordination) and channel coding problems are said to be dual
if interchanging the roles of the encoder and the decoder in
one problem produces the other problem. The solutions of
such problems are dual in that they require an optimization of
an information measure of the same structure, up to renaming
the random variables involved. Solving one problem provides
insight into the solution of the other. However, how duality
extends to the multiuser case is still obscure.

In the context of multiuser lossy source coding, we favor the
framework of source coordination over rate-distortion, since
the former provides a natural perspective on the similarities
of the two problems. Source coordination inherently accounts
for the probabilistic relations among all the sequences involved
in the problem’s definition. However, in a coordination prob-
lem, both the input and output (coordination) PMFs are fixed,
while in a channel coding problem, the input PMF is opti-
mized. Therefore, for convenience, throughout this section we
consider channel codes with codewords of fixed composition,
as defined in the following (see also [15]).

Definition 10 (Fixed-Type Codes, Achievability and
Capacity): An (n, R12, R1, R2, Q�

X ) fixed-type code C�n for the
SD-BC with one-sided decoder cooperation consists of three
integer sets, an encoding function, a decoder cooperation
function, and two decoding functions as defined in (8).

For any δ > 0, the average error probability eδ(Q�
X , C�n)

of an (n, R12, R1, R2, Q�
X ) fixed-type code C�n is defined
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TABLE I

DUALITY TRANSFORMATION PRINCIPLES: THE WAK PROBLEM WITH COOPERATION VS. THE SD-BC WITH COOPERATION

in (14), as shown at the bottom of this page, where M̂1 =
ψ1(Y1) and M̂2 = ψ2

(
Y2, g12(Y1)

)
.

A rate triple (R12, R1, R2) is achievable if for any ε, δ > 0,
there is a sufficiently large n ∈ N and an (n, R12, R1, R2, Q�

X )
fixed-type code C�n such that eδ(Q�

X , C�n) ≤ ε. The definition
of the capacity region is standard (see, e.g., [45]).

Note that for fixed-composition codes [46]–[49] and for
codes that are drawn in an i.i.d. manner according to Q�

X , the
TV distance in (14) is arbitrarily small with high probability.
Moreover, the capacity region of the SD-BC with cooperation
and a fixed-type code is similar to that stated in Theorem 5.
The only difference between the regions is the domain of
PMFs over which the union is taken. Specifically, for the
BC with a fixed-type code, the union is taken over all PMFs
PV ,U,Y1 PX |V ,U,Y1 QY2|X that have Q�

X1{Y1= f (X)}QY2|X as a
marginal.

The WAK and SD-BC problems with cooperation are
obtained from each other by interchanging the roles of their
encoder(s) and decoder(s) and renaming the random variables
involved. A full description of the duality transformation
principles is given in Table I. The duality is also evident in that
the input and output sequences in both problems are jointly
typical with respect to a PMF of the same form. Namely, in the
source coding problem, the triple (X1,X2,Y) is coordinated
with respect to the PMF

QX2 PY |X21{X1= f (Y )} = PY1{X1= f (Y )}PX2|Y . (15)

The corresponding triple of sequences (X,Y1,Y2) in the chan-
nel coding problem are jointly typical with high probability

with respect to the PMF

Q�
X1{Y1= f (X)}QY2|X . (16)

By renaming the random variables according to Table I, the
two PMFs in (15) and (16) coincide.

The duality between the two problems extends beyond the
correspondence presented above. The coordination-capacity
region of the WAK problem (Theorem 1) and the capacity
region of the SD-BC (Theorem 5) are also dual to one
another. To see this, the following lemma gives an alternative
characterization of the capacity region CBC.

Lemma 10 (SD-BC Capacity Alternative Characterization):
Let C(D)BC be the region defined by the union of rate triples
(R12, R1, R2) ∈ R

3+ satisfying:

R12 ≥ I (V ; Y1)− I (V ; Y2) (17a)

R1 ≤ H (Y1) (17b)

R2 ≤ I (V ,U ; Y2)+ R12 (17c)

R1 + R2 ≤ H (Y1|V ,U)+ I (U ; Y2|V )+ I (V ; Y1) (17d)

where the union is over the domain stated in Theorem 5. Then:

C(D)BC = CBC. (18)
See Appendix D for a proof of Lemma 10 based on

bidirectional inclusion arguments.
Remark 11: C(D)BC can be established as the capacity region

of the SD-BC with cooperation by providing achievability and
converse proofs. We refer the reader to [50] for a full descrip-
tion of the achievability scheme. The proof of the converse is
given in Appendix E. The converse is established via a novel

eδ(Q
�
X , C�n) � PC�n

⎛

⎝
{
(M̂1, M̂2) �= (M1,M2)

}
∪
⎧
⎨

⎩

⋃

(m1,m2)∈M1×M2

{∣∣∣∣νg(m1,m2),Y1,Y2 − Q�
X QY1,Y2|X

∣∣∣∣
T V ≥ δ

}
⎫
⎬

⎭

⎞

⎠ (14)
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Fig. 4. Corner point correspondence between: (a) the capacity region of the SD-BC with cooperation; (b) the coordination-capacity region of the WAK
coordination problem with cooperation. The regions are depicted at the hyperplanes where R12 = I (V ; Y1) − I (V ; Y2) and R12 = I (V ; X1) − I (V ; X2),
respectively.

approach, in which the auxiliaries are not only chosen as a
(possibly different) function of the joint distribution induced
by each code, but they are also constructed in a probabilistic
manner. The need for this probabilistic construction stems from
the unique structure of the region C(D)BC . Specifically, the lower
bound on R12 in (17a) (which is typical to source coding
problems where the random source sequences are memoryless)
and the fact that Y1 and Y2 have memory are the underlying
reasons for the usefulness of the approach. Depending on the
distribution that stems from the code, a deterministic choice
of auxiliaries may result in a I (V ; Y1)− I (V ; Y2) that is too
large. By a stochastic choice of the auxiliaries, we circumvent
this difficulty and dominate the quantity I (V ; Y1)− I (V ; Y2)
to satisfy (17a).

The converse proof boils down to two key steps. First, we
derive an outer bound on the achievable region C(D)BC that
is described by three auxiliary random variables (A, B,C).
Then, by probabilistically choosing (V ,U) from (A, B,C),
we show that the outer bound is tight. The second step
implies that the outer bound is an alternative formulation of
the capacity region. Capacity proofs that rely on alternative
descriptions for which the converse is provided have been
previously used (see, e.g., [51], [52]). However, the proof of
equivalence typically relies on operational arguments rather
than on a probabilistic identification of auxiliaries. Proba-
bilistic arguments of a similar nature to those we present
here were also used before [38]–[40]. For instance, in [38],
such arguments were used to prove the equivalence between
two representations of the compress-and-forward inner bound
for the relay channel via time-sharing. Such arguments were
also leveraged in [39] to characterize the admissible rate-
distortion region for the multiterminal source coding problem
under logarithmic loss. The novelty of our approach stems
from combining these two concepts and essentially using
a probabilistic construction to define the auxiliary random
variables and establish the tightness of the outer bound. We
derive a closed form formula for the optimal probability
values, that highlights the dependence of the the auxiliaries
on the distribution induced by the code.

The duality between RWAK(PX1,X2,Y ) in (10) and C(D)BC
in (17) is expressed as a correspondence between the

information measures at their corner points. The values of
(R12, R1, R2) at the corner points of the coordination-capacity
region of the WAK problem are

(
I (V ; X1|X2), H (X1), I (U ; X2|X1, V )

)
(19a)

(
I (V ; X1|X2), H (X1|V ,U), I (U ; X2|V )+ I (V ; X1)

)

(19b)

while the triple (R12, R1, R2) at the corner points of capacity
region of the SD-BC with cooperation are
(
I (V ; Y1)− I (V ; Y2), H (Y1), I (U ; Y2|V )− I (U ; Y1|V )

)

(
I (V ; Y1)− I (V ; Y2), H (Y1|V ,U), I (U ; Y2|V )+ I (V ; Y1)

)
.

(20)

We show that (19) and (20) correspond by first rewriting the
value of R12 in (19) as

R12 = I (V ; X1|X2)
(a)= I (V ; X1)− I (V ; X2) (21)

where (a) is due to the Markov relation V −X1−X2. Moreover,
the value of R2 in (19a) is rewritten as

R2 = I (U ; X2|X1, V )
(a)= I (U ; X2|V )− I (U ; X1|V ) (22)

where (a) is since U − (X2, V )− X1 forms a Markov chain.
By substituting (21)-(22) into (19) and renaming the random
variables according to Table I, the corner points of both regions
coincide (see Fig. 4).

Chronologically, upon observing the duality between the
two problem settings, we solved the WAK problem first. Then,
based on past experience (cf., e.g., [15], [25]), our focus turned
to the dual SD-BC with cooperation. Since the capacity region
is defined by the corner points of a union of polytopos, the
structure of the capacity region for the SD-BC was evident.
Thus, duality was key in obtaining the results of this work.
We note that the relation between our result for the SD-BC
with cooperation and the SD-RBC (that is discussed in the
following section) was observed only at a later stage.

V. RELATION TO THE SD-RBC

The SD-BC with cooperation is strongly related to the
SD-RBC that was studied in [35]. A general RBC is illustrated
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Fig. 5. A general RBC.

in Fig. 5 (for the full definition see [35, Sec. II]). The RBC
is SD if the PMF QY1|X,X1 only takes on the values 0 or 1.
To see the correspondence between the SD-RBC and the BC
of interest, let Y2 = (Y21,Y22) and let the channel transition
PMF factorize as

QY1,Y21,Y22|X,X1 = QY21|X1{Y1= f (X)}QY22|X1 . (23)

(23) implies that the channel from the encoder to the decoders
is orthogonal to the one between the decoders. Suppose
the relay channel is deterministic with capacity R12 and let
Y22 = fR(X1). The SD-RBC obtained under these assump-
tions is referred to as the R12-reduced SD-RBC and its
capacity region is denoted by CRBC(R12). As stated in the
following lemma, the R12-reduced SD-RBC is operationally
equivalent to the SD-BC with cooperation. By operational
equivalence, we mean that for every achievable rate tuple in
one problem, there exists a code (that achieves these rates)
that can be transformed into a code (with the same rates) for
the other problem. The transformation mechanism treats the
code for each model as a black-box and is described as part
of the proof of Lemma 12 given in Appendix G.

Lemma 12 (Operational Equivalence): For every (R1,R2)∈
CRBC(R12), there is an (n, R1, R2) code C(RBC)

n (R12) for
the R12-reduced SD-RBC that can be transformed into an

(n, R12, R1, R2) code C(BC)
n for the SD-BC with cooperation,

and vice versa. Namely, for every (R12, R1, R2) ∈ CBC, there is

an (n, R12, R1, R2) code C(BC)
n for the SD-BC with coop-

eration that can be transformed into an (n, R1, R2) code
C(RBC)

n (R12) for the R12-reduced SD-RBC.
Lemma 12 implies that the capacity regions of

the SD-BC with cooperation and the R12-reduced
SD-RBC coincide. Using the result of [35, Th. 8], the
capacity region CRBC(R12) of the R12-reduced SD-RBC is
the union of rate pairs (R1, R2) ∈ R

2+ satisfying:

R1 ≤ H (Y1|X1)

R2 ≤ I (V ,U, X1; Y21)+ H (Y22|Y21)

R1 + R2 ≤ H (Y1|V ,U, X1)+ I (U ; Y21|V , X1)+ I (V ; Y1|X1)

R1 + R2 ≤ H (Y1|V ,U, X1)+ I (V ,U, X1; Y21)+H (Y22|Y21)

(24)

where the union is over all PMFs PV ,U,X,X1

QY21|X1{Y1= f (X)}1{Y22= fR (X1)}. In Appendix F we simplify

the region in (24) and show that it coincides with the capacity
region of the SD-BC with cooperation from Theorem 5.

The advantage of the approach taken in this work compared
to that in [35] is threefold. First, we achieve capacity over a
single transmission block, while the scheme in [35] (which,
as a consequence of Lemma 12, can also be used for the
SD-BC with cooperation) transmits a large number of blocks
and applies backward decoding. The substantial delay intro-
duced by a backward decoding process implies the superiority
of our scheme for practical uses. The reduction of the multi-
block coding scheme in [35] to our single-block scheme is
consistent with the results in [53]. The authors of [53] showed
that for the primitive relay channel (i.e., a relay channel with
a noiseless link from the relay to the receiver), the decode-
and-forward and compress-and-forward multi-block coding
schemes can be applied with only a single transmission block.
The second advantage of our approach is the simple and
concise converse proof that follows using telescoping identities
[34, eqs. (9) and (11)]. Finally, focusing on the SD-BC with
cooperation (rather than the SD-RBC) highlights the duality
with the cooperative WAK source coordination problem (as
discussed in Section IV), and gives insight into the relations
between multiuser channel and source coding problems.

VI. SPECIAL CASES

We consider special cases of the capacity region of the
SD-BC with decoder cooperation and show that the dual
relation discussed in Section IV is preserved for each special
case.

A. Deterministic BCs With Decoder Cooperation

Corollary 13 (Deterministic BC Capacity Region): The
capacity region of a deterministic BC (DBC) is the union of
rate triples (R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ H (Y1)

R2 ≤ H (Y2)+ R12

R1 + R2 ≤ H (Y1,Y2) (25)

where the union is over all input PMFs PX .
Proof: Achievability follows from Theorem 5 by taking

V = 0 and U = Y2. A converse follows by the Cut-Set
bound.

The DBC is dual to the SW source coding problem with
one-sided encoder cooperation (see [54], [55]). The SW setting
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is obtained from the WAK coordination problem by also
adding a lossless reproduction requirement to the second
source. A proper choice of the auxiliary random variables
reduces RWAK(PX1,X2,Y ) to the optimal rate region for the SW
problem, which is the set of rate triples (R12, R1, R2) ∈ R

3+
satisfying:

R1 ≥ H (X1|X2)− R12

R2 ≥ H (X2|X1)

R1 + R2 ≥ H (X1, X2) (26)

(see Appendix H for the derivation of (26)). Examining
the regions from (25) and (26), reveals the correspondence
between their corner points.

B. PD-BCs With Decoder Cooperation

Corollary 14 (PD-BC Capacity Region): The capacity
region CPD for the PD-BC with Y1 = X coincides with the
results in [29] and [40] and is the union of rate triples
(R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ H (X |U) (27a)

R2 ≤ I (U ; Y2)+ R12 (27b)

R1 + R2 ≤ H (X) (27c)

where the union is over all PMFs PU,X QY2|X .
Proof: The capacity region of the PD-BC was originally

derived in [29] where it was described as the union of rate
triples (R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ I (X; Y1|U)
R2 ≤ I (U ; Y2)+ R12

R2 ≤ I (U ; Y1) (28)

where the union is over all PMFs PU,X QY1|X QY2|Y1 .
An equivalent characterization of region in (28) was later

given in [40] as the union over the domain stated above of
rate triples (R12, R1, R2) ∈ R

3+ satisfying:

R1 ≤ I (X; Y1|U)
R2 ≤ I (U ; Y2)+ R12

R1 + R2 ≤ I (X; Y1). (29)

Since a SD-BC in which Y1 = X is also PD, substituting
Y1 = X into (29) yields the region from Corollary 14.
By substituting Y1 = X , setting U = 0, and relabeling V
as U in the capacity of the SD-BC with cooperation stated
in Theorem 5, we obtain an achievable region given by the
union over the domain stated in Corollary 14 of rate triples
(R12, R1, R2) ∈ R

3+ satisfying:

R2 ≤ I (U ; Y2)+ R12 (30a)

R1 + R2 ≤ H (X). (30b)

Denote the region in (30) by RSD. Since RSD is an achievable
region, clearly RSD ⊆ CPD. On the other hand, the opposite
inclusion CPD ⊆ RSD also holds, because the rate bound (27a)
does not appear in RSD, while (27b)-(27c) and the domain
over which the union is taken are preserved.

The dual source coding problem for the PD-BC with
cooperation where Y1 = X is a model in which the output

sequence is a lossless reproduction of X1. The latter setting is
a special case of the WAK problem with cooperation, that
is obtained by taking f (the coordination function) to be
the identity function. The corresponding coordination-capacity
region is given by (10) (with a slight modification of the
domain over which the union is taken). However, an equivalent
coordination-capacity region that is characterized by a single
auxiliary random variable has yet to be derived. Since the
capacity region of the PD-BC with cooperation where Y1 = X
is described using a single auxiliary (as in (27)), the lack of
such a characterization for the region of the dual problem
makes the comparison problematic. Nonetheless, recalling that
the capacity region of the considered PD-BC is also given
by (13) while substituting Y1 = X emphasizes that the duality
holds.

VII. SUMMARY AND CONCLUDING REMARKS

We considered the WAK empirical coordination prob-
lem with one-sided encoder cooperation and derived its
coordination-capacity region. The capacity-achieving coding
scheme combined WZ coding, binning and superposition
coding. Furthermore, a SD-BC in which the decoders can
cooperate via a one-sided rate-limited link was considered and
its capacity region was found. Achievability was established
by deriving an inner bound on the capacity region of a general
BC that was shown to be tight for the SD scenario. The coding
strategy that achieved the inner bound combined rate-splitting,
Marton and superposition coding, and binning (used for the
cooperation protocol). The converse for the SD case leveraged
telescoping identities that resulted in a concise and a simple
proof. The relation between the SD-BC with cooperation
and the SD-RBC was examined. The two problems were
shown to be operationally equivalent under proper assumptions
and the correspondence between their capacity regions was
established.

The cooperative WAK and SD-BC problems were inspected
from a channel-source duality perspective. Transformation
principles between the two settings that naturally extend
duality relations between PTP models were presented. It was
shown that the duality between the WAK and the SD-BC
problems induces a duality between their capacities that is
expressed in a correspondence between the corner points of
the two regions. To this end, the capacity region of the
SD-BC was restated as an alternative expression. The converse
was based on a novel approach where the construction of the
auxiliary random variables is probabilistic and depends on
the distribution induced by the code. The probabilistic con-
struction introduced additional optimization parameters (the
probability values) that were used to tighten the outer bound
to coincide with the alternative achievable region. To conclude
the discussion, several special cases of the BC setting and their
corresponding capacity regions were inspected.

APPENDIX A
PROOF OF THEOREM 1

A. Achievability

For any PX1,X2,Y ∈ Q, the direct proof is based on a coding
scheme that achieves the corner points of RWAK(PX1,X2,Y ).
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The corner points are stated in (19a)-(19b) and illustrated
in Fig 3. Fix a PMF PX1,X2,Y ∈ Q, ε, δ > 0 and a
PMF PX1,X2,V ,U,Y = QX1,X2 PV |X1 PU |X2,V PY |X1,U,V that
has PX1,X2,Y as a marginal. Recall that PX1,X2,Y factors as
QX2 PY |X21{X1= f (Y )} and that it has the source PMF QX1,X2

as a marginal.
The error probability analysis of the subsequently described

coding scheme follows by standard random coding arguments.
Namely, we evaluate the expected error probability over the
ensemble of codebooks and use the union bound to account
for each error event separately. Being standard, the details
are omitted and only the consequent rate bounds required for
reliability are stated.

1) Codebook Generation: A codebook CV that comprises
2nRV codewords v(i), where i ∈ [1 : 2nRV

]
, each generated

according to Pn
V . The codebook CV is randomly partitioned

into 2nR12 bins indexed by t12 ∈ [
1 : 2nR12

]
and denoted

by BV (t12). For every i ∈ [
1 : 2nRV

]
a codebook CU (i)

is generated. Each codebook CU (i) is assembled of 2nRU

codewords u(i, j), j ∈ [
1 : 2nRU

]
, generated according to

Pn
U |V =v(i). Each CU (i) codebook is randomly partitioned into

2nR′
2 bins BU (i, t ′2), where t2 ∈ [

1 : 2nR′
2
]
. Moreover, the

set T n
ε (QX1) is partitioned into 2nR′

1 bins BX1(t
′
1), where

t ′1 ∈ [
1 : 2nR′

1
]
. To achieve (19a), consider the following

scheme:
2) Encoding at Encoder 1: Upon receiving x1, Encoder 1

searches a pair of indices (i, t ′1) ∈ [
1 : 2nRV

] × [
1 :

2nR′
1
]

such that
(
x1, v(i)

) ∈ T n
ε (PX1,V ) and x1 ∈ BX1(t

′
1).

A concatenation of i and t ′1 is conveyed to the decoder. The
bin index of v(i), i.e., the index t12 ∈ [1 : 2nR12

]
such that

v(i) ∈ BV (t12), is conveyed to Encoder 2 via the cooperation
link. Taking

RV > I (V ; X1) (31)

ensures that such a codeword v(i) is found with high
probability.

3) Decoding at Encoder 2: Given the source sequence x2
and the bin index t12, Encoder 2 searches for an index î ∈ [1 :
2nRV

]
such that v(î) ∈ BV (t12) and

(
x2, v(î)

) ∈ T n
ε (PX2,V ).

Reliable decoding follows by taking

RV − R12 < I (V ; X2). (32)

4) Encoding at Encoder 2: After decoding v(î), Encoder 2

searches for an index j ∈ [1 : 2nRU
]
, such that u(î , j) ∈ CU (î)

and
(
x2, v(î),u(î , j)

) ∈ T n
ε (PX2,V ,U ). The bin number of the

chosen u(î , j), that is, the index t ′2 ∈ [
1 : 2nR′

2
]

such that
u(î , j) ∈ BU

(
î, t ′2
)
, is conveyed to the decoder. If

RU > I (U ; X2|V ) (33)

then a codeword u(î , j) as needed is found with high
probability.

5) Decoding and Output Generation: Upon receiving (i, t ′1)
from Encoder 1 and t ′2 from Encoder 2, the decoder first
identifies the codeword v(i) ∈ CV that is associated with i .
Then it searches the bin BX1(t

′
1) for a sequence x̂1 such that

(
v(i), x̂1

) ∈ T n
ε (PX1,V ). A reliable lossless reconstruction

of x1 follows provided that

R′
1 > H (X1|V ). (34)

Given
(
v(i), x̂1

)
, the decoder searches for an index

ĵ ∈ [
1 : 2nRU

]
, such that u(i, ĵ) ∈ BU

(
i, t ′2
)

and(
x̂1, v(i),u(i, ĵ)

) ∈ T n
ε (PX1,V ,U ). To ensure error-free decod-

ing, we take

RU − R′
2 < I (U ; X1|V ). (35)

Finally, an output sequence y is generated according to
Pn

Y |X1=x̂1,U=u(i, ĵ ),V=v(i)
. The structure of the joint PMF

implies that the output sequence admits the desired
coordination constraint.

By taking (R1, R2) = (R′
1 + RV , R′

2) and applying the
Fourier-Motzkin elimination (FME) on (31)-(35), we obtain
the rate bounds

R12 > I (V ; X1)− I (V ; X2) = I (V ; X1|X2)

R1 > H (X1|V )+ I (V ; X1) = H (X1)

R2 > I (U ; X2|V )− I (U ; X1|V ) = I (U ; X2|X1, V ) (36)

which imply that (19a) is achievable.
To establish the achievability of (19b) requires no binning

of the codebooks CU (i), where i ∈ [1 : 2nRV
]
.

6) Encoding at Encoder 1: Given x1, Encoder 1 finds
v(i) ∈ CV in a similar manner and conveys its bin index
t12 to Encoder 2. Moreover, it conveys the bin index of the
received x1, say t ′1, to the decoder. Again, by having (31), such
a codeword v(i) is found with high probability.

7) Decoding at Encoder 2: Performed in a similar manner
as before. We again take (32) to ensure reliable decoding

of v(i). As before, the decoded codeword is denoted by v(î).
8) Encoding at Encoder 2: Encoder 2 finds a codeword

u(î, j) ∈ CU (î) in a manner similar to that presented in
the previous scheme. Now, however, it sends to the decoder
a concatenation of î and j . This decoding process has a
vanishing probability of error if (33) holds.

9) Decoding and Output Generation: Upon receiving t ′1
and (î , j) from Encoder 1 and 2, respectively, the decoder
first finds the v(î) ∈ CV that is associated with î and
the u(î , j) ∈ CU (î) that is associated with (î, j). Given
(
v(î),u(î, j)

)
, it searches the bin BX1(t

′
1) for a sequence x̂1

such that
(
x̂1, v(î),u(î , j)

) ∈ T n
ε (PX1,V ,U ). A reliable lossless

reconstruction of x1 is ensured provided

R′
1 > H (X1|V ,U). (37)

Finally, an output sequence y is generated in the same manner
as in the coding scheme for (19a).

Taking (R1, R2) = (R′
1, RV + RU ) and applying FME on

(31)-(33) and (37) yields the following bounds:

R12 > I (V ; X1)− I (V ; X2) = I (V ; X1|X2)

R1 > H (X1|V ,U)
R2 > I (V ; X1)+ I (U ; X2|V ). (38)

This concludes the proof of achievability for (19b).
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PX1,X2,T12,T1,T2,Y(x1, x2, t12, t1, t2, y) = Qn
X1,X2

(x1, x2)1{t12= f12(x1)
}
∩
{

t1= f1(x1)
}
∩
{

t2= f2(x2,t12)
}
∩
{

y=φ(t1,t2)
} (39)

B. Converse-Fixed

We show that given an achievable rate triple
(R12, R1, R2), there exists a PMF PX1,X2,V ,U,Y =
QX1,X2 PV |X1 PU |X2,V PY |X1,U,V that has QX2 PY |X21{X1= f (Y )}
as a marginal, such that the inequalities in (13) are satisfied.
Fix an achievable tuple (R12, R1, R2) and δ, ε > 0,
and let Ln be the corresponding coordination code for
some sufficiently large n ∈ N. The joint distribution on
X n

1 ×X n
2 ×T12 ×T1 ×T2 ×Yn induced by Ln is given in (39)

at the top of the page. All subsequent multi-letter information
measures are calculated with respect to PX1,X2,T12,T1,T2,Y or
its marginals.

Since (R12, R1, R2) is achievable, Xn
1 can be reconstructed

at the decoder with a small probability of error. By Fano’s
inequality we have

H (Xn
1 |T1, T2) ≤ (1 + εn R) � nεn (40)

where εn = 1
n + εR.

Next, by the structure of the single-letter PMF PX1,X2,V ,U,Y ,
we rewrite the mutual information measure in (10c) as

R2 ≥ I (U ; X2|X1, V )
(a)= I (V ; X2|X1)+ I (U ; X2|X1, V )

= I (V ,U ; X2|X1). (41)

where (a) is because V − X1 − X2 forms a Markov chain.
For the lower bound on R12, consider

n R12 ≥ H (T12)

(a)≥ I (T12; Xn
1 |Xn

2 )

=
n∑

i=1

I (T12; X1,i |Xn
1,i+1, Xn\i

2 , X2,i )

(b)=
n∑

i=1

I (T12, Xn
1,i+1, Xn\i

2 ; X1,i |X2,i )

≥
n∑

i=1

I (T12, Xn
1,i+1, Xi−1

2 ; X1,i |X2,i )

(c)=
n∑

i=1

I (Vi ; X1,i |X2,i ) (42)

where (a) is because T12 is determined by Xn
1 and since

conditioning cannot increase entropy, (b) is since (Xn
1 , Xn

2 )

are pairwise i.i.d., and (c) defines Vi � (T12, Xn
1,i+1, Xi−1

2 ),
for every i ∈ [1 : n].

Next, for R1 we have

n R1 ≥ H (T1)

≥ H (T1|T12, T2) (43)
(a)= I (T1; Xn

1 |T12, T2)

= H (Xn
1 |T12, T2)− H (Xn

1 |T12, T1, T2)

(b)≥
n∑

i=1

H (X1,i |T12, T2, Xn
1,i+1)− nεn

≥
n∑

i=1

H (X1,i |T12, T2, Xn
1,i+1, Xi−1

2 )− nεn

(c)=
n∑

i=1

H (X1,i |Vi ,Ui )− nεn (44)

where (a) is because T1 is determined by Xn
1 , (b) uses (40)

and the mutual information chain rule, while in (c) we define
Ui � T2, for every i ∈ [1 : n], and use the definition of Vi .

To bound R2 consider

n R2 ≥ H (T2)

≥ H (T2|Xn
1 )

≥ I (T2; Xn
2 |Xn

1 )

=
n∑

i=1

I (T2; X2,i |Xn\i
1 , Xi−1

2 , X1,i )

(a)=
n∑

i=1

I (T2, Xn\i
1 , Xi−1

2 ; X2,i |X1,i )

(b)=
n∑

i=1

I (T2, T12, Xn\i
1 , Xi−1

2 ; X2,i |X1,i )

(c)≥
n∑

i=1

I (Vi ,Ui ; X2,i |X1,i ) (45)

where (a) is because (Xn
1 , Xn

2 ) are pairwise i.i.d., (b) is because
T12 is determined by Xn

1 , while (c) follows since conditioning
cannot increase entropy and from the definitions of Vi and Ui .

For the sum of rates, we have

n(R1 + R2)

≥ H (T1, T2)

(a)= I (T1, T2; Xn
1 , Xn

2 )

(b)= H (Xn
1)− H (Xn

1 |T1, T2)+ I (T12, T2; Xn
2 |Xn

1)

(c)≥
n∑

i=1

[
H (X1,i)+ I (T12, T2, Xn\i

1 , Xi−1
2 ; X2,i |X1,i )

]
−nεn

≥
n∑

i=1

[
H (X1,i)+ I (T12, T2, Xn

1,i+1, Xi−1
2 ; X2,i |X1,i )

]
−nεn

(d)=
n∑

i=1

[
H (X1,i |Vi ,Ui )+ I (Vi ,Ui ; X1,i , X2,i )

]
− nεn (46)

where:
(a) is because (T1, T2) are determined by (Xn

1 , Xn
2 );

(b) is since Xn
1 defines (T12, T1);

(c) uses (40), the mutual information chain rule and the
pairwise i.i.d. nature of (Xn

1 , Xn
2 );
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(b) uses the mutual information chain rule and the definition
of (Vi ,Ui ).

The upper bounds in (42), (44), (45) and (46) are rewrit-
ten by introducing a time-sharing random variable T that
is independent of (Xn

1 , Xn
2 , T12, T1, T2,Y n) and is uniformly

distributed over [1 : n]. The rate bound on R12 is rewritten as

R12 ≥ 1

n

n∑

t=1

I (Vt ; X1,t |X2,t , T = t) (47)

=
n∑

t=1

P
(
T = t

)
I (Vt ; X1,t |Xt,q, T = t) (48)

= I (VT ; X1,T |X2,T , T ) (49)
(a)= I (VT , T ; X1,T |X2,T ) (50)

where (a) follows because T is independent of the pair
(X1,T , X2,T ) (see property 1 in [13, Section IIV-B]).
By rewriting (44), (45) and (46) in an analogous manner, the
region obtained is convex. This follows from the presence of
the time-sharing random variable T in the conditioning of all
the mutual information and entropy terms.

Next, define X1 � X1,T , X2 � X2,T , V � (VT , T ), U �
UT and Y � YT . Notice that (X1, X2) ∼ QX1,X2 and then use
the time-mixing property from [13, Section IIV-B, Property 2]
to get

R12 ≥ I (V ; X1|X2)

R1 ≥ H (X1|V ,U)− εn

R2 ≥ I (V ,U ; X2|X1)

R1 + R2 ≥ H (X1|V ,U)+ I (V ,U ; X1, X2)− εn . (51)

To complete the converse, the following Markov relations
must be shown to hold.

V − X1 − X2 (52a)

U − (X2, V )− X1 (52b)

Y − (X1,U, V )− X2. (52c)

We prove that the Markov relations in (52) hold for every
t ∈ [1 : n]. Upon doing so, showing that the relations hold in
their single-letter (as stated in (52)) is straightforward.

For (52a), recall that Vt = (T12, Xn
1,t+1, Xt−1

2 ), for every
t ∈ [1 : n], and consider

0 ≤ I (T12, Xn
1,t+1, Xt−1

2 ; X2,t |X1,t )

(a)≤ I (Xn\t
1 , Xt−1

2 ; X2,t |X1,t )
(b)= 0

where (a) is because conditioning cannot increase entropy and
sicen T12 is determined by Xn

1 , while (b) uses the pairwise
i.i.d. nature of (Xn

1 , Xn
2 ). Thus (52a) holds.

To establish (52b), we use Lemma 1 in [56]. Since Ut = T2,
for every t ∈ [1 : n], we have

0 ≤ I (T2; X1,t |X2,t , T12, Xn
1,t+1, Xt−1

2 )

≤ I (T2; X1,t , Xt−1
1 |X2,t , T12, Xn

1,t+1, Xt−1
2 ). (53)

Set

A1 = Xn
1,t+1, A2 = (X1,t , Xt−1

1 ),

B1 = Xn
2,t+1, B2 = (X2,t , Xt−1

2 ).

Accordingly, (53) is rewritten as

0 ≤ I (T2; A2|T12, A1, B2). (54)

Noting that (A1, A2) and (T12, B1, B2) determine T12 and T2,
respectively, and that PA1,A2,B1,B2 = PA1,B1 PA2,B2 . The result
of [56, Lemma 1, Conclusion 2] thus implies

0 ≤ I (T2; A2|T12, A1, B2) = 0 (55)

which establishes (52b).
For (52c) note the the structure of the joint PMF from (39)

implies that for any i ∈ [1 : n], the marginal distribution of
(Xn

1 , Xn
2 , T2, T12,Y n) factors as:

P(xn
1 , xn

2 , t2, t12, yn)

= P(xi−1
2 )P(x1,i , x2,i )P(x

n
1,i+1, xn

2,i+1)

× 1{
t2= f2(xn

2 ,t12)
}P(xi−1

1 , t12, yn|xi−1
2 , xn

1,i , t2). (56)

Consequently, by further marginalizing over Xi−1
1 , we get

P(xn
1,i , xn

2 , t2, t12, yn)

= P(xi−1
2 )P(x1,i , x2,i )P(x

n
1,i+1, xn

2,i+1)1
{

t2= f2(xn
2 ,t12)

}

× P(t12|xi−1
2 , xn

1,i , t2)P(y
n |xi−1

2 , x1,i , xn
1,i+1, t2, t12). (57)

The structure of the conditional distribution of Y n given
(Xn

1,i , Xn
2 , T2, T12) implies that

Y n − (T2, T12, Xn
1,i+1, Xi−1

2 , X1,i )− (X2,i , Xn
2,i+1) (58)

forms a Markov chain, and in particular we have

Yi − (T2, T12, Xn
1,i+1, Xi−1

2 , X1,i )− X2,i (59)

for every i ∈ [1 : n]. Taking δ, ε → 0 and n → ∞ concludes
the converse.

APPENDIX B
PROOF OF THEOREM 5

A. Achievability

To establish achievability, we show that for any fixed ε > 0,
a PMF

PV ,U,Y1 PX |V ,U,Y1 QY2|X (60)

for which Y1 = f (X), and a rate triple (R12, R1, R2) that
satisfies (13), there is a sufficiently large n ∈ N and a
corresponding (n, R12, R1, R2) code Cn , such that e(Cn) ≤ ε.
We first derive an achievable region for a general BC with
a one-sided conferencing link between the decoders with a
channel transition matrix QY1,Y2|X . The region is described
using three auxiliaries (rather than two). Then, by a proper
choice of the auxiliaries, we achieve CBC. Fix a PMF

PV ,U1,U2,X,Y1,Y2 = PV ,U1,U2,X QY1,Y2|X (61)

and an ε > 0, and consider the following coding scheme.
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1) Codebook Generation: Split each message m j , j = 1, 2,
into two sub-messages denoted by (m j0,m j j ). The pair
m0 � (m10,m20) is referred to as a public message while
m j j serve as private message j . The rates associated with
m j0 and m j j , j = 1, 2, are denoted by R j0 and R j j , while
the corresponding alphabets are M j0 and M j j , respectively.
Accordingly, we have

R j = R j0 + R j j , j = 1, 2. (62)

We also denote R0 � R10 + R20 and M0 � M10 ×M20. The
random variables M0 and M j j , for j = 1, 2, are associated
with the public message and private message j , respectively.
Furthermore, M0, M11 and M22 are independent and uniform
over M0, M11 and M22, respectively.

Partition M0 into 2nR12 equal-sized bins B(m12), where
m12 ∈ M12. Generate a public message codebook, denoted
by CV , that comprises 2nR0 v-codewords v(m0), (m0) ∈ M0,
each drawn according to Pn

V independent of all the other
v-codewords.

For each v(m0) ∈ CV , generate two codebooks CU j (m0),

j = 1, 2, each comprises 2n(R j j +R′
j ) codewords u j that

are independently drawn according to Pn
U j |V =v(m0)

. The
u j -codewords in CU j (m0) are labeled as u j (m0,m j j , i j ),

where (m j j , i j ) ∈ M j j × I j and I j = [
1 : 2nR′

j
]
. Based on

this labeling, the codebook CU j (m0) has a u j -bin associated

with every m j j ∈ M j j , each containing 2nR′
j u j -codewords.

2) Encoding: To transmit the message pair
(m1,m2) = (

(m10,m11), (m20,m22)
)
, the encoder searches

for a pair (i1, i2) ∈ I1 × I2 that satisfies (63), as
shown at the bottom of this page, where v(m0) ∈ CV

and u j (m0,m j , i j ) ∈ CU j (m0), for j = 1, 2. If the set of
appropriate index pairs contains more than one element, the
encoder chooses the component-wise minimal pair; if the
set is empty, the encoder sets (i1, i2) = (1, 1). The channel
input sequence x is then randomly generated according to
Pn

X |V ,U1,U2
and is transmitted over the channel.

3) Decoding and Cooperation (Decoder 1): Searches for a
unique pair (m̂0, m̂11) ∈ M0 × M11 for which there is an
index î1 ∈ I1, such that

(
v(m̂0),u1(m̂0, m̂11, î1), y1

)
∈ T n

ε (PV ,U1,Y1) (64)

where v(m̂0) ∈ CV and u1(m̂0, m̂11, î1) ∈ CU1(m̂0). If such a
unique triple is found, then m̂1 = (

m̂10, m̂11
)

is declared as
the decoded message; otherwise, an error is declared.

Cooperation: Given (m̂0, m̂11, î1), Decoder 1 conveys
the bin number of m̂0 to Decoder 2 via the cooperation
link. Namely, Decoder 1 shares with Decoder 2 the index
m̂12 ∈ M12, such that m̂0 ∈ B(m̂12).

Decoder 2: Upon receiving m̂12 from Decoder 1 and y2
from the channel, Decoder 2 searches for a unique pair

( ˆ̂m0, ˆ̂m22) ∈ M0 × M22 for which there is an ˆ̂i2 ∈ I2, such

that
(

v( ˆ̂m0),u2( ˆ̂m0, ˆ̂m22,
ˆ̂i2), y2

)
∈ T n

ε (PV ,U2,Y2) (65)

where ˆ̂m0 ∈ B(m̂12), ( ˆ̂m0) ∈ CV and u2( ˆ̂m0, ˆ̂m22,
ˆ̂i2) ∈

CU2(
ˆ̂m0). If such a unique triple is found, then ˆ̂m2 �

( ˆ̂m20, ˆ̂m22) is declared as the decoded message; otherwise, an
error is declared.

By standard error probability analysis (see Appendix C) and
existence arguments, an (n, R12, R1, R2) code Cn that achieves
reliability is extracted provided that

R′
1 + R′

2 > I (U1; U2|V )
R11 + R′

1 < I (U1; Y1|V )
R20 + R1 + R′

1 < I (V ,U1; Y1)

R22 + R′
2 < I (U2; Y2|V )

R10 + R2 + R′
2 − R12 < I (V ,U2; Y2). (66)

Applying FME on (66) while using (62) yields the rate bounds

R1 < I (V ,U1; Y1)

R2 < I (V ,U2; Y2)+ R12

R1 + R2 < I (V ,U1; Y1)+ I (U2; Y2|V )− I (U1; U2|V )
R1 + R2 < I (U1; Y1|V )+ I (V ,U2; Y2)− I (U1; U2|V )+ R12.

(67)

By setting U1 = Y1 and U2 = U , the bounds in (67) reduce
to (13). Note that this choice of auxiliaries is valid as they
satisfy the Markov relations stated in Theorem 5. This shows
that CBC is achievable.

Remark 15: The cooperation protocol described in the
proof is reminiscent of the WZ coding technique. The coop-
eration link is used to convey a bin of the common message
codeword v (rather than the codeword itself) from 1st decoder
to the 2nd. As part of the joint typicality decoding rule in (65),
the channel input y2 is used as correlated side information to
isolate the actual v-codeword from the bin. This correlation
is induced from the channel transition probability and the
underlying Markov relations (with respect to the PMF in (61)).

B. Converse

We show that if a rate triple (R12, R1, R2) is achiev-
able, then there exists a PMF PV ,U,Y1,X QY2|X for which
Y1 = f (X), such that the inequalities in (13) are satisfied. Fix
an achievable tuple (R12, R1, R2) and an ε > 0, and let Cn be
the corresponding (n, R12, R1, R2) code for some sufficiently
large n ∈ N. The joint distribution on M1 × M2 × X n ×
Yn

1 ×Yn
2 ×M12 ×M1 ×M2 induced by Cn is given in (68),

as shown at the top of the next page. All subsequent multi-
letter information measures are calculated with respect to the
PMF from (68) or its marginals.

(
v(m0),u1(m0,m1, i1),u2(m0,m22, i2)

)
∈ T n

ε (PV ,U1,U2). (63)
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PM1,M2,X,Y1,Y2,M12,M̂1,M̂2
(m1,m2, x, y1, y2,m12, m̂1, m̂2) = 2−n(R1+R2)1{

x=g(m1,m2)
}
∩
{⋂n

i=1

(
y1,i = f (xi )

)}Qn
Y2|X (y2|x)

×1{
m12=g12(y1)

}
∩
{

m̂1=ψ1(y1)
}
∩
{

m̂2=ψ2(y2,m12)
} (68)

Since e(Cn) ≤ ε, Fano’s inequality gives

H (M1|Y n
1 ) ≤ 1 + εn R1 � nε(1)n (69a)

H (M2|M12,Y n
2 ) ≤ 1 + εn R2 � nε(2)n (69b)

where ε( j )
n � 1

n + εR j , for j = 1, 2. Define

εn = max
{
ε(1)n , ε(2)n

}
. (69c)

It follows that

n R1 = H (M1)
(a)≤ I (M1; Y n

1 )+ nεn

(b)= I (Xn; Y n
1 )+ nεn

(c)≤
n∑

i=1

H (Y1,i)+ nεn (70)

where (a) uses (69), (b) is by the Markov chain M1 − Xn −Y n
1

and the Data Processing Inequality, while (c) follows because
Y n

1 is a function of Xn and since conditioning cannot increase
entropy.

To bound R2 consider

n R2 = H (M2) (71)
(a)≤ I (M2; M12,Y n

2 )+ nεn

= I (M2; Y n
2 |M12)+ I (M2; M12)+ nεn (72)

(b)≤
n∑

i=1

I (M2; Y2,i |M12,Y n
2,i+1)+ n R12 + nεn

(c)≤
n∑

i=1

I (Vi ,Ui ; Y2,i)+ n R12 + nεn (73)

where (a) uses (69), (b) is because a uniform distribution
maximizes entropy, while (c) defines Vi � (M12,Y i−1

1 ,Y n
2,i+1)

and Ui � M2, for every i ∈ [1 : n].
For the sum of rates, we first write

n(R1 + R2) = H (M1,M2) = H (M2)+ H (M1|M2). (74)

By the independence of M1 and M2 and by (69), we have

H (M1|M2) ≤ H (Y n
1 |M2)+ nεn . (75)

Moreover, we bound H (M2) as

H (M2)
(a)≤ I (M2; Y n

2 |M12)+ I (M2; M12)+ nεn

(b)=
n∑

i=1

[
I (M2; Y n

2,i |M12,Y i−1
1 )

− I (M2; Y n
2,i+1|M12,Y i

1)
]

+ I (M2; M12)+ nεn

(c)=
n∑

i=1

[
I (M2; Y n

2,i+1|M12,Y i−1
1 )+ I (Ui ; Y2,i |Vi )

− I (M2; Y1,i ,Y n
2,i+1|M12,Y i−1

1 )

+ I (M2; Y1,i |M12,Y i−1
1 )

]
+ I (M2; M12)+ nεn

=
n∑

i=1

[
I (Ui ; Y2,i |Vi )

− I (M2; Y1,i |M12,Y i−1
1 ,Y n

2,i+1)
]

+ I (M2; M12,Y n
1 )+ nεn

(d)=
n∑

i=1

[
I (Ui ; Y2,i |Vi )− I (Ui ; Y1,i |Vi )

]

+ I (M2; Y n
1 )+ nεn (76)

where:
(a) is by repeating steps (71)-(72) in the upper bounding
of R2;
(b) uses a telescoping identity [34, eq. (9) and (11)];
(c) uses the definitions of Vi and Ui ;
(d) again uses the definition of Vi and Ui (second term) and
the Markov relation M12 − Y n

1 − M2 (third term).
Inserting (75) and (76) into (74) results in

n(R1+ R2)

≤
n∑

i=1

[
I (Ui ; Y2,i |Vi )− I (Ui ; Y1,i |Vi )

]
+ H (Y n

1 )+ 2nεn

(77)

≤
n∑

i=1

[
H (Y1,i |Vi ,Ui )+ I (Ui ; Y2,i |Vi)+ I (Vi ; Y1,i )

]
+2nεn .

(78)

Finally, note that

H (Y n
1 )−

n∑

i=1

H (Y1,i |Vi )

(a)=
n∑

i=1

I (Y n
2,i+1; Y1,i |M12,Y i−1

1 )+ I (M12; Y n
1 )

(b)≤
n∑

i=1

I (Y i−1
1 ; Y2,i |M12,Y n

2,i+1)+ H (M12)

(c)≤
n∑

i=1

I (Vi ; Y2,i )+ n R12 (79)

where (a) is the mutual information chain rule and the defin-
ition of Vi , (b) is the Csiszár sum identity, and (c) is because
conditioning cannot increase entropy and since a uniform
distribution maximizes it.
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By plugging (79) into (77), we obtain

n(R1 + R2) ≤
n∑

i=1

[
H (Y1,i |Vi ,Ui )+ I (Vi ,Ui ; Y2,i )

]

+ n R12 + 2nεn . (80)

The upper bounds in (70), (73), (78) and (80) can be
rewritten by introducing a time-sharing random variable T that
is independent of (M1,M2, Xn,Y n

1 ,Y n
2 ,M12) and is uniformly

distributed over [1 : n]. For instance, the bound in (73) is
rewritten as

R2 ≤ 1

n

n∑

t=1

I (Vt ,Ut ; Y2,t )+ R12 + εn

=
n∑

t=1

P
(
T = t

)
I (Vt ,Ut ; Y2,t |T = t)+ R12 + εn

= I (VT ,UT ; Y2,T |T )+ R12 + εn

≤ I (T, VT ,UT ; Y2,T )+ R12 + εn. (81)

By rewriting the rate bounds (70), (78) and (80) in a
similar manner, the region obtained is convex. Next, let
X � XT , Y1 � Y1,T , Y2 � Y2,T , V � (VT , T ) and U � UT .
We have

R1 ≤ H (Y1)+ εn

R2 ≤ I (V ,U ; Y2)+ R12 + εn

R1 + R2 ≤ H (Y1|V ,U)+ I (U ; Y2|V )+ I (V ; Y1)+ 2εn

R1 + R2 ≤ H (Y1|V ,U)+ I (V ,U ; Y2)+ R12 + 2εn . (82)

To complete the proof we need to show that the PMF of
(V ,U, X,Y1,Y2) factors as PV ,U,Y1,X QY2|X , which boils down
to the Markov relation

(V ,U,Y1)− X − Y2. (83)

The proof of (83) is given in Appendix I. Taking ε → 0 and
n → ∞ establishes the converse.

APPENDIX C
ERROR PROBABILITY ANALYSIS FOR THEOREM 5

Recall that (M0,M11,M22) is a triple of random variables
that represents the transmitted messages. Since the analysis
considers the expected error probability over the ensemble of
codebooks, by the symmetry of the codebook construction
we may assume that (M0,M11,M22) = 1 � (1, 1, 1). With
some abuse of notation, we denote by i j the index chosen
by the encoder from the u j -bin that is associated with the
transmitted messages (recall that for a fixed codebook i1 and i2
are deterministically defined by the transmitted messages).

A. Encoding Error

An encoding error occurs if the v-, u1- and u2-codewords
chosen by the encoder are not jointly typical. This is described
by the event stated in (84), as shown at the bottom of the page,
where

(
V(1),U1(1, 1, î1),U2(1, 1, î2)

) ∼ Pn
V Pn

U1|V Pn
U2|V

and (i1, i2) are chosen according to the encoding rule from
Subsection B in Appendix B. Namely, an encoding error
occurs if there is no pair of indices (î1, î2) ∈ I1 × I2
that satisfies (63). By the Multivariate Covering Lemma
[57, Lemma 8.2], P

(
E
) → 0 as n → ∞ if we have

R′
1 + R′

2 > I (U1; U2|V ). (85)

B. Decoding Errors

To account for decoding errors, for any (m0,m j j , î j ) ∈
M0 × M j j × I j and j = 1, 2, define the following event

D j (m0,m j j , î j )

=
{(

V(m0),U j (m0,m j j , î j ),Y j
) ∈ T n

ε (PV ,U j ,Y j )
}

(86)

where
(
V(m0),U j (m0,m j j , î j )

) ∼ Pn
V Pn

U j |V and Y j is
distributed according to the channel transition probabil-
ity conditioned on the input sequence that corresponds to
(m0,m11,m22) = 1 and (i1, i2).

Let Cn be a random variable that represents a random
codebook that adheres to the scheme from Appendix B. By the
union bound, the average error probability over the ensemble
of codebooks is bounded as shown in (87) at the top of the
next page. Note that

{
P[k]

j

}4
k=1 correspond to decoding errors

by Decoder j , where j = 1, 2. We proceed with the following
steps:

1) P[1]
j , for j = 1, 2, vanishes to 0 as n → ∞ by the law

of large numbers.
2) To upper bound P[2]

j , j = 1, 2, consider:

P[2]
j

(a)≤
∑

ĩ j ,m̃ j j �=1

2−n
(

I (U j ;Y j |V )−δ[2]
j (ε)

)

≤ 2n(R j j +R′
j )2−n

(
I (U j ;Y j |V )−δ[2]

j (ε)
)

= 2n
(

R j j +R′
j −I (U j ;Y j |V )+δ[2]

j (ε)
)

where (a) follows since for every m̃ j j �= 1 and ĩ j ∈ I j ,
U j (1, m̃ j j , ĩ j ) is independent of Y j while both of them
are drawn conditioned on V(1). Moreover, δ[2]

j (ε) →
0 as ε → 0. Hence, to ensure that P[2]

j vanishes as
n → ∞, we take:

R j j + R′
j < I (U j ; Y j |V )− δ

[2]
j (ε), j = 1, 2. (88)

E =
⋂

(î1,î2)∈I1×I2

{(
V(1),U1(1, 1, î1),U2(1, 1, î2)

)
/∈ T n

ε (PV ,U1,U2)
}

(84)
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Ee(Cn) ≤ P
(
E
)+

(
1 − P

(
E
))

⎛

⎜
⎜
⎝

2∑

j=1

[

P

(
Dc

j (1, 1, i j )
∣
∣
∣Ec
)

︸ ︷︷ ︸
P[1]

j

+ P

⎛

⎜
⎝

⋃

ĩ j ,m̃ j j �=1

D j (1, m̃ j j , ĩ j )

∣∣
∣
∣
∣
Ec

⎞

⎟
⎠

︸ ︷︷ ︸
P[2]

j

]

+ P

⎛

⎝
⋃

m̃0 �=1

D1(m̃0, 1, i1)

∣
∣
∣
∣∣
Ec

⎞

⎠

︸ ︷︷ ︸
P[3]

1

+ P

⎛

⎜
⎜
⎜
⎝

⋃

ĩ1,m̃0 �=1,
m̃11 �=1

D1(m̃0, m̃11, ĩ)

∣
∣
∣
∣
∣∣
∣
Ec

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
P[4]

1

+ P

⎛

⎜
⎜
⎝

⋃

m̃0 �=1:
m̃0∈B(m12)

D2(m̃0, 1, i2)

∣
∣
∣
∣
∣∣
∣
Ec

⎞

⎟
⎟
⎠

︸ ︷︷ ︸
P[3]

2

+ P

⎛

⎜
⎜
⎜
⎝

⋃

ĩ2,m̃0 �=1,m̃22 �=1:
m̃0∈B(m12)

D2(m̃0, m̃22, ĩ2)

∣∣
∣
∣
∣
∣∣
Ec

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
P[4]

2

⎞

⎟
⎟
⎠ (87)

3) For P[4]
1 , we have:

P[4]
1

(a)≤
∑

ĩ1,m̃0 �=1,
m̃11 �=1

2−n
(

I (V ,U1;Y1)−δ[4]
1 (ε)

)

(b)≤ 2n(R20+R1+R′
1) · 2−n

(
I (V ,U1;Y1)−δ[4]

1 (ε)
)

= 2n
(

R20+R1+R′
1−I (V ,U1;Y1)+δ[4]

1 (ε)
)

where (a) follows since for every (m̃0, m̃11) �= 1 and
ĩ1 ∈ I1, V(m̃0) and U1(m̃0, m̃11, ĩ1) are drawn together
by independent of Y1, while (b) uses R0 = R10 + R20.
Again, δ[4]

1 (ε) → 0 as ε → 0, and therefore, we have
that P[4]

1 → 0 as n → ∞ if

R20 + R1 + R′
1 < I (V ,U1; Y1)− δ

[4]
1 (ε). (89)

4) By repeating similar arguments as before while keeping
in mind that the search space of m0 at Decoder 2 is of
size 2n(R0−R12) (as a consequence of the binning of M0

and the cooperation protocol), we have that P[4]
2 decays

with n provided that

R10 + R2 + R′
2 − R12 < I (V ,U2; Y2)− δ[4]

2 (ε) (90)

where δ[4]
2 (ε) → 0 as ε → 0.

5) By repeating similar steps to upper bound P[3]
1 , the

obtained rate bound is redundant. This is since for
every m̃0 �= 1 and ĩ1 ∈ I1, the sequences V(m̃0) and
U1(m̃0, 1, ĩ1) are independent of Y1. Hence, to ensure

that P[3]
1 vanishes to 0 as n → ∞, we take

R10 + R20 < I (V ,U1; Y1)− δ[3]
1 (ε) (91)

where δ[3]
1 (ε) → 0 as ε → 0. But the right-hand

side (RHS) of (91) coincides with the RHS of (89),
while the left-hand side (LHS) is with respect to R10 +
R20 only. Clearly, (89) is the dominating constraint.

In a similar manner one finds that the rate bound that
ensures that P[3]

2 can be made arbitrarily small with n
is redundant (due to (90)).

Summarizing the above results, we get that the RHS of (87)
decays as the blocklength n → ∞ if the conditions in (66) are
met. By standard existence arguments, a vanishing expected
average error probability (over the ensemble of codes) ensures
that there exists a reliable (n, R12, R1, R2) code Cn for all rate
triples that satisfy (66).

APPENDIX D
PROOF OF LEMMA 10

To show C(D)BC ⊆ CBC, let (R12, R1, R2) ∈ C(D)BC be a rate
triple achieved by (V ,U, X). Setting V � = V and U � = U ,
implies that the same rate triple (R12, R1, R2) is contained in
CBC, as it is achieved by (V �,U �, X) (since substituting (17a)
into (17d) yields (13d)).

To see that CBC ⊆ C(D)BC , let (R12, R1, R2) ∈ CBC be a rate
triple achieved by (V ,U, X). Further assume that

R12 < I (V ; Y1)− I (V ; Y2) (92)

(otherwise, all four inequalities in (17) clearly hold). Accord-
ingly, there is a real number γ > 0, such that

R12 = I (V ; Y1)− I (V ; Y2)− γ. (93)

Define V � � (	, Ṽ ), where 	 ∼ Ber (λ), λ ∈ [0, 1], is a
binary random variable independent of (V ,U, X) that takes
values in O = {θ1, θ2}, and

Ṽ =
{

V , 	 = θ1

∅, 	 = θ2.
(94)

Furthermore, set

λ = I (V ; Y1)− I (V ; Y2)− γ

I (V ; Y1)− I (V ; Y2)
(95)

and U � = (V ,U).
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With respect to this choice of (V �,U �), consider

I (V �; Y1)− I (V �; Y2) = λ
[

I (V ; Y1)− I (V ; Y2)
]

(a)= I (V ; Y1)− I (V ; Y2)− γ
(b)= R12 (96)

where (a) uses the choice of λ in (95) and (b) follows
from (93). Thus, (17a) holds.

Next, by the definition of U � and because (13a)-(13b) are
valid, we obtain (17b)-(17c). It remains to be shown that (17d)
holds. Consider the following:

H (Y1|V �,U �)+ I (U �; Y2|V �)+ I (V �; Y1)

= H (Y1|V �,U �)+ I (V �,U �; Y2)+ I (V �; Y1)− I (V �; Y2)
(a)= H (Y1|V ,U)+ I (V ,U ; Y2)+ R12
(b)≥ R1 + R2 (97)

where (a) uses the definition of U � and (96), while
(b) is by (13d). Consequently (17d) is valid and the inclusion

CBC ⊆ C(D)BC follows.

APPENDIX E
EXPLICIT CONVERSE FOR LEMMA 10

The converse for Theorem 5 is established using a novel
approach that generalizes the classical technique used for con-
verse proofs. Our approach relies on two key properties. First,
the construction of the auxiliary random variables depends on
the distribution induced by the code. Second, the auxiliaries
are constructed in a probabilistic manner.

We show that if a rate triple (R12, R1, R2) is achievable,
then there is a PMF PV ,U,Y1,X QY2|X for which Y1 = f (X),
such that the inequalities in (17) are satisfied. To do so, we first

state an upper bound on C(D)BC and then establish its inclusion
in C(D)BC . The upper bound is stated in the following lemma.

Lemma 16 (Upper Bound on the Capacity Region):
Let RO be the region defined by the union of rate triples
(R12, R1, R2) ∈ R

3+ satisfying:

R12 ≥ I (A; Y1|C)− I (C; Y2|A) (98a)

R1 ≤ H (Y1|B,C) (98b)

R2 ≤ I (B; Y2|A)+ R12 (98c)

R1 + R2 ≤ H (Y1|A, B,C)+ I (B; Y2|A,C)+ I (A; Y1|C)
(98d)

where the union is over all PMFs PA,B,C,Y1,X QY2|X for which
Y1 = f (X). The following inclusion holds:

C(D)BC ⊆ RO. (99)

Proof: By similar arguments to those given in
Subsection B of Appendix B, since (R12, R1, R2) is achievable
and by Fano’s inequality, we have

H (M1|Y n
1 ) ≤ nεn (100a)

H (M2|M12,Y n
2 ) ≤ nεn (100b)

where εn is defined as in (69). It follows that

n R12 ≥ H (M12)
(a)= I (M12; Y n

1 )

(b)=
n∑

i=1

[
I (M12,Y n

2,i+1; Y i
1)− I (M12,Y n

2,i ; Y i−1
1 )

]

=
n∑

i=1

[
I (M12,Y n

2,i+1; Y1,i |Y i−1
1 )

−I (Y i−1
1 ; Y2,i |M12,Y n

2,i+1)
]

(c)=
n∑

i=1

[
I (Ai ; Y1,i |Ci )− I (Ci ; Y2,i |Ai )

]
(101)

where (a) is because M12 is defined by Y n
1 , (b) is a telescoping

identity, while (d) is by defining Ai � (M12,Y n
2,i+1) and

Ci � Y i−1
1 , for every i ∈ [1 : n].

For the upper bound on R1, consider

n R1 = H (M1)

= H (M1|M2)
(a)≤ I (M1; Y n

1 |M2)+ nεn
(b)= H (Y n

1 |M2)− H (Y n
1 |M1,M2, Xn)+ nεn

(c)=
n∑

i=1

H (Y1,i |M2,Y i−1
1 )+ nεn

(d)=
n∑

i=1

H (Y1,i |Bi ,Ci )+ nεn (102)

where (a) uses (100a), (b) is since Xn is a function of
(M1,M2), (c) is because Y n

1 is determined by Xn , while (d)
defines Bi � M2, for every i ∈ [1 : n], and uses the definition
of Ci .

To bound R2 we have

n R2
(a)≤ I (M2; Y n

2 |M12)+ I (M2; M12)+ nεn

≤
n∑

i=1

I (M2; Y2,i |M12,Y n
2,i+1)+ H (M12)+ nεn

(b)≤
n∑

i=1

I (Bi ; Y2,i |Ai)+ n R12 + nεn (103)

where (a) is by repeating steps (71)-(72) in Appendix B,
while (b) is by the definition of (Ai , Bi ) and because a uniform
distribution maximizes entropy.

Finally, for the sum of rates, we begin from step (77) in
Appendix B and note that the auxiliaries in Appendix B can
be rewritten in terms of (Ai , Bi ,Ci ) as Vi = (Ai ,Ci ) and
Ui = Bi . We thus have

n(R1 + R2) ≤
n∑

i=1

[
I (Bi ; Y2,i |Ai ,Ci )− I (Bi ; Y1,i |Ai ,Ci )

]

+H (Y n
1 )+ 2nεn

(a)=
n∑

i=1

[
H (Y1,i |Ai , Bi ,Ci )+ I (Bi ; Y2,i |Ai ,Ci )

+I (Ai ; Y1,i |Ci )
]

+ 2nεn (104)
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where (a) is from the mutual information chain rule and the
definition of (Ai , Bi ,Ci ).

By standard time-sharing arguments, we rewrite the bounds
in (101)-(104) as

R12 ≥ I (A; Y1|C)− I (C; Y2|A)
R1 ≤ H (Y1|B,C)+ εn

R2 ≤ I (B; Y2|A)+ R12 + εn

R1 + R2 ≤ H (Y1|A, B,C)+ I (B; Y2|A,C)

+ I (A; Y1|C)+ 2εn (105)

which are the bounds from (98) with small added terms such
as εn . Taking ε → 0 and n → ∞, these terms approach 0.
The proof is completed by showing that the Markov relations
stated in Lemma 16 hold. This follows by arguments similar
to those presented in Appendix B.

Based on Lemma 16, the inclusion relation stated in the
following lemma completes the proof of the converse.

Lemma 17 (Tightness of Upper Bound): The following
inclusion holds:

RO ⊆ C(D)BC . (106)

Proof: Let (R12, R1, R2) ∈ RO be achieved by a
given tuple of random variables (A, B,C, X). We show that
there exists a pair of random variables (V ,U), such that
(R12, R1, R2) ∈ C(D)BC and is achieved by (V ,U, X). We define
(V ,U) as follows. Let 	 ∼ Ber (λ), λ ∈ [0, 1], be a binary
random variable independent of (A, B,C, X) that takes values
in O = {θ1, θ2}. Define the random variable

Ṽ =
{
(A,C), 	 = θ1

∅, 	 = θ2.
(107)

Set V � (	, Ṽ ) and

U = (A, B,C) (108)

and note that (V ,U) preserves the Markov structure

(Y1,Y2)− X − (U, V ) (109)

since, as stated in Lemma 16, (Y1,Y2)− X − (A, B,C) forms
a Markov chain.

First, consider the case when

I (A,C; Y1)− I (A,C; Y2) ≤ 0. (110)

By setting λ = 1 we have

I (V ; Y1)− I (V ; Y2) ≤ 0
(a)≤ R12 (111)

where (a) is since R12 ≥ 0, which establishes (17a). (17b)
holds since H (Y1|B,C) ≤ H (Y1).

For (17c), note that the definition of (V ,U) in (107)-(108)
implies that

(A, B,C, X,Y1,Y2)− U − V (112)

forms a Markov chain. Consequently, we obtain

I (V ,U ; Y2) = I (A, B,C; Y2) (113)

which yields

I (V ,U ; Y2)+ R12 ≥ I (B; Y2|A)+ R12
(a)≥ R2 (114)

where (a) uses (98c). This shows that (17c) also holds.
For the sum rate, we rewrite (17d) as

H (Y1|V ,U)+ I (U ; Y2|V )+ I (V ; Y1)

= H (Y1|V ,U)+ I (V ,U ; Y2)+ I (V ; Y1)− I (V ; Y2) (115)

and obtain an explicit expression for each of the information
measures in the RHS of (115) in terms of (A, B,C, X). Based
on similar arguments to those presented before, we have

H (Y1|V ,U) = H (Y1|A, B,C) (116)

while the other two information measures in (115) were
previously evaluated in (111) and (113). Inserting (111), (113)
and (116) into (115) results in

H (Y1|V ,U)+ I (U ; Y2|V )+ I (V ; Y1)
(a)≥ H (Y1|A, B,C)+ I (B; Y2|A,C)+ I (A; Y1|C)
(b)≥ R1 + R2 (117)

where (a) is because λ = 1 and the mutual information chain
rule, while (b) uses (98d). This satisfies (17d).

To conclude the proof it is left to consider the case where

I (A,C; Y1)− I (A,C; Y2) > 0. (118)

This time set

λ = min

{

1,

(
I (A; Y1|C)− I (A,C; Y2)+ I (A; Y2)

I (A; Y1|C)− I (A,C; Y2)+ I (C; Y1)

)+}

(119)

where (x)+ = max
{
0, x
}
, and consider the following.

I (V ; Y1)− I (V ; Y2)

= λ
[

I (A,C; Y1)− I (A,C; Y2)
]

(120)

= λ
[

I (A; Y1|C)− I (A,C; Y2)+ I (C; Y1)
]

(121)

(a)≤ I (A; Y1|C)− I (C; Y2|A)
(b)≤ R12 (122)

where (b) relies (98a), while step (a) is justified as follows.
If λ = 1 we have

I (A; Y2) ≥ I (C; Y1). (123)

Using (123), we rewrite (121) as

λ
[

I (A; Y1|C)− I (A,C; Y2)+ I (C; Y1)
]

(a)= I (A; Y1|C)− I (C; Y2|A)+ I (C; Y1)− I (A; Y2)
(b)≤ I (A; Y1|C)− I (C; Y2|A)

where (a) follows because λ = 1 and by the mutual informa-
tion chain rule, while (b) is by (123). On the other hand, if

λ = I (A; Y1|C)− I (A,C; Y2)+ I (A; Y2)

I (A; Y1|C)− I (A,C; Y2)+ I (C; Y1)
(124)
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then

I (A; Y2) < I (C; Y1) (125)

and we rewrite (121) as

λ
[

I (A; Y1|C)− I (A,C; Y2)+ I (C; Y1)
]

(a)= I (A; Y1|C)− I (A,C; Y2)+ I (A; Y2)

= I (A; Y1|C)− I (C; Y2|A)
where (a) uses (124). The case λ = 0 is trivial, and we omit the
derivation of (a) in (122). We conclude that (17a) is satisfied.
(17b)-(17c) follow by the same arguments presented above,
while for (17d) we have

H (Y1|V ,U)+ I (U ; Y2|V )+ I (V ; Y1)
(a)= H (Y1|A, B,C)+ I (A, B,C; Y2)

+λ
[

I (A,C; Y1)− I (A,C; Y2)
]

(b)≥ H (Y1|A, B,C)+ I (B; Y2|A,C)+ I (A; Y1|C)
(c)≥ R1 + R2 (126)

where (a) is by (112) and (115), (c) uses (98d), while the
derivation of (b) relies on evaluating the terms of interest for
the three possible values of λ. First, by (118), λ = 0 if and
only if

I (A; Y1|C) ≤ I (C; Y2|A) (127)

which implies

H (Y1|A, B,C)+ I (A, B,C; Y2)

+ λ
[

I (A,C; Y1)− I (A,C; Y2)
]

= H (Y1|A, B,C)+ I (B; Y2|A,C)+ I (A,C; Y2)

≥ H (Y1|A, B,C)+ I (B; Y2|A,C)+ I (C; Y2|A)
≥ H (Y1|A, B,C)+ I (B; Y2|A,C)+ I (A; Y2|C). (128)

If λ = 1, by the mutual information chain rule we have

H (Y1|A, B,C)+ I (A, B,C; Y2)

+ λ
[

I (A,C; Y1)− I (A,C; Y2)
]

≥ H (Y1|A, B,C)+ I (B; Y2|A,C)+ I (A; Y1|C). (129)

Finally, if λ is as in (124), we obtain

H (Y1|A, B,C)+ I (A, B,C; Y2)

+ λ
[

I (A,C; Y1)− I (A,C; Y2)
]

= H (Y1|A, B,C)+ I (A; Y2)+ I (B; Y2|A,C)+ I (A; Y1|C)
≥ H (Y1|A, B,C)+ I (B; Y2|A,C)+ I (A; Y1|C). (130)

We find that (17d) is also satisfied, thus concluding that (17)
holds for the choice of (V ,U) and λ stated in (107)-(108)

and (119), respectively. This implies that RO ⊆ C(D)BC .
Lemma 17 completes the converse and characterizes the

region in (17) as the capacity region of the SD-BC with
cooperation.

Remark 18: The definition of V in (107) is probabilistic and
through λ depends on the joint distribution of (A, B,C, X)
that is induced by the code.

APPENDIX F
DERIVATION OF THE REGION IN (13) FROM (24)

Denote the region in (24) by R. Note that CBC is achievable
from R by taking X1 to be independent of (V ,U, X) and
applying a coding scheme where the transmission rate via the
relay channel is R12. This implies that CBC ⊆ R.

To see that R ⊆ CBC recall that [35, Proof of Theorem 8
relies on Theorem 4 in that same work, which characterized
an upper bound on the capacity region of a general RBC. In
the proof of Theorem 4 (see [35, Appendix II]), the auxiliary
random variables Vi and Ui are defined as

Vi � (M0,Y i−1
1 ,Y n

2,i+1); Ui � (M2,Y i−1
1 ,Y n

2,i+1). (131)

M0 is a common message that was also considered in [35].
Since X1,i is a function of Y i−1

1 , it is also a function of Vi

(and\or Ui ) for every i ∈ [1 : n]. In particular, this implies that
X1 is a function of V . Consequently, the information measures
defining R are then upper bounded as follows. For R1 we have

R1 ≤ H (Y1|X1) ≤ H (Y1). (132)

For the R2 consider

R2 ≤ I (V ,U, X1; Y21)+ H (Y22|Y21)
(a)≤ I (V ,U ; Y21)+ H (Y22)
(b)≤ I (V ,U ; Y21)+ R12 (133)

where (a) is because X1 is defined by V and since conditioning
cannot increase entropy, while (b) follows because the relay
channel is deterministic with capacity R12.

For the first bound on the sum of rates, we have

R1+ R2 ≤ H (Y1|V ,U, X1)+ I (U ; Y21|V , X1)+ I (V ; Y1|X1)
(a)≤ H (Y1|V ,U)+ I (U ; Y21|V )+ I (V ; Y1). (134)

Here (a) is justified similarly to step (a) in (133).
Finally, the second bound on R1 + R2 is upper bounded as

R1 + R2 ≤ H (Y1|V ,U, X1)+ I (V ,U, X1; Y21)+H (Y22|Y21)
(a)≤ H (Y1|V ,U)+ I (V ,U ; Y21)+ H (Y22)
(b)≤ H (Y1|V ,U)+ I (V ,U ; Y21)+ R12. (135)

Again, (a) and (b) follow by the same arguments as (a) and (b)
in (133).

To complete the proof, it remains to be shown that
taking the union only over PMFs in which X1 is independent
of (V ,U, X) exhausts the entire region. This follows since
the rate bounds in (132)-(135) do not involve X1 nor Y22.
Relabeling Y21 as Y2 shows that R ⊆ CBC and completes the
proof.

APPENDIX G
PROOF OF LEMMA 12

Fix (R1, R2) ∈ CRBC(R12) and let
{
C(RBC)

n (R12)
}

n∈N

be the sequence of (n, R1, R2) codes for the R12-reduced
SD-RBC that adhere to the coding scheme described

in [35, Appendix I]. Accordingly, e
(
C(RBC)

n (R12)
) → 0 as
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n → ∞ and the induced codewords, channel inputs, and chan-
nel outputs are jointly-typical with high probability.3 Since the
channel from Decoder 1 to Decoder 2 is deterministic, there
are approximately 2nH(Y22) different possible relay channel
outputs y22. Recall that the capacity of the orthogonal and
deterministic relay of the R12-reduced SD-RBC is exactly R12,
i.e., H (Y22) = R12. For every sequence y22 ∈ T n

ε (PY22) (here
ε > 0 corresponds to the margin between the region achieved
by the nth code in the sequence and (R1, R2)), define the
following subset of x1 codewords:

V(y22) =
{

x1 ∈ C(RBC)
n (R12)

∣∣
∣ fR(x1,i) = y22,i ,∀i ∈ [1 : n]

}
.

(136)

Consider a SD-BC with cooperation and associate a coop-
eration message m12, where m12 ∈ M12, with every set

V(y22). To use C(RBC)
n for the SD-BC with cooperation,

Decoder 1 waits for the n-symbol transmission to end and
then shares with Decoder 2 the message m12 associated
with a set V(y22) that contains the intended x1 codeword
(i.e., such that x1 ∈ V(y22)). Given m12, Decoder 2 recovers
the sequence y22 and proceeds with the decoding process
of the R12-reduced SD-RBC coding scheme. This results
in a sequence of (n, R12, R1, R2) codes

{
C(BC)

n
}

n∈N
for the

SD-BC with cooperation.
Next, fix (R12, R1, R2) ∈ CBC and let

{
C(BC)

n
}

n∈N
be the

sequence of (n, R12, R1, R2) codes for the SD-BC with coop-
eration described in Appendix B. Consider an R12-reduced
SD-RBC and map each cooperation message m12 ∈ M12
to a codeword x1(m12). Since the capacity of the channel
between the decoders is R12, there is a sufficient number
of different codewords x1 (i.e., sufficient to cover the space
of cooperation messages M12 = [

1 : 2nR12
]
) that can be

conveyed via this channel. To use C(BC)
n for the R12-reduced

SD-RBC, transmit B blocks, each of length n, and denote
the messages transmitted by (m(b)

1 ,m(b)
2 ) ∈ M1 ×M2, where

b ∈ [1 : B]. In the subsequent coding scheme, the transmission
of the 1st block is discarded, while during every block b ≥ 2,

the messages (m(b−1)
1 ,m(b−1)

2 ) are reliably transmitted over
the channel. Accordingly, the scheme forfeits the decoding

of the messages (m(B)
1 ,m(B)

2 ), which implies that the average

rate pair
( B−1

B R1,
B−1

B R2
)
, over B blocks, is achievable. By

taking B → ∞, the transmission rates approach (R1, R2).
The coding scheme for the R12-reduced SD-RBC during

block b ≥ 2 is as follows. First, note that the channel output
y(b−1)

1 at Decoder 1 during the previous block is known at
the relay at the beginning of block b. Thus, during block b,
the encoder transmits the codeword x that corresponds to
the message pair (m(b−1)

1 ,m(b−1)
2 ), while the relay transmits

the codeword x1

(
m(b−1)

12

(
y(b−1)

1

))
. At the end of transmission

block b, Decoder 2 uses the induced relay output y(b)22 to
reliably decode m(b−1)

12

(
y(b−1)

1

)
. Both decoders then proceed

with the decoding process for the SD-BC with cooperation to

3e(Cn ) stands for the error probability of the code Cn defined analogously
to (9).

decode the messages (m(b−1)
1 ,m(b−1)

2 ). By taking n to infinity,

this coding scheme achieves
( B−1

B R1,
B−1

B R2
)
, over B blocks,

for the R12-reduced SD-RBC.

APPENDIX H
DERIVATION OF THE REGION IN (26)

We prove that the admissible region for the SW problem
with one-sided encoder cooperation is (26), and that (26) is
obtained from RWAK(PX1,X2,Y ) stated in Theorem 5. To this
end set U = X2 and evaluate the rate bounds in (10) to get

R12 ≥ I (V ; X1|X2)

R1 ≥ H (X1|X2)− I (V ; X1|X2)

R2 ≥ H (X2|X1)

R1 + R2 ≥ H (X1, X2). (137)

The structure of the region in (26) implies R12 ≤
H (X1|X2). Thus, it suffices to show that for every
0 ≤ R12 ≤ H (X1|X2) there is a random variable V
that admits the Markov property V − X1 − X2 such that
I (V ; X1|X2)= R12. Since R12 ≤ H (X1|X2), there is a real
number γ ≥ 0 such that

R12 = H (X1|X2)− γ. (138)

Set the auxiliary random variable V � (	, Ṽ ), where
	 ∼ Ber (λ), λ ∈ [0, 1], is a binary random variable
independent of (X1, X2) that takes values in O = {θ1, θ2},
and

Ṽ =
{

X1, 	 = θ1

0, 	 = θ2.
(139)

Taking

λ = H (X1|X2)− γ

H (X1|X2)
(140)

results in

I (V ; X1|X2) = λI (X1; X1|X2)+ λ̄I (0; X1|X2)

= H (X1|X2)− γ

= R12

and implies the achievability of (26).
The converse follows by the generalized Cut-Set bound

[58, Th. 1] and characterizes (26) as the admissible rate region
for the SW problem with one-sided encoder cooperation.

APPENDIX I
PROOF OF THE MARKOV RELATION IN (83)

We present two proofs for the Markov relation in (83),
each based on a different graphical method. The first uses
the sufficient condition via undirected graphs that was intro-
duced in [59]. The second approach relies on the notion of
d-separation in functional dependence graphs (FDGs), for
which we use the formulation from [60].

By the definitions of the auxiliaries V and U , it suffices to
show that

(M1,M2,M12,Y t−1
1 ,Y n

2,t+1,Y1,t )− Xt − Y2,t (141)
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Fig. 6. (a) The undirected graph that corresponds to the PMF from (143): the relation (142) holds because all paths from Y2,t to (M1,M2,Y n
1 ,Y n

2,t+1) pass

through Xt . (b) The FDG that stems from (143): (142) follows since C = {Xt
}

d-separates A = {Y2,t
}

from B = {M1,M2,Y n
1 ,Y n

2,t+1

}
. (c) The undirected

graph obtained from the FDG after the manipulations described in Definition 11.

is a Markov chain for every t ∈ [1 : n]. In fact, we prove the
stronger Markov relation

(M1,M2,Y n
1 ,Y n

2,t+1)− Xt − Y2,t (142)

from which (141) follows because M12 is determined by Y n
1 .

Since the channel is SD, memoryless and without feedback,
for every (m1,m2) ∈ M1 ×M2, (xn, yn

1 , yn
2 ) ∈ X n ×Yn

1 ×Yn
2

and t ∈ [1 : n], the structure of the joint PMF from (68) gives

P(m1,m2, xn, yn
1 , yn

2 )

= P(m1)P(m2)P(x
n |m1,m2)P(y

t−1
1 |xt−1)P(yt−1

2 |xt−1)

× P(y1,t |xt )P(y2,t |xt)P(y
n
1,t+1|xn

t+1)P(y
n
2,t+1|xn

t+1).

(143)

Given (143), the Markov relation in (142) follows by using
either of two subsequently explained methods.

C. Via Undirected Graph

Fig. 6(a) shows the undirected graph that stems from the
PMF in (143) with respect to the principles described in [59].
Namely, the nodes of the graph correspond to the random
variables in (143). All the nodes that are associated with
random variables that appear together in any of the terms in
the factorization of (143) are connected by edges. For instance,
the term P(xn|m1,m2) induces edges that connect the nodes
of M1, M2, Xt−1, Xt and Xn

t+1 with one another. The Markov
chain in (142) follows from Fig. 6(a), since all paths from Y2,t
to (M1,M2,Y n

1 ,Y n
2,t+1) pass through Xt .

D. Via Functional Dependence Graph and d-Separation

Fig. 6(b) shows the FDG induced by (143). The structure
of FDGs allows one to establish the conditional statistical
independence of sets of random variables using the notion
of d-separation.

Definition 11 (d-separation [60]): Let A, B and C be dis-
joint subsets of the vertices of an FDG G. C is said to
d-separate A from B if there is no path between a vertex
in A and a vertex in B after the following manipulations of
the graph have been performed.

1) Consider the subgraph GABC of G consisting of the
vertices in A, B and C, as well as the edges and vertices

encountered when moving backward one or more edges
starting from any of the vertices in A, B or C.

2) In GABC , delete all edges coming out of the vertices
in C. Call the resulting graph GAB|C .

3) Remove the arrows on the remaining edges of GAB|C to
obtain an undirected graph.

The Markov relation from (143) follows by setting
A = {

Y2,t
}
, B = {

M1,M2,Y n
1 ,Y n

2,t+1

}
and C = {

Xt
}
,

and noting that C d-separates A from B [60]. To see
this, in Fig. 6(c) we show the undirected graph obtained
from the FDG in Fig. 6(b) by applying the manipulations
described in Definition 11 with respect to the specified choices
of A, B and C.

Neither of the methods is a special case of the other. While
the first method (via undirected graphs) involves graphs with
more edges, the derivation of the Markov relations using such
graphs is more direct. The second method (via FDGs and
d-separation) requires manipulating the original FDG.
However, the FDG is typically simpler than its undirected
counterpart.
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