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Abstract— The capacity regions of semideterministic multiuser
channels, such as the semideterministic relay channel and the
multiple access channel with partially cribbing encoders, have
been characterized using the idea of partial-decode-forward.
However, the requirement to explicitly decode part of the message
at intermediate nodes can be restrictive in some settings; for
example, when nodes have different side information regarding
the state of the channel. In this paper, we generalize this scheme
to cooperative-bin-forward by building on the observation that
explicit recovering of part of the message is not needed to induce
cooperation. Instead, encoders can bin their received signals and
cooperatively forward the bin index to the decoder. The main
advantage of this new scheme is illustrated by considering state-
dependent extensions of the aforementioned semideterministic
setups. While partial-decode-forward is suboptimal in these new
setups, cooperative-bin-forward continues to achieve capacity.

Index Terms— Cooperative-bin-forward, cribbing, multiple-
access channel, relay channel, state, semideterministic.

I. INTRODUCTION

THE capacity region of the semideterministic relay
channel, depicted in Figure 1, is characterized in [1]

using the partial-decode-forward scheme. In this scheme, the
source splits its message into two parts and encodes them
using superposition coding. The relay decodes one part of the
message, and maps this to a codeword to be transmitted in
the next block. The codebooks at the source are generated
conditioned on the relay’s transmission, which results in
coherent transmissions from the source and the relay.

Consider now the extension of this model depicted
in Figure 2, which corresponds to a state-dependent semi-
deterministic relay channel where the state information is
causally available only at the source and the destination.
This model captures the natural cellular downlink scenario, in
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Fig. 1. Semideterministic Relay Channel.

Fig. 2. State-dependent Semideterministic Relay Channel with Causal State
Information at Source and Destination.

which training enables the source and the destination to learn
the channel gain between them (state = channel gain),
while a relay could be potentially available to assist the
communication, e.g. a wifi access point. In this scenario,
it is typically unrealistic to assume that the relay is also able
to obtain timely information about the channel state between
the source and the destination. In this case, requiring the relay
to still decode part of the source message, without any state
information, is unduly restrictive and to our knowledge the
capacity remains unknown to date.

The main contribution of this paper is to develop a new
scheme which we call cooperative-bin-forward. This new
scheme does not require the relay to decode part of the
message; instead, the relay simply bins its received sig-
nal and maps the bin-index to a codeword to be trans-
mitted in the next block. As in partial-decode-forward, the
codebooks at the source are generated conditioned on the
relay’s transmission, resulting in coherent cooperation. This
cooperative aspect of the scheme distinguishes it from bin-
forward (a.k.a. hash-forward), where the relay also does not
decode but bins its received signal, however this bin-index
is communicated to the destination without any cooperation
with the source node. Indeed, hash-forward has been con-
sidered in the context of the primitive relay channel [2],
where the multiple-access channel (MAC) from the source and
the relay to the destination has orthogonal components and
therefore cooperative transmission between the source and the
relay is not needed. For the vanilla semideterministic relay
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Fig. 3. Multiple Access Channel with Strictly-Causal Partial-Cribbing
Encoders.

channel in Figure 1, cooperative-bin-forward recovers the
capacity achieved by partial-decode-forward. However, partial-
decode-forward is suboptimal for the state-dependent semi-
deterministic relay channel in Figure 2, while we show that
cooperative-bin-forward continues to achieve capacity.

We next consider another setup where partial-decode-
forward is known to be capacity achieving, the multiple-
access channel (MAC) with strictly causal partial cribbing
encoders, depicted in Figure 3. The MAC with cribbing has
been introduced by Willems in [3] and its generalization to
partial cribbing has been studied in [4]. Compared to the
canonical MAC, transmitters here can overhear each other’s
transmissions while simultaneously transmitting their own
data. This possibility, increasingly enabled today by the
development of full-duplex radios, is especially appealing
since such overheard information can be exploited to induce
cooperation among the transmitters by exploiting the natural
broadcast nature of the wireless medium without requiring any
dedicated resources. Partial cribbing refers to the assumption
that the overheard signal is some deterministic function of
the signal transmitted by the other transmitter, which allows
to capture the signal degradation in the cribbing link via
a simple model.1 The MAC with partial cribbing can be
regarded as a generalization of the semideterministic relay
channel in the sense that when one of the transmitters does
not have a message and does not have an outgoing cribbing
link, the former reduces to an instance of the latter.

As in the semideterministic relay channel, partial-decode-
forward achieves the capacity region of the MAC with
partial cribbing [4]. Here, we consider a natural extension
of this setup with states, depicted in Figure 4.2 The most
prevalent example of a situation captured by this model is
cellular uplink. In cellular communication, training enables
a transmitter to learn the channel gain between itself
and the receiver, but assuming knowledge of the channel
between any other transmitter and the receiver is unrealistic.

1Earlier work [4] has observed that the best rates that can be achieved
by assuming the overheard signal to be a very coarse quantization of the
channel input, are close to the best rates that can be achieved under the
unrealistic assumption of perfect cribbing (overhearing via a noiseless link).
Thus, to work with the noisy overheard signals available in practice, we can
in fact manually perform quantization on the overheard signals without any
appreciable loss in performance. Furthermore, modeling the output of this
quantization as a deterministic function of the channel input is reasonable
since the quantization can be made coarse.

2This setup is more general than the setup in Figure 2 in the sense that
there are two messages and two states, however it is also special in the sense
that the partial cribbing links are of the form z1(X1i , S1i ) and z2(X2i , S2i ),
instead of z1(X1i , X2i , S1i ) and z2(X1i , X2i , S2i ).

Fig. 4. State-dependent Multiple-Access Channel with Strictly-Causal Partial-
Cribbing Encoders.

Fig. 5. State-dependent Semideterministic Relay-Without-Delay Channel
with Causal State Information at Source and Destination. For this to make
sense, we need to define the received signal at the relay so that it does not
depend on the current transmission of the relay, in contrast to Figure 2.

Fig. 6. State-dependent Multiple-Access Channel with Partially-Cribbing
Encoders, one strictly causal and the other causal. Note that both links cannot
be changed to causal.

Hence, the model in Figure 4 includes a state composed of two
components, each known causally only to the corresponding
transmitter. These two components are not necessarily
independent. Since encoders do not share common state
information, partial-decode-forward becomes too restrictive
for this setting. Instead, an achievability scheme based on
cooperative-bin-forward provides the capacity region.

Finally, motivated by the relay-without-delay channel con-
sidered in [5], we consider “without-delay” variations of the
two state-dependent setups described above, that are depicted
in Figure 5 and Figure 6 respectively. In these setups, the
strict causality of one of the links is replaced by causality.
In the former, which is the state-dependent semideterministic
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relay-without-delay channel, the transmission of the relay is
allowed to depend on its past and current received signal.
The capacity region for this setup without state is charac-
terized in [5], using partial-decode-forward combined with
instantaneous relaying (a.k.a. codetrees or Shannon strategies).
The latter is a state-dependent multiple access channel with
one strictly causal and one causal partial cribbing link. The
capacity region for this setup without states is characterized
in [4], again using partial-decode-forward combined with
instantaneous relaying. We show that cooperative-bin-forward
combined with instantaneous relaying achieves the capacity
regions of these setups too, while partial-decode-forward
suffers from the same shortcoming encountered for the
previous two setups.

To summarize, the main contribution of this paper is to
introduce a new multi-user coding strategy which we call
cooperative-bin-forward. This new strategy can be regarded
as a generalization of partial-decode-forward and hash-forward
from previous literature. As in partial-decode-forward, nodes
cooperate to send codewords to the destination, however this is
done without requiring any partial decoding; instead received
signals are simply binned as in hash-forward. In this respect,
the main contribution of our paper is to show that cooperation
can be induced without any decoding (full or partial) and to
show that this is sufficient to achieve the capacity in a number
of practically well-motivated semideterministic settings with
states.

A. Related Work

We describe here some multiuser setups considered in liter-
ature that involve state-dependent channels and/or some form
of cooperation, and how they relate to the setups considered
in this paper.

Various cases of state-dependent relay channels have been
considered in [6]–[12]. The achievability schemes in these
works combine well-known block-Markov relaying ideas such
as partial-decode-forward and compress-forward with Shannon
strategies or (Gelfand-Pinsker) multicoding. A class of state-
dependent orthogonal relay channels with state information
only at decoder was considered in [13], and optimality of a
partial-decode-compress-forward scheme was proved. To the
best of our knowledge, the state-dependent relay channels
considered in this paper have not been previously studied, and
as mentioned in the introduction, standard combinations of
available ideas are not sufficient to obtain good achievability
schemes.

There has been interesting recent work on state-dependent
multiple access channels where the state is only known to
the encoders. The encoders are not allowed to cooperate in
these setups, so the main challenge is to handle the lack
of state information at the destination. When the state is
known in a strictly causal manner, it was shown in [14]–[16]
that in contrast to point-to-point channels, ignoring the state
information is suboptimal. An improvement in achievable rates
can be obtained by explicitly communicating the stale state
information to the destination. The aforementioned papers
accomplished this using block-Markov schemes that encode

messages of the current block as well as some information
about the state and messages from previous block. When
the state information is known noncausally, the work [17]
considered the dirty-paper special case (additive interference
composed of two components each known noncausally to
one and only one encoder in Gaussian noise). For this case,
a straightforward extension of Gelfand-Pinsker coding turns
out to be highly suboptimal. Instead, a structured form of
Gelfand-Pinsker coding using lattices is useful for achieving
high rates, since it ensures that the overall interference at the
destination concentrates on a small set. Finally, the case of
common causal state information at the encoders was studied
in [18], which provided an inner bound using Shannon strate-
gies. Recall that the multiple access channels studied in this
paper, Figure 4 and Figure 6, assume also that the destination
has full state information, while the encoders cooperate via
partial cribbing, thus the main challenge in this paper is to
optimally establish cooperation via cribbing among encoders
that have disparate state information, rather than handling the
lack of state information at the destination.

A few works have considered state-dependent multiple
access channels where the state information is available at
the encoders as well as the decoder, also with no cooperation
between the encoders. It was shown in [19]–[21] that
optimal rates can be achieved by effectively treating the state
components as time-sharing. These setups can be obtained as
a special case of the setup in Figure 4 by setting the partial
cribbing links to zero, though the optimal schemes presented
previously for these special cases do not provide the necessary
insights for establishing cooperation among the encoders.
In particular, the causality of cribbing requires the scheme
to be block-Markov, and the encoding operation across
blocks needs to be such that the two state components can be
effectively treated as time-sharing, on top of establishing coop-
eration inspite of the disparateness of the state components.

Cooperation in multiple access channels was studied by
Willems in [3] and [22], wherein he introduced the notions
of conferencing (orthogonal links) and cribbing respectively.
In conferencing, dedicated orthogonal links are introduced
for cooperation. Cribbing, in contrast, does not assume ded-
icated resources for cooperation. For example, cribbing can
be thought of as exploiting the natural broadcasting nature
of the wireless medium for cooperation. Decode-forward
based schemes were proved to be optimal for multiple access
channels with cribbing. However, the cribbing in [3] was
assumed to be perfect (noiseless). To account for the fact that
perfect cribbing is unrealistic, the notion of partial cribbing, as
described in the introduction, was studied in [4], and a partial-
decode-forward based scheme was shown to be optimal.
As mentioned in the introduction, the fact that a part of the
message needs to be explicitly decoded in partial-decode-
forward, renders its straightforward extension inapplicable for
our purpose.

There has also been interest in studying multiple access
channels that include states together with some form of
cooperation between the encoders, under various assump-
tions on the state information availability and the form of
cooperation [23]–[27]. All these works assume that whenever
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the state information is available, it is available noncausally.
The capacity regions for noncausal state information only
at one encoder were provided in [23] and [24]. The former
additionally needed to assume that the informed encoder also
knows the other message, while the latter assumed instead that
there is a strictly causal or causal perfect cribbing link from the
uninformed encoder to the informed encoder. The achievability
schemes in both works used Gelfand-Pinsker multicoding at
the informed encoder conditioned on the additional informa-
tion received in the form of message cognition or cribbing. The
capacity region for the case of conferencing encoders when
noncausal state information is available at all nodes, including
the destination, was provided in [25] using the idea of double-
binning. Achievable rate regions were derived in [26] and [27],
where the former considered perfect cribbing among encoders
with noncausal state information only at the encoders, while
the latter replaced perfect cribbing by noisy cribbing. The
works [28] and [29] consider state-dependent multiple access
channels in which one of the encoders knows both messages,
and the state information is available strictly causally, causally
or non-causally to one or both of the encoders.

B. Organization

The following section describes the models and notation.
Section III contains the formal statements of the main results
described in the introduction. A toy example is considered in
Section IV for the purpose of explicitly illustrating the advan-
tage of cooperative-bin-forward over partial-decode-forward.
The following sections contain the proofs of the main results.
We conclude by describing some open problems in section X.

II. SYSTEM MODELS

As standard, capital letters denote random variables, small
letters denote realizations, and calligraphic letters denote the
alphabet of the corresponding random variable. The nota-
tion T (n)

ε stands for the ε-strongly typical set of sequences
for the random variables in context.

A. State-Dependent Semideterministic Relay Channels

The state-dependent semideterministic relay channel
is depicted in Figure 2, and described by the pmf
pS(s)pY |X,Xr ,S(y|x, xr , s) and Z = z(X, Xr , S). The
encoder and decoder have causal state information. So a
(n, 2nR , ε) code for the above channel consists of the source
encoding, relay encoding and decoding functions:

xi : [1 : 2nR ] × S i → X , 1 ≤ i ≤ n,

xr,i : Z i−1 → Xr , 1 ≤ i ≤ n,

m̂ : Yn × Sn → [1 : 2nR],
such that

Pr
{
m̂(Y n, Sn) �= M

} ≤ ε,

where M ∈ [1 : 2nR] denotes the transmitted message.
A rate R is said to be achievable if for every ε > 0, there
exists a (n, 2nR , ε) code for sufficiently large n. The capacity
is defined to be the supremum of achievable rates.

The state-dependent semideterministic relay-without-delay
channel is depicted in Figure 5, and described by the pmf
pS(s)pY |X,Xr ,S(y|x, xr , s) and Z = z(X, S). The difference
from the previous setup is that the relay encoding function is
now allowed to depend also on Zi :

xr,i : Z i → Xr , 1 ≤ i ≤ n.

Note that here we need to restrict Z to be z(X, S), instead
of z(X, Xr , S).

B. State-Dependent Multiple-Access Channels

The state-dependent multiple access channel with
strictly-causal partial-cribbing encoders is depicted
in Figure 4, and described by the pmf pS1,S2(s1, s2)
pY |X1,X2,S1,S2(y|x1, x2, s1, s2) and Z1 = z1(X1, S1) and
Z2 = z2(X2, S2). The encoders have causal knowledge of
the corresponding state components, but no knowledge of the
other state component. The decoder is assumed to know both
the state components. A (n, 2nR1 , 2nR2 , ε) code for the above
channel consists of the encoding and decoding functions:

x1,i : [1 : 2nR1 ] × S i
1 × Z i−1

2 → X1, 1 ≤ i ≤ n,

x2,i : [1 : 2nR2 ] × S i
2 × Z i−1

1 → X2, 1 ≤ i ≤ n,

m̂1 : Yn × Sn
1 × Sn

2 → [1 : 2nR1 ],
m̂2 : Yn × Sn

1 × Sn
2 → [1 : 2nR2 ],

such that

Pr
{(

m̂1(Y
n, Sn

1 , Sn
2 ), m̂2(Y

n, Sn
1 , Sn

2 )
) �= (M1, M2)

} ≤ ε,

where M1 ∈ [1 : 2nR1 ] and M2 ∈ [1 : 2nR2 ] denote
the transmitted messages. A rate pair (R1, R2) is said to be
achievable if for every ε > 0, there exists a (n, 2nR1 , 2nR2 , ε)
code for sufficiently large n. The capacity region is defined to
be the closure of the achievable rate region.

The “without-delay” variation of this setup, also referred
to as causal cribbing, is depicted in Figure 6, where one of
the partial cribbing links is changed from strictly causal to
causal. So, the only difference from the previous setting is
that x2i (M2, Si

2, Zi−1
1 ) is replaced by x2i (M2, Si

2, Zi
1).

III. MAIN RESULTS

In this section, we describe the capacity regions for all
the setups described in the previous section. The proofs are
presented in subsequent sections, which begin with an informal
description of how the idea of cooperative-bin-forward is used
to develop the achievability scheme, before presenting the
formal proof.

A. State-Dependent Semideterministic Relay Channels

The first result is taken from [1]. We restate it here and
provide a proof of the achievability in Section V using
cooperative-bin-forward. Due to the simplicity of the setup,
it serves well to bring out the main idea of the new scheme,
before we describe proofs for the more complicated setups.
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Theorem 1: The capacity of the semideterministic relay
channel, shown in Figure 1, is given by

max
pX,Xr (x,xr )

min {I (X, Xr ; Y ) , H (Z |Xr) + I (X; Y |Xr , Z)}.
(1)

The next result provides an expression for the capacity of
the state-dependent semideterministic relay channel.

Theorem 2: The capacity of the state-dependent semideter-
ministic relay channel, shown in Figure 2, is given by

max
pXr pX |Xr ,S

min

{
I (X, Xr ; Y |S),

H (Z |S, Xr ) + I (X; Y |S, Xr , Z)

}
. (2)

One difference between the capacity expressions of
Theorem 1 and Theorem 2 is that the mutual information and
entropy terms involve a conditioning on S. Such an expression
would also characterize the capacity if the relay is provided
with the state information, and it would be achievable by
performing partial-decode-forward while treating the state as
a time-sharing sequence. It is quite interesting then that the
capacity expression remains the same even when the relay
does not have state information. However, the limitation is
reflected in the fact that the choice of pmf is restricted to be
pXr (xr )pX |Xr ,S(x |xr , s), instead of pX,Xr |S(x, xr |s). So, the
cost of not having state information at the relay is reflected
entirely in the limited choice of the pmf.

The cooperative aspect of the scheme is captured by the fact
that the pmf has the form pX |Xr ,S(x |xr , s). Combining bin-
forward with state-multiplexing-demultiplexing without coop-
eration would correspond to choosing the pmf in the form
pX |S(x |s) and therefore would lead to smaller rate.

The following theorem states the capacity of the without-
delay variation of the above case. The expression involves
an auxiliary random variable, which allows the relay to
perform instantaneous relaying on top of the binning. This
achieves maximal source-relay cooperation, as conveyed by
the following theorem.

Theorem 3: The capacity of the state-dependent semide-
terministic relay-without-delay channel, shown in Figure 5,
is given by

max
pU pX |U,S Xr =xr (U,Z)

min

{
I (U, X; Y |S),

H (Z |U, S) + I (X; Y |U, Z , S)

}
,

(3)

where |U | ≤ |S| (|X ||Xr | − 1) + 2.
The capacity region for the setup of Theorem 3 in the

absence of states is characterized in [5, Proposition 7]. Setting
S to be deterministic in Theorem 3 recovers this result. Note
that the objective in (3) is the same as that in (2) with Xr

being replaced by U . However, the optimization in (3) is over
a different domain since the dependence of Xr on Z can now
be chosen and is not specified by the channel.

B. State-Dependent Multiple-Access Channels

The next two theorems describe the capacity regions for the
two state-dependent multiple-access setups.

Theorem 4: The capacity region of the state-dependent
multiple-access channel with partially cribbing encoders,

shown in Figure 4, is given by the set of rate pairs (R1, R2)
satisfying

R1 ≤ I (X1; Y |U, X2, Z1, S1, S2) + H (Z1|U, S1),

R2 ≤ I (X2; Y |U, X1, Z2, S1, S2) + H (Z2|U, S2),

R1 + R2 ≤ I (X1, X2; Y |U, Z1, Z2, S1, S2)

+ H (Z1, Z2|U, S1, S2),

R1 + R2 ≤ I (X1, X2; Y |S1, S2), (4)

for pmf of the form

pU (u)pX1|U,S1(x1|u, s1)pX2|U,S2(x2|u, s2),

with Z1 = z1(X1, S1) and Z2 = z2(X2, S2), with
|U | ≤ min{|S1||S2|(|Y| − 1) + 4, |S1||S2|(|X1||X2| − 1) + 3}.

Remark: It can be shown that the set described in the
above theorem is convex, so there is no need to introduce
an additional auxiliary random variable for time-sharing.

As described earlier, the special case of no cribbing
(obtained by setting Z1 = 0 and Z2 = 0) has been consid-
ered in [19]–[21]. For this case, the last inequality becomes
redundant and setting the auxiliary random variable U to be
the time-sharing random variable in the statement of the above
theorem is optimal. The resulting region recovers the results
in the aforementioned papers. At the other extreme, the result
for strictly causal partial cribbing from [4] is recovered by
setting S1 and S2 to be deterministic.

Theorem 5: The capacity region of the state-dependent
multiple-access channel with partially cribbing encoders in the
presence of a causal cribbing link, shown in Figure 6, is given
by the set of rate pairs (R1, R2) satisfying

R1 ≤ I (X1; Y |U, X2, Z1, S1, S2) + H (Z1|U, S1),

R2 ≤ I (X2; Y |U, X1, Z2, S1, S2) + H (Z2|U, S2, Z1),

R1 + R2 ≤ I (X1, X2; Y |U, Z1, Z2, S1, S2)

+H (Z1, Z2|U, S1, S2),

R1 + R2 ≤ I (X1, X2; Y |S1, S2), (5)

for pmf of the form

pU (u)pX1|U,S1(x1|u, s1)pX2|U,S2,Z1(x2|u, s2, z1),

with Z1 = z1(X1, S1) and Z2 = z2(X2, S2), with
|U | ≤ min{|S1||S2|(|Y| − 1) + 4, |S1||S2|(|X1||X2| − 1) + 3}.

Note that if pX2|U,S2,Z1(x2|u, s2, z1) in Theorem 5 is
replaced by pX2|U,S2(x2|u, s2), then the region becomes identi-
cal to that in Theorem 4. Setting S1 and S2 to be deterministic
retrieves the result for causal partial cribbing from [4].

IV. ILLUSTRATIVE EXAMPLE

Consider the following special case of Figure 2. Let the
state S be the ternary random variable

pS(s) =

⎧
⎪⎨

⎪⎩

p/2, if s = 0,

p/2, if s = 1,

1 − p, if s = 2,

where p < 1/2. The other variables are all binary. The channel
z(X, S) is the memory with stuck-at faults channel considered
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in [30, Fig. 7.7], while the channel pY |X,Xr ,S is specialized to
be a noiseless channel from Xr to Y . Formally,

z(X, S) =

⎧
⎪⎨

⎪⎩

0, if S = 0,

1, if S = 1,

X, if S = 2,

Y = Xr .

Recall that the source and the destination know the state
information causally while the relay has no state information.

If the relay is required to decode the message, motivated by
the optimality of decode-forward in the case of a line network
with no state, the achievable rate is limited to be no more
than the capacity of the memory with stuck-at faults channel
when the state is known causally only to the source, which
is 1 − H2

( p
2

)
. We point out that this cannot be improved by

using partial-decode-forward, because the absence of a direct
link between the source and destination means that any part
of the message that is not decoded by the relay cannot be
communicated to the destination in any manner. However, a
higher rate can be achieved if the relay simply forwards its
received signal, resulting in an effective channel between the
source and the destination that is the memory with stuck-at
faults channel with state known causally both to the source and
the destination. The capacity of this channel is 1 − p, which
is achieved by multiplexing at the source and demultiplexing
at the destination according to the observed state. Thus, a rate
1 − p which is higher than 1 − H2

( p
2

)
can be achieved.

What if the channel from the relay to destination is not a
noiseless bit-pipe, but a general noisy channel with capacity at
least 1− p? The rate 1− p can still be achieved if the operation
at the relay is changed from simply forwarding to randomly
binning its received signal into ≈ 2n(1−p) bins and forwarding
a codeword corresponding to the chosen bin. To recover the
message, the destination can first decode the bin-index. Since
the destination has state information, it can reconstruct the
state-multiplexed codebook at the source. Hence, it can recover
the message by finding the unique source codeword, if any,
that results in the received signal at the relay falling in the
correct bin.

The above example serves to illustrate the limitation
of partial-decode-forward when nodes have different side-
information. This example did not require cooperative
transmissions from the source and the relay, because the
source transmission did not directly affect the received signal
at the destination. When there is also a direct link between the
source and the destination, as allowed in the general models
that we consider in this paper, the source and relay need to
perform the bin-forward operation in a cooperative fashion,
as can be realized by considering the special case of the
semideterministic relay channel without states (Theorem 1),
which already requires dependence between X and Xr .

V. PROOF OF THEOREM 1

We demonstrate in this section the achievability of capacity
for the semideterministic relay channel using the new scheme
cooperative-bin-forward. As described in the introduction,
this scheme does not require the relay to decode part of

the message. Instead, the relay simply bins its received signal
and maps the bin-index to a codeword to be transmitted in the
next block. As in partial-decode-forward, the codebooks at the
source are generated conditioned on the relay’s transmission,
resulting in coherent cooperation. The scheme is formally
described next.

Proof: Fix a pmf pX,Xr (x, xr ) and ε > 0. Split R as
R′ + R′′, with the message M denoted accordingly
as (M ′, M ′′). Divide the total communication time into
B blocks, each of length n.

Codebook Generation: For each block b ∈ [1 : B],
a codebook is generated independently of the other blocks
as follows.

- Cooperation Codewords:
Generate 2nR̃ codewords xn

rb(lb−1) i.i.d. according to pXr ,
where lb−1 ∈ [1 : 2nR̃ ].

- Cribbed Codewords3:
For each lb−1, generate 2nR′

codewords zn
b(m′

b|lb−1)
according to

∏n
i=1 pZ |Xr (·|xrbi (lb−1)), where

m′
b ∈ [1 : 2nR′ ].

- Transmission Codewords:
For each lb−1 and each m′

b, generate 2nR′′
codewords

xn
b (m′′

b|lb−1, m′
b), where m′′

b ∈ [1 : 2nR′′ ] according to∏n
i=1 pX |Xr ,Z (·|xrbi (lb−1), zbi (m′

1|lb−1)).
- Binning:

Partition the set of all Zn into 2nR̃ bins, by choosing
a bin for each zn independently and uniformly at
random. Denote the index of the chosen bin for zn

by binb(zn).

Encoding: Fix l0 = 1 and (m′
B , m′′

B) = (1, 1). Since
the message in the last block is fixed, the effective rate of
communication is B−1

B R, which can be made as close as
desired to R by choosing a sufficiently large B .

In block b, lb−1 is known to the source encoder. To commu-
nicate message mb = (m′

b, m′′
b), it transmits xn

b (m′′
b|lb−1, m′

b).
The relay transmits xn

rb(lb−1). Due to the deterministic link
from source to relay and the codebook construction, the
received signal at the relay in block b is the codeword
zn

b(m′
b|lb−1). The source and the relay set lb to be the index

of the bin containing zn
b(m′

b|lb−1).
Decoding: The decoder performs backward decoding,

starting from block B and moving towards block 1, performing
the following two steps for each block b:

(1) Assuming that lb is known from previous operations, the

decoder, for each lb−1 ∈ [1 : 2nR̃], finds the unique m′
b

such that

binb(z
n
b(m′

b|lb−1)) = lb.

Whenever a unique m′
b cannot be found for some lb−1,

the decoder chooses any m′
b arbitrarily. So after this

operation, the decoder has chosen one m′
b for each lb−1,

given its knowledge of lb. We will signify this explicitly
by denoting the chosen message as m̂′

b(lb−1, lb).

3Given the analogy of the source-to-relay link in the relay channel with the
cribbing link in the multiple-access channel with cribbing encoders, we call
the zn

b codewords as cribbed codewords.
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(2) Now the decoder looks for the unique (l̂b−1, m̂′′
b) such

that
(

xn
rb ≤ (l̂b−1), zn

b(m̂′
b(l̂b−1, lb)|l̂b−1) ,

xn
b (m̂′′

b|l̂b−1, m̂′
b(l̂b−1, lb)), yn

b

)
∈ T (n)

ε . (6)

Note that the first step does not depend on the received
signal in block b at the destination. However, it depends on
the received signal in block b + 1, due to the involvement
of lb.

Probability of Error: The following error analysis reveals
that in order to achieve the highest rate, the scheme will
set R′ ≈ R̃ ≈ H (Z |Xr). It is easy to see that when
R′ ≈ H (Z |Xr), given its knowledge of lb−1, the relay can
indeed recover m′

b, even though it is not required to do so
in this new scheme. In other words, for a given lb−1, since
R′ ≈ R̃, each message m′

b is mapped to a different bin,
and therefore cooperatively communicating the bin index is
indeed equivalent to cooperatively communicating the partial
message m′

b. Thus, cooperative-bin-forward for this basic
setup is indeed equivalent to partial-decode-forward. We will
see however in the next section that when we have states, even
though we still set R′ ≈ R̃, the relay will not be able to decode
any part of the message so the binning aspect of the scheme
will be instrumental.

By symmetry, we can assume without loss of generality that
the true messages and bin-indices corresponding to the current
block are all 1, i.e.

(Lb−1, M ′
b, M ′′

b ) = (1, 1, 1).

We bound the probability of decoding error in block b condi-
tioned on successful decoding for blocks {B, B−1, . . . , b+1},
averaged over the randomness in the messages and codebook
generation. In particular, successful decoding in block b + 1
means that Lb has been decoded successfully, where we
remind ourselves that

Lb = Binb(Zn
b (1|1)).

An error occurs in block b only if any of the following
events occur:

(a) M̂ ′
b(1, Lb) �= 1,

(b) (L̂b−1, M̂ ′′
b ) �= (1, 1) given M̂ ′

b(1, Lb) = 1.

We analyze the two events in the following. One can
notice from the above partitioning of the error events that
we are ensuring that M̂ ′

b(lb−1, Lb) is equal to 1 only for
lb−1 = Lb−1 = 1, and not worrying about what M̂ ′

b(lb−1, Lb)
is for any other value of lb−1. However, it is still important to
fix at most one m′

b pair for each lb−1, even if it is arbitrary
for all lb−1 �= 1, which is what the first step of the decoding
does.4 This allows us to restrict our attention to at most
2n(R̃+R′′) options while analyzing the probability of decoding
Lb−1 incorrectly during the second decoding step, instead of

2n(R̃+R′+R′′).

4Of course, one could also discard any lb−1 for which a unique
M̂ ′

b(lb−1, Lb) cannot be identified; we stick to making one arbitrary choice
in such cases only because it makes the exposition simpler.

Event (a): M̂ ′
b(1, Lb) �= 1: We have

Pr
(

M̂ ′
b(1, Lb) �= 1

)

= Pr
(
Binb(Zn

b (m′
b|1)) = Lb for some m′

b > 1
)

(i)= Pr
(
Binb(Zn

b (m′
b|1)) = Binb(Zn

b (1|1)) for some m′
b > 1

)

≤
∑

m′
b>1

Pr
(
Binb(Zn

b (m′
b|1)) = Binb(Zn

b (1|1))
)

=
∑

m′
b>1

Pr

(
Binb(Zn

b (m′
b|1)) = Binb(Zn

b (1|1)),

Zn
b (m′

b|1) = Zn
b (1|1)

)

+
∑

m′
b>1

Pr

(
Binb(Zn

b (m′
b|1)) = Binb(Zn

b (1|1)),

Zn
b (m′

b|1) �= Zn
b (1|1)

)

≤
∑

m′
b>1

Pr
(
Zn

b (m′
b|1) = Zn

b (1|1)
)

+
∑

m′
b>1

Pr

(
Binb(Zn

b (m′
b|1))

= Binb(Zn
b (1|1))

∣
∣
∣
∣Zn

b (m′
b|1) �= Zn

b (1|1)

)

(ii)≤ 2nR′ · 2−n(H(Z |Xr )−δ(ε)) + 2nR′ · 2−nR̃ ,

where

- (i) follows since Lb = Binb(Zn
b (1|1)),

- the first term in (i i) is obtained because for
m′

b �= 1, the codewords Zn
b (m′

b|1) and Zn
b (1|1)

are generated independently according to∏n
i=1 pZ |Xr (·|xrbi (lb−1)), and the second term in (i i)

arises because the binning is performed uniformly at
random and independently for each sequence,

and we use δ(ε) to denote any function of ε for which
δ(ε) → 0 as ε → 0. Hence, we get that

Pr
(

M̂ ′
b(1, Lb) �= 1

)
→ 0 as n → ∞,

if the following two constraints are satisfied:

R′ < R̃, (7)

R′ < H (Z |Xr) − δ(ε). (8)

Event (b): (L̂b−1, M̂ ′′
b ) �= (1, 1) given M̂ ′

b(1, Lb) = 1: The
probability of this event is upper bounded by

Pr

(
(6) not true for

(lb−1, m′′
b) = (1, 1)

∣∣
∣
∣M̂

′
b(1, Lb) = 1

)

+ Pr

(
(6) true for some
(lb−1, m′′

b) �= (1, 1)

∣
∣
∣∣M̂

′
b(1, Lb) = 1

)
.

The first term goes to zero as n → ∞ by the law of
large numbers. The second term can be analyzed by standard
applications of the packing lemma [30] as follows:

Pr

(
(6) true for some
(lb−1, m′′

b) �= (1, 1)

∣∣
∣
∣M̂

′
b(1, Lb) = 1

)

≤
∑

lb−1=1,
m′′

b>1

Pr
((

Xn
rb(1), Zn

b (1|1), Xn
b(m̂′′

b|1, 1), Y n
b

) ∈ T (n)
ε

)
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+
∑

lb−1>1,
m′′

b≥1

Pr
((

Xn
rb(l̂b−1), Zn

b (m̂′
b(l̂b−1, Lb)|l̂b−1),

Xn
b (m̂′′

b|l̂b−1, m̂′
b(l̂b−1, Lb)), Y n

b

)
∈ T (n)

ε

)

≤ 2nR′′
2−n(I (X;Y |Xr ,Z)−δ(ε))

+ 2n(R̃+R′′)2−n(I (X,Xr ,Z ;Y )−δ(ε)),

which follows by applying the packing lemma. Thus, we get
that

Pr
(
(L̂b−1, M̂ ′′

b ) �= (1, 1)
∣
∣ M̂ ′

b(1, Lb) = 1
)

→ 0, as n → ∞,

if

R′′ < I (X; Y |Xr , Z) − δ(ε), (9)

R̃ + R′′ < I (X, Xr ; Y ) − δ(ε). (10)

Performing Fourier-Motzkin elimination of R̃, R′ and R′′
using the rate constraints and also R = R′ + R′′, letting
n → ∞, B → ∞ and ε → 0, we get that the rates specified
in Theorem 1 are indeed achievable by the scheme presented
in this section. One can also simplify the Fourier-Motzkin
elimination step by setting R̃ to be R′ + δ(ε). Since this
theorem is already known, we do not repeat the arguments
of the converse here.

VI. PROOF OF THEOREM 2

The achievability part of the theorem is similar to the
scheme presented in the previous section. Due to the avail-
ability of causal state information at the source encoder and
the decoder, the source encoder constructs codebooks for
each state symbol and treats the state sequence as a time-
sharing sequence (i.e. it performs multiplexing). Note that
since the relay does not have state information, it might not
be able to decode part of the message. However, it can still
perform the bin-forward operation, allowing us to establish
coherence between the source and the relay transmissions
without sacrificing unnecessarily on the rate. The decoding
is also similar to the previous section, except for the extra
demultiplexing component. The converse part of the theorem
is presented towards the end of this section. Thus, we see that
while partial-decode-forward cannot be applied, cooperative-
bin-forward allows us to achieve the capacity region of the
state-dependent semideterministic relay channel.

Proof: Fix a pmf pXr (xr )pX |Xr ,S(x |xr , s) and ε > 0.
Split R as R′+R′′, with the message M denoted accordingly as
(M ′, M ′′). Divide the total communication time into B blocks,
each of length n.

Codebook Generation: For each block b ∈ [1 : B], a
codebook is generated independently of the other blocks as
follows.

- Cooperation Codewords:
Generate 2nR̃ codewords xn

rb(lb−1), i.i.d. according to
pXr , where lb−1 ∈ [1 : 2nR̃].

- Cribbed Codewords:
For each lb−1 and each s ∈ S, generate a code-

book of 2nR′
codewords. The i th symbol of such

a codeword is chosen independently according to

Fig. 7. The figure depicts the cribbed codewords generated for encoding
m′ for a given xn

r (l). Each node corresponds to a z symbol that is generated
independently according to pZ |Xr ,S(·|xr,i (l), s). The red circles show how
encoder 1 chooses the codeword if it wants to transmit m′ = 2 and observes
sn = (0, 0, 1, 0, 1, 0). This construction is not identical but equivalent to that
described in [30, Sec. 7.4.1].

pZ |Xr ,S(·|xrbi (lb−1), s). The result of this is that for
each lb−1, each m′

b ∈ [1 : 2nR′ ] and each sn
b =

(sb1, sb2, . . . , sbn), the source encoder can form an effec-
tive codeword zn

b(m′
b|lb−1, sn

b ), whose i th symbol can be
causally chosen as the i th symbol of the m′

b-th code-
word from the codebook corresponding to lb−1 and sbi .
See Figure 7.

- Transmission Codewords:
For each lb−1, each m′

b ∈ [1 : 2nR′ ] and each s ∈ S,
generate a codebook of 2nR′′

codewords. The i th symbol
of such a codeword is generated independently according
to pX |Xr ,Z ,S(·|xrbi (lb−1), zbi (m′

b|lb−1, s), s). The result
of this construction is that for each lb−1, each m′

b ∈
[1 : 2nR′ ], each m′′

b ∈ [1 : 2nR′′ ] and each sn
b ,

the source encoder can form an effective codeword
xn

b (m′′
b|lb−1, m′

b, sn
b ), whose i th symbol can be causally

chosen as the i th symbol of the m′′
b-th codeword from

the codebook corresponding to lb−1, m′
b and sbi .

- Binning:
Partition the set of all Zn into 2nR̃ bins, by choosing a
bin for each zn independently and uniformly at random.
Denote the index of the chosen bin for zn by binb(zn).

Encoding: Fix l0 = 1 and (m′
B , m′′

B) = (1, 1). Since
the message in the last block is fixed, the effective rate of
communication is B−1

B R, which can be made as close as
desired to R by choosing a sufficiently large B .

In block b, lb−1 is known to the source encoder.
To communicate message mb = (m′

b, m′′
b), it transmits

xn
b (m′′

b|lb−1, m′
b, sn

b ). This operation is valid because it does
not require noncausal knowledge of the state sequences, it can
be done “on the fly”. The relay transmits xn

rb(lb−1). Due to
the deterministic link from source to relay and the codebook
construction, the received signal at the relay in block b is the
codeword zn

b(m′
b|lb−1, sn

b ). The source and the relay set lb to
be the index of the bin containing zn

b(m′
b|lb−1, sn

b ).
From the encoding operation described above, we can see

that the label lb depends on (lb−1, m′
b, sn

b ). We do not require
the relay to decode m′

b, but the source and the relay can
still establish cooperation by directly performing a binning
on the zn

b codeword to agree on the un
b+1 codeword to be

used in the next block, thus providing the scheme with the
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title “cooperative-bin-forward”. The term cooperative is added
to emphasize that the source and the relay agree on the
binning and transmit coherently. Thus, the scheme achieves
cooperation by communicating lb to the relay, instead of m′

b.
While the relay is not required to decode the partial message,
we still need the destination to be able to decode all parts
of the transmitted message successfully. In the following,
appropriate conditions are imposed so that the destination can
utilize the state information at its disposal to achieve successful
decoding.

Decoding: The decoder performs backward decoding,
starting from block B and moving towards block 1, performing
the following two steps for each block b:

(1) Assuming that lb is known from previous operations, the

decoder, for each lb−1 ∈ [1 : 2nR̃], finds the unique m′
b

such that

binb(z
n
b(m′

b|lb−1, sn
b )) = lb.

Whenever a unique m′
b cannot be found for some lb−1,

the decoder chooses any m′
b arbitrarily. So after this oper-

ation, the decoder has chosen one m′
b for each lb−1, given

its knowledge of lb and sn
b . We will signify this explicitly

by denoting the chosen message as m̂′
b(lb−1, sn

b , lb).
(2) Now the decoder looks for the unique (l̂b−1, m̂′′

b) such
that
(

xn
rb(l̂b−1), zn

b(m̂′
b(l̂b−1, sn

b , lb)|l̂b−1, sn
b ),

xn
b (m̂′′

b|l̂b−1, m̂′
b(l̂b−1, sn

b , lb), sn
b ), sn

b , yn
b

)
∈ T (n)

ε (11)

Probability of Error: In the following error analysis,
we will observe that in order to achieve the largest rate, the
scheme will set R′ ≈ H (Z |Xr , S). The causal multiplexing-
demultiplexing strategy proposed above effectively creates
a different codebook for m′

b for each sn
b sequence. The

total number of zn
b codewords constructed by the source

encoder considering only the typical sn
b sequences is therefore

≈2nH(S) · 2nR′ ≈ 2nH(S,Z |Xr ). However, these codewords can-
not be distinct since there are only ≈ 2nH(Z |Xr ) distinct typical
sequences zn

b (conditioned on lb−1). This implies that multiple
(sn

b , m′
b) pairs will be mapped to the same codeword zn

b and
therefore, the relay will be not be able to decode m′

b due to
the lack of state information.

By symmetry, we can assume without loss of generality that
the true messages and bin-indices corresponding to the current
block are all 1, i.e.

(Lb−1, M ′
b, M ′′

b ) = (1, 1, 1).

We bound the probability of decoding error in block b condi-
tioned on successful decoding for blocks {B, B−1, . . . , b+1},
averaged over the randomness in the messages and codebook
generation. In particular, successful decoding in block b + 1
means that Lb has been decoded successfully, where we
remind ourselves that

Lb = Binb(Zn
b (1|1, Sn

b )).

An error occurs in block b only if any of the following
events occur:

(a) M̂ ′
b(1, Sn

b , Lb) �= 1,
(b) (L̂b−1, M̂ ′′

b ) �= (1, 1) given M̂ ′
b(1, Sn

b , Lb) = 1.

We analyze the two terms events in the following two
subsections.

Event (a): M̂ ′
b(1, Sn

b , L1,b) �= 1: We have

Pr
(

M̂ ′
b(1, Sn

b , L1,b) �= 1
)

= Pr
(
Binb(Zn

b (m′
b|1, Sn

b )) = Lb for some m′
b > 1

)

= Pr

(
Binb(Zn

b (m′
b|1, Sn

b ))
= Binb(Zn

b (1|1, Sn
b ))

for some m′
b > 1

)

≤
∑

m′
b>1

Pr
(
Binb(Zn

b (m′
b|1, Sn

b )) = Binb(Zn
b (1|1, Sn

b ))
)

=
∑

m′
b>1

Pr

(
Binb(Zn

b (m′
b|1, Sn

b )) = Binb(Zn
b (1|1, Sn

b )),
Zn

b (m′
b|1, Sn

b ) = Zn
b (1|1, Sn

b )

)

+
∑

m′
b>1

Pr

(
Binb(Zn

b (m′
b|1, Sn

b )) = Binb(Zn
b (1|1, Sn

b )),
Zn

b (m′
b|1, Sn

b ) �= Zn
b (1|1, Sn

b )

)

≤
∑

m′
b>1

Pr
(
Zn

b (m′
b|1, Sn

b ) = Zn
b (1|1, Sn

b )
)

+
∑

m′
b>1

Pr

(
Binb(Zn

b (m′
b|1, Sn

b ))
= Binb(Zn

b (1|1, Sn
b ))

∣
∣
∣
∣

Zn
b (m′

b|1, Sn
b )

�= Zn
b (1|1, Sn

b )

)

≤ 2nR′ · 2−n(H(Z |Xr ,S)−δ(ε)) + 2nR′ · 2−nR̃ ,

where we use δ(ε) to denote any function of ε for which
δ(ε) → 0 as ε → 0. Hence, we get that

Pr
(

M̂ ′
b(1, Sn

b , Lb) �= 1
)

→ 0 as n → ∞,

if the following two constraints are satisfied:

R′ < R̃, (12)
R′ < H (Z |Xr , S) − δ(ε). (13)

Event (b): (L̂b−1, M̂ ′′
b ) �= (1, 1) Given M̂ ′

b(1, Sn
b , Lb) = 1:

The probability of this event is upper bounded by

Pr

(
(11) not true for

(lb−1, m′′
b) = (1, 1)

∣
∣
∣∣M̂

′
b(1, Sn

b , Lb) = 1

)

+ Pr

(
(11) true for some
(lb−1, m′′

b) �= (1, 1)

∣
∣∣
∣M̂

′
b(1, Sn

b , Lb) = 1

)
.

The first term goes to zero as n → ∞ by the law of
large numbers. The second term can be analyzed by standard
applications of the packing lemma [30] as follows:

Pr

(
(11) true for some
(lb−1, m′′

b) �= (1, 1)

∣∣
∣
∣M̂

′
b(1, Sn

b , Lb) = 1

)

≤
∑

lb−1=1,

m′′
b>1

Pr

((
Xn

rb(1), Zn
b (1|1, Sn

b ),
Xn

b (m̂′′
b|1, 1, Sn

b ), Sn
b , Y n

b

)
∈ T (n)

ε

)

+
∑

lb−1>1,

m′′
b≥1

Pr
((

Xn
rb(l̂b−1), Zn

b (m̂′
b(l̂b−1, Sn

b , Lb)|l̂b−1, Sn
b ),

Xn
b (m̂′′

b|l̂b−1, m̂′
b(l̂b−1, Sn

b , lb), Sn
b ), Sn

b , Y n
b

)
∈ T (n)

ε

)

≤ 2nR′′
2−n(I (X;Y |Xr ,Z ,S)−δ(ε))

+ 2n(R̃+R′′)2−n(I (X,Xr ,Z ;Y |S)−δ(ε)),
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which follows by applying the packing lemma. Note that
when lb−1 > 1, it so happens due to the codebook construction
that yn

b is independent of all the other sequences for any value
of (m′

b, m′′
b). So the joint distribution of the sequences has the

same factorization no matter what m′
b is chosen for lb−1 > 1.

The only fact that matters for our analysis is that at most
one m′

b has been chosen somehow for each lb−1 > 1. This
allows us to write the fourth event as the union of at most

2n(R̃+R′′) events, where each corresponds to a different value
of (lb−1, m′′

b).
Thus, we get that

Pr
(
(L̂b−1, M̂ ′′

b ) �= (1, 1)|M̂ ′
b(1, Lb) = 1

)
→ 0, as n → ∞,

if

R′′ < I (X; Y |Xr , Z , S) − δ(ε), (14)

R̃ + R′′ < I (X, Xr ; Y |S) − δ(ε). (15)

Performing Fourier-Motzkin elimination, letting n → ∞,
B → ∞ and ε → 0, we get that the rates specified in
Theorem 2 are indeed achieved by the achievability scheme
presented in this section.

Converse: Given a reliable code, we have by Fano’s
inequality

H (M|Y n, Sn) ≤ nεn,

where εn → 0 as n → ∞. Then, we prove the first bound on
R as follows:

n R = H (M)
(a)= H (M|Sn)
(b)= H (M, Zn|Sn)

= H (Zn|Sn) + H (M|Zn, Sn)
(c)≤ H (Zn|Sn) + I (M; Y n |Zn, Sn) + nεn

(d)=
n∑

i=1

H (Zi |Sn, Zi−1) +
n∑

i=1

I (M, Xi ; Yi |Y i−1, Zn, Sn)

+ nεn

(e)=
n∑

i=1

H (Zi |Sn, Zi−1, Xr,i )

+
n∑

i=1

I (M, Xi ; Yi |Y i−1, Zn, Sn, Xn
r ) + nεn

( f )≤
n∑

i=1

H (Zi |Si , Xr,i ) +
n∑

i=1

I (Xi ; Yi |Zi , Si , Xr,i ) + nεn

= nH (Z Q|SQ , Xr Q , Q) + nI (X Q; YQ |Z Q, SQ , Xr Q , Q)

+ nεn

≤ nH (Z Q|SQ , Xr Q) + nI (X Q ; YQ |Z Q, SQ , Xr Q) + nεn,

where

- Q is a random variable uniformly distributed over [1 : n],
independent of (Xn , Xn

r , Sn, Y n),
- (a) follows because M is independent of Sn ,
- (b) follows because Zn is a function of M and Sn ,
- (c) follows by Fano’s inequality,

- (d) follows by the chain rule of mutual information and
because Xi is a function of (M, Sn),

- (e) follows because Xr,i is a function of Zi−1,
- ( f ) follows because conditioning reduces entropy and

Yi is independent of other random variables given
(Xi , Xr,i , Si ), and

- the final step follows because conditioning reduces
entropy and Q − (X Q , Xr Q , SQ ) − YQ .

The second bound on R is proved as follows:

n R = H (M)

= H (M|Sn)

≤ I (M; Y n |Sn) + nεn

= I (M, Xn , Xn
r ; Y n|Sn) + nεn

≤
n∑

i=1

I (Xi , Xr,i ; Yi |Si ) + nεn

= nI (X Q , Xr Q ; YQ |SQ , Q) + nεn

≤ nI (X Q , Xr Q ; YQ |SQ) + nεn .

Thus, we have

R ≤ min
(
I (X Q , Xr Q; YQ |SQ),

H (Z Q|SQ , Xr Q) + I (X Q; YQ |Z Q, SQ , Xr Q )
) + εn

Note that
- SQ is independent of Q and has marginal pmf pS due to

the i.i.d. assumption on the state;
- since Si is independent of Xr,i = xr,i (Zi−1) for all

1 ≤ i ≤ n, we have that SQ is independent of Xr Q ;
- we have that pYQ |X Q,Xr Q ,SQ(y|x, xr , s) is equal to

pY |X,Xr ,S(y|x, xr , s), since YQ is the output of the chan-
nel when the inputs are (X Q, Xr Q , SQ), and

- similarly, we also have Z Q = z(X Q, Xr Q , SQ).

Hence the joint pmf of the random variables (X Q , Xr Q ,
SQ , YQ) factorizes as

pSQ,X Q,Xr Q ,YQ (s, x, xr , y)

= pSQ(s)pXr Q (xr )pX Q|Xr Q ,SQ(x |xr , s)

× pYQ |X Q,Xr Q ,SQ(y|x, xr , s)

= pS(s)pXr Q (xr )pX Q |Xr Q ,SQ (x |xr , s)pY |X,Xr ,S(y|x, xr , s).

So, we can define the random variables X � X Q ,
Xr � Xr Q , S � SQ , Z � Z Q and Y � YQ to get

R ≤ min{I (X, Xr ; Y |S),H (Z |S, Xr)+ I (X; Y |Z , S,Xr )}+εn,

where the pmf of the random variables has the form
pS(s)pXr (xr )pX |Xr ,S(x |xr , s)pY |X,Xr ,S(y|x, xr , s) and Z =
z(X, Xr , S). Since εn → 0 as n → ∞, the converse is proved.

This concludes the proof of Theorem 2.

VII. PROOF OF THEOREM 3

The achievability part of this theorem is obtained by com-
bining the cooperative-bin-forward scheme from the previous
section with instantaneous relaying. This requires an auxiliary
random variable, as described next.

Proof: Fix pU (u)pX |U,S(x |u, s), Xr = xr (u, z) and
ε > 0. Split R as R′ + R′′, with the message m denoted
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accordingly as M = (M ′, M ′′). Divide the total communica-
tion time into B blocks, each of length n.

Codebook Generation: For each block b ∈ [1 : B], a
codebook is generated independently of the other blocks as
follows.

- Cooperation Codewords:
Generate 2nR̃ codewords un

b(lb−1), i.i.d. according to pU ,
where lb−1 ∈ [1 : 2nR̃].

- Cribbed Codewords:
For each lb−1 and each s ∈ S, generate a codebook
of 2nR′

codewords. The i th symbol of such a codeword is
chosen independently according to pZ |U,S(·|ubi (lb−1), s).
The result of this is that for each lb−1, each m′

b ∈
[1 : 2nR′ ] and each sn

b = (sb1, sb2, . . . , sbn), the source
encoder can form an effective codeword zn

b(m′
b|lb−1, sn

b ),
whose i th symbol can be causally chosen as the i th
symbol of the m′

b-th codeword from the codebook
corresponding to lb−1 and sbi .

- Transmission Codewords:
For each lb−1, each m′

b ∈ [1 : 2nR′ ] and each s ∈ S,
generate a codebook of 2nR′′

codewords. The i th symbol
of such a codeword is generated independently accord-
ing to pX |U,Z ,S(·|ubi (lb−1), zbi (m′

b|lb−1, s), s). The result
of this construction is that for each lb−1, each m′

b ∈
[1 : 2nR′ ], each m′′

b ∈ [1 : 2nR′′ ] and each sn
b ,

the source encoder can form an effective codeword
xn

b (m′′
b|lb−1, m′

b, sn
b ), whose i th symbol can be causally

chosen as the i th symbol of the m′′
b-th codeword from

the codebook corresponding to lb−1, m′
b and sbi .

- Binning:
Partition the set of all Zn into 2nR̃ bins, by choosing a
bin for each zn independently and uniformly at random.
Denote the index of the chosen bin for zn by binb(zn).

Encoding: Fix l0 = 1 and (m′
B, m′′

B) = (1, 1). Since
the message in the last block is fixed, the effective rate of
communication is B−1

B R, which can be made as close as
desired to R by choosing a sufficiently large B .

In block b, assuming lb−1 is known to the source
encoder, it transmits xn

b (m′′
b|lb−1, m′

b, sn
b ). The relay trans-

mits xn
rb , the i th symbol of which is obtained as

xr (ubi (lb−1), zbi (m′
b|lb−1, sn

b )). At the end of block b, the
source and the relay set lb to be the index of the bin containing
zn

b(m′
b|lb−1, sn

b ).
Decoding: The decoding operation is nearly the same as that

in the previous section. The decoder performs the following
two steps for each block b, where b ∈ {B, B − 1, · · · , 1}:
(1) Assuming that lb is known from previous operations, the

decoder, for each lb−1 ∈ [1 : 2nR̃], finds the unique m′
b

such that

binb(z
n
b(m′

b|lb−1, sn
b )) = lb.

Whenever a unique m′
b cannot be found for some lb−1,

the decoder chooses any m′
b arbitrarily. So after this oper-

ation, the decoder has chosen one m′
b for each lb−1, given

its knowledge of lb and sn
b . We will signify this explicitly

by denoting the chosen message as m̂′
b(lb−1, sn

b , lb).

(2) Now the decoder looks for the unique (l̂b−1, m̂′′
b) such

that
(

un
b(l̂b−1), zn

b(m̂′
b(l̂b−1, sn

b , lb)|l̂b−1, sn
b ),

xn
b (m̂′′

b|l̂b−1, m̂′
b(l̂b−1, sn

b , lb), sn
b ), sn

b , yn
b

)
∈ T (n)

ε .

Probability of Error: By following a similar path as the
previous section, we get the following conditions for vanishing
probability of error:

R′ < R̃,

R′ < H (Z |U, S) − δ(ε),

R′′ < I (X; Y |U, Z , S) − δ(ε),

R̃ + R′′ < I (U, X; Y |S) − δ(ε).

Performing Fourier-Motzkin elimination completes the
proof of achievability.

Converse: Given a reliable code, define for each 1 ≤ i ≤ n,
the random variable Ui � (Zi−1, Si−1). Note that with this
definition, Xr,i becomes a function of (Ui , Zi ). We have for
any reliable code, by Fano’s inequality,

H (M|Y n, Sn) ≤ nεn .

Then,

n R = H (M|Sn)

= H (M, Zn|Sn)

≤ H (Zn|Sn) + I (M; Y n |Sn, Zn) + nεn

≤
n∑

i=1

H (Zi |Zi−1, Si−1, Si )

+
n∑

i=1

I (Xi ; Yi |Zi−1, Si−1, Zi , Si ) + nεn,

where the final step uses the fact that Yi is independent of
other random variables given Xi , Zi−1, Zi , Si , since Xr,i is
a function of Zi . Using the definition of Ui in the above,
we get that

n R ≤
n∑

i=1

H (Zi |Ui , Si ) +
n∑

i=1

I (Xi ; Yi |Ui , Zi , Si ) + nεn

= nH (Z |UQ, SQ , Q)+nI (X Q; YQ |UQ ,Z Q, SQ , Q)+nεn,

where Q is uniformly distributed over [1 : n] and independent
of Un, Xn, Xn

r , Sn , Y n .
The remaining bound on R is proved below:

n R = H (M|Sn)

≤ I (M; Y n |Sn) + nεn

=
n∑

i=1

I (M; Yi |Y i−1, Sn) + nεn

(a)=
n∑

i=1

I (M, Xi , Xr,i , Zi−1, Si−1; Yi |Y i−1, Sn) + nεn

≤
n∑

i=1

I (Xi , Xr,i , Zi−1, Si−1; Yi |Si ) + nεn
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=
n∑

i=1

I (Ui , Xi , Xr,i ; Yi |Si ) + nεn

=
n∑

i=1

I (Ui , Xi ; Yi |Si ) + nεn

= nI (UQ , X Q; YQ |SQ , Q) + nεn

≤ nI (Q, UQ , X Q; YQ |SQ) + nεn,

where step (a) is true since (Xi , Xr,i , Zi−1, Si−1) is a function
of (M, Sn), and step (b) follows because Xr,i is a function of
(Ui , Zi ), hence a function of (Ui , Xi , Si ).

Following similar arguments as the previous section, we can
define U � (Q, UQ ), X � X Q , Xr � Xr Q , S � SQ , Z � Z Q

and Y � YQ to get

R ≤ min{I (U, X; Y |S), H (Z |U, S) + I (X; Y |U, Z , S)} + εn,

where the pmf of the random variables has the form
pS(s)pU (u)pX |U,S(x |u, s)pY |X,Xr ,S(y|x, xr , s), Z = z(X, S)
and Xr = xr (U, Z). Since εn → 0 as n → 0, the con-
verse is completed. The bound on cardinality of the auxiliary
random variable can be obtained using arguments based on
Caratheodory’s theorem as described in [30, Appendix C].

This concludes the proof of Theorem 3.

VIII. PROOF OF THEOREM 4

The achievability scheme is more intricate than the previous
sections due to the additional complications in the model, but
builds on the same idea. Each encoder in the multiple access
channel has an operation similar to the source encoder of the
relay channels considered in the previous sections. The source
encoder of the relay channels controlled the signal received at
the relay by employing rate-splitting and superposition coding.
This signal was used to choose a cooperation codeword for
the next block. For the multiple access channel, each encoder
controls the received signal at the other encoder in the same
manner, so that at the end of a block, these two cribbed signals
are known to both encoders, which is used to agree on a
cooperation codeword for the next block.

We point out the fact that it is crucial for both encoders to
know both the cribbed signals at the end of a block, so that
they can agree on a cooperation codeword for the next block.
Encoder 1 knows zn

2, because it receives this signal. Since the
model assumes that the cribbing link is of the form z1(X1, S1),
encoder 1 is able to control the zn

1 signal received by encoder 2,
and thus encoder 1 also knows zn

1. Similarly, encoder 2 also
knows zn

1 and zn
2 . If Z1 were assumed to be z1(X1, X2, S1) or

z1(X1, X2, S1, S2), then encoder 1 would not have knowledge
of the received signal at encoder 2 due to the involvement of
X2 and S2, and it would not be possible to employ the scheme.
The reason we are able to assume that the received signal at
the relay in the previous sections is z(X, Xr , S) and not just
z(X, S) is that the relay has no message of its own, so Xr in
fact depends only on past signals transmitted by the source
encoder, so the source encoder can still control the zn signal.

Proof: Fix a pmf pU (u)pX1|U,S1(x1|u, s1)pX2|U,S2

(x2|u, s2) and ε > 0. Split R1 as R′
1 + R′′

1 , with the
message M1 denoted accordingly as (M ′

1, M ′′
1 ), and similarly

split R2 as R′
2+ R′′

2 , with the message M2 denoted accordingly
as (M ′

2, M ′′
2 ). Divide the total communication time into

B blocks, each of length n. In the achievability scheme
proposed in [4] for the case of no state, M ′

1 corresponds
to the part of M1 that is decoded by encoder 2. As can be
guessed based on the previous sections, this is not the case in
the cooperative-bin-forward scheme presented below.

Codebook Generation: For each block b ∈ [1 : B],
a codebook is generated independently of the other blocks
as follows:

- Cooperation Codewords:
Generate 2n(R̃1+R̃2) codewords un

b(l1,b−1, l2,b−1), i.i.d.
according to pU , where l1,b−1 ∈ [1 : 2nR̃1 ] and l2,b−1 ∈
[1 : 2nR̃2 ]. In the following, we will sometimes abbreviate
(l1,b−1, l2,b−1) by lb−1.

- Cribbed Codewords - I:
For each lb−1 and each s1 ∈ S1, generate a code-
book of 2nR′

1 codewords. The i th symbol of such
a codeword is chosen independently according to
pZ1|U,S1(·|ubi (lb−1), s1). The result of this is that for
each lb−1, each m′

1,b ∈ [1 : 2nR′
1] and each sn

1b =
(s1b1, s1b2, . . . , s1bn), encoder 1 can form an effective
codeword zn

1b(m
′
1,b|lb−1, sn

1b), whose i th symbol can be
causally chosen as the i th symbol of the m′

1,b-th codeword
from the codebook corresponding to lb−1 and s1bi .

- Cribbed Codewords - II:
Similarly, for each lb−1 and each s2 ∈ S2, generate
a codebook of 2nR′

2 codewords. The i th symbol of
such a codeword is chosen independently according to
pZ2|U,S2(·|ubi (lb−1), s2). The result of this is that for
each lb−1, each m′

2,b ∈ [1 : 2nR′
2 ] and each sn

2b =
(s2b1, s2b2, . . . , s2bn), encoder 2 can form an effective
codeword zn

2b(m
′
2,b|lb−1, sn

2b), whose i th symbol can be
causally chosen as the i th symbol of the m′

2,b-th codeword
from the codebook corresponding to lb−1 and s2bi .

- Transmission Codewords - I:
For each lb−1, each m′

1,b ∈ [1 : 2nR′
1 ] and each s1 ∈ S1,

generate a codebook of 2nR′′
1 codewords. The i th symbol

of such a codeword is generated independently according
to pX1|U,Z1,S1(·|ubi (lb−1), z1bi (m′

1,b|lb−1, s1), s1). The
result of this construction is that for each lb−1, each
m′

1,b ∈ [1 : 2nR′
1], each m′′

1,b ∈ [1 : 2nR′′
1 ] and each

sn
1b, encoder 1 can form an effective codeword

xn
1b(m

′′
1,b|lb−1, m′

1,b, sn
1b), whose i th symbol can be

causally chosen as the i th symbol of the m′′
1,b-th codeword

from the codebook corresponding to lb−1, m′
1,b and s1bi .

- Transmission Codewords - II:
Similarly, for each lb−1, each m′

2,b ∈ [1 : 2nR′
2 ]

and each s2 ∈ S2, generate a codebook of
2nR′′

2 codewords. The i th symbol of such a
codeword is generated independently according
to pX2|U,Z2,S2(·|ubi (lb−1), z2bi (m′

2,b|lb−1, s2), s2).
The result of this construction is that for each lb−1,
each m′

2,b ∈ [1 : 2nR′
2 ], each m′′

2,b ∈ [1 : 2nR′′
2 ] and

each sn
2b , encoder 2 can form an effective codeword

xn
2b(m

′′
2,b|lb−1, m′

2,b, sn
2b), whose i th symbol can be

causally chosen as the i th symbol of the m′′
2,b-th



KOLTE et al.: COOPERATIVE BINNING FOR SEMIDETERMINISTIC CHANNELS 1243

codeword from the codebook corresponding to lb−1,
m′

2,b and s2bi .
- Binning:

Finally, partition the set Zn
1 into 2nR̃1 bins, by choosing

a bin for each zn
1 independently and uniformly at random

from [1 : 2nR̃1 ]. Denote the chosen bin for zn
1 by binb(zn

1).
Similarly, partition the set Zn

2 into 2nR̃2 bins, by choosing
a bin for each zn

2 independently and uniformly at random
from [1 : 2nR̃2 ]. Denote the chosen bin for zn

2 by binb(zn
2).

Encoding: Henceforth, whenever convenient, we will abbre-
viate (l1,b−1, l2,b−1) by lb−1. Set (l1,1, l2,1) = (1, 1) and

(m′
1,B, m′′

1,B, m′
2,B, m′′

2,B) = (1, 1, 1, 1).

Since the message in the last block is fixed, the effective rate
of communication will be

( B−1
B R1,

B−1
B R2

)
, which can be

made as close as desired to (R1, R2) by choosing a sufficiently
large B . We now describe the encoding for block b. Assume
both encoders have agreed upon some lb−1 = (l1,b−1, l2,b−1)
based on operations in previous blocks. Then, encoders encode
messages m1,b and m2,b by xn

1b(m
′′
1,b|lb−1, m′

1,b, sn
1b) and

xn
2b(m

′′
2,b|lb−1, m′

2,b, sn
2b) respectively. This operation is valid

because it does not require noncausal knowledge of the state
sequences, it can be done “on the fly”. At the end of block b,
both encoders have knowledge of the cribbed codewords
zn

1b(m
′
1,b|lb−1, sn

1b) and zn
2b(m

′
2,b|lb−1, sn

2b). They set

l1,b = binb(z
n
1b), and l2,b = binb(z

n
2b).

Decoding: The decoder performs backward decoding. For
each block b ∈ {B, B − 1, B − 2, . . . , 2}, assuming that
lb = (l1,b, l2,b) is known from previous operations:

(1) The decoder first takes a pass through all lb−1 =
(l1,b−1, l2,b−1) and for each lb−1, finds the unique
(m′

1,b, m′
2,b) such that

binb(z
n
1b(m

′
1,b|lb−1, sn

1b)) = l1,b,

and

binb(z
n
2b(m

′
2,b|lb−1, sn

2b)) = l2,b.

Whenever a unique (m′
1,b, m′

2,b) cannot be found
for some lb−1, the decoder chooses any (m′

1,b, m′
2,b)

arbitrarily. So after this operation, the decoder has chosen
one (m′

1,b, m′
2,b) for each lb−1, given its knowledge

of (lb, sn
1b, sn

2b). We will signify this explicitly by
denoting the chosen messages as m̂′

1,b(lb−1, sn
1b, l1,b)

and m̂′
2,b(lb−1, sn

2b, l2,b) respectively.

(2) Now the decoder looks for the unique (l̂b−1, m̂′′
1,b, m̂′′

2,b)
such that (16) (appearing at the bottom of this page) is
satisfied.

Analysis of the Error Probability: By symmetry, we can
assume without loss of generality that the true messages and
bin-indices corresponding to the current block are all 1, i.e.

(Lb−1, M ′
1,b, M ′

2,b, M ′′
1,b, M ′′

2,b) = (1, 1, 1, 1, 1).

We bound the probability of decoding error in block b condi-
tioned on successful decoding for blocks {B, B−1, . . . , b+1},
averaged over the randomness in the messages and codebook
generation. In particular, successful decoding in block b + 1
means that (L1,b, L2,b) has been decoded successfully, where
we remind ourselves that

L1,b = Binb(Zn
1b(1|1, Sn

1b))

and

L2,b = Binb(Zn
2b(1|1, Sn

2b)).

An error occurs in block b only if any of the following
events occur:
(a) M̂ ′

1,b(1, Sn
1b, L1,b) �= 1

(b) M̂ ′
2,b(1, Sn

2b, L2,b) �= 1

(c) (L̂b−1, M̂ ′′
1,b, M̂ ′′

2,b) �= (1, 1, 1) given (M̂ ′
1,b(1, Sn

1b, L1,b),

M̂ ′
2,b(1, Sn

2b, L2,b)) = (1, 1)

We analyze each of the above three events in the following.
Event (a): M̂ ′

1,b(1, Sn
1b, L1,b) �= 1: We have

Pr
(

M̂ ′
1,b(1, Sn

1b, L1,b) �= 1
)

= Pr
(
Binb(Zn

1b(m
′
1,b|1, Sn

1b)) = L1,b for some m′
1,b > 1

)

= Pr

(
Binb(Zn

1b(m
′
1,b|1, Sn

1b))

= Binb(Zn
1b(1|1, Sn

1b))
for some m′

1,b > 1

)

≤
∑

m′
1,b>1

Pr
(
Binb(Zn

1b(m
′
1,b|1, Sn

1b)) = Binb(Zn
1b(1|1, Sn

1b))
)

=
∑

m′
1,b>1

Pr

⎛

⎝
Binb(Zn

1b(m
′
1,b|1, Sn

1b))

= Binb(Zn
1b(1|1, Sn

1b)) ,
Zn

1b(m
′
1,b|1, Sn

1b) = Zn
1b(1|1, Sn

1b)

⎞

⎠

+
∑

m′
1,b>1

Pr

⎛

⎝
Binb(Zn

1b(m
′
1,b|1, Sn

1b))

= Binb(Zn
1b(1|1, Sn

1b)) ,
Zn

1b(m
′
1,b|1, Sn

1b) �= Zn
1b(1|1, Sn

1b)

⎞

⎠

≤
∑

m′
1,b>1

Pr
(
Zn

1b(m
′
1,b|1, Sn

1b) = Zn
1b(1|1, Sn

1b)
)

+
∑

m′
1,b>1

Pr

(
Binb(Zn

1b(m
′
1,b|1, Sn

1b))

= Binb(Zn
1b(1|1, Sn

1b))

∣∣
∣
∣

Zn
1b(m

′
1,b|1, Sn

1b)

�= Zn
1b(1|1, Sn

1b)

)

≤ 2nR′
1 · 2−n(H(Z1|U,S1)−δ(ε)) + 2nR′

1 · 2−nR̃1,

where we use δ(ε) to denote any function of ε for which
δ(ε) → 0 as ε → 0. Hence, we get that

Pr
(

M̂ ′
1,b(1, Sn

1b, L1,b) �= 1
)

→ 0 as n → ∞,

(
un

b(l̂b−1), zn
1b(m̂

′
1,b(l̂b−1, sn

1b, l1,b) | l̂b−1, sn
1b), zn

2b(m̂
′
2,b(l̂b−1, sn

2b, l2,b) | l̂b−1, sn
2b),

xn
1b(m̂

′′
1,b | l̂b−1, m̂′

1,b(l̂b−1, sn
1b, l1,b), sn

1b), xn
2b(m̂

′′
2,b | l̂b−1, m̂′

2,b(l̂b−1, sn
2b, l2,b), sn

2b), sn
1b, sn

2b, yn
b

)
∈ T (n)

ε (16)
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if the following two constraints are satisfied:

R′
1 < R̃1,

R′
1 < H (Z1|U, S1) − δ(ε).

Event (b): M̂ ′
2,b(1, Sn

2b, L2,b) �= 1: Similar to the previous
subsection, we can conclude that

Pr
(

M̂ ′
2,b(1, Sn

2b, L2,b) �= 1
)

→ 0 as n → ∞,

if the following two constraints are satisfied:

R′
2 < R̃2,

R′
2 < H (Z2|U, S2) − δ(ε).

Event (c): (L̂b−1, M̂ ′′
1,b, M̂ ′′

2,b) �= (1, 1, 1) given

(M̂ ′
1,b(1, Sn

1b, L1,b), M̂ ′
2,b(1, Sn

2b, L2,b)) = (1, 1): The
probability of this event is upper bounded by the sum of

Pr

(
(16) not true for

(lb−1, m′′
1,b, m′′

2,b) = (1, 1, 1)

∣
∣
∣
∣

M̂ ′
1,b(1, Sn

1b, L1,b) = 1,

M̂ ′
2,b(1, Sn

2b, L2,b) = 1

)

and

Pr

(
(16) true for some

(lb−1, m′′
1,b, m′′

2,b) �= (1, 1, 1)

∣
∣
∣
∣

M̂ ′
1,b(1, Sn

1b, L1,b) = 1,

M̂ ′
2,b(1, Sn

2b, L2,b) = 1

)

.

The first term goes to zero as n → ∞ by the law of large
numbers.

The second term can be handled by considering the
following four different cases separately and applying the
packing lemma [30] appropriately in each case.

- (L̂b−1, M̂ ′′
1,b, M̂ ′′

2,b) = (1, 1,>1) given

(M̂ ′
1,b(1, Sn

1b, L1,b), M̂ ′
2,b(1, Sn

2b, L2,b)) = (1, 1)

- (L̂b−1, M̂ ′′
1,b, M̂ ′′

2,b) = (1,>1, 1) given

(M̂ ′
1,b(1, Sn

1b, L1,b), M̂ ′
2,b(1, Sn

2b, L2,b)) = (1, 1)

- (L̂b−1, M̂ ′′
1,b, M̂ ′′

2,b) = (1,>1,>1) given

(M̂ ′
1,b(1, Sn

1b, L1,b), M̂ ′
2,b(1, Sn

2b, L2,b)) = (1, 1)

- (L̂b−1, M̂ ′′
1,b, M̂ ′′

2,b) = (>1, ∗, ∗)

A standard application of the packing lemma gives us that
the probability of each of the first three events goes to zero as
n → ∞ if the following constraints are respectively satisfied:

R′′
2 < I (X2; Y |U, Z2, X1, S1, S2) − δ(ε),

R′′
1 < I (X1; Y |U, Z1, X2, S1, S2) − δ(ε),

R′′
1 + R′′

2 < I (X1, X2; Y |U, Z1, Z2, S1, S2) − δ(ε).

Applying the packing lemma gives us the following condi-
tion for vanishing probability of the fourth event,

R̃1 + R̃2
+ R′′

1 + R′′
2

< I (U, Z1, Z2, X1, X2; Y |S1, S2) − δ(ε)

= I (X1, X2; Y |S1, S2) − δ(ε).

Collecting all the constraints established so far, we have

R′
1 < R̃1, (17)

R′
1 < H (Z1|U, S1) − δ(ε), (18)

R′
2 < R̃2, (19)

R′
2 < H (Z2|U, S2) − δ(ε), (20)

R′′
2 < I (X2; Y |U, Z2, X1, S1, S2) − δ(ε), (21)

R′′
1 < I (X1; Y |U, Z1, X2, S1, S2) − δ(ε), (22)

R′′
1 + R′′

2 < I (X1, X2; Y |U, Z1, Z2, S1, S2) − δ(ε), (23)

R̃1 + R̃2
+ R′′

1 + R′′
2

< I (X1, X2; Y |S1, S2) − δ(ε). (24)

Performing Fourier-Motzkin elimination of R̃1, R̃2, R′
1, R′

2,
R′′

1 and R′′
2 , and letting n → ∞, B → ∞ and ε → 0, we

get that communication at arbitrarily small error probability is
possible for the rates specified in Theorem 4.

Converse: The proof of the converse can be constructed
by using similar arguments as in [4]. Note that we have
by Fano’s inequality the following condition for any reliable
code:

H (M1, M2|Y n, Sn
1 , Sn

2 ) ≤ nεn,

where εn → 0 as n → ∞. Define Ui as

Ui � (Zi−1
1 , Zi−1

2 , Si−1
1 , Si−1

2 ).

An upper bound on R1 is established by the following:

n R1 = H (M1)
(a)= H (M1|M2, Sn

1 , Sn
2 )

(b)= H (M1, Zn
1 |M2, Sn

1 , Sn
2 )

= H (Zn
1 |M2, Sn

1 , Sn
2 ) + H (M1|Zn

1 , M2, Sn
1 , Sn

2 )
(c)≤ H (Zn

1 |M2, Sn
1 , Sn

2 )+ I (M1; Y n|Zn
1 , M2, Sn

1 , Sn
2 )+nεn

=
n∑

i=1

H (Z1i|Zi−1
1 , M2, Sn

1 , Sn
2 )

+
n∑

i=1

I (M1; Yi |Y i−1, Zn
1 , M2, Sn

1 , Sn
2 ) + nεn

(d)=
n∑

i=1

H (Z1i|Zi−1
1 , M2, Sn

1 , Sn
2 , Zi−1

2 )

+
n∑

i=1

I (M1; Yi |Y i−1, Zn
1 , M2, Sn

1 , Sn
2 , Xn

2 ) + nεn

(e)=
n∑

i=1

H (Z1i|Zi−1
1 , M2, Sn

1 , Sn
2 , Zi−1

2 )

+
n∑

i=1

I (M1, X1i ; Yi |Y i−1, Zn
1 , M2, Sn

1 , Sn
2 , Xn

2 )+nεn

( f )≤
n∑

i=1

H (Z1i|Zi−1
1 , Si

1, Si−1
2 , Zi−1

2 )

+
n∑

i=1

I (X1i ; Yi |Zi
1, Si

1, Si
2, X2i , Zi−1

2 ) + nεn

=
n∑

i=1

H (Z1i|Ui , S1i )

+
n∑

i=1

I (X1i ; Yi |Ui , Z1i , S1i , S2i , X2i ) + nεn

= nH (Z1Q|UQ, S1Q , Q)

+ nI (X1Q; YQ |UQ , Z1Q, S1Q , S2Q , X2Q , Q) + nεn
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where

- Q is a random variable uniformly distributed on [1 : n],
independent of other random variables,

- (a) follows because M1 is independent of (M2, Sn
1 , Sn

2 ),
- (b) follows since Zn

1 is a function of (M1, M2, Sn
1 , Sn

2 ),
- (c) follows by Fano’s inequality,
- (d) follows since (X2i , Z2i ) is a function of

(M2, Sn
2 , Zi−1

1 ),
- (e) follows since X1i is a function of (M1, Sn

1 , Xi−1
2 ),

- ( f ) follows since (i) conditioning reduces entropy and
(ii) conditioned on (X1i , X2i , S1i , S2i ), Yi is independent
of (M1, M2, Xn

1 , Xn
2 , Sn

1 , Sn
2 ).

Similarly, we get an upper bound on R2:

n R2 ≤ nH (Z2Q|UQ , S2Q , Q)

+nI (X2Q; YQ |UQ , Z2Q, S1Q , S2Q , X1Q , Q) + nεn .

Applying similar arguments to the sum rate, we get:

n(R1 + R2)

= H (M1, M2)

= H (M1, M2|Sn
1 , Sn

2 )

= H (M1, M2, Zn
1 , Zn

2 |Sn
1 , Sn

2 )

= H (Zn
1 , Zn

2 |Sn
1 , Sn

2 ) + H (M1, M2|Zn
1 , Zn

2 , Sn
1 , Sn

2 )

≤
n∑

i=1

H (Z1i, Z2i |Ui , S1i , S2i ) + H (M1, M2|Zn
1 , Zn

2 , Sn
1 , Sn

2 )

≤
n∑

i=1

H (Z1i, Z2i |Ui , S1i , S2i )

+ I (M1, M2; Y n|Zn
1 , Zn

2 , Sn
1 , Sn

2 ) + nεn

≤
n∑

i=1

H (Z1i, Z2i |Ui , S1i , S2i )

+
n∑

i=1

I (X1i , X2i ; Yi |Ui , Z1i , Z2i , S1i , S2i ) + nεn

= nH (Z1Q, Z2Q |UQ, S1Q , S2Q , Q)

+ nI (X1Q , X2Q; YQ |UQ, Z1Q, Z2Q , S1Q , S2Q , Q) + nεn .

Another upper bound on the sum rate can be easily estab-
lished as follows:

n(R1 + R2) = H (M1, M2)

= H (M1, M2|Sn
1 , Sn

2 )

≤ I (M1, M2; Y n|Sn
1 , Sn

2 ) + nεn

≤
n∑

i=1

I (X1i , X2i ; Yi |S1i , S2i ) + nεn

= nI (X1Q , X2Q; YQ |S1Q, S2Q , Q) + nεn

≤ nI (X1Q , X2Q; YQ |S1Q, S2Q ) + nεn .

We note the following four conditions:

- (S1Q , S2Q) is independent of (Q, UQ), and has the pmf
pS1,S2(s1, s2),

- X1Q − (Q, UQ , S1Q) − (Q, UQ , S2Q) − X2Q ,
- pYQ |UQ,X1Q,X2Q ,S1Q,S2Q(y|u, x1, x2, s1, s2) is equal to

pY |X1,X2,S1,S2(y|x1, x2, s1, s2),
- Z1Q = z1(X1Q, S1Q) and Z2Q = z2(X2Q , S2Q).

The proof of the first condition follows because (S1,i , S2,i ) are
generated independently of Ui = (Zi−1

1 , Zi−1
2 , Si−1

1 , Si−1
2 ) for

all 1 ≤ i ≤ n, and due to the i.i.d. assumption on (S1, S2).
To prove that the second condition is satisfied, consider the
following. For any 1 ≤ i ≤ n,5

p(si
1, si

2, x1i , x2i , zi−1
1 , zi−1

2 )

=
∑

m1,m2

p(m1, m2, si
1, si

2, x1i , x2i , zi−1
1 , zi−1

2 )

=
∑

m1,m2

⎡

⎣p(m1)p(m2)p(si
1, si

2)

× p(x1i |m1, si
1, zi−1

2 )

⎛

⎝
i−1∏

j=1

p(z1 j |m1, s j
1 , z j−1

2 )

⎞

⎠

× p(x2i |m2, si
2, zi−1

1 )

⎛

⎝
i−1∏

j=1

p(z2 j |m2, s j
2 , z j−1

1 )

⎞

⎠

⎤

⎦

6 = p(si
1, si

2)
∑

m1

p(m1)p(x1i , zi−1
1 |m1, si

1, zi−1
2 )

×
∑

m2

p(m2)p(x2i , zi−1
2 |m2, si

2, zi−1
1 )

= p(si
1, si

2)p(x1i , zi−1
1 |si

1, zi−1
2 )p(x2i , zi−1

2 |si
2, zi−1

1 )

= p(si
1, si

2)p(x1i |si
1, zi−1

1 , zi−1
2 )p(zi−1

1 |si
1, zi−1

2 )

× p(x2i , zi−1
2 |si

2, zi−1
1 ).

The above factorization implies that

X1i − (Si
1, Zi−1

1 , Zi−1
2 ) − (X2i , S2i )

⇒ X1i − (Ui , S1i ) − (X2i , S2i )

⇒ X1i − (Ui , S1i ) − (Ui , S2i , X2i )

⇒ X1Q − (UQ, S1Q , Q) − (UQ, S2Q , X2Q , Q).

Similarly, we also have

X2Q − (UQ , S2Q , Q) − (UQ , S1Q , X1Q , Q).

These two Markov chains together imply the desired Markov
chain X1Q − (UQ , S1Q , Q) − (UQ , S2Q , Q) − X2Q . The third
condition follows by the definition of the auxiliary random
variable UQ and because YQ is the channel output when the
inputs are X1Q, X2Q , S1Q , S2Q . Similarly, the fourth condition
is true because Z1Q and Z2Q are the cribbed signals due to
(X1Q, S1Q) and (X2Q , S2Q) respectively.

5We drop subscripts denoting the random variables when analyzing the
factorization to reduce the length of the expressions.

6The expressions from this line onwards, read in a literal manner, might
seem strange for representing factorizations due to the presence of terms
of the form p(zi−1

1 |·, zi−1
2 )p(zi−1

2 |·, zi−1
1 ), however these are valid fac-

torizations, possibly containing redundant conditioning in some terms. The
Markovity conclusions we draw from such a form are valid, because the
factorization might at most contain redundant conditionings. An example
might make the point clearer. Assume that a joint factorization is of the
form p(x, y)p(x ′, y′)p(z|x, y′)p(z′|x ′, y). If we marginalize by summing
over (x, x ′) first and then over (z, z′), we get an expression of the form
p(y|y′)p(y′|y), while reversing the order of summation gives us p(y)p(y′).
Thus, Y and Y ′ are independent, so the former expression is equal to the
latter, though the former contains redundant conditioning.
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So we can define random variables U � (Q, UQ),
X1 � X1Q , X2 � X2Q , S1 � S1Q , S2 � S2Q , and Y � YQ ,
such that the joint pmf of these random variables has the
factorization

pS1,S2(s1, s2)pU (u)pX1|U,S1(x1|u, s1)

× pX2|U,S2(x2|u, s2)pY |X1,X2,S1,S2(y|x1, x2, s1, s2),

and Z1 = z1(X1, S1) and Z2 = z2(X2, S2). Noting that
εn → 0 as n → ∞, the four constraints on the rates that
we have established become

R1 ≤ I (X1; Y |U, X2, Z1, S1, S2) + H (Z1|U, S1),

R2 ≤ I (X2; Y |U, X1, Z2, S1, S2) + H (Z2|U, S2),

R1 + R2 ≤ I (X1, X2; Y |U, Z1, Z2, S1, S2)

+ H (Z1, Z2|U, S1, S2),

R1 + R2 ≤ I (X1, X2; Y |S1, S2).

Thus, we get that the region stated in Theorem 4 is an outer
bound to the achievable rate region. The bound on cardinal-
ity of the auxiliary random variable can be obtained using
arguments based on Caratheodory’s theorem as described
in [30, Appendix C].

This concludes the proof of Theorem 4.

IX. PROOF OF THEOREM 5

The achievability part of this theorem builds on the
cooperative-bin-forward scheme from the previous section by
combining it with instantaneous relaying (a.k.a. codetrees or
Shannon strategies). To avoid unnecessary repetition, we only
provide the differences in the achievability part relative to that
in the previous section.

Proof: Fix a pmf pU (u)pX1|U,S1(x1|u, s1)pX2|U,S2,Z1

(x2|u, s2, z1) and ε > 0. Rate-splitting is performed as in the
previous section.

Codebook Generation: The cooperation codewords and the
codebooks used by Encoder 1 are generated in the same
manner as the previous section. Encoder 2 generates code-
books by treating the causally observed z1 symbol in the same
manner as the causally observed s2 symbol. More precisely,
the codebooks constructed by Encoder 2 are described in the
following two paragraphs.

For each lb−1, each s2 ∈ S2 and each z1 ∈ Z1,
generate a codebook of 2nR′

2 codewords. The i th sym-
bol of such a codeword is chosen independently accord-
ing to pZ2|U,S2,Z1(·|ubi (lb−1), s2, z1). The result of this is
that for each lb−1, each m′

2,b ∈ [1 : 2nR′
2 ], each sn

2b
and each zn

1b, encoder 2 can form an effective codeword
zn

2b(m
′
2,b|lb−1, sn

2b, zn
1b), whose i th symbol can be causally

chosen as the i th symbol of the m′
2,b-th codeword from the

codebook corresponding to lb−1, s2bi and z1,bi .
For each lb−1, each m′

2,b ∈ [1 : 2nR′
2 ], each

s2 ∈ S2 and each z1 ∈ Z1, generate a codebook
of 2nR′′

2 codewords. The i th symbol of such a code-
word is generated independently according to pX2|U,Z2,S2,Z1

(·|ubi (lb−1), z2bi (m′
2,b|lb−1, s2, z1), s2, z1). The result of this

construction is that for each lb−1, each m′
2,b ∈ [1 : 2nR′

2 ],
each m′′

2,b ∈ [1 : 2nR′′
2 ], each sn

2b and each zn
1b, encoder 2

can form an effective codeword xn
2b(m

′′
2,b|lb−1, m′

2,b, sn
2b, zn

1b),
whose i th symbol can be causally chosen as the i th symbol
of the m′′

2,b-th codeword from the codebook corresponding to
lb−1, m′

2,b, s2bi and z1,bi .
The binning is performed as in the previous section.
Encoding: The encoding at Encoder 1 is identical

to that in the previous section. Encoder 2 transmits
xn

2b(m
′′
2,b|lb−1, m′

2,b, sn
2b, zn

1b) which can be chosen as
described above.

Decoding: The decoder performs backward decoding over
the blocks, where it performs two steps as in the previous
section, with the first step changed to the following.

The decoder first takes a pass through all lb−1 =
(l1,b−1, l2,b−1) and for each lb−1, finds the unique (m′

1,b, m′
2,b)

such that

binb(z
n
1b(m

′
1,b|lb−1, sn

1b)) = l1,b

and

binb(z
n
2b(m

′
2,b|lb−1, sn

2b, zn
1b(m

′
1,b|lb−1, sn

1b))) = l2,b.

Probability of Error: In the previous section, we obtained
the conditions (17)-(24) for vanishing probability of error. The
only difference now is that the fourth condition is replaced by

R′
2 < H (Z2|U, S2, Z1) − δ(ε).

This is obtained by analyzing the probability of event (b)
conditioned on the complement of event (a). The other con-
ditions remain the same. Performing Fourier-Motzkin elimi-
nation of R̃1, R̃2, R′

1, R′
2, R′′

1 and R′′
2 , and letting n → ∞,

B → ∞ and ε → 0, we get that communication at arbitrarily
small error probability is possible for the rates specified
in Theorem 5.

Converse: The only difference in the converse compares to
that of the previous section is that we need to show a different
bound on R2 and we need to prove the factorization of the pmf.
The bound on R1 and the two bounds on the sum rate R1 + R2
are the same and require no changes in the arguments.

The new bound on R2 can be shown by following the
same line of arguments with minor changes. We provide
the chain of inequalities below for completeness. The aux-
iliary random variable Ui appearing below is defined to be
(Zi−1

1 , Zi−1
2 , Si−1

1 , Si−1
2 ).

n R2 = H (M2)

(a)= H (M2|M1, Sn
1 , Sn

2 )

(b)= H (M2, Zn
2 |M1, Sn

1 , Sn
2 )

= H (Zn
2 |M1, Sn

1 , Sn
2 ) + H (M2|Zn

2 , M1, Sn
1 , Sn

2 )

(c)≤ H (Zn
2 |M1, Sn

1 , Sn
2 )+ I (M2; Y n|Zn

2 , M1, Sn
1 , Sn

2 )+nεn

=
n∑

i=1

H (Z2i |Zi−1
2 , M1, Sn

1 , Sn
2 )

+
n∑

i=1

I (M2; Yi |Y i−1, Zn
2 , M1, Sn

1 , Sn
2 ) + nεn
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(d)=
n∑

i=1

H (Z2i |Zi−1
2 , M1, Sn

1 , Sn
2 , Zi

1)

+
n∑

i=1

I (M2; Yi |Y i−1, Zn
2 , M1, Sn

1 , Sn
2 , Xn

1 ) + nεn

(e)=
n∑

i=1

H (Z2i |Zi−1
2 , M1, Sn

1 , Sn
2 , Zi

1)

+
n∑

i=1

I (M2, X2i ; Yi |Y i−1, Zn
2 , M1, Sn

1 , Sn
2 , Xn

1 )

+nεn

( f )≤
n∑

i=1

H (Z2i |Zi−1
2 , Si

2, Si−1
1 , Zi

1)

+
n∑

i=1

I (X2i ; Yi |Zi
2, Si

1, Si
2, X1i , Zi−1

1 ) + nεn

=
n∑

i=1

H (Z2i |Ui , S2i , Z1i)

+
n∑

i=1

I (X2i ; Yi |Ui , Z2i , S1i , S2i , X1i ) + nεn

= nH (Z2Q|UQ, S2Q , Z1Q , Q)

+ nI (X2Q; YQ |UQ, Z2Q, S1Q , S2Q , X1Q, Q) + nεn

where

- Q is a random variable uniformly distributed on [1 : n],
independent of other random variables,

- (a) follows because M2 is independent of (M1, Sn
1 , Sn

2 ),
- (b) follows since Zn

2 is a function of (M1, M2, Sn
1 , Sn

2 ),
- (c) follows by Fano’s inequality,
- (d) follows since (X1i , Z1i) is a function of

(M1, Sn
1 , Zi−1

2 ),
- (e) follows since X2i is a function of (M2, Sn

2 , Xi
1),

- ( f ) follows since (i) conditioning reduces entropy and
(ii) conditioned on (X1i , X2i , S1i , S2i ), Yi is independent
of (M1, M2, Xn

1 , Xn
2 , Sn

1 , Sn
2 ).

Regarding the joint pmf, we note the following
conditions

- (S1Q , S2Q) is independent of (Q, UQ), and has the pmf
pS1,S2(s1, s1),

- X1Q − (Q, UQ , S1Q) − S2Q ,
- X2Q − (Q, UQ , S2Q , Z1Q) − (X1Q, S1Q),
- pYQ |UQ,X1Q,X2Q ,S1Q,S2Q(y|u, x1, x2, s1, s2) is equal to

pY |X1,X2,S1,S2(y|x1, x2, s1, s2),
- Z1Q = z1(X1Q, S1Q) and Z2Q = z2(X2Q , S2Q).

The first, fourth and fifth conditions do not need new argu-
ments. The second and third condition can be proved as
follows. For any 1 ≤ i ≤ n,

p(si
1, si

2, x1i , zi−1
1 , zi−1

2 )

=
∑

m1,m2

p(m1, m2, si
1, si

2, x1i , zi−1
1 , zi−1

2 )

=
∑

m1,m2

p(m1)p(m2)p(si
1, si

2)p(x1i |m1, si
1, zi−1

2 )

×
i−1∏

j=1

p(z1 j |m1, s j
1 , z j−1

2 )

i−1∏

j=1

p(z2 j |m2, s j
2 , z j

1)

= p(si
1, si

2)p(x1i , zi−1
1 |si

1, zi−1
2 )p(zi−1

2 |si
2, zi

1).

This implies X1Q − (UQ , S1Q , Q)− S2Q . For the third condi-
tion, we have for any 1 ≤ i ≤ n,

p(si
1, si

2, x1i , x2i , zi−1
1 , z1i , zi−1

2 )

=
∑

m1,m2

p(m1, m2, si
1, si

2, x1i , x2i , zi−1
1 , z1i , zi−1

2 )

=
∑

m1,m2

⎡

⎣p(m1)p(m2)p(si
1, si

2)

× p(x1i |m1, si
1, zi−1

2 )

⎛

⎝
i∏

j=1

p(z1 j |m1, s j
1 , z j−1

2 )

⎞

⎠

× p(x2i |m2, si
2, zi

1)

⎛

⎝
i−1∏

j=1

p(z2 j |m2, s j
2 , z j

1)

⎞

⎠

⎤

⎦

= p(si
1, si

2)
∑

m1

p(m1)p(x1i , zi
1|m1, si

1, zi−1
2 )

×
∑

m2

p(m2)p(x2i , zi−1
2 |m2, si

2, zi
1)

= p(si
1, si

2)p(x1i , zi
1|si

1, zi−1
2 )p(x2i , zi−1

2 |si
2, zi

1)

The above factorization implies that

X2i − (Si
2, Zi

1, Zi−1
2 ) − (X1i , S1i )

⇒ X2i − (Ui , S2i , Z1i ) − (X1i , S1i )

⇒ X2Q − (UQ, S2Q , Z1Q, Q) − (X1Q , S1Q).

So we can define random variables U � (Q, UQ),
X1 � X1Q , X2 � X2Q , S1 � S1Q , S2 � S2Q , and Y � YQ ,
such that the joint pmf of these random variables has the
factorization

pS1,S2(s1, s2)pU (u)pX1|U,S1(x1|u, s1)

× pX2|U,S2,Z1(x2|u, s2, z1)pY |X1,X2,S1,S2(y|x1, x2, s1, s2),

and Z1 = z1(X1, S1) and Z2 = z2(X2, S2). Noting that
εn → 0 as n → ∞, the four constraints on the rates that
we have established become

R1 ≤ I (X1; Y |U, X2, Z1, S1, S2) + H (Z1|U, S1),

R2 ≤ I (X2; Y |U, X1, Z2, S1, S2) + H (Z2|U, S2, Z1),

R1 + R2 ≤ I (X1, X2; Y |U, Z1, Z2, S1, S2)

+ H (Z1, Z2|U, S1, S2),

R1 + R2 ≤ I (X1, X2; Y |S1, S2).

Thus, we get that the region stated in Theorem 5 is an outer
bound to the achievable rate region. The bound on cardinal-
ity of the auxiliary random variable can be obtained using
arguments based on Caratheodory’s theorem as described
in [30, Appendix C].

This concludes the proof of Theorem 5.
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X. CONCLUDING REMARKS AND SOME OPEN PROBLEMS

We presented the cooperative-bin-forward scheme and
showed that it achieves the capacity region in a variety of
semideterministic setups, where partial-decode-forward turns
out to be suboptimal.

A number of interesting questions remain. Most importantly,
how can the cooperative-bin-forward scheme be extended
to, e.g. the model in Figure 2, when the source-relay link is
not deterministic, but a general noisy link? Cooperative-bin-
forward was developed in this paper as an alternative to partial-
decode-forward. The latter naturally extends to the noisy case
due to the decoding operation at the relay. The crucial high-
level ingredient for establishing cooperation in both schemes
is that different nodes agree on some common information.
In partial-decode-forward, the agreement is established via a
decoding operation at the relay. In cooperative-bin-forward,
the decoding operation was removed and the nodes agreed
on a bin-index, however the deterministic components in the
models were crucial for this agreement. To ensure some kind
of agreement between nodes in the general noisy case without
using a decoding operation, one potential approach can be to
explore the similarity between the operations of binning and
compression. Note that binning is a form of compression,
so a natural extension of cooperative-bin-forward might
involve a compression operation at the relay, where part of
the compression can be reconstructed at the source, thus
enabling some cooperation between the source and the
relay.

Another interesting question is that of designing optimal
achievability schemes for all the state-dependent setups con-
sidered in this paper when the state is known only to the
source encoders, causally or strictly causally. Finally, the
semideterministic relay channel with two state components,
one known to the source and the other to the relay, with an
uninformed destination, is also an interesting open question.
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