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Arbitrarily Varying Wiretap Channels With Type
Constrained States

Ziv Goldfeld, Student Member, IEEE, Paul Cuff, Member, IEEE, and Haim H. Permuter, Senior Member, IEEE

Abstract— Determining a single-letter secrecy-capacity formula
for the arbitrarily varying wiretap channel (AVWTC) is an
open problem largely because of two main challenges. Not
only does it capture the difficulty of the compound wiretap
channel (another open problem), it also requires that secrecy is
ensured with respect to exponentially many possible channel state
sequences. By extending the strong soft-covering lemma, recently
derived by the authors, to the heterogeneous scenario, this paper
accounts for the exponential number of secrecy constraints while
only imposing single-letter constraints on the communication
rate. Through this approach, we derive a single-letter char-
acterization of the correlated-random (CR)-assisted semantic-
security (SS) capacity of an AVWTC with a type constraint
on the allowed state sequences. The allowed state sequences
are the ones in a typical set around a single constraining type.
The stringent SS requirement is established by showing that the
mutual information between the message and the eavesdropper’s
observations is negligible even when maximized over all message
distributions, choices of state sequences, and realizations of the
CR-code. Both the achievability and the converse proofs of the
type-constrained coding theorem rely on stronger claims than
actually required. The direct part establishes a novel single-letter
lower bound on the CR-assisted SS-capacity of an AVWTC with
state sequences constrained by any convex and closed set of
state probability mass functions. This bound achieves the best
known single-letter secrecy rates for a corresponding compound
wiretap channel over the same constraint set. In contrast to other
single-letter results in the AVWTC literature, this paper does
not assume the existence of a best channel to the eavesdropper.
Instead, SS follows by leveraging the heterogeneous version of the
strong soft-covering lemma and a CR-code reduction argument.
Optimality is a consequence of a max-inf upper bound on the
CR-assisted SS-capacity of an AVWTC with state sequences
constrained to any collection of type-classes. When adjusted to
the aforementioned compound WTC, the upper bound simplifies
to a max–min structure, thus strengthening the previously best
known single-letter upper bound by Liang et al. that has a

Manuscript received January 14, 2016; revised September 25,
2016; accepted October 15, 2016. Date of publication October 20,
2016; date of current version November 18, 2016. Z. Goldfeld
and H. H. Permuter were supported in part by the Cyber Security
Research Center within Ben-Gurion University of the Negev,
in part by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/ERC under
Grant n°337752, and in part by the Israel Science Foundation. P. Cuff
was supported in part by the National Science Foundation under
Grant CCF-1350595 and in part by the Air Force Office of Scientific
Research under Grant FA9550-15-1-0180. This paper was presented at the
2016 International Conference on the Science of Electrical Engineers.

Z. Goldfeld and H. H. Permuter are with the Department of Electrical and
Computer Engineering, Ben-Gurion University of the Negev, Beersheba
8410501, Israel (e-mail: gziv@post.bgu.ac.il; haimp@bgu.ac.il).

P. Cuff is with the Department of Electrical Engineering, Princeton Univer-
sity, Princeton, NJ 08544 USA (e-mail: cuff@princeton.edu).

Communicated by A. Khisti, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2016.2619701

min–max form. The proof of the upper bound uses a novel
distribution coupling argument. The capacity formula shows that
the legitimate users effectively see an averaged main channel,
while security must be ensured versus an eavesdropper with
perfect channel state information. An example visualizes our
single-letter results, and their relation to the past multi-letter
secrecy-capacity characterization of the AVWTC is highlighted.

Index Terms— Arbitrarily varying wiretap channel,
distribution coupling, information theoretic security, physical
layer security, soft-covering lemma.

I. INTRODUCTION

MODERN communication systems usually present an
architectural separation between error correction and

data encryption. The former is typically realized at the physi-
cal layer by transforming the noisy communication channel
into a reliable “bit pipe”. The data encryption is imple-
mented on top of that by applying cryptographic principles.
The cryptographic approach assumes no knowledge on the
quality of the eavesdropper’s channel and relies solely on
restricting the computational power of the eavesdropper.
The looming prospect of quantum computers (QCs) (some
companies have recently reported a working prototype of a
QC with over than 1000 qbits [1]–[5]), however, would boost
computational abilities, rendering some critical cryptosystems
insecure and weakening others.1 Post-QC cryptography offers
partial solutions that rely on larger keys, but even now con-
siderable efforts are made to save this expensive resource.
Nonetheless, cryptography remains the main practical tool for
protecting data, at least for the time being.

Physical Layer Security, rooted in information-theoretic
principles, is an alternative approach to provably secure com-
munication that dates back to Wyner’s celebrated paper on
the wiretap channel (WTC) [9]. Essentially, Wyner’s main
idea was to exploit the noise of the communication channel
along with proper physical layer coding to guarantee secrecy
against a computationally-unlimited eavesdropper. Protection
against such an eavesdropper, however, comes at a price of
assuming that the eavesdropper’s channel is perfectly known to
the legitimate parties and stays fixed during the transmission.
Many of the information-theoretic secrecy results that followed

1More specifically, asymmetric ciphers that rely on the hardness of integer
factorization or discrete logarithms can be completely broken using QCs via
Shor’s algorithm (or a variant thereof) [6], [7]. Symmetric encryption, on the
other hand, would be weakened by QC attacks but could regain its strength
by increasing the size of the key [8]. This essentially follows since a QC can
search through a space of size 2n in time 2

n
2 , so by doubling the size of the

key a symmetric cryptosystem would offer the same protection versus a QC
attack, as the original system did versus a classic attack.
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relied on extending Wyner’s ideas, and therefore, are derived
under the same hypothesis. Much of the critique by the cryp-
tographic community towards information-theoretic security is
aimed exactly at that assumption.

Practical systems suffer from limited channel state
information (CSI) due to inaccuracies in the channel’s
estimation process and imperfect feedback. Furthermore,
adversarial eavesdroppers will refrain from providing the legit-
imate parties with any information about their channels to
make securing the data even harder. Accordingly, limited CSI
(especially about the eavesdropper’s channel) must be assumed
to successfully model a practical communication system.
The model of an arbitrarily varying WTC (AVWTC), that
is the focus of this work, does just that. The AVWTC
combines the WTC [9], [10] and the arbitrarily varying
channel (AVC) [11]–[15]. It consists of a collection of discrete-
memoryless WTCs indexed by elements in a finite state space.
The state at each time instance is chosen in an arbitrary manner
and is unknown to the legitimate parties. Being aware of the
state space, however, the legitimate users can place the actual
channel realization within a certain uncertainty set, which
models their limited eavesdropper’s CSI. A relaxed scenario
where the main channel is fixed in time but the eavesdropper’s
channel is varying and unknown was studied in [16]. The
authors of [16] considered the MIMO Gaussian case and
proved the existence of a universal secure coding scheme.

Inspired by wiretap channel instances that involve active
eavesdroppers [17]–[20], the AVWTC was first introduced
in [21]. The author of [21] derived single-letter lower and
upper bounds on the correlated-random (CR) assisted weak
secrecy-capacity of the AVWTC. The relation between the
CR-assisted weak secrecy-capacity and the uncorrelated weak
secrecy-capacity was also established in Theorem 5 of that
work (see also [22] for similar results for strong secrecy).
It turns out that it makes a difference whether CR codes
or their uncorrelated counterparts are used. In particular, the
uncorrelated secrecy-capacity may be zero (if the main channel
is symmetrizable [14, Definition 2]), while the CR-assisted
secrecy-capacity is positive. Thus, viewing CR as an additional
resource for communication, this resource can make commu-
nication possible where it is impossible without, as long as the
choice of the state sequence is independent of the realization
of the CR. On the other hand, CR should not be viewed as a
cryptographic key to be exploited for secrecy, and therefore,
it is assumed to be known to the eavesdropper. A single-letter
characterization of the CR-assisted secrecy-capacity remains
an open problem and only a multi-letter description has been
established [23], [24]. Despite the computational infeasibil-
ity of that formula, it was used in [24] to prove that the
CR-assisted secrecy-capacity of the AVWTC is a continuous
function of the uncertainty set. In contrast, the work of [25]
showed that the same in not true for uncorrelated secrecy-
capacity, by exemplifying a discontinuity point.

The challenge presented by the AVWTC is twofold.
First, it subsumes the difficulty of the compound WTC
(where the channel’s state is constant in time), for which a
single-letter secrecy-capacity characterization is also an open
problem [26]–[33]. While a multi-letter description of the

compound WTC’s secrecy-capacity was found in [32], it is
currently unknown how to single-letterize this expression. The
underlying gap is that while reliability must be ensured with
respect to the worst main channel, security is measured under
the best eavesdropper channel; a single channel state under
which these extremes simultaneously materialize, however,
does not necessarily exist. The second difficulty concerning
AVWTCs is that security must be ensured under all possible
state sequences, whose number grows exponentially with the
blocklength. To get single-letter results, the latter is usually
dealt with by assuming the existence of a best channel to
the eavesdropper and establishing secrecy with respect to
that channel only (see, e.g., [21], [34]). Yet, the only single-
letter secrecy-capacity characterization for an AVWTC that
the authors are aware of assumes even more [21, Th. 4].
On top of the existence of such a best channel, the derivation of
[21, Th. 4] also relies on the AVWTC being strongly-degraded
and having independent (main channel and eavesdropper chan-
nel) states. A related setting for which a single-letter formula
is known is an AVWTC where the CR is used as a secret
key and there is a sufficient amount thereof [22]. Although
such a model slightly deviates from the operational meaning
of CR as considered in this work, formally, it can be viewed as
another scenario for which the multi-letter formula from [24]
is single-letterizable.

We consider a general AVWTC with a type constraint on the
allowed state sequences, and establish in Theorem 1 a single-
letter characterization of its CR-assisted semantic-security
(SS) capacity. Our approach relies neither on the existence of
a best channel to the eavesdropper nor on the benefit of secret
CR. Instead, we show that the exponential number of security
requirements can be satisfied, even while using a random
codebook construction under single-letter constraints on the
communication rate. This is done via a finer analysis that
uses a heterogeneous strong soft-covering lemma, on which
we expand the discussion subsequently. A full characterization
of both the CR-assisted and the uncorrelated capacities of the
classic AVC with a pair of linear constraints on the state and
input sequences is due to Csiszár and Narayan [14], [15]. The
extension of this setting to the AVWTC scenario is the focus
of [35], where a multi-letter description of the CR-assisted
secrecy-capacity is given. In our case, the type constraint
essentially means that the viable state sequences are only the
ones of the prescribed type. However, since a fixed distribution
(even if rational) is not a valid type for all blocklengths, we
define achievability by allowing the empirical distribution of
the state sequences to be within a small gap from the type.
By doing so, the type constrained AVWTC is well defined
for all blocklengths. As a consequence, our uncertainty set
is a typical set around the allowed type, which still contains
exponentially many state sequences. The structure of the
CR-assisted SS-capacity formula suggests that the legitimate
users effectively see the averaged channel (i.e., the expectation
of the main channels with respect to the type) while security
must be ensured versus an eavesdropper with perfect CSI.
A specific instance of a type constrained AVWTC that is
related to binary symmetric - binary erasure (BS-BE) WTC
that was studied in [36] is used to visualize the result.
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The results are derived while adopting the prescription
of [37] to replace the commonly used strong secrecy metric
with the stricter SS metric [38], [39]. The authors of [37]
advocate SS as the new standard for information-theoretic
security, because from a cryptographic point of view, strong
secrecy is insufficient to provide security of applications.
Its main drawback lies in the assumption that the message
is random and uniformly distributed, as real-life messages are
neither (messages may be files, votes or any type of structured
data, often with low entropy). In turn, the uniformly distributed
message makes the strong secrecy metric an average quantity,
that might converge even when many2 of the messages are
actually not secured. Furthermore, to eliminate the benefit
of CR for secrecy purposes, we demand that SS holds for
each realization of the CR (a similar approach was taken
in [24] and [25] with respect to the strong secrecy metric).
This essentially means that the transmission is semantically-
secure even if the choice of the state sequence depends on the
realization of the CR.

In Lemma 1 we develop a heterogeneous soft-covering
analysis tool that is key in ensuring SS under the exponentially
many state sequences of the AVWTC. By means of the
Chernoff bound, the lemma guarantees a double-exponential
decay of the probability that soft-covering fails to occur
under the relative entropy metric. The probability is taken
with respect to a random codebook and the convergence
occurs as long as the rate of the codebook is greater than
the mutual information between the channel’s input and
output random variables. In turn, this allows us to furnish
a single-letter achievability result without assuming that a
best channel to the eavesdropper exists. Doubly-exponentially
decaying probabilities coming from the Chernoff bound were
previously used in the context of secrecy in, e.g., [22]–[24],
[32], [34], [40]. In particular, claims similar to these presented
in this work (but under the total variation metric) were used
in [22], [24], and [25] for the security analysis under
the AVWTC scenario. Similar concentration results also
previously appeared in quantum information theory
sources [41], [42]. Nevertheless, we emphasize the
significance of the strong soft-covering lemma as a stand-
alone claim because of the effectiveness of soft-covering
in proofs of secrecy, resolvability [43], [44], and channel
synthesis [45]. Furthermore, the convergence to 0 of the
relative entropy implied by Lemma 1 naturally relates to the
definition of SS that uses mutual information.

To prove our coding theorem for the type constrained
AVWTC (i.e., the main result in Theorem 1), we provide
both a stronger achievability and a stronger converse than is
actually required. The broader achievability claim, found in
Theorem 2, is a lower bound on the CR-assisted SS-capacity
of an AVWTC with state sequences constrained by any convex
and closed set of state PMFs. This bound shows that the best
known achievable single-letter secrecy rates for a similarly
constrained compound WTC [28], [32] can be achieved also in

2The number of unsecured messages may even grow exponentially with the
blocklength, while still having a converging strong secrecy metric.

the AVWTC.3 The lower bound is derived by first generating
a CR-code over a large family of uncorrelated codes, whose
size grows doubly-exponentially with the blocklength, and
establish reliability by arguments similar to those used for the
classic AVC with constrained states [15]. Then, we invoke a
Chernoff bound to show that a uniform CR-code over a family
that is no more than polynomial in size is sufficient. Having
this, SS follows via the union bound and the strong soft-
covering lemma, because the combined number of codes, state
sequences and messages grows only exponentially with the
blocklenght. The lemma is still sharp enough to imply that the
probability of a random codebook violating security is doubly-
exponentially small. The obtained single-letter achievability
formula is shown to be recoverable from the multi-letter
CR-assisted secrecy-capacity description from [24] and [25]
when specialized to the constrained states scenario.

The polynomial size of the reduced CR-code is of conse-
quence for the uncorrelated scenario as well. Provided that
the uncorrelated SS-capacity is strictly positive, the relatively
small CR-code allows to replace the shared randomness
between the legitimate parties (used for selecting a code
from the family) with a local randomness at the transmitter.
The transmitter may select the code and inform the receiver
which code is in use by sending its index as a short prefix.
The positivity of the uncorrelated capacity is essential to
allow the reliable transmission of the short prefix with a
vanishing rate. Thus, the missing piece for establishing the
uncorrelated SS-capacity of the type constrained AVWTC is
a dichotomy result (in the spirit of [12] and [15]) based on
a condition that distinguishes weather its uncorrelated and
CR-assisted secrecy-capacities are equal or not. Such results
are available for AVWTCs without constraints on the state
space [21], [22], [34]. CR SS-capacity being the focus of this
work, we pose the dichotomy result and the corresponding
threshold property for the constrained states scenario as ques-
tions for future research.

To prove the converse part of the main result, we claim
in Theorem 3 an upper bound on CR-assisted SS-capacity
of an AVWTC with state sequences from any collection of
type-classes. The upper bound is of a max-inf form, i.e.,
first an infimum over the constraint set is taken, and then
the result is maximized over the input distributions. When
specializing the result to the aforementioned compound WTC,
it produces an upper bound that improves upon the previ-
ously best known single-letter upper bound for this setting
[28, Th. 2]. The latter result has a min-max structure, while our
upper bound has a max-min form. This strengthening is due to
a derivation that is uniform over the constraint set. The analysis
is preformed per each type in the set and shows that reliability
and SS under states from even a single type-class imply similar
performance limits as the same channel but where the state
sequence is independently and identically distributed (i.i.d.)
according to the type. The main challenge is in upper bounding
the normalized equivocation of the message given an output
sequence that is generated by the average channel. This step
relies on the equivocation being continuous in the set of viable

3This connection is expounded in Remark 15.
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state sequences. A novel distribution coupling argument is
used to establish this desired property.

This paper is organized as follows. Section II provides
definitions and basic properties. In Section III we state
and prove the heterogeneous strong soft-covering lemma.
The AVWTC with type constrained states is studied in
Section IV, where the setup is defined and the CR-assisted
SS-capacity is characterized and proven. Section IV also states
the lower and upper bounds for the more general setup, relates
the achievability result to past multi-letter descriptions of the
CR-assisted secrecy-capacity and provides an example. The
lower and upper bounds are proven in Sections V and VI,
respectively. Finally, Section VII summarizes the main
achievements and insights of this work.

II. NOTATIONS AND PRELIMINARIES

We use the following notations. As customary, � is the set
of natural numbers (which does not include 0), � denotes
the rational numbers, while � are the reals. We further define
�+ = {x ∈ �|x ≥ 0} and �++ = {x ∈ �|x > 0}. Given
two real numbers a, b, we denote by [a :b] the set of integers{
n ∈ �∣∣�a� ≤ n ≤ �b�}. Calligraphic letters denote sets, e.g.,
X , the complement of X is denoted by X c, while |X | stands
for its cardinality. X n denotes the n-fold Cartesian product
of X . An element of X n is denoted by xn = (x1, x2, . . . , xn);
whenever the dimension n is clear from the context, vectors
(or sequences) are denoted by boldface letters, e.g., x. For any
S ⊆ [1 : n], we use xS � (xi )i∈S to denote the substring of
xn defined by S, with respect to the natural ordering of S.
For instance, if S = [i : j ], where 1 ≤ i < j ≤ n, then xS =
(xi , xi+1, . . . , x j ). For S = [i : j ] as before we sometimes
write x j

i instead of xS ; when i = 1, the subscript is omitted.
We also use xn\i instead xS , when S = [1 : i−1]∪[i+1 : n],
for 1 ≤ i ≤ n.

Let
(
X ,F ,�

)
be a probability space, where X is the sample

space, F is the σ -algebra and � is the probability measure.
Random variables over

(
X ,F ,�

)
are denoted by uppercase

letters, e.g., X , with conventions for random vectors similar
to those for deterministic sequences. The probability of an
event A ∈ F is denoted by �(A), while �(A

∣
∣B ) denotes

conditional probability of A given B. We use 1A to denote
the indicator function of A. The set of all probability mass
functions (PMFs) on a finite set X is denoted by P(X ), i.e.,

P(X ) =
{

P : X → [0, 1]
∣
∣∣
∣
∑

x∈X
P(x) = 1]

}

. (1)

PMFs are denoted by the uppercase letters such as P or
Q, with a subscript that identifies the random variable and
its possible conditioning. For example, for a discrete proba-
bility space

(
X ,F ,�

)
and two correlated random variables

X and Y over that space, we use PX , PX,Y and PX |Y to
denote, respectively, the marginal PMF of X , the joint PMF of
(X, Y ) and the conditional PMF of X given Y . In particular,
PX |Y represents the stochastic matrix whose elements are
given by PX |Y (x |y) = �

(
X = x |Y = y

)
. Expressions such

as PX,Y = PX PY |X are to be understood as PX,Y (x, y) =
PX (x)PY |X (y|x), for all (x, y) ∈ X × Y . Accordingly, when

three random variables X , Y and Z satisfy PX |Y,Z = PX |Y ,
they form a Markov chain, which we denote by X − Y − Z .
We omit subscripts if the arguments of a PMF are lowercase
versions of the random variables. The support of a PMF P and
the expectation of a real-valued random variable X are denoted
by supp(P) and �

[
X
]
, respectively. If X ∼ P , we emphasize

that an expectation is taken with respect to the distribution on
X by writing �X or �P (choosing the simpler of the two).
Similarly, we use HP and IP to indicate that an entropy or
a mutual information term are calculated with respect to a
PMF P .

For a discrete measurable space (X ,F), a PMF Q ∈ P(X )
gives rise to a probability measure on (X ,F), which we
denote by �Q ; accordingly, �Q

(
A) =∑

x∈A Q(x), for every
A ∈ F . For a sequence of random variable Xn , if the entries
of Xn are drawn in an independent and identically distributed
(i.i.d.) manner according to PX , then for every x ∈ X n we
have PXn (x) = ∏n

i=1 PX (xi ) and we write PXn (x) = Pn
X (x).

Similarly, if for every (x, y) ∈ X n×Yn we have PY n |Xn (y|x) =∏n
i=1 PY |X (yi |xi ), then we write PY n |Xn (y|x) = Pn

Y |X (y|x).
The conditional product PMF Pn

Y |X given a specific sequence
x ∈ X n is denoted by Pn

Y |X=x.
The type νx of a sequence x ∈ X n is

νx(x) � N(x |x)

n
, (2)

where N(x |x) = ∑n
i=1 1{xi=x}. The subset of P(X ) that

contains all possible types of sequences x ∈ X n is denoted
by Pn(X ). By [46, Lemma II.1],

∣
∣Pn(X )

∣
∣ =

(
n + |X | − 1

|X | − 1

)
≤ (n + 1)|X |. (3)

For P ∈ Pn(X ), the type-class
{
x ∈ X n

∣
∣νx = P

}
is denoted

by T n
P . We use T n

ε (P) to denote the set of letter-typical
sequences with respect to the PMF P ∈ P(X ) and the positive
number ε defined by

T n
ε (P) =

{
x ∈ X n

∣∣
∣
∣
∣νx(x)− P(x)

∣
∣ ≤ ε

|X |1{P(x)>0}
}
. (4)

This definition of the letter-typical set resembles this from [47,
Ch. 2], with the only difference being the normalization of ε
by |X |. This gives rise to an upper bound on the probability
of an i.i.d. sequence being atypical that is uniform in the
underlying i.i.d. distribution. Namely, by a simple adaptation
of [47, Lemma 2.12], if Xn is i.i.d. according to P ∈ P(X ),
then

�Pn

(
Xn /∈ T n

ε (P)
)
≤ 2|X |e−2n ε2

|X |2 . (5)

This uniform bound plays an important role in the proof
of Theorem 3, where an upper bound on the CR-assisted
SS-capacity of the AVWTC is established.

Definition 1 (Relative Entropy): Let (X ,F) be a measur-
able space and let P and Q be two probability measures on
F , with P  Q (i.e., P is absolutely continuous with respect
to Q). The relative entropy between P and Q is

D(P‖Q) =
∫

X
d P log

(
d P

d Q

)
, (6)
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Fig. 1. Coding problem with the goal of making P(s)
V|Bn=Bn

resemble
Qn

V |S=s.

where d P
d Q denotes the Radon-Nikodym derivative of P with

respect to Q. If the sample space X is countable, (6) reduces to

D(P‖Q) =
∑

x∈supp(P)

P(x) log

(
P(x)

Q(x)

)
. (7)

Definition 2 (Total Variation): Let (X ,F) be a measurable
space and P and Q be two probability measures on F . The
total variation between P and Q is

‖P − Q‖TV = sup
A∈F

∣
∣P(A) − Q(A)

∣
∣. (8)

If the sample space X is countable, (8) reduces to

‖P − Q‖TV = 1

2

∑

x∈X

∣
∣P(x)− Q(x)

∣
∣. (9)

III. HETEROGENEOUS STRONG SOFT-COVERING LEMMA

We present here a generalization of the original
strong soft-covering lemma first established by the authors
in [48, Lemma 1]. The lemma in this work is a heterogeneous
version on the original homogeneous claim. [50, Lemma 1]
considers a discrete-memoryless channel (DMC) that does
not change throughout the block transmission, while here the
memoryless channel may vary from symbol to symbol. This
variation is modeled as an n-fold state-dependent channel
Qn

V |U,S over which a codeword u ∈ Un is transmitted under a
state sequence s ∈ Sn . Thus, in each time instance i ∈ [1 : n],
the i -th symbol of u is transmitted over the channel QV |U,S=si .

Let Bn be a randomly generated codebook of u-sequence,
one of which is selected uniformly at random and passed
through the channel Qn

V |U,S=s. Lemma 1 gives a sufficient
condition for the induced conditional distribution of the chan-
nel output given the state to result in a good approximation of
Qn

V |S=s in the limit of large n, for any s ∈ Sn (Fig. 1). The
proximity between the induced and the desired distributions is
measured in terms of relative entropy. Specifically, we show
that as long as the codebook is of size |Bn| = 2nR with
R > I (U ; V |S), where the mutual information is calculated
with respect to the empirical PMF νs of the state sequence,
the relative entropy vanishes exponentially quickly with the
blocklength n, with high probability with respect to the random
codebook. Via the Chenoff bound, the negligible probability
of the random set not producing this desired result is doubly-
exponentially small.

The heterogeneous strong soft-covering lemma is subse-
quently invoked for the SS analysis of the AVWTC, where
the double-exponential decay it provides plays a key role.
Similar claims that use total variation were previously made in

the context of AVWTCs in [22], [24], and [25] (in particular,
see [22, Lemma 1]), though the codebook design was slightly
different in those works. The stronger notion of soft-covering
was also previously observed in works on quantum informa-
tion theory [41], [42]. We emphasize Lemma 1 as a stand-
alone tool due to its simplicity, and consequently, the prospect
of it coming in handy for other proofs of secrecy, channel
resolvability, channel synthesis, etc.

A. Soft-Covering Setup and Result

Let S be a finite set and let s ∈ Sn be a sequence with an
empirical PMF νs. Let Bn = {U(w)}w∈Wn , where4 Wn =
[1 : 2nR] with R ∈ �+, be a set of random vectors that
are i.i.d. according to Qn

U |S=s, where QU |S : S → P(U).
We refer to Bn as the random codebook, denote by Bn the
set of all its possible realizations, while a specific realization
is denoted by Bn =

{
u(w)

}
w∈Wn

. For every Bn ∈ Bn , a
sequence u(w) is randomly and uniformly selected and passed
through a memoryless non-stationary channel Qn

V |U,S=s. For
each s ∈ Sn , the induced joint distribution of Bn , W and V is

P(s)
Bn ,W,V(Bn, w, v)

=
⎡

⎣
∏

w′∈Wn

Qn
U |S

(
u(w′)

∣∣s
)
⎤

⎦ 2−nR · Qn
V |U,S

(
v
∣∣u(w), s

)
, (10)

which gives rise to a probability measure denoted by �.5

When switching to other probability measures, we do so in
accordance to the notations defined in Section II. On account
of (10), the induced output distribution conditioned on a
codebook Bn ∈ Bn for each state sequence s ∈ Sn is:

P(s)
V|Bn

(v|Bn) = 2−nR
∑

w∈Wn

Qn
V |U,S

(
v
∣∣u(w), s

)
. (11)

The following lemma states that as long as the codebook is of
size 2nR , with6 R > Iνs Q(U ; V |S), the induced output PMF
constitutes a good approximation of Qn

V |S=s in the limit of
large n, with high probability. Namely, the probability that
the relative entropy between the induced PMF and product
PMF vanishes exponentially quickly with the blocklength n,
is double exponentially close to 1.

Lemma 1 (Heterogeneous Strong Soft-Covering Lemma):
For s ∈ Sn with empirical PMF νs, and any ζ > 0,
QU,V |S : S → P(U × V), and R > Iνs Q(U ; V |S)+ ζ , where
|S|, |V| < ∞, there exist γ1, γ2 > 0, such that for n large
enough

�

(
D
(

P(s)
V|Bn

∣∣
∣
∣∣
∣Qn

V |S=s

)
> e−nγ1

)
≤ e−enγ2

. (12)

4To simplify notation, we assume that 2n R is an integer, for all n ∈ �.
Otherwise, simple modifications of some of the subsequent expressions using
floor operations are needed.

5Since s ∈ Sn stays fixed throughout this section, the notation � omits the
dependence of the state sequence.

6The subscript νs Q indicates that the mutual information is calculated with
respect to νs QU |S QV |U,S
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More precisely, for any n ∈ � and δ ∈ (
0, R− Iνs Q(U ; V |S)

)

�

(
D
(

P(s)
V|Bn

∣
∣
∣
∣
∣
∣Qn

V |S=s

)
> cδn2−nγδ

)
≤ (

1+ |V|n)e− 1
3 2nδ

,

(13)

where

γδ = sup
η>1

η−1

2η−1

(
R−δ−max

s∈S
dη(QU,V |S=s,QU |S=s QV |S=s)

)

(14a)

cδ = 3 log e + γδ2 log 2 + 2 log

⎛

⎜
⎝ max

(s,v)∈S×V :
QV |S(v |s)>0

1

QV |S(v|s)

⎞

⎟
⎠ ,

(14b)

and dη(μ, ν) = 1
η−1 log2

∫
d μ

(
d μ
d ν

)1−η
is the Rényi diver-

gence of order η.
The proof of Lemma 1 bears close resemblance to the proof

of the homogeneous version of the strong soft-covering lemma
from [48, Lemma 1]. The main difference, is in the bound on
the expected value of the probability of atypical sequences.
To avoid verbatim repetition of the arguments from [48], we
summarize (most of) the technical parts from the proof of the
homogeneous case in our Lemma 2 and invoke it to establish
Lemma 1.

The important quantity in the lemma above is γδ , which is
the exponent that soft-covering achieves. We see in (13) that
the double-exponential convergence of probability occurs with
exponent δ > 0. Thus, the best soft-covering exponent that the
lemma achieves with confidence, over all δ > 0, is

γ ∗ = sup
δ>0

γδ

= γ0

= sup
η>1

η−1

2η−1

(
R−max

s∈S
dη(QU,V |S=s,QU |S=s QV |S=s)

)
.

(15)

The double-exponential confidence rate δ acts as a reduction in
codebook rate R in the definition of γδ. Consequently, γδ = 0
for δ ≥ R − Iνs Q(U ; V |S).

Remark 1: The role of ζ in the statement of Lemma 1 is
merely to ensure that a fixed δ ∈ (

0, R − Iνs Q(U ; V |S)
)

can
be found for all n. Since the mutual information is calculated
with respect to νs, its value may vary with n. Taking R >
Iνs Q(U ; V |S)+ζ implies that (0, ζ ) ⊆ (

0, R− Iνs Q(U ; V |S)
)
,

and therefore, a fixed value of δ as needed exists.
Remark 2 (Total Variation Exponent of Decay): The strong

soft-covering lemma can be reproduced while replacing the
relative entropy with total variation. Although, relative entropy
can be used to bound total variation via Pinsker’s inequality,
this approach causes a loss of a factor of 2 in the exponent of
decay. Alternatively, the proof of Lemma 1 can be modified to
produce the bound on the total variation instead of the relative
entropy. This direct method keeps the error exponents the same
for the total variation case as it is for relative entropy.

Proof of Lemma 1: We state the proof in terms of arbitrary
distributions QU |S and QV |U,S (not necessarily discrete).

We assume |S| < ∞, and will specialize to a finite output
alphabet V only when needed.

First, define conditional information density iQU,V |S=s , which
is a function on the space U × V specified by

iQU,V |S=s (u, v) � log

(
d QV |U=u,S=s

d QV |S=s
(v)

)
. (16)

In (16), the argument of the logarithm is the Radon-Nikodym
derivative between QV |U=u,S=s and QV |S=s . Let ε ≥ 0
be arbitrary, and define the conditional jointly typical set
of u- and v-sequences given s as

Aε(s)�
{
(u,v)∈Un×Vn

∣
∣∣
∣
1

n
iQn

U,V |S=s
(u,v)< I (U ; V |S)+ε

}

(17)

and note that

iQn
U,V |S=s

(u, v) =
n∑

t=1

iQU,V |S=st
(ut , vt ). (18)

For brevity, in (17) and henceforth, we use I (U ; V |S) instead
of Iνs Q(U ; V |S).

Next, for every Bn ∈ Bn , we split P(s)
V|Bn=Bn

into two parts,
making use of the indicator function. For every v ∈ Vn , define

P(1)
Bn ,s(v) � 2−nR

∑

w∈Wn

Qn
V |U,S

(
v
∣
∣u(w), s

)
1{(

u(w),v
)
∈Aε (s)

}

(19a)

P(2)
Bn ,s(v) � 2−nR

∑

w∈Wn

Qn
V |U,S

(
v
∣
∣u(w), s

)
1{(

u(w),v
)
/∈Aε (s)

}.

(19b)

The measures P(1)
Bn ,s and P(2)

Bn ,s on the space Vn are not

probability measures, but P(1)
Bn,s + P(2)

Bn ,s = P(s)
V|Bn=Bn

for each
codebook Bn ∈ Bn . For every v ∈ Vn , we define

	Bn,s(v) = d P(s)
V|Bn=Bn

d Qn
V |S=s

(v), (20)

where the right-hand side (RHS) is the Radon-Nikodym deriv-
ative between P(s)

V|Bn=Bn
and Qn

V |S=s, and also split it into

	Bn,s(v) = 	
(1)
Bn,s(v)+	

(2)
Bn,s(v), where

	
(1)
Bn,s(v) �

d P(1)
Bn ,s

d Qn
V |S=s

(v) (21a)

	
(2)
Bn,s(v) �

d P(2)
Bn ,s

d Qn
V |S=s

(v). (21b)

To see that the RHS of (20) indeed exists, on could easily
verify that P(s)

V|Bn=Bn
is absolutely continuous with respect to

Qn
V |S=s. This essentially follows since if Qn

V |S=s(A) = 0,
for some A ⊆ Vn , then Qn

V |U=u,S=s(A) = 0, for every u ∈
supp

(
Qn

U |S=s

)
. The structure of P(s)

V|Bn=Bn
given in (11) then

implies that P(s)
V|Bn=Bn

(A) = 0.
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Note that
∫

d P(2)
Bn ,s is an average of exponentially many i.i.d.

random variables bounded between 0 and 1, given by

∫
d P(2)

Bn,s

=
∑

w∈Wn

2−nR · �Qn
V |U,S=s

((
U(w), V

)
/∈ Aε(s)

∣
∣
∣U(w)

)
. (22)

With respect to (22) and the above definitions, the hetero-
geneous strong soft-covering lemma is established by the
following technical lemma.

Lemma 2: Let |S|, |V| < ∞ and ε ≥ 0. If there exist
α, βε > 0 such that

�Bn�Qn
V |U,S=s

((
U(w), V

)
/∈ Aε(s)

∣
∣
∣U(w)

)
≤ 2−nβε (23a)

�

(
	

(2)
Bn ,s(v) ≤ αn

)
= 1, ∀ v ∈ Vn, (23b)

then

�

(
D
(

P(s)
V|Bn

∣
∣∣
∣
∣∣Qn

V |S=s

)
≥ cβ,ε,αn2−nβε

)

≤ e−
1
3 2n(R−βε ) + |V|ne−

1
3 2n(R−I (U;V |S)−ε−2βε)

, (24)

where cβ,ε,α = 3 log e + 2βε log 2+ 2 log α.
Lemma 2 essentially follows from the proof of
[50, Lemma 1]. More specifically, the derivation repeats
the steps between Equations (18) and (40) in the proof of
[48, Lemma 1] and is, therefore, omitted. Having this, it
remains to be shown that (23) holds for certain positive βε

and α. For (23a), observe that

�Bn�Qn
V |U,S=s

((
U(w), V

)
/∈ Aε(s)

∣
∣
∣U(w)

)

= �Qn
U,V |S=s

((
U, V

)
/∈ Aε(s)

)

= �Qn
U,V |S=s

(
n∑

t=1

iQU,V |S=st
(Ut , Vt ) ≥ n

(
I (U ; V |S)+ ε

)
)

(a)= �Qn
U,V |S=s

(
2λ

∑n
t=1 iQU,V |S=st

(Ut ,Vt ) ≥ 2nλ(I (U ;V |S)+ε)
)

(b)≤
�Qn

U,V |S=s
2λ

∑n
t=1 iQU,V |S=st

(Ut ,Vt )

2nλ(I (U ;V |S)+ε)
, (25)

where (a) is true for any λ ≥ 0 and (b) is Markov’s inequality.
For the numerator on the RHS of (25), we have

�Qn
U,V |S=s

2λ
∑n

t=1 iQU,V |S=st
(Ut ,Vt )

(a)=
n∏

t=1

�QU,V |S=st
2λiQU,V |S=st

(Ut ,Vt )

≤
(

max
t∈[1:n]�QU,V |S=st

2λiQU,V |S=st
(Ut ,Vt )

)n

(b)≤
(

max
s∈S

�QU,V |S=s 2λiQU,V |S=s (Us ,Vs)
)n

, (26)

where (a) uses the independence across time, while (b) follows
because |S| < ∞ and by defining (Us , Vs) ∼ QU,V |S=s .

Plugging (26) back into (25), gives

�Bn�Qn
V |U,S=s

((
U(w), V

)
/∈ Aε(s)

∣
∣
∣U(w)

)

≤
(

maxs∈S �QU,V |S=s 2
λiQU,V |S=s (Us ,Vs)

2λ(I (U ;V |S)+ε)

)n

=

⎛

⎜
⎜
⎝

2
log2

(
max
s∈S �QU,V |S=s 2

λiQU,V |S=s
(Us ,Vs )

)

2λ(I (U ;V |S)+ε)

⎞

⎟
⎟
⎠

n

(a)=

⎛

⎜
⎜
⎝

2
λ max

s∈S
1
λ log2

(
�QU,V |S=s 2

λiQU,V |S=s
(Us ,Vs )

)

2λ(I (U ;V |S)+ε)

⎞

⎟
⎟
⎠

n

= 2
nλ

(
max
s∈S

1
λ log2 �QU,V |S=s

[
2
λiQU,V |S=s

(Us ,Vs )]−I (U ;V |S)−ε

)

(b)= 2
nλ
(

max
s∈S dλ+1(QU,V |S=s,QU |S=s QV |S=s)−I (U ;V |S)−ε

)

, (27)

where (a) is because the logarithm is non-decreasing and by
restricting λ to be strictly positive, while (b) is from the
definition of the Rényi divergence of order λ+1. Substituting
η = λ+ 1 into (27) yields

�Bn�Qn
V |U,S=s

((
U(w), V

)
/∈ Aε(s)

∣
∣
∣U(w)

)
≤ 2−nβη,ε , (28)

where

βη,ε = (η − 1)

(
I (U ; V |S)+ ε

− max
s∈S

dη(QU,V |S=s, QU |S=s QV |S=s)

)
, (29)

for every η > 1 and ε ≥ 0. Thus (23a) holds with βη,ε in the
role of βε .

The relation in (23b) follows by noting that |S|, |V| < ∞
implies that for any v ∈ Vn and Bn ∈ Bn , we have

	
(2)
Bn,s(v) ≤

⎛

⎜
⎝ max

(s,v)∈S×V :
QV |S(v |s)>0

1

QV |S(v|s)

⎞

⎟
⎠

n

. (30)

Notice that the maximum is only over the pair (s, v) for
which QV |S(v|s) > 0, which makes this bound finite. The
underlying reason for this restriction is that with probability
one a conditional distribution is absolutely continuous with
respect to its associated marginal distribution. By (30), we
obtain

�

(
	

(2)
Bn,s(v) ≤ αn

)
= 1, ∀ v ∈ Vn, (31)

with

α = max
(s,v)∈S×V :
QV |S(v |s)>0

1

QV |S(v|s) . (32)

Thus, by Lemma 2 we have (24) with βη,ε and α from (29)
and (32), respectively. Recalling that we may optimize over
η > 1 and ε ≥ 0, we fix δ ∈ (

0, R − I (U ; V |S)
)

and set

εη,δ =
1
2 (R−δ)+(η−1) max

s∈S
dη(QU,V |S=s, QU |S=s QV |S=s)

1
2 + (η − 1)

− I (U ; V |S). (33)
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Substituting into βη,ε gives

βη,δ � βη,εη,δ

= η−1

2η−1

(
R−δ−max

s∈S
dη(QU,V |S=s, QU |S=s QV |S=s)

)
.

(34)

Plugging α and βη,δ into cβ,ε,α, which we relabel as cη,δ, we
have

cη,δ=3 log e + 2βη,δ log 2+ 2 log

⎛

⎜
⎝ max

(s,v)∈S×V :
QV |S(v |s)>0

1

QV |S(v|s)

⎞

⎟
⎠.

(35)

Observe that εη,δ in (33) is non-negative under the assumption
that R − δ > I (U ; V |S), because η > 1 and

max
s∈S

dη(QU,V |S=s, QU |S=s QV |S=s)

≥ max
s∈S

d1(QU,V |S=s, QU |S=s QV |S=s)

≥ I (U ; V |S). (36)

Reevaluating (24) based on (33)-(35) gives

�

(
D
(

P(s)
V|Bn

∣
∣
∣
∣
∣
∣Qn

V |S=s

)
≥ cη,δn2−nβη,δ

)

≤ e−
1
3 2n(R−βη,ε ) + |V|ne−

1
3 2n(R−I (U;V |S)−εη,δ−2βη,δ)

= e−
1
3 2n(R−βη,δ) + |V|n · e− 1

3 2nδ

(a)≤ (
1+ |V|n) e−

1
3 2nδ

, (37)

where (a) is because βη,δ ≤ 1
2 (R − δ). Denoting cδ �

supη>1 cη,δ , (37) further gives

�

(
D
(

P(s)
V|Bn

∣
∣∣
∣
∣∣Qn

V |S=s

)
≥ cδn2−nβη,δ

)
≤ (

1+ |V|n) e−
1
3 2nδ

.

(38)

Since (38) is true for all η > 1, it must also be true, with strict
inequality in the LHS, when replacing βη,δ with

γδ � sup
η>1

βη,δ

= sup
η>1

η−1

2η−1

(
R−δ−max

s∈S
dη(QU,V |S=s,QU |S=s QV |S=s)

)

which is the exponential rate of convergence stated in (14a)
that we derive for the heterogeneous strong soft-covering
lemma. This establishes the statement from (13) and proves
Lemma 1.

Concluding, if R > I (U ; V |S)+ζ , for any ζ > 0 arbitrarily
small, then for any δ ∈ (

0, R− I (U ; V |S)
)
, we get exponential

convergence of the relative entropy at rate O(2−nγδ ) with
double-exponential certainty. Discarding the precise exponents
of convergence and coefficients, we state that there exist
γ1, γ2 > 0, such that for n large enough

�

(
D
(

P(s)
V|Bn

∣
∣
∣
∣
∣
∣Qn

V |S=s

)
> e−nγ1

)
≤ e−enγ2

. (39)

Fig. 2. The AVWTC with Q-constrained states, i.e., when the allowed state
sequences have empirical PMFs that belong to Q.

IV. ARBITRARILY VARYING WIRETAP CHANNELS WITH

TYPE CONSTRAINED STATES

A. Problem Setup and Definitions

Let X , Y , Z and S be finite sets. A discrete-
memoryless (DM) arbitrarily varying wiretap channel
(AVWTC), as illustrated in Fig. 2, is defined by a pair (W,V)
of families of channels W = {

Ws : X → P(Y)
∣
∣s ∈ S

}

and V = {
Vs : X → P(Z)

∣
∣s ∈ S

}
, from X to Y and Z ,

respectively. Thus, s ∈ S denotes the state of the channels
and can be interpreted as an index identifying a particular
pair (W, V ) ∈W×V.

The n-th extension of the channel laws for input x ∈ X n

and outputs y ∈ Yn and z ∈ Zn , under the state sequence
s ∈ Sn are

W n
s (y|x) �

n∏

i=1

Wsi (yi |xi ) (40a)

V n
s (z|x) �

n∏

i=1

Vsi (zi |xi ). (40b)

The families of channels W n
s : X n → P(Yn) and V n

s :
X n → P(Zn), for s ∈ Sn , are denoted by Wn and Vn ,
respectively, and (Wn,Vn) is referred to as the (n-fold)
AVWTC. The random variables representing the outputs of the
AVWTC (Wn,Vn) observed by the legitimate user and by the
eavesdropper under the state sequence s ∈ Sn are denoted by
Y n

s and Zn
s , respectively.

For any Q ⊆ P(S) define

Sn
Q �

{
s ∈ Sn

∣
∣∣νs ∈ Q

}
. (41)

We impose a constraint Q on the allowed state sequences, i.e.,
only s ∈ Sn

Q are permitted. The triple (Wn,Vn,Q) is referred
to as the (n-fold) Q-constrained AVWTC. We subsequently
focus on the type constrained AVWTC formally defined in
Definitions 9 and 10. Intuitively, one may think of the type
constrained scenario as corresponding to Q being a singleton,
i.e., Q = {

QS
}
, for some QS ∈ P(S). However, such a

setting would not be well-defined if QS is not a rational
distribution. Even if QS is rational, it is not a valid type for
all n ∈ �, thus restricting the feasible blocklengths for the
AVWTC. To circumvent these pathologies, in Definitions 9
and 10 we restrict the state sequences to have types that are
close to QS , but not necessarily QS itself.
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Remark 3: One easily verifies that defining an AVWTC in
terms of the pair (Wn,Vn) is without loss of generality. In
general, any state-input pair (s, x) ∈ S × X induces a joint
conditional output PMF Us(·, ·|x) ∈ P(Y ×Z). However, the
performance of any of the codes defined below is measured
with respect to the marginal output PMFs Ws(·|x) ∈ P(Y) and
Vs(·|x) ∈ P(Z). Thus, under the framework presented here,
all AVWTCs with the same marginals W and V are equivalent.

Definition 3 (Uncorrelated Code): An uncorrelated
(n, Mn)-code cn for the AVWTC (Wn,Vn) has a message set
Mn = [1 : Mn], a stochastic encoder fn : Mn → P(X n)
and decoder φn : Yn → M̂n, where M̂n � Mn ∪ {e} and
e /∈Mn is an error symbol.

For any uncorrelated (n, Mn )-code cn and state sequence
s ∈ Sn , the induced joint PMF on Mn×X n×Yn×Zn×M̂ is

P(cn,s)
M,X,Ys,Zs,M̂

(m, x, y, z, m̂)

� PM (m) fn(x|m)W n
s (y|x)V n

s (z|x)1{
m̂=φn (y)

}, (42)

where PM ∈ P(Mn). The performance of cn on the type
constrained AVWTC (Wn,Vn, QS) is evaluated in terms of
its rate 1

n log Mn , the maximal decoding error probability and
the SS-metric. Reliability and security must be ensured with
respect to every allowed constrained state sequence.

Definition 4 (Message Error Probability): Let cn be an
uncorrelated (n, Mn )-code for the AVWTC (Wn,Vn). For any
m ∈Mn and s ∈ Sn, let em(W n

s , cn) be the error probability
in decoding m under the state sequence s, given by

em(W n
s , cn) =

∑

x∈X n

fn(x|m)
∑

y∈Yn:
φn (y) �=m

W n
s (y|x). (43)

Definition 5 (SS Metric): Let cn be an uncorrelated
(n, Mn)-code for the AVWTC (Wn,Vn). The information
leakage to the eavesdropper under the state sequence s ∈ Sn

and the message PMF PM ∈ P(Mn) is

�(V n
s , PM , cn) = Icn (M;Zs), (44)

where the subscript cn denotes that the mutual information
term is calculated with respect to the induced joint distribution
P(cn ,s)

M,Zs
from (42). For any Q ⊆ P(S), the SS metric with

respect to cn and the Q-constrained AVWTC (Wn,Vn,Q) is7

�Sem(Vn,Q, cn) = max
s∈Sn

Q,

PM∈P(Mn)

�(V n
s , PM , cn). (45)

Remark 4: We use the convention that the maximum over
an empty set is −∞. Accordingly if Q contains no rational
distributions then �Sem(Vn,Q, cn) = −∞, for all n ∈ �.
Even when there exists QS ∈ Pn(S) such that QS ∈ Q, there
are blocklengths n for which νs �= QS for every s ∈ Sn, and
consequently, �Sem(Vn,Q, cn) = −∞ for these values of n as
well.

Remark 5: SS requires that the uncorrelated code cn works
well for all message PMFs. This means that the mutual

7�Sem(Vn ,Q, cn) is actually the mutual-information-security (MIS) metric,
which is equivalent to SS by [37]. We use the representation in (45) rather
than the formal definition of SS (see, e.g., [37, eq. (4)]) out of analytical
convenience.

information term in (45) is maximized over PM when cn is
known. In other words, although not stated explicitly, the
optimal PM is a function of cn.

We proceed with defining correlated random (CR)
codes, their associated maximal error probability
and SS-metric, CR-assisted achievability and
CR-assisted secrecy-capacity.

Definition 6 (CR Code, Error Probability and SS Metric):
A CR (n, Mn , Kn)-code Cn for the AVWTC (Wn,Vn) is given
by a family of uncorrelated (n, Mn)-codes Cn =

{
cn(γ )

}
γ∈�n

,
where �n = [1 : Kn], and a PMF μn ∈ P(�n). For any
m ∈ Mn and s ∈ Sn, the associated error probability with
respect to Cn is

Em(W n
s , Cn) =

∑

γ∈�n

μn(γ )em
(
W n

s , cn(γ )
)

(46)

The maximal error probability and SS-metric of Cn for the
Q-constrained AVWTC (Wn,Vn,Q) are defined as

E(Wn,Q, Cn) = max
s∈Sn

Q,

m∈Mn

Em(W n
s , Cn) (47a)

LSem(Vn,Q, Cn) = max
γ∈�n

�Sem
(
Vn,Q, cn(γ )

)

= max
γ∈�n,
s∈Sn

Q,

PM∈P(Mn)

�
(
V n

s , PM , cn(γ )
)
. (47b)

Remark 6: The choice of encoder-decoder in a CR code is
based on a realization of a random experiment that is available
to the transmitted and the legitimate receiver. However, this
CR the legitimate users share should not be viewed as a
cryptographic key to be exploited for secrecy. This is accounted
for in (47b) by requiring that every uncorrelated code in
the family Cn is semantically-secure. The choice of the state
sequence, on the other hand, may depend on the family Cn

and the PMF μn, but not on the realization itself.
Definition 7 (CR-Assisted Achievability): A number R ∈

�+ is called an achievable CR-assisted SS-rate for the Q-
constrained AVWTC (Wn,Vn,Q), if for every ε > 0 and
sufficiently large n, there exists a CR (n, Mn , Kn)-code Cn

with
1

n
log Mn > R − ε (48a)

E(Wn,Q, Cn) ≤ ε (48b)

LSem(Vn,Q, Cn) ≤ ε. (48c)

Remark 7: Note that if there are no types in Q then any rate
is achievable. Consequently, if Q1 ⊆ Q2 ⊆ P(S), then any
R that is achievable for the Q2-constrained AVWTC is also
achievable for the Q1-constrained AVWTC. The achievable
rates are therefore an increasing set as the constraint set
decreases. When specializing to the type constrained AVWTC,
we allow state sequences with types that are δ-close to the
constraining distribution (see Definition 10). Consequently, the
set of feasible state sequences is never empty, for large enough
values of n. Nonetheless, the aforementioned monotonicity of
the type constrained CR-assisted capacity still holds.
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Remark 8: Our achievability proof shows that
LSem(Vn,Q, Cn) vanishes exponentially fast. This is a
standard requirement in cryptography, commonly referred to
as strong-SS (see, e.g., [37, Sec. 3.2]).

Definition 8 (CR-Assisted Capacity): The CR-assisted
SS-capacity CR(W,V,Q) of the Q-constrained AVWTC is
the supremum of the set of achievable CR-assisted SS-rates.

Our main goal is solving the type constrained AVWTC
(Wn,Vn, QS), for QS ∈ Pn(S). However, since a fixed
rational distribution QS is not a valid type for all blocklengths,
the definitions of the type constrained performance metrics
and its achievability use a relaxation parameter. For any QS ∈
P(S) and δ > 0, let Qδ(QS) �

{
νs ∈ Pn(S)

∣
∣
∣s ∈ T n

δ (QS)
}

.
The definitions of the error probability and the SS-metric for
the type constrained AVWTC repeat those from Definition 6
with Qδ(QS) instead of Q.

Definition 9 (Type Constrained Error Probability & SS):
For any QS ∈ P(S) and δ > 0, the maximal error
probability and SS-metric of a CR (n, Mn , Kn)-code Cn for
the type constrained AVWTC (Wn,Vn, QS) with relaxation
δ are E

(
Wn,Qδ(QS), Cn

)
and LSem

(
Vn,Qδ(QS), Cn

)
,

respectively (see (47)).
Definition 10 (Type Constrained Achievability & Capacity):

A number R ∈ �+ is called an achievable CR-assisted SS-rate
for the type constrained AVWTC (Wn,Vn, QS), if there exists
a δ > 0 such that for every ε > 0 and sufficiently large n,
there exists a CR (n, Mn , Kn)-code Cn with

1

n
log Mn > R − ε (49a)

E
(
Wn,Qδ(QS), Cn

) ≤ ε (49b)

LSem
(
Vn,Qδ(QS), Cn

) ≤ ε. (49c)

The CR-assisted SS-capacity CR(W,V, QS) of the type con-
strained AVWTC (Wn,Vn, QS) is the supremum of the set of
achievable CR-assisted SS-rates.

Remark 9: The definition of type constrained achievability
allows the empirical PMFs of the state sequences to be within
a δ > 0 gap from QS. By doing so, the type constrained
AVWTC is well-defined for all sufficiently large blocklengths
n ∈ �, even when QS is not actually a type but a PMF on S.

Remark 10: If R is an achievable CR-assisted SS-rate for
the type constrained AVWTC (Wn,Vn, QS) and δ > 0
is its corresponding parameter, then (49b)-(49c) also hold
for any δ′ ∈ (0, δ). This implies that CR(W,V, QS) =
sup
δ>0

CR
(
W,V,Qδ(QS)

)
.

B. Single-Letter CR-Capacity Results

Our main result is a single-letter characterization of the
CR-assisted SS-capacity CR(W,V, QS) of the type con-
strained AVWTC (Wn,Vn, QS), for any QS ∈ P(S).
A multi-letter characterization of the CR-assisted strong
secrecy-capacity of the AVWTC without constraints on the
state sequences was found in [24]. The uncorrelated secrecy-
capacity was then derived in [22] by relating it to the
CR-assisted secrecy-capacity via the corresponding coding
result for the classic AVC [15]. To the best of our knowledge,

the only single-letter characterization of a secrecy-capacity
of an AVWTC outside the current work [21, Th. 4] is
under the following assumptions: (i) security under the weak
secrecy metric (as shown in [24, Corollary 1] an upgrade to
strong secrecy under the same conditions (ii)-(iv) is possible);
(ii) the state space decomposes as S = Sy×Sz , where sy ∈ Sy

and sz ∈ Sz are the states of the main AVC and of the AVC to
the eavesdropper, respectively; (iii) the eavesdroppers output
is a degraded version of the output of the main AVC under
any pair of state, i.e., X−Ysy− Zsz forms a Markov chain, for
all (sy, sz) ∈ Sy × Sz ; (iv) there exists a best channel to the
eavesdropper, i.e., the exists s�

z ∈ Sz such that X − Zs�
z
− Zsz

forms a Markov chain, for all sz ∈ Sz .8

Our single-letter CR-capacity characterization is derived
without assuming any of the above, while upgrading the
secrecy metric to SS. Constrained state sequences were con-
sidered in the context of the classic point-to-point (PTP) AVC
and the corresponding CR-assisted and uncorrelated capacities
were derived in [15] and [14], respectively. An AVWTC with
linear peak constraints on the input and the state sequences
was studied in [35], where a multi-letter description of its
CR-assisted strong secrecy-capacity was found.

Theorem 1 (AVWTC CR-Assisted SS-Capacity): For any
QS ∈ P(S), the CR-assisted SS-capacity of the type
constrained AVWTC (Wn,Vn, QS) is

CR(W,V, QS) = max
QU,X

[
I (U ; Y )− I (U ; Z |S)

]
, (50)

where the mutual information terms are calculated with
respect to a joint PMF QU,X QS QY |X,S QZ |X,S with
QY |X,S(y|x, s) = Ws(y|x) and QZ |X,S(z|x, s) = Vs(z|x), for
all (s, x, y, z) ∈ S × X × Y ×Z , and |U | ≤ |X |.

Theorem 1 is a consequence of two other stronger results
that state a lower and upper bound on the CR-assisted SS-
capacity of a general Q-constrained AVWTC. These bounds
match when specialized to the type constrained scenario. The
lower and upper bounds are given in Theorem 2 and 3,
respectively. Theorem 1 is proven in Section IV-E.

Remark 11 (SS-Capacity Interpretation): The charac-
terization of the CR-assisted SS-capacity CR(W,V, QS)
in (50) has the common structure of two subtracted mutual
information terms. The first term, which corresponds to the
capacity of the main channel, suggests that the legitimate users
effectively see the averaged DMC WQ : X → P(Y) defined
by WQ(y|x) �

∑
s∈S QS(s)Ws (y|x). In general, the capacity

of the averaged channel is no larger than the capacities of
the main channels Ws associated with each s ∈ S. Namely,
denoting the capacity of a PTP channel W : X → P(Y) by
C(W ), it holds that C(WQ ) ≤ mins∈S C(Ws). This is due
to the convexity of the mutual information in the conditional
PMF (for a fixed marginal) and Jensen’s inequality.

The second (subtracted) mutual information term is the
loss in capacity induced by the secrecy requirement. The

8An even stronger version of assumptions (iii) and (iv) was used in [21].
Specifically, the degraded property and the existence of a best channel to the
eavesdropper were assumed to hold not only for every pair of original states,
but also for any pair of averaged states (defined as convex combinations of
the original ones).
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independence of U and S allows one to rewrite the conditional
mutual information as I (U ; S, Z), which implies that security
must be ensured versus an eavesdropper with perfect CSI.

Remark 12 (Relation to the IID State Scenario): The for-
mula in (50) can be viewed as the secrecy-capacity of the WTC
with state variables that are i.i.d. according to QS, when no
CSI is available to the legitimate users while the eavesdropper
has full CSI. For simplicity, we outline a proof of this claim
under the strong secrecy metric; an upgrade to SS is possible
by means of the Lemma 1 herein. The direct part follows by
constructing a classic WTC code using i.i.d. samples of a
random variable U ∼ QU that is independent of S ∼ QS.
Setting the total number of codewords just below 2nI (U ;Y )

ensures reliable decoding, while strong secrecy follows by
standard soft-covering arguments as long as each subcode-
book has a rate that is at least I (U ; Z , S) (see, [45, Corollay
VII.5]). The converse essentially follows by repeating the steps
between Equations (134)-(138) from Section VI, while omitting
the conditioning on the random variable Cn in (134).

Remark 13 (Cardinality Bound): The cardinality bound on
U in Theorem 1 is established using a standard application
of the Eggleston-Fenchel-Carathéodory Theorem [49, Th. 18].
The details are omitted.

We have the following lower bound on the CR-assisted
SS-capacity of a Q-constrained AVWTC.

Theorem 2 (Achievability with Q-Constrained States): For
any convex and closed Q ⊆ P(S), the CR-assisted SS-capacity
of the Q-constrained AVWTC (Wn,Vn,Q) is lower bounded
as

CR(W,V,Q) ≥ max
QU,X

[

min
Q(1)

S ∈Q
I (U ; Y )− max

Q(2)
S ∈Q

I (U ; Z |S)

]

,

(51)

where the mutual information terms are calculated with
respect to joint PMFs QU,X Q( j )

S QY |X,S QZ |X,S, for j =
1, 2, with QY |X,S(y|x, s) = Ws(y|x) and QZ |X,S(z|x, s) =
Vs(z|x), for all (s, x, y, z) ∈ S ×X ×Y ×Z , and |U | ≤ |X |.

The proof of Theorem 2 is given in Section V. It relies
on the approach from [15] for the error probability analysis
of a CR-code over a family of codes that grows doubly-
exponentially with the blocklength. Since this family of codes
is too large to establish SS in the sense of (47b), we use the
Chernoff bound to show that a sub-family with no more than
polynomially many codes is sufficient for reliability. Having
that, the double-exponential decay that Lemma 1 provides
is leveraged to establish SS over the reduced CR-code. The
fact that reliability and security must hold with respect to
the worst case choice in Q is expressed in the minimization
of I (U ; Y ) over all Q(1)

S PMFs and the maximization of
I (U ; Z |S) over Q(2)

S .
Although no converse proof accompanies Theorem 2, the

lower bound it states is stronger than existing single-letter
achievability results in the literature as it assumes no ‘best
channel to the eavesdropper’, doesn’t impose any specific
structure on the state space, and ensures SS.

Remark 14 (AVWTC Main Challenges): The difficulty in
obtaining single-letter results for the AVWTC is twofold. First,

the AVWTC must (in particular) satisfy all the performance
requirements of the compound WTC (where the channel
remains constant throughout the block transmission). The sec-
ond difficulty is in ensuring security under exponentially many
possible state sequences. Setting sights on single-letter results,
the common workaround for the latter problem is to assume
the existence of ‘a best channel to the eavesdropper’. Formally,
it means that there exists a PMF Q� ∈ P(S), such that
the averaged channel

∑
s∈S Q�(s)Vs(y|x) is better than all

other averaged channels in the sense that the corresponding
outputs form a Markov chain with the channel input X. Secrecy
is then guaranteed with respect to this ‘best channel’ only.
As Theorem 2 is derived without any assumptions on the
AVWTC, it highlights the strength of Lemma 1 in proving that
exponentially many secrecy constraints (strongly related to the
soft-covering phenomenon) are simultaneously satisfied, while
only single-letter rate bounds are needed.

Remark 15 (Relation to Compound WTCs): Theorem 2
establishes that the AVWTC is no worse than the best known
single-letter secrecy rates for the compound WTC. Take the
Q-constrained AVWTC from Theorem 2 with some convex and
closed Q ⊆ P(S). Consider a compound WTC derived from
this AVWTC. The state of the compound WTC is any point
QS ∈ Q. The compound WTC itself follows the probability
law of the AVWTC, with the arbitrarily varying state Sn

replaced by an i.i.d. state according to QS and the Sn

sequence included in the channel output to the eavesdropper.
For this compound WTC, the RHS of (51) coincides with the
sharpest single-letter lower bound on the secrecy-capacity
of the compound WTC in the literature (see [28, Th. 1] and
[32, Th. 3.6]).

A general upper bound on the CR-assisted SS-capacity of
a Q-constrained AVWTC is given next. To state the result,
for any countable alphabet X we define P�(X ) as the set of
rational PMFs on X . Namely,

P�(X ) �
{

P ∈ P(X )
∣
∣
∣P(x) ∈ �, ∀x ∈ X

}
. (52)

Theorem 3 (Upper Bound with Q-constrained States):
For any Q ⊆ P(S), the CR-assisted SS-capacity of the
Q-constrained AVWTC (Wn,Vn,Q) is upper bounded as

CR(W,V,Q)

≤ max
QV ,U,X

inf
Q S∈Q∩P�(S)

[
I (U ; Y |V )− I (U ; S, Z |V )

]
, (53)

where the mutual information terms are calculated with
respect to a joint PMF QV ,U,X QS QY |X,S QZ |X,S with
QY |X,S(y|x, s) = Ws(y|x) and QZ |X,S(z|x, s) = Vs(z|x), for
all (s, x, y, z) ∈ S×X×Y×Z . Furthermore, one may restrict
|U | ≤ |X | and |V| ≤ |X |2 − 1.

The proof of Theorem 3 is given in Section VI. The max-
inf structure of the RHS of (53) calls for a derivation that is
uniform in QS ∈ Q. The infimum is taken over Q ∩ P�(S)
(rather than over Q) because the proof effectively considers
only the rational distributions in Q while leveraging the
monotonicity of the CR-assisted SS-capacity with respect to Q
(see Remark 7). The proof relies on a novel argument based on
distribution coupling. We show that for each QS ∈ Q∩P�(S),
reliability and SS under a type constraint QS imply similar
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performance for the same channel but where the state sequence
is i.i.d. according to QS . The main difficulty is in showing that
even when transmitting over a DMC obtained by averaging the
Ws ∈ W with respect to QS , the normalized equivocation of
the message given the output sequence at the legitimate user
is still small.

Usually, Fano’s inequality is sufficient for 1
n H (M|Y n) to

become arbitrarily small with n. This, however, is not the case
here. The reliability criterion from (48b) and Fano’s inequality
imply that maxs∈Sn

Q
1
n H (M|Y n

s ) is small, but Theorem 3 needs

this to hold for 1
n H (M|Y n). In general, the former must

not imply the latter because for any s ∈ Sn
Q, the channel

Ws ∈W is at least as good as WQ , meaning that the averaged
channel induces a possibly larger equivocation. We establish
the desired convergence of the equivocation at the legitimate
receiver by a continuity property which we derive via the
coupling idea.

Remark 16 (Relation to the Converse of Theorem 1): The
converse for Theorem 1 is derived based on Theorem 3.
Since the latter is valid for any Q ⊂ P(S), combining it with
basic continuity arguments implies the optimality of the RHS
of (50). However, Theorem 3 encapsulates an even stronger
claim: the RHS of (50) is the best achievable CR-assisted
SS-rate even if the state sequence is constrained to a single
type (that potentially might allow higher rates), rather than
a vanishing typical set.

Although clearly sufficient, the strong claim of Theorem 3
is not necessary for the converse of Theorem 1. In fact,
one can circumvent the main difficulty in proving Theorem 3
(as described above), by establishing the optimality of the
RHS of (50) based on arguments similar to those used
for the converse of the classic AVC with constrained states
[14, Lemma 3.2]. Specifically, the probability of a decoding
error under a random state sequence that is i.i.d. according
to QS can be shown to be small simply by splitting the
analysis to typical and atypical state sequences. The definition
of the type constrained CR-assisted achievability (Definition
10), that accounts for a typical set around QS, takes care of the
typical part, while the atypical part is bounded above by the
exponentially decaying probability of the atypical set. Having
that, a standard application of Fano’s inequality implies that
1
n H (M|Y n) converges to 0 with the blocklength, as required.

This simple argument, however, does not apply when there is
an actual type constraint (rather than a typical set constraint)
on the state sequences. This is because for any QS ∈ Pn(S),
the probability of an i.i.d. QS sequence of states not being
in T n

Q S
approaches 1 when n grows. As a consequence, the

corresponding decoding error probability might not be small.
The proof of Theorem 3 does not directly deals with the error
probability. Instead, the aforementioned distribution coupling
arguments and continuity of entropy are used to show that
the normalized equivocation converges for state sequences in
the entire typical set, as long as it converges for at least one
specific type in that typical set. Although the proof Theorem 3
is cumbersome and requires several non-trivial steps, we take
this route (rather than a converse tailored for Theorem 1) due
to the stronger and insightful claim it produces.

Remark 17 (Time-Sharing Random Variable V ): The con-
ditioning on V in the RHS of (53) effectively allows the legit-
imate user to choose a random mixture of QU,X distributions.
The advantage in doing so is that there might not exist a single
state distribution that is bad for the whole mixture. This is
reminiscent of a two-player zero-sum game, where the player
who fixes the strategy first often benefits from a mixed strategy.
When specializing to the type constrained scenario, however,
the time-sharing random variable is removed. This is since
when only one state distribution is allowed, the aforementioned
distribution mixing outcomes with no gain.

Remark 18 (Relation to Compound WTCs): The best pre-
viously known single-letter upper bound on the secrecy-
capacity of the compound WTC is due to Liang et al.
[28, Th. 2]. That upper bound has a min-max structure, and
it is derived by claiming that the secrecy-capacity of the
compound WTC is bounded above by that of the worst WTC in
the set. This type of bounds are commonly related to knowledge
of the channel’s state at the transmitter (cf. e.g., [50]). Indeed,
as shown in [32], the upper bound from [28] is tight for the
compound WTC with encoder CSI.

Specializing the max-inf upper bound from Theorem 3 to
the compound WTC described in Remark 15 (i.e., over an
appropriate constraint set), results in a strengthening of the
claim from [28, Th. 2]. The obtained bound first minimizes the
difference of mutual information terms from the RHS of (53)
over the constraint set, and then maximizes the outcome over
the input distribution. It is easily observed the difference
between the two bounds can be strict. In fact, for the special
case of a PTP compound channel (i.e., without an eaves-
dropper) our bound is the actual capacity, while the bound
from [28] is loose. A simple example is a channel that consists
of two orthogonal binary channels: one is noise free while the
other one is purely noise (i.e., binary symmetric channel with
crossover probability 1

2 ). The state determines which channel
is noisy, and the transmitter selects a binary input, which is
unknown to the receiver, specifying which channel to use (both
channels give an output each time, with one being pure noise).
For this instance, the compound capacity is 1

2 [bit/use], but
the looser min-max bound gives 1 [bit/use].

Theorem 3 essentially says that the Q-constrained AVWTC
is no better than the compound WTC under the corresponding
constraints. Although this point seems intuitively obvious,
it actually requires some careful attention. At first glance,
the compound channel (on a constraint set) seems like an
AVWTC with a stricter restriction on the eavesdropper, that
now must choose an i.i.d. state sequence from the constraint
set (rather than an arbitrary one). However, this perspective is
misleading since the i.i.d. state sequence might not fall within
the type constraint, especially when dealing with a single type.

Remark 19 (Cardinality Bound): The cardinality bound on
U and V in Theorem 3 follow by applying the Eggleston-
Fenchel-Carathéodory Theorem [49, Th. 18] twice. The details
are omitted.

A simple consequence of Theorem 3 is the following.
Corollary 1 (Upper Bound When Q is Open): If Q ⊆

P(S) is an open set, then the CR-assisted SS-capacity of
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the Q-constrained AVWTC (Wn,Vn,Q) is upper bounded as

CR(W,V,Q) ≤ max
QV ,U,X

inf
Q S∈Q

[
I (U ; Y |V )− I (U ; Z |S, V )

]
,

(54)

where joint PMF is as described in Theorem 3.
When Q is an open set, the domain of the infimum requires

no intersection with P�(S). This essentially follows because
the rational numbers are dense in the reals and the mutual
information is continuous in the underlying distribution. The
full details are omitted.

C. An Example

We give a simple numerical example that visualizes the
SS-capacity result of Theorem 1. Let X = Y = {0, 1} and
Z = {0, 1, ?}, where ? is an erased symbol. Further assume
that the state space S decomposes as S = S1 × S2, where
S j = {0, 1}, for j = 1, 2. Let (W,V) be an AVWTC, where
the elements of W and V are indexed by s1 ∈ S1 and s2 ∈ S2,
respectively. Define the main channel Ws1 : X → P(Y),
for s1 ∈ S1, as Ws1(y|x) = 1{y=x⊕s1}, where ⊕ denotes the
modulo 2 addition. For the eavesdropper, let V0 : X → P(Z)
be a noiseless channel, while V1 : X → P(Z) outputs the
symbol ? with probability 1. Namely,

Vs2(z|x) =
{
1{z=x}, s2 = 0

1{z=?}, s2 = 1.
(55)

Finally, we introduce a type constraint QS1,S2 = QS1 QS2 on
the state sequences, where QS1(1) = ε and QS2(1) = α,
for some ε ∈ [

0, 1
2

]
and α ∈ [0, 1]. Denote the CR-assisted

SS-capacity of this AVWTC by CR(ε, α).
By Theorem 1, The CR-assisted SS-capacity is

CR(ε, α) = max
QU,X

[
I (U ; Y )− I (U ; Z |S2)

]
, (56)

where the mutual information terms are cal-
culated with respect to the joint distribution
QS1(s1)QS2(s2)QU,X (u, x)Ws1(y|x)Vs2(z|x).

Note that for any QU,X ∈ P(U × X ), we have

I (U ; Z |S2)

= QS2(0)I (U ; Z |S2 = 0)+ QS2(1)I (U ; Z |S2 = 1)
(a)= (1− α)I (U ; X), (57)

where (a) is because Z =? whenever S2 = 1 (thus nullifying
the second mutual information term), while given on S2 = 0,
we have Z = X and the conditioning is removed due to the
independence of S2 and (U, X). Consequently, (56) reduces to

CR(ε, α) = max
QU,X

[
I (U ; Y )− (1− α)I (U ; X)

]
, (58)

which is calculated with respect to
QS1(s1)QU,X (u, x)Ws1(y|x). Now, since S1 does not
appear in any of the mutual information terms, their value
remains unchanged if the above joint distribution is replaced
with QU,X (u, x)WQ1(y|x), where WQ1 : X → P(Y) is
the average DMC WQ1(y|x) = ∑

s1∈S1
QS1(s1)Ws1(y|x)

(see Remark 11). Noting that the DMC WQ1 is a binary

symmetric channel with crossover probability ε (BSC(ε)), we
have that CR(ε, α) is the secrecy-capacity of BS-BE WTC
with a BSC(ε) between the legitimate users and a binary
erasure channel with erasure probability α (BEC(α)) to the
eavesdropper [36].

Remark 20: Interestingly, (58) is also the SS-capacity of the
WTC of type II (WTCII) with a BSC(ε) to the legitimate user
and an eavesdropper who can actively choose any �n(1−α)�
of the transmitted symbols to observe [48]. This is not surpris-
ing since the WTCII with a noisy main channel is a particular
instance of a type constrained AVWTC. Consequently, its
SS-capacity (stated in [50, Th. 3]) is recovered from
Theorem 1 by steps similar to those presented between
Equations (56)-(58). Namely, this is done by letting the AVC
between the legitimate users be a DMC and treating the
eavesdropper’s AVC as in (57). In fact, the type constrained
AVWTC captures as a special case also the generalization of
the WTCII from [51], where the subset of symbols chosen by
the eavesdropper is further corrupted by noise (i.e., by passing
it through another DMC). The only actual difference between
these WTCII models and the AVWTC is that the main channel
in the formers is a DMC (and not an AVC), which makes CR-
assisted codes unnecessary. However, this is the case for any
AVWTC with a main DMC.

Fig. 3 depicts the CR-assisted SS-capacity of the considered
AVWTC as a function of type constraints on the main and on
the eavesdropper’s channels. The variation of CR(ε, α) as a
function of QS1(1) = ε for a fixed α = 0.4 is shown in
Fig. 3(a), while Fig. 3(b) presents the SS-capacity as a function
of QS2(1) = α when ε = 0.1 is fixed. The curves are plotted
by parametrizing the joint PMF of the binary random variables
U and X and spanning over the possible probability values.
As mentioned before, CR(ε, α) is also the secrecy-capacity of
a BS-BE WTC.

This WTC was studied in [36], where it was shown that
the secrecy-capacity is zero if α < 4ε(1− ε). When ε = 0.1
the threshold value of α is 0.36. Indeed, Fig. 3(b) reveals
that CR(0.1, α) = 0 for any α < 0.36. Beyond 0.36, the
SS-capacity monotonically increases with α, since the larger
the probability of an erasure, the worse the channel to the
eavesdropper is. From the opposite perspective, a fixed α =
0.4 induces two real solutions to the equation 0.4 = 4ε(1−ε),
which are ε1 ≈ 0.1127 and ε2 ≈ 0.8872. The condition 0.4 <
4ε(1 − ε) is then satisfied for any ε ∈ (ε1, ε2), which gives
a zero SS-capacity in that region in Fig. 3(b). Also observe
that as a function of ε, CR(ε, 0.4) grows as the crossover
probability approaches the extreme values of 0 or 1.

D. Relation Between Theorem 1 and the Multi-Letter
CR-Assisted Secrecy-Capacity Characterization

We compare the single-letter result of Theorem 1 to the
multi-letter description of the secrecy-capacity as derived
in [24]. Reciting the result of [24], the (strong) secrecy-
capacity of an AVWTC (W,V) with unconstrained states is
given in (59) at the bottom of next page,9 where the subscript

9We use macrons in the following notation of random variables not because
they are multi-dimensions, but to distinguish them from other random variable
that have yet to be introduced.
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Fig. 3. CR-assisted SS-capacity CR(ε, α) versus: (a) the proscribed type for
the main channel QS1 (1) = ε, which corresponds to the portion of flipped
symbols in the BS-BE WTC; (b) the proscribed type for the eavesdropper’s
channel QS2 (1) = α, which corresponds to the portion of erasures in the
BS-BE WTC.

P indicates that the mutual information terms are calculated
with respect to a joint distribution that for each k ∈ �,
Q ∈ P(S) and sk ∈ Sk , is given by (60) at the bottom
of this page and the cardinality of Vk is bounded above as
|Vk | ≤ |X |k .

To adapt R∗S(W,V) to the type constrained AVWTC
(W,V, QS), for QS ∈ P�(S) (see (52)), we first account
for the fact that T k

Q S
is empty for several values of k ∈ �.

Denote the non-zero entries of QS by QS(s) = as
bs

, where

s ∈ supp(QS), and define � = lcm{bs}s∈supp(Q S), where
lcmA, for A ⊂ � with |A| < ∞, is the least common
multiple of the elements in A. Denote �� �

{
n · �∣∣n ∈ �}

and henceforth consider only blocklengths that belong to ��.
Having this, the adaptation of R∗S(W,V) to the AVWTC with
a type constraint QS ∈ P�(S), is given in (61) at the bottom
of this page, where each PV̄n�,X̄n� ∈ P(Vn�×X n�) induces the

joint distribution P � P(Q S)

V̄n�,X̄n�,Ȳ n�
QS

,Z̄ n�
sn�

. As a disclaimer, we

remark that the we did not directly prove10 that R∗S(W,V, QS)
is indeed a multi-letter description of the type constrained
AVWTC secrecy-capacity, and we first state it merely as
an educated guess. Nonetheless, as the following proposition
shows, this is actually the case since R∗S(W,V, QS) is equal
to the CR-assisted SS-capacity formula from Theorem 1.

Proposition 1 (Multi-Letter CR-Assisted SS-Capacity): For
any QS ∈ P�(S) it holds that

R∗S(W,V, QS) = CR(W,V, QS). (62)

Proof: We first show that R∗S(W,V, QS) ≥
CR(W,V, QS). Let Q̄U,X ∈ P(U × X ) be the extremum
achieving distributions in CR(W,V, QS), and denote
Q̄ � Q̄U,X QS QY |X,S QZ |X,S , where QY |X,S and QZ |X,S are
defined in Theorem 1. For each n ∈ � and sn� ∈ T n�

Q S
, denote

k = n� and define

P̄Ū k ,X̄ k ,Ȳ k
QS

,Z̄ k
sk

(uk, xk, yk, zk)

�
k∏

i=1

Q̄U,X (ui , xi )WQ S (yi |xi )Vsi (zi |xi ), (63)

where WQ S : X → P(Y) is given by WQ S (y|x) =∑
s∈S QS(s)Ws(y|x). We abbreviate P̄Ū k ,X̄ k ,Ȳ k

QS
,Z̄ k

sk
as P̄ and

note that it corresponds to taking Vk = Uk and setting
PV̄k ,X̄ k = Q̄k

U,X in P(Q S)

V̄k ,X̄ k ,Ȳ k
QS

,Z̄ k
sk

. As a last preliminary

technical step we define (Uk, Xk , Sk, Y k, Zk) as independent
copies of (U, X, S, Y, Z) ∼ Q̄, i.e., (Uk, Xk , Sk , Y k, Zk) ∼
Q̄k , and note that P̄Ū k ,X̄ k ,Ȳ k

QS
= Q̄k

U,X,Y and that P̄Ū k ,X̄ k ,Z̄ k
sk
=

Q̄k
U,X,Z |S=sk , for each sk ∈ Sk .
Now, evaluating the first mutual information term from (61)

under P̄ gives

IP̄

(
Ū k; Ȳ k

Q S

) = IQ̄k (Uk; Y k)
(a)= k · IQ̄(U ; Y ), (64)

10By adapting the proof steps from [24].

R∗S(W,V) � lim
k→∞

1

k
sup

PV̄k ,X̄k ∈P(Vk×X k)

[
min

Q∈P(S)
IP(Q)

(
V̄k; Ȳ k

Q

)− max
sk∈Sk

IP(Q)

(
V̄k; Z̄ k

sk

)
]

(59)

P(Q)

V̄k ,X̄ k ,Ȳ k
Q,Z̄ k

sk
(vk, xk, yk, zk) = PV̄k ,X̄ k

(
vk, xk)

k∏

i=1

(
∑

s∈S
Q(s)Ws (yi |xi)

)

Vsi (zi |xi ) (60)

R∗S(W,V, QS) � lim
n→∞

1

n�
sup

PV̄n�,X̄n�∈P(Vn�×X n�)

⎡

⎣IP
(
V̄n�; Ȳ n�

Q S

)− max
sn�∈T n�

QS

IP
(
V̄n�; Z̄ n�

sn�

)
⎤

⎦ , (61)
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where (a) is because
{
(Ui , Yi )

}k
i=1 are a sequence of i.i.d. pairs

according to the marginal distribution of U and Y with respect
to Q̄. For the subtracted term from (61) when calculated with
respect to P̄ , we have

max
sk∈T k

QS

IP̄

(
Ūk; Z̄ k

sk

) (a)= max
sk∈T k

QS

IQ̄k (Uk; Zk|Sk = sk)

(b)= max
sk∈T k

QS

k∑

i=1

IQ̄k (Ui ; Zi |Si = si )

(c)= max
sk∈T k

QS

k ·
∑

s∈S
QS(s)IQ̄(U ; Z |S = s)

= k · IQ̄(U ; Z |S) (65)

where (a) is because P̄Ū k ,X̄ k ,Z̄ k
sk
= Q̄k

U,X,Z |S=sk , for every

sk ∈ Sk , (b) uses the product structure of Q̄k , while (c) follows
since νsk = QS for every sk ∈ T k

Q S
.

Based on (64) and (65) we get the desired inequality since

R∗S(W,V, QS)

≥ lim
k→∞:
k∈��

1

k

⎡

⎣IP̄

(
Ū k; Ȳ k

Q S

)− max
sk∈T k

QS

IP̄

(
Ū k; Z̄ k

sk

)
⎤

⎦

= IQ̄(U ; Y )− IQ̄ (U ; Z |S)

= CR(W,V, QS). (66)

The opposite inequality, that is R∗S(W,V, QS) ≤
CR(W,V, QS), follows by repeating the steps from the proof
of Theorem 3 (with the proper update of notation). To avoid
verbatim repetition of the same arguments, we give only an
outline of the proof while describing the required adjustments.
To this end, for each k ∈ �� and PV̄k ,X̄ k ∈ P(Vk × X k),

it is convenient to define a new distribution P̂Vk ,Xk ,Sk,Y k ,Zk

given by

P̂Vk ,Xk ,Sk,Y k ,Zk

(
vk, xk, sk , yk, zk)

� PV̄k ,X̄ k

(
vk, xk)Qk

S

(
sk)W k

sk

(
yk
∣
∣xk)V k

sk

(
zk
∣
∣xk). (67)

Noting that P̂Vk ,Xk ,Y k ,Zk = PV̄k ,X̄ k ,Ȳ k
QS

and P̂Vk ,Xk ,Zk |Sk=sk =
PV̄k ,X̄ k ,Z̄ k

sk
, for every sk ∈ Sk , one may rewrite (61) as (68)

from the bottom of this page.
Having this, to establish CR(W,V, QS) as an upper bound,

fix k ∈ �� and PV̄k ,X̄ k ∈ P(Vk × X k) and consider the
following. Due to the structure of P̂ one may treat Vk as
the message M in the proof of Theorem 3 and invoke simple
adaptations of Lemmas 7 and 8 to get

max
sk∈T k

QS

IP̂

(
Vk; Zk

∣
∣Sk = sk) ≥ IP̂ (Vk; Zk |Sk)− kξk,α, (69)

where ξk,α = log |Z|
(

α + 2|S|e−2k α2

|S|2
)

and α is any num-

ber in (0, 1]. Using (69), for any k ∈ �� and PV̄k ,X̄ k ∈

P(Vk × X k), we have

IP̂

(
Vk; Y k)− max

sk∈T k
QS

IP̂

(
Vk; Zk

∣∣Sk = sk)

≤ IP̂

(
Vk; Y k)− IP̂

(
Vk; Zk

∣
∣Sk)+ kξk,α . (70)

Applying standard manipulations on the RHS of (70) (similar
to those in the derivation of (134)), further shows that

IP̂

(
Vk; Y k)− max

sk∈T k
QS

IP̂

(
Vk; Zk

∣
∣Sk = sk)

≤ k · max
QU,X∈P(U×X )

[
IQ(U ; Y )− IQ(U ; Z |S)

]
+ kξk,α, (71)

where the mutual information terms are taken with respect
to the joint distribution from Theorem 1. The derivation
of (71) also relies on claims similar to those from Lemmas
10 and 11 from Section VI. Dividing both sides by k, taking
the supremum of the LHS over all PV̄k ,X̄ k ∈ P(Vk ×X k) and
replacing α ∈ (0, 1] with a sequence

{
αk

}
k∈��

that decays
sufficiently slowly to zero, the proof is completed by letting
k →∞.

E. Proof of Theorem 1 From Theorems 2 and 3

Achievability: For the direct part, denote the RHS of (50)
by C�

R(W,V, QS) and assume that R < C�
R(W,V, QS).

We show that there exists δ0 > 0, such that for any ε > 0
there is a CR (n, Mn , Kn)-code Cn that satisfies (49).

For any δ > 0, define

Pδ(QS) �
{

P ∈ P(S)
∣
∣∣
∣∣P(s)−QS(s)

∣∣ ≤ δQS(s), ∀s ∈ S
}
,

(72)

and note that Pδ(QS) is convex and closed. Applying The-
orem 2 with Q = Pδ(QS) and recalling Definition 7
of Q-constrained achievability, yields that if11

R < max
QU,X

[
min

Q1∈Pδ(Q S)
IQ1(U ; Y )− max

Q2∈Pδ(Q S)
IQ2(U ; Z |S)

]
,

(73)

then there exists a CR (n, Mn , Kn)-code Cn that satisfies (49).
Thus, to establish the achievability of R it suffices to show
that there exists δ0 > 0 for which (73) holds. The following
lemma, that is proven in Appendix A using continuity, fills
that gap.

Lemma 3: The following limiting relation holds:

max
QU,X

[
min

Q1∈Pδ(Q S)
IQ1(U ; Y )− max

Q2∈Pδ(Q S)
IQ2(U ; Z |S)

]

↗ C�
R(W,V, QS), (74)

as δ ↘ 0.

11For simplicity of notation, throughout the proof of Theorem 1 we write
Q j instead of Q( j)

S , for j = 1, 2.

R∗S(W,V, QS) = lim
k→∞:
k∈��

1

k
sup

PV̄k ,X̄k∈P(Vk×X k )

⎡

⎣IP̂

(
Vk; Y k)− max

sk∈T k
QS

IP̂

(
Vk; Zk

∣
∣Sk = sk)

⎤

⎦ . (68)
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Converse: Assume that R is an achievable CR-assisted
SS-rate for the type constrained AVWTC (Wn,Vn, QS).
Then, there exists δ > 0, such that for all ε > 0 and sufficiently
large n, there exists a CR (n, Mn , Kn)-code Cn that satisfies
(49). Define

Rδ(QS) � Pδ(QS) ∩ P�(S), (75)

(see (52) and (72)) which is the set of all rational PMFs on
S that are element-wise δ-close to QS . Recall the definition
of Sn

Q from (41), where Q ⊆ P(S) is any subset of PMFs.
Taking Q = Rδ(QS) gives Sn

Q = T n
δ (QS), for any n ∈ �.

Using Theorem 3 with Q = Rδ(QS) gives the following
upper bound:

R ≤ max
QV ,U,X

inf
Q̂ S∈Rδ(Q S)

[
IQ̂(U ; Y |V )− IQ̂(U ; S, Z |V )

]
,

(76)

where IQ̂ denotes that the mutual information terms
are calculated with respect to the marginals of
QV ,U,X Q̂S QY |X,S QZ |X,S for some Q̂S ∈ Rδ(QS), where
QY |X,S(y|x, s) = Ws(y|x) and QZ |X,S(z|x, s) = Vs(z|x), for
all (s, x, y, z) ∈ S × X × Y × Z .

We first show that any Q̂S ∈ Rδ(QS) in the joint
distribution of (V , U, X, S, Y, Z) can be replaced with the
QS while causing only a small change in the value of the
mutual information terms. Let Q�

V ,U,X ∈ P(V × U × X )
be the maximizer of the RHS of (76). With some abuse
of notation we denote by IQ̂ and IQ a mutual information

term calculated with respect to Q�
V ,U,X Q̂S QY |X,S QZ |X,S or

Q�
V ,U,X QS QY |X,S QZ |X,S , respectively. By the definition of

Rδ(QS), for any Q̂S ∈ Rδ(QS) we have

∣∣Q̂S(s)− QS(s)
∣∣ ≤ δ

|S| , ∀s ∈ S. (77)

The continuity of the mutual information implies that there
exists a function f (δ), such that limδ→0 f (δ) = 0 is indepen-
dent of Q�

V ,U,X and

IQ̂(U ; Y |V )− IQ̂(U ; S, Z |V )

≤ IQ(U ; Y |V )− IQ(U ; S, Z |V )+ f (δ). (78)

Further notice that Definition 10 of the type constrained
achievability gives

E
(
Wn,Qδ′(QS), Cn

) ≤ ε (79a)

LSem
(
Vn,Qδ′(QS), Cn

) ≤ ε. (79b)

for any δ′ ∈ (0, δ) (see Remark 10). Taking δ′ → 0 in (78),
while noting that the rational distributions are dense in P(S)
and that IQ̂ (U ; Y |V ) − IQ̂(U ; S, Z |V ) is continuous in Q̂S

gives

R ≤ IQ(U ; Y |V )− IQ(U ; S, Z |V ). (80)

Our last step is to remove the conditioning on V .
The structure of the joint distribution QV ,U,X,S,Y,Z =
QV ,U,X QS QY |X,S QZ |X,S implies that for any v ∈ V , the
conditional distribution of (U, X, S, Y, Z) given V = v factors
as QU,X,S,Y,Z |V=v = QU,X |V=v QS QY |X,S QZ |X,S . Denot-
ing by IQv a mutual information term taken with respect

to QU,X |V=v QS QY |X,S QZ |X,S , we further upper bound R
from (80) as

R ≤ IQ (U ; Y |V )− IQ(U ; S, Z |V )

=
∑

v∈V
QV (v)

[
IQ (U ; Y |V = v)− IQ(U ; S, Z |V = v)

]

≤ max
v∈V

[
IQ(U ; Y |V = v)− IQ(U ; S, Z |V = v)

]

= max
v∈V

[
IQv (U ; Y )− IQv (U ; S, Z)

]

(a)= max
v∈V

[
IQv (U ; Y )− IQv (U ; Z |S)

]

≤ max
QU,X

[
IQ(U ; Y )− IQ(U ; Z |S)

]
, (81)

where (a) is because U and S are independent under Qv , for
every v ∈ V . This completes the proof.

V. PROOF OF THEOREM 2

The proof first constructs a reliable CR-code over a family
of doubly-exponentially many uncorrelated codes. Specifically,
the family consists of all realizations of a random wiretap
code with i.i.d. codewords. Reliability is then established via
a simple adaptation of the standard AVC error probability
analysis [15]. Being double-exponential in size, however, the
original family of codes is too large to derive SS in the
sense of (47b). Therefore, a Chernoff bound is used to show
that only a polynomial sub-family of codes is sufficient for
reliability, and having that, the double-exponential decay that
Lemma 1 provides is leveraged to prove SS over the reduced
CR-code.

Without loss of generality, we assume that Q contains at
least one rational distribution; otherwise, there is nothing to
prove (see Remark 7). Consequently, we henceforth refer only
to blocklengths n ∈ � for which Sn

Q �= ∅. We show that (51)
is achievable when U = X . Then, using standard channel
prefixing arguments, the RHS of (51) is achieved.

Fix ε > 0, a PMF QU,X ∈ P(U × X ) and let QX be
its marginal on X . For any QS ∈ Q, the joint distribution
of (X, S, Y, Z) is QX,S,Y,Z = QX QS QY |X,S QZ |X,S , where
QY |X,S and QZ |X,S are given in Theorem 2. Since QX , QY |X,S

and QZ |X,S stay fixed throughout the proof, we use IQ S

to denote a mutual information term taken with respect to
QX QS QY |X,S QZ |X,S . Let W be a random variable uniformly
distributed over Wn �

[
1 : 2nR̃

]
, where R̃ ∈ �+, that is

chosen independently of the message M; W stands for the
stochastic part of the encoder.

Random Codebook Bn: A random codebook is
a collection of independent random vectors Bn ={
X(m, w)

}
(m,w)∈Mn×Wn

, each distributed according to

Qn
X . Set K̃n = |X |n|Mn‖Wn | and index (with respect

to some arbitrary order) all possible realizations of
Bn by �̃n =

[
1 : K̃n

]
to obtain the set of codebooks

Bn =
{
B(γ )

n

}

γ∈�̃n
, where B(γ )

n = {
x(m, w, γ )

}
(m,w)∈Mn×Wn

is the γ -th element of Bn . Further, we define the measure μ̃n

on �̃n as

μ̃n(γ ) =
∏

(m,w)∈Mn×Wn

Qn
X

(
x(m, w, γ )

)
, ∀γ ∈ �̃n . (82)
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Stochastic Encoder f (n)
γ : Fix γ ∈ �̃n . To send the message

m ∈ Mn the encoder randomly and uniformly chooses w

from Wn and feeds x(m, w, γ ) ∈ B(γ )
n into the AVWTC. The

stochastic encoder f (n)
γ :Mn → P(X n) is thus defined by

f (n)
γ (x|m) =

∑

w∈Wn

2−nR̃1{
x(m,w,γ )=x

}. (83)

Decoder φ
(n)
γ : Both m and w are decoded by the legitimate

user. With some abuse of notation, for every γ ∈ �̃n we
consider a decoding rule φ

(n)
γ : Yn → (

Mn × Wn
) ∪ {e}

that is defined in terms of a non-negative-valued function
d : X n × Yn → �+ as

φ(n)
γ (y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m, w),

max
(m′,w′)∈Mn×Wn :

(m′,w′) �=(m,w)

d
(
x(m′, w′, γ ), y

)

< d
(
x(m, w, γ ), y

)

e, no (m, w) as above exists

.(84)

Although the decoding rule is given in terms of an arbitrary
function d , we soon limit ourselves to a specific choice with
respect to which we establish reliability. We use an arbitrary
d for now to state Lemma 4 in its most general form, thus
emphasizing the generality of this decoding rule.

For every γ ∈ �̃n denote c(γ )
n �

(
f (n)
γ , φ

(n)
γ

)
as the asso-

ciated uncorrelated (n, Mn)-code, and let C̃n �
{
c(γ )

n
}
γ∈�̃n

.

The CR (n, Mn , K̃n)-code C̃n is thus defined by the family
C̃n , the index set �̃n of size K̃n , and the measure μ̃n ∈ P(�̃n)
from (82). Note that C̃n is a CR-code over a family of doubly-
exponentially many (n, Mn)-codes.

Error Probability Analysis: We first show the C̃n is reli-
able. Having that, we use a Chernoff bound to reduce our
CR-code to be only polynomial (with the blocklength) in
size and then establish SS. The reliability of C̃n relies
on the following lemma, which is effectively an adaptation
of [47, Lemma 12.9]. For completeness, we prove the lemma
in Appendix B.

Lemma 4: If �Qn
X

d(X, y) ≤ 1, for all y ∈ Yn, then for every
channel Wn : X n → P(Yn), η > 0 and (m, w) ∈Mn ×Wn,
we have

Em,w(Wn, C̃n) ≤ �Qn
X Wn

(
d(X, Y) <

|Mn‖Wn |
η

)
+ η,

(85)

where

Em,w(Wn, C̃n) =
∑

γ∈�̃n

μ̃n(γ )
∑

y∈Yn:
φ

(n)
γ (y) �=(m,w)

Wn
(
y
∣
∣x(m, w, γ )

)

(86)

is the expected error probability in decoding (m, w) over the
ensemble C̃n.

Assume without loss of generality that all entries of the
matrices W ∈ W are bounded below by a positive constant
υ > 0. Indeed, consider a modified family of channels Wυ ,
formally defined by Wυ(y|x) = (1−υ|Y|)W (y|x)+υ, where
W ∈W. Replacing W with Wυ causes a negligible change in
I (U ; Y )− I (U ; Z |S) if υ is small, for any QS QU,X . Further,

any sequence of CR codes that is reliable with respect to Wυ

is trivially modified at the decoder to give the same maximal
error probability under W as the original one did for Wυ . The
modified decoder simulates the output of the AVC W to look
as if it was generated by Wυ . Specifically, upon observing an
output sequence y ∈ Y generated by W, for each time instance
i ∈ [1 : n], the modified decoder draws a Bernoulli

(
υ|Y|)

distributed random variable: If the outcome is 0, then the
observed yi is preserved. If, on the other hand, the outcome is
1, the new decoder draws a symbol y uniformly from Y and
replaces the observed yi with the uniformly chosen symbol.
This makes the new y-sequence look like it was generated by
the AVC Wυ , and the original decoder is then used.

Our next steps up until Lemma 5 (included) follow close
resemblance to [47, Lemma 12.10]. For any Q ∈ P(S) define
WQ : X → P(Y), the averaged DMC under Q, as

WQ(y|x) �
∑

s∈S
Q(s)Ws(y|x), ∀(x, y) ∈ X × Y. (87)

Let Q̃ ∈ Q be a minimizer of minQ∈Q IQ (X; Y ) and set d :
X n × Yn → �+ as

d(x, y) =
W n

Q̃
(y|x)

Q̃n
Y (y)

=
n∏

i=1

WQ̃(yi |xi)

Q̃Y (yi )
, (88)

for all (x, y) ∈ X n × Yn with Q̃n
Y (y) �= 0, where

Q̃Y (y) =
∑

x∈X
QX (x)WQ̃(y|x). (89)

If Q̃n
Y (y) = 0, set d(x, y) = 1, for all x ∈ X n . Clearly

�Qn
X

d(X, y) = 1, ∀y ∈ Yn . (90)

Lemma 4 implies that for every η > 0, s ∈ Sn and (m, w) ∈
Mn ×Wn ,

Em,w(W n
s ,C̃n)≤�Qn

X W n
s

(
W n

Q̃
(Ys|X)

Q̃n
Y (Ys)

<
2|Mn‖Wn |

η

)

+ η

2
,

(91)

where (X, Ys) ∼ Qn
X W n

s .
Fix s ∈ Sn and define the random variable Ln(X, Ys) �

log
W n

Q̃
(Ys|X)

Q̃n
Y (Ys)

. Observe that

�Qn
X W n

s Ln(X, Ys)

=
∑

(x,y)∈X n×Yn

Qn
X (x)W n

s (y|x) log

(
n∏

i=1

WQ̃(yi |xi)

Q̃Y (yi )

)

=
n∑

i=1

∑

(x,y)∈X×Y
QX (x)Wsi (y|x) log

(WQ̃(y|x)

Q̃Y (y)

)
. (92)

For any s ∈ Sn and (x, y) ∈ X × Y , denote

n∑

i=1

Wsi (y|x) = n
∑

s∈S
νs(s)Ws(y|x) � nWνs(y|x), (93)
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where νs is the empirical PMF of s, as defined in (2).
Consequently, we have

�Qn
X W n

s Ln(X, Ys)

= n ·
∑

(x,y)∈X×Y
QX (x)Wνs(y|x) log

(WQ̃(y|x)

Q̃Y (y)

)
. (94)

We next show that if s ∈ Sn
Q, then the RHS of (94) is lower

bounded by IQ̃(X; Y ).
Lemma 5: For any Q ∈ Q, the following relation holds

∑

(x,y)∈X×Y
QX (x)WQ(y|x) log

(WQ̃(y|x)

Q̃Y (y)

)
≥ IQ̃(X; Y ).

(95)
Lemma 5 is proven in Appendix C. Now, if s ∈ Sn

Q, then
νs ∈ Q. By Lemma 5 and (94) this gives

�Qn
X W n

s Ln(X, Ys) ≥ nIQ̃ (X; Y ), ∀s ∈ Sn
Q. (96)

Furthermore, since Ws(y|x) > υ > 0 for every (s, x, y) ∈
S × X × Y , it holds that

∣∣
∣
∣log

WQ̃(y|x)

Q̃Y (y)

∣∣
∣
∣ ≤

∣∣
∣
∣log

1

υ

∣∣
∣
∣ = − log υ, (97)

which implies that
∣
∣
∣∣log

WQ̃(Y |X)

Q̃Y (Y )

∣
∣
∣∣ ≤ − log υ (98)

is true with probability 1, for any (X, Y ) ∼ PX,Y ∈ P(X×Y).
This yields

var

(
log

WQ̃(Y |X)

Q̃Y (Y )

)
≤ log2 υ. (99)

Having (91), (96) and (99), the proof of reliability is
concluded as follows. Recall that Mn = [1 : Mn ] and set

Mn =
⌊

2

(
minQ∈Q IQ(X;Y )−R̃− δ

2

)⌋
, (100)

for some δ > 0 to be specified later. Using (91) with ηn = 1
n

in the role of η, we have that for n sufficiently large and all
(m, w) ∈Mn ×Wn and s ∈ Sn

Q, we have

Em,w(W n
s , C̃n)

≤ �Qn
X W n

s

(
W n

Q̃
(Ys|X)

Q̃n
Y (Ys)

<
2|Mn‖Wn|

ηn

)

+ ηn

2

= �Qn
X W n

s

(
Ln(X, Ys) < log |Mn‖Wn | − log

ηn

2

)
+ ηn

2
(a)≤ �Qn

X W n
s

(
Ln(X, Ys)<nIQ̃(X; Y )− nδ

2
− log

ηn

2

)
+ ηn

2
(b)≤ �Qn

X W n
s

(∣
∣�Ln(X, Ys)− Ln(X, Ys)

∣
∣ >

nδ

2

)
+ ηn

2
(c)≤ 4var

(
Ln(X, Ys)

)

n2δ2 + ηn

2
(d)≤ 4 log2 υ

nδ2 + ηn

2
(e)= cδ,ν

n
(101)

where (a) and (b) use (100) and (96), respectively, (c) is
Chebyshev’s inequality, (d) follows by the pairwise indepen-
dence of (X, Ys) across time and (99), while (e) is by setting
cδ,ν = 1

2 + 4 log2 υ
δ2 . Concluding, (101) yields

max
s∈Sn

Q,

(m,w)∈Mn×Wn

Em,w(W n
s , C̃n) ≤ cδ,ν

n
, (102)

which implies the reliability of CR-code C̃n .
CR Reduction for Reliability: Our next step is to reduce the

CR-code C̃n over the family C̃n of size K̃n = |X |n|Mn‖Wn |,
to be over a family of codes that is no more than polynomial
in size (see [12] for Ahlswede’s original CR elimination
argument for the classic AVC). This reduction is crucial for
the subsequent security analysis. To do so, let

{
Gk

}Kn

k=1 be a
collection of Kn ∈ � i.i.d. random variables with values in
�̃n and a common distribution μ̃n . Each realization γk ∈ �̃n

of Gk , k ∈ [1 : Kn], corresponds to a codebook B(γ )
n ∈ Bn

which, in turn, induces a code c(γ )
n .

We show that averaging the error probabilities associated
with each random code Cn(k) � c(Gk)

n results in a vanishing
term, with arbitrarily high probability. In a later stage, we
extract a realization of

{
Cn(k)

}Kn

k=1 that is both reliable and
semantically-secure, and define our CR-code to be uniformly
distributed over the codes in the realization.

Thus, for each s ∈ Sn and (m, w) ∈ Mn ×Wn , consider
the random variable

1

Kn

Kn∑

k=1

em,w

(
W n

s , Cn(k)
)
, (103)

where a possible value of each em,w

(
W n

s , Cn(k)
)
, k ∈ [1 : Kn]

and γk ∈ �̃n , is

em,w

(
W n

s , cn(k)
)

� em,w

(
W n

s , c(γk)
n

)

=
∑

y∈Yn:
φ

(n)
γk (y) �=(m,w)

W n
s
(
y
∣
∣x(m, w, γk)

)
. (104)

This is an average of Kn independent random variables, each
bounded between 0 and 1. Furthermore, the expected value
of each equals to Em,w(W n

s , C̃n), and therefore, (102) implies
that

�μ̃n em,w

(
W n

s , Cn(k)
) ≤ cδ,ν

n
, (105)

for each s ∈ Sn
Q, (m, w) ∈Mn ×Wn and k ∈ [1 : Kn]. The

probability of (103) not decaying to zero under any s ∈ Sn
Q

and (m, w) ∈Mn ×Wn is upper bounded using the version
of the Chernoff bound from [48, Lemma 4].

Lemma 6 (Chernoff Bound [48]): Let
{

X�

}L
�=1 be a collec-

tion of i.i.d. random variables with common distribution P,
such that supp(P) ⊆ [0, B] and �X� ≤ μ �= 0, for all
� ∈ [1 : L]. Then for any c with c

μ ∈ [1, 2],

�P L

(
1

L

L∑

�=1

X� ≥ c

)

≤ e
− Lμ

3B

(
c
μ−1

)2

. (106)
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Setting Kn = n3 and using (106) with L = Kn , μ = cδ,ν

n ,
B = 1, and c

μ = 2, assures that 1
Kn

∑Kn
k=1 em,w

(
W n

s , Cn(k)
)

is arbitrarily small with probability super-exponentially close
to 1. That is, for each s ∈ Sn

Q and (m, w) ∈Mn ×Wn , we
have

�μ̃n
n

(
1

Kn

Kn∑

k=1

em,w

(
W n

s , Cn(k)
) ≥ 2cδ,ν

n

)

≤ e−
1
3

cδ,ν Kn
n

= e−
cδ,ν n2

3 .

(107)

By (107) and the union bound, we have

�μ̃n
n

⎛

⎜⎜
⎜
⎜
⎝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
s∈Sn

Q,

(m,w)
∈Mn×Wn

1

Kn

Kn∑

k=1

em,w

(
W n

s , Cn(k)
)

<
2cδ,ν

n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

c ⎞

⎟⎟
⎟
⎟
⎠

= �μ̃n
n

⎛

⎜
⎜⎜
⎜
⎝

max
s∈Sn

Q,

(m,w)
∈Mn×Wn

1

Kn

Kn∑

k=1

em,w

(
W n

s , Cn(k)
) ≥ 2cδ,ν

n

⎞

⎟
⎟⎟
⎟
⎠

≤
∑

s∈Sn
Q

∑

(m,w)
∈Mn×Wn

�μ̃n
n

(
1

Kn

Kn∑

k=1

em,w

(
W n

s , Cn(k)
) ≥ 2cδ,ν

n

)

≤ ∣
∣Sn

Q
∣
∣ · |Mn| · |Wn| · e−

cδ,ν n2

3

(a)≤ |S|n · 2n
(

minQ∈Q IQ (X;Y )− δ
2

)
· e− cδ,ν n2

3

� κ(1)
n , (108)

where (a) uses (100) and
∣
∣Sn

Q
∣
∣ ≤ |S|n . Note that κ

(1)
n → 0 as

n→∞.
Security Analysis: We show that the probability of{

Cn(k)
}Kn

k=1 violating the SS requirement is arbitrarily small.

First, for any γ ∈ �̃n , PM ∈ P(Mn) and s ∈ Sn , let P(γ ,s)
M,W,X,Zs

be the induced joint distribution over Mn×Zn , which is given
by (see (83))

P(γ ,s)
M,Zs

(m, z) = PM (m)
1

|Wn|
∑

w∈Wn

V n
s
(
z
∣∣x(m, w, γ )

)
.

(109a)

Accounting also for the random codebook construction, we
define Gn ∼ μ̃n as a random variable taking values in �̃n and
set

P(s)
Gn ,M,Zs

(γ, m, z) = μ̃n(γ )P(γ ,s)
M,Zs

(m, z). (109b)

For any s ∈ Sn and γ ∈ �n , have

max
s∈Sn

Q,

PM∈P(Mn)

D
(

P(s)
Zs|M,Gn=γ

∣
∣
∣
∣
∣
∣P(s)

Zs|Gn=γ

∣
∣
∣PM

)

(a)≤ max
s∈Sn

Q,

PM∈P(Mn)

D
(

P(s)
Zs|M,Gn=γ

∣
∣
∣
∣
∣
∣Qn

Z |S=s

∣
∣
∣PM

)

= max
s∈Sn

Q,

PM∈P(Mn)

∑

m∈Mn

PM (m)D
(

P(s)
Zs|M=m,Gn=γ

∣∣
∣
∣∣
∣Qn

Z |S=s

)

≤ max
s∈Sn

Q,

m∈Mn

D
(

P(s)
Zs|M=m,Gn=γ

∣
∣
∣
∣
∣
∣Qn

Z |S=s

)
, (110)

where (a) is because for any s ∈ Sn
Q and PM ∈ P(Mn)

D
(

P(s)
Zs|M,Gn=γ

∣
∣
∣
∣
∣
∣P(s)

Zs|Gn=γ

∣
∣
∣PM

)

= D
(

P(s)
Zs|M,Gn=γ

∣
∣∣
∣
∣∣Qn

Z |S=s

∣
∣∣PM

)
−D

(
P(s)

Zs|Gn=γ

∣
∣∣
∣
∣∣Qn

Z |S=s

)

≤ D
(

P(s)
Zs|M,Gn=γ

∣
∣
∣
∣
∣
∣Qn

Z |S=s

∣
∣
∣PM

)
. (111)

Furthermore, by Lemma 1, for any m ∈ Mn and s ∈ Sn

with empirical PMF νs, taking R̃ > Iνs Q(X; Z |S)+ ζ for any
ζ > 0, implies that there exist γ1, γ2 > 0 (uniform in s), such
that for n large enough

�μ̃n

(
D
(

P(s)
Zs|M=m,Gn

∣
∣
∣
∣
∣
∣Qn

Z |S=s

)
> e−nγ1

)
≤ e−enγ2

. (112)

As all s ∈ Sn
Q have νs ∈ Q, setting

R̃ = max
Q∈Q

IQ(X; Z |S)+ δ

2
(113)

gives (112) for every s ∈ Sn
Q.

Now, with respect to the collection of the i.i.d. random
variables

{
Gn(k)

}Kn

k=1 from before (which are, in fact, i.i.d.
copies of Gn), with Kn = n3, we have that for n sufficiently
large12

�μ̃n
n

⎛

⎜
⎜
⎝ max

k∈[1:Kn ],
s∈Sn

Q,

PM∈P(Mn)

D
(

P(s)
Zs|M,Gn(k)

∣
∣
∣
∣
∣
∣P(s)

Zs|Gn (k)

∣
∣
∣PM

)
> e−nγ1

⎞

⎟
⎟
⎠

(a)≤ �μ̃n
n

⎛

⎜
⎜
⎜
⎝

max
k∈[1:Kn],

s∈Sn
Q,

m∈Mn

D
(

P(s)
Zs|M=m,Gn (k)

∣
∣
∣
∣
∣
∣Qn

Z |S=s

)
> e−nγ1

⎞

⎟
⎟
⎟
⎠

(b)≤
Kn∑

k=1

∑

s∈Sn
Q

∑

m∈Mn

�μ̃n

(
D
(

P(s)
Zs|M=m,Gn

∣
∣
∣
∣
∣
∣Qn

Z |S=s

)
>e−nγ1

)

(c)≤ n3 · |S|n · 2nR · e−enγ2

� κ(2)
n , (114)

12In the following chain of inequalities, we consider conditional marginal
distributions of a joint distribution P(s)

Gn(k),M,W,X,Zs
, where k ∈ [1 : Kn ],

each defined exactly like in (109), but with Gn(k) in the role of Gn .
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where (a) uses (110), (b) follows by the union bound and
because

{
Gn(k)

}Kn

k=1 being i.i.d. copies of Gn ∼ μ̃n , which
implies

�μ̃n
n

(
D
(

P(s)
Zs|M=m,Gn (k)

∣
∣∣
∣
∣∣Qn

Z |S=s

)
> e−nγ1

)

= �μ̃n

(
D
(

P(s)
Zs|M=m,Gn

∣
∣
∣
∣
∣
∣Qn

Z |S=s

)
>e−nγ1

)
, ∀k ∈ [1 :Kn],

while (c) is by (112)-(113). The double-exponential decay of
probability that Lemma 1 provides yields κ

(2)
n → 0 as n→∞.

Realization Extraction and CR-code Construction: As long
as the rate constraints in (100) and (113) hold, Equa-
tions (108) and (114) along with the Selection Lemma from
[48, Lemma 5], imply the existence of a realization of{
Gn(k)

}Kn

k=1, denoted by
{
γk
}Kn

k=1, that for any n sufficiently
large satisfies

max
s∈Sn

Q,

(m,w)∈Mn×Wn

1

Kn

Kn∑

k=1

em,w

(
W n

s , cn(k)
) ≤ 2cδ,ν

n
(115a)

max
k∈[1:Kn ],

s∈Sn
Q,

PM∈P(Mn)

D
(

P(γk ,s)
Zs|M

∣
∣
∣
∣
∣
∣P(γk ,s)

Zs

∣
∣
∣PM

)
≤ e−nγ1 .(115b)

where, as defined in the CR-reduction part of the proof,
cn(k) � c(γk)

n .
Set �n = [1 : Kn], Cn �

{
cn(k)

}
k∈�n

and μn(k) = K−1
n .

Associating a CR (n, Mn , Kn)-code Cn with �n , Cn and μn ,
(115b) is clearly equivalent to

LSem(Vn,Q, Cn) ≤ e−nγ1 . (116)

Next, since for every s ∈ Sn
Q and (m, w) ∈ Mn ×Wn , we

have

Em,w(W n
s , Cn) ≥

∑

k∈�n

μn(k)
∑

x∈X n

fγk (x|m)
∑

y∈Yn :
φ

(n)
γk (y) �=m

W n
s (y|x)

= Em(W n
s , Cn), (117)

(115a) implies

E(Wn,Q, Cn) = max
s∈Sn

Q,

m∈Mn

Em(W n
s , Cn) ≤ 2cδ,ν

n
. (118)

The proof is concluded by combining (100) with (113) to
eliminate R̃, which leaves us with

1

n
log Mn ≤ min

Q1∈Q
IQ1(X; Y )− max

Q2∈Q
IQ2(X; Z |S)− δ,

(119)

(116) and (118). As δ > 0 was arbitrary, this implies the
existence of a sufficiently large n for which (48) is satisfied.

Remark 21 (Relation to Uncorrelated SS-Capacity): Recall
that Kn = n3, i.e., our reduced CR-code Cn is only polynomial
in size. This has implication to the uncorrelated scenario
because if the uncorrelated SS-capacity is strictly positive, one
may replace the shared randomness between the legitimate
parties with local randomness at the transmitter (which is
always available in WTC scenarios). In a CR-code, the shared

randomness is used for selecting which code cn(γ ), where
γ ∈ �n, from Cn will be employed thorough the transmission.
Instead, the transmitter may select γ ∈ �n and communicate it
to the receiver as a prefix. Since Kn = n3, the positivity of the
uncorrelated capacity ensures the reliable transmission of γ
with a vanishing rate. A condition that differentiates between
Q-constrained AVWTCs with zero and non-zero uncorrelated
capacities and a dichotomy result (stating that the uncor-
related capacity is either zero or equal to the CR-assisted
capacity) are thus the missing pieces in telling whether the
RHS of (51) lower bounds the uncorrelated SS-capacity of
a given AVWTC. Such a dichotomy result [21] based on a
certain threshold property (namely, the symmetrizability of
the main AVC) [22] is known for the scenario with uncon-
strained states. Therefore, Theorem 2 holds for uncorrelated
codes when Q = P(S) and the considered AVWTC satisfies
the condition from [22] for having a positive uncorrelated
SS-capacity.

VI. PROOF FOR THEOREM 3

Fix ∅ �= Q ⊂ P(S) (if Q = ∅ there is nothing to prove)
and assume without loss of generality that Q ⊆ P�(S), i.e.,
that it contains only rational PMFs. Otherwise, the CR-assisted
SS-capacity being a monotone non-increasing function of the
constraint set (see Remark 7), implies

CR(W,V,Q) ≤ CR
(
W,V,Q ∩ P�(S)

)
. (120)

Let R ∈ �+ be an achievable CR-assisted SS-rate for the
Q-constrained AVWTC (Wn,Vn,Q). Then, for all ε > 0 and
sufficiently large n, there exists a CR (n, Mn , Kn)-code Cn that
satisfies (48). To get the max-inf upper bound of Theorem 3,
we derive an upper bound on CR(W,V,Q) that is uniform in
QS ∈ Q.

Fix ε > 0 and let Cn be the corresponding CR (n, Mn , Kn)-
code that satisfies (48) for some sufficiently large n. Further
let Cn =

{
cn(γ )

}
γ∈�n

, where |�n| = Kn , and μn ∈ P(�n)

be the associated family of (n, Mn)-codes and the PMF over
this family, respectively. For any QS ∈ Q the reliability and
the security constrains for achievability stated in (48b)-(48c)
continue to hold when restricting the state sequences to T n

Q S
(instead of allowing any s ∈ Sn with empirical PMF νs ∈ Q).
Thus, for any QS ∈ Q and sufficiently large n we have

max
s∈T n

QS
,

m∈Mn

Em(W n
s , Cn) ≤ E(Wn,Q, Cn) ≤ ε (121a)

max
γ∈�n,
s∈T n

QS
,

PM∈P(Mn)

�
(
V n

s , PM , cn(γ )
) ≤ LSem(Vn,Q, Cn) ≤ ε. (121b)

Although the value of n beyond which (121) becomes valid
may depend on Q, it is independent of any certain QS ∈ Q.

Fix QS ∈ Q and recall that if n ∈ � is a blocklength for
which T n

Q S
= ∅, then (48b)-(48c) are trivially satisfied. We

avoid these trivial blocklengths by henceforth only considering
values of n that belong to ��, as defined in Section IV-D. To
remind the reader, �� �

{
n · �∣∣n ∈ �}, where � is the least

common denominator of all the non-zero entries of QS .
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Since for any QS ∈ Q, (121a) ensures that Em
(
W n

s , Cn
) ≤

ε, for all s ∈ T n
Q S

and m ∈Mn , we have

Ē(Wn, QS , Cn) � max
s∈T n

QS

∑

γ∈�n

μn(γ )
1

Mn

∑

m∈Mn

em
(
W n

s , cn(γ )
)

≤ ε, (122)

for n large enough. Similarly, by (121b) it also holds that

L(Vn, QS, Cn) � max
s∈T n

QS

∑

γ∈�n

μn(γ )�
(
V n

s , P(U )
M , cn(γ )

) ≤ ε,

(123)

where P(U )
M is the uniform PMF on Mn . In other words, a

small maximal error probability and SS (for all the codes
in Cn) imply small average error probability and strong secrecy
(when taking the expectation over the ensemble Cn).

For any γ ∈ �n let ϒ(γ ) be a PMF on Sn ×Mn × X n ×
Yn × Zn × M̂n defined by

ϒ
(γ )

S,M,X,Y,Z,M̂
(s, m, x, y, z, m̂)

� Qn
S(s)P(γ ,s)

M,X,Ys,Zs,M̂
(m, x, y, z, m̂), (124)

where P(γ ,s) is an abbreviation of P(cn (γ ),s) from (42) and

we set P(γ ,s)
M = P(U )

M , for all γ ∈ �n and s ∈ Sn . Thus, for
every s ∈ Sn with Qn

S(s) > 0 and any γ ∈ �n , the conditional
PMF of ϒ(γ ) given S = s equals the corresponding induced
PMF P(γ ,s). Furthermore, let Cn be a random variable that
describes the choice of an (n, Mn)-code cn(γ ), γ ∈ �n , from
the family Cn according to the distribution μn . We now set

ϒCn,S,M,X,Y,Z,M̂

(
cn(γ ), s, m, x, y, z, m̂

)

� μn(γ )ϒ
(γ )

S,M,X,Y,Z,M̂
(s, m, x, y, z, m̂) (125a)

P(s)
Cn,M,X,Ys,Zs,M̂

(
cn(γ ), m, x, y, z, m̂)

� μn(γ )P(γ ,s)
M,X,Ys,Zs,M̂

(m, x, y, z, m̂
)
. (125b)

Henceforth, we use Iϒ(·) and IP (·) to indicate that a mutual
information term is calculated with respect to ϒ or P(s)

from (125). We now present three technical lemmas that are
essential in establishing the result of Theorem 3. For the proofs
of Lemmas 7, 8 and 9 see Appendices D, E and F, respectively.

Lemma 7 (Leakage under Typical State Sequence): For
any QS ∈ P(S), α ∈ (0, 1], n ∈ �� and s1 ∈ T n

α (QS), there
exists s2 ∈ T n

Q S
, such that

∣
∣
∣Iϒ(M; Zn|Sn = s1, Cn)− Iϒ(M; Zn|Sn = s2, Cn)

∣
∣
∣

≤ nα log |Z|. (126)
Lemma 8 (Average Leakage under ϒ): For any QS ∈ Q,

α ∈ (0, 1] and n ∈ �� sufficiently large that is independent of
QS and α, the following relation holds

Iϒ(M; Zn |Sn, Cn) ≤ nη(1)
n,α, (127)

where η
(1)
n,α � ε

n + log |Z|
(

α + 2|S|e−2n α2

|S|2
)

.

Recall the definition of the averaged DMC WQ : X →
P(Y) from (87), given by

WQ(y|x) =
∑

s∈S
QS(s)Ws (y|x), ∀(x, y) ∈ X × Y. (128)

The n-fold extension of WQ satisfies

W n
Q(y|x) =

n∏

i=1

∑

s∈S
QS(s)Ws(yi |xi )

=
∑

s∈Sn

Qn
S(s)W n

s (y|x)

= ϒ(y|x), ∀(x, y) ∈ X n × Yn . (129)

Thus, the conditional marginal PMF ϒY|X of ϒ from (125)
describes an n-length block transmission over the average
channel W n

Q . As subsequently shown, the derivation of our
single-letter upper bound relies on the normalized equivocation
of the message M given an output sequence Y n of the
average DMC W n

Q being small. Commonly, Fano’s inequality
implies that quantities such as 1

n H (M|Y n) can be made
arbitrarily small with n. Here, however, this equivocation term
is not directly related to the performance criteria defining
CR-assisted achievability. A brute force application of Fano’s
inequality based on (121a) gives

max
s∈T n

QS

HP(M|Y n
s , Cn) ≤ 1+ ε log Mn . (130)

However, it remains to be shown that (130) implies that
1
n Hϒ(M|Y n, Cn) is small. In general, for any s ∈ T n

Q S
, the

channel Ws ∈ W is at least as good as WQ , meaning that
the averaged channel induces a possibly larger equivocation.
Nonetheless, the equivocation of the message given the output
sequence of W n

Q is upper bounded in Lemma 9.
Lemma 9 (Equivocation under Averaged Channel): For

any QS ∈ Q, α ∈ (
0, 1

2

]
and n ∈ �� sufficiently large that is

independent of QS and α, the following relation holds

Hϒ(M|Y n, Cn) ≤ nη(2)
n,α, (131)

where η
(2)
n,α = 1

n + 1
n log Mn

(

ε + 2|S|e−2n α2

|S|2
)

+ α log |Y| +
2h(α)+ |S| log(n+1)

n and h is the binary entropy function.

Fix d ∈ (
0, 1

2

)
and let αn = n

−
(

1
2−d

)

, for n ∈ ��.
Accordingly,

{
αn

}
n∈��

vanishes to 0 slower than 1√
n

, which
means that for sufficiently large n, random noise is typical with
respect to αn with arbitrarily high probability. Furthermore,
αn ∈

(
0, 1

2

]
, for every n ≥ 2

2
1−2d , so replacing α from Lemmas

8 and 9 with αn , for sufficiently large n we have

Iϒ(M; Zn|Sn, Cn) ≤ nη(1)
n (132a)

Hϒ(M|Y n, Cn) ≤ nη(2)
n , (132b)
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where

η(1)
n � η(1)

n,αn
= ε

n
+ log |Z|

(

αn + 2|S|e−
2n2d

|S|2
)

(133a)

η(2)
n � η(2)

n,αn
= 1

n
+ 1

n
log Mn

(

ε+2|S|e−
2n2d

|S|2
)

+αn log |Y|

+ 2h(αn)+ |S| log(n + 1)

n
, (133b)

and consequently limn→∞ η
( j )
n = 0, for j = 1, 2. Note

that the independence of n and α is essential for apply-
ing the Lemmas with the vanishing sequence

{
αn

}
n∈��

.
Furthermore, (132) uniformly hold for all QS ∈ Q.

Having (132)-(133), we proceed with upper bounding the
achievable rate R. Unless explicitly stated otherwise, all subse-
quent information measures are taken with respect to ϒ , which
is therefore omitted from the notation of mutual information.
For any QS and n ∈ �� sufficiently large (in particular, larger
than 2

2
1−2d ), we have

log Mn
(a)≤ I (M; Y n |Cn)− I (M; Sn , Zn |Cn)+ nηn

(b)=
n∑

i=1

[
I (M; Y i , Sn

i+1, Zn
i+1|Cn)

− I (M; Y i−1, Sn
i , Zn

i |Cn)
]
+ nηn

=
n∑

i=1

[
I (M; Yi |Y i−1, Sn

i+1, Zn
i+1, Cn)

− I (M; Si , Zi |Y i−1, Sn
i+1, Zn

i+1, Cn)
]
+ nηn

(c)=
n∑

i=1

[
I (M; Yi |Vi )− I (M; Si , Zi |Vi )

]
+ nηn, (134)

where:

(a) uses (132) and the independence of (M, Sn , Cn), while
defining ηn � η

(1)
n + η

(2)
n ;

(b) follows by a telescoping identity [52, eqs. (9) and (11)]
and the independence of Cn , M and Sn ;

(c) is by defining Vi � (Y i−1, Sn
i+1, Zn

i+1, Cn), for all i ∈
[1 : n]. The identification of Vi is uniform in QS ∈ Q.

The bound in (134) is rewritten by introducing a time-
sharing random variable T that is uniformly distributed over
the set [1 : n] and is independent of (Sn, M, Xn , Y n, Zn):

1

n
log Mn

≤ 1

n

n∑

t=1

[
I (M; Yt |Vt )− I (M; St , Zt |Vt )

]
+ ηn

=
n∑

t=1

�
(
T = t

)[
I (M; Yt |Vt )− I (M; St , Zt |Vt )

]
+ ηn

= I (M; YT |VT , T )− I (M; ST , ZT |VT , T )+ ηn . (135)

Denoting ST � S, V � (VT , T ), U � (M, V ), X � XT ,
Y � YT and Z � ZT . Lemma 10 establishes an independence
property under ϒ , which is key in deriving the factorization

property of the distribution of (S, V , U, X, Y, Z) (induced
by ϒ), stated in Lemma 11. Both lemmas are proven in
Appendix G.

Lemma 10: For any QS ∈ Q, and i ∈ [1 : n], Si and
(Cn, Sn\i , M, Xn , Y n\i , Zn\i ) are independent under ϒ from
(125a).

Lemma 11: For any QS ∈ Q and (s, v, u, x, y, z) ∈ S ×
V × U × X × Y × Z , where V and U are the alphabets that
correspond to the definitions of V and U stated above, the
following factorization holds

�ϒ(V = v, U = u, X = x, S = s, Y = y, Z = z)

= �ϒ(V = v, U = u, X = x)QS(s)Ws(y|x)Vs(z|x).

(136)
Denoting �ϒ(V = v, U = u, X = x) � QV ,U,X (v, u, x),
for all (v, u, x) ∈ V × U × X , Lemma 11 shows that the
joint distribution of (S, V , U, X, Y, Z) factors as stated in
Theorem 3.

Finally, we substitute ηn = η
(1)
n + η

(2)
n , while using the

definition of η
(2)
n and (48a), to get that for any QS ∈ Q and

n sufficiently large

R <
IQ(U ; Y |V )− IQ(U ; S, Z |V )

1− ε − 2|S|e−2n2d

+ η
(1)
n +ε + 1

n + αn log |Y| + 2h(αn)+ |S| log(n+1)
n

1− ε − 2|S|e−
2n2d

|S|2
+ ε,

(137)

where IQ denotes that the underlying distribution of the
mutual information terms is QV ,U,X QS QY |X,S QZ |X,S , where
QY |X,S(y|x, s) = Ws(y|x) and QZ |X,S(z|x, s) = Vs(z|x), for
all (s, x, y, z) ∈ S×X ×Y×Z . Letting n→∞ (which takes
αn and η

(1)
n to 0) and ε → 0 gives

R ≤ IQ(U ; Y |V )− IQ(U ; S, Z |V ), ∀QS ∈ Q. (138)

Taking an infimum of the RHS (138) over all QS ∈ Q further
gives

R ≤ inf
Q S∈Q

[
IQ(U ; Y |V )− IQ(U ; S, Z |V )

]
. (139)

Finally, upper bounding the RHS of (139) by maximizing it
over all QV ,U,X ∈ P(V × U × X ) concludes the proof.

VII. SUMMARY AND CONCLUDING REMARKS

We derived the CR-assisted SS-capacity of the AVWTC
with type constrained states. The constraint allows only the
state sequences whose empirical distribution is within a small
gap from the prescribed type. Achievability relies on a general
single-letter lower bound on the capacity of the Q-constrained
AVWTC that does not assume the existence of a best chan-
nel to the eavesdropper. To establish SS under each of the
exponentially many possible states, the mutual information
between the message and the eavesdropper’s observations was
shown to be negligible even when maximized over all message
distributions, choices of state sequences and realizations of
the CR-code. The SS analysis was based on a heterogeneous
version of the strong soft-covering lemma that was recently



7238 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 12, DECEMBER 2016

presented in [48]. The lemma showed that the probability
(with respect to a randomly generated codebook) of the
soft-covering phenomenon happening is doubly-exponentially
close to one, when transmitting over a state-dependent channel
with a certain state sequence realization. The condition for the
above is that the rate of the codebook is above the conditional
mutual information between the input and output given the
state. An application of the union bound combined with a CR-
code reduction argument (based on a Chernoff bound) then
establishes SS. The resulting reliable and semantically-secure
reduced CR-code is over a family of (uncorrelated) codes that
is only polynomial in size.

The converse for the type constrained scenario used a gen-
eral upper bound on CR(W,V,Q). Derived uniformly over
the constraint set, the upper bound has a max-inf form, and
when specialized to a compound WTC over a corresponding
constraint set, it improves upon the previously best known
single-letter upper bound for that problem [28, Th. 2]. The
proof of the upper bound showed that reliability and SS
under all state sequences in any type-class imply similar
performance when the state sequence is i.i.d. according to the
type. The main challenge was in proving that the normalized
equivocation of the message given the output sequence is
negligible for outputs generated by the averaged main channel.
This step required a continuity property that was derived via
a novel distribution coupling argument. Combining our upper
and lower bounds with some continuity arguments established
the SS-capacity of the type constrained AVWTC. The formula
has the structure of two subtracted mutual information terms.
The first term suggests that the legitimate users effectively
transmit over the averaged DMC, which is in general no better
than any of the main channels associated with each state. The
second (subtracted) mutual information term corresponds to
ensuring secrecy versus an eavesdropper with perfect CSI.

Our main goal was to find a single-letter description of
the admissible secrecy-rate in an AVWTC scenario while
accounting for each of its exponential number of security con-
straints (instead of relying on assumptions that degenerate the
scenario to a single dominating constraint). The heterogeneous
strong soft-covering lemma allowed us to do just that, while
upgrading to SS. Our achievability proof showed the existence
of CR-assisted SS-capacity achieving CR-code of polynomial
size. Consequently, combining our code construction with a
condition that identifies whether a given type constrained
AVWTC has zero or non-zero uncorrelated capacity, will
suffice for characterizing the uncorrelated SS-capacity. Such a
differentiating condition being currently unknown, we pose it
as a question for future research.

APPENDIX A
PROOF OF LEMMA 3

Let QU,X ∈ P(U × X ) and denote

I(QS , QU,X ) � IQ S (U ; Y )− IQ S (U ; Z |S), (140a)

Iδ(QS, QU,X ) � min
Q1∈Pδ(Q S)

IQ1(U ; Y )

− max
Q2∈Pδ(Q S)

IQ2(U ; Z |S), (140b)

where IQ stands for the mutual information term being calcu-
lated with respect to Q as the state distribution. Note that for
any QU,X and δ > 0 we have

Iδ(QS, QU,X ) ≤ I(QS, QU,X ), (141)

and therefore

I∗δ (QS) � max
QU,X

Iδ(QS, QU,X )

≤ max
QU,X

I(QS, QU,X )

= C�
R(W,V, QS). (142)

Fix QU,X ∈ P(U × X ). The continuity of mutual informa-
tion implies that for every Q1, Q2 ∈ Pδ(QS), we have

∣
∣
∣IQ S (U ; Y )− IQ1(U ; Y )

∣
∣
∣ ≤ f1(δ) (143a)

∣
∣
∣IQ S (U ; Z |S)− IQ2(U ; Z |S)

∣
∣
∣ ≤ f2(δ), (143b)

where limδ→0 f j (δ) = 0, for j = 1, 2, uniformly in QU,X

(i.e., f1 and f2 are independent of QU,X ). For any δ > 0, if
Q�

1 ∈ Pδ(QS) achieves minQ1∈Pδ(Q S) IQ1(U ; Y ), then (143a)
implies

IQ S (U ; Y ) ≤ IQ�
1
(U ; Y )+ f1(δ)

= min
Q1∈Pδ(Q S)

IQ1(U ; Y )+ f1(δ). (144)

Similarly, we also have

IQ S (U ; Z |S) ≥ max
Q2∈Pδ(Q S)

IQ2(U ; Z |S)− f2(δ). (145)

Combining (144) and (145) shows that

I(QS, QU,X ) ≤ Iδ(QS, QU,X )+ f1(δ)+ f2(δ), (146)

for every QU,X ∈ P(U×X ) and δ > 0, which, in turn, implies

C�
R(W,V, QS) ≤ I∗δ (QS)+ f1(δ)+ f2(δ), ∀δ > 0. (147)

Since limδ→0 f j (δ) = 0, for j = 1, 2, (142) and (147)
produce (74).

APPENDIX B
PROOF OF LEMMA 4

Let η > 0 be arbitrary and with respect to the random
codebook Bn , for every y ∈ Yn , define the random variable

�n(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m, w),

max
(m′,w′)∈Mn×Wn :

(m′,w′) �=(m,w)

d
(
X(m′, w′, γ ), y

)

< d
(
X(m, w, γ ), y

)

e, no (m, w) as above exists

.

(148)

Furthermore, for every (m, w) ∈Mn ×Wn and y ∈ Yn , also
set Z(y, m, w) = 1{

�n(y) �=(m,w)
}. With respect to the measure
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μ̃n from (82), we have

Em,w(Wn, C̃n)

= �μ̃n

∑

y∈Yn

Wn
(
y
∣
∣X(m, w)

)
Z(y, m, w)

(a)=
∑

x∈X n

Qn
X (x)

∑

y∈Yn

Wn(y|x)

×�μ̃n

[
Z(y, m, w)

∣∣
∣X(m, w) = x

]

=
∑

(x,y)∈X n×Yn

Qn
X (x)Wn(y|x)

×�μ̃n

(
�n(y) �= (m, w)

∣
∣
∣X(m, w) = x

)

(b)=
∑

(x,y)∈X n×Yn

Qn
X (x)Wn(y|x)

×�μ̃n

⎛

⎜
⎝ max

(m′,w′)∈Mn×Wn :
(m′,w′) �=(m,w)

d
(
X(m′, w′), y

) ≥ d(x, y)

⎞

⎟
⎠,

(149)

where (a) is the law of total expectation (by first taking
a conditional expectation on X(m, w)), while (b) uses the
definition of �n(y) and the independence of the random
vectors in the collection Bn .

For all (x, y) ∈ X n×Yn with d(x, y) ≥ |Mn‖Wn |
η , we upper

bound the probability on the RHS of (149) as

�μ̃n

⎛

⎜
⎜
⎝ max

(m′,w′)∈Mn×Wn :
(m′,w′) �=(m,w)

d
(
X(m′, w′), y

) ≥ d(x, y)

⎞

⎟
⎟
⎠

≤ �μ̃n

⎛

⎜⎜
⎝ max

(m′,w′)∈Mn×Wn :
(m′,w′) �=(m,w)

d
(
X(m′, w′), y

) ≥ |Mn‖Wn |
η

⎞

⎟⎟
⎠

= �μ̃n

⎛

⎜
⎜⎜
⎜
⎝

⋃

(m′,w′)∈Mn×Wn :
(m′,w′) �=(m,w)

{
d
(
X(m′, w′), y

)≥ |Mn‖Wn |
η

}

⎞

⎟
⎟⎟
⎟
⎠

(a)≤
∑

(m′,w′)∈Mn×Wn :
(m′,w′) �=(m,w)

�Qn
X

(
d
(
X, y

) ≥ |Mn‖Wn |
η

)

(b)≤ η
∑

(m′,w′)∈Mn×Wn :
(m′,w′) �=(m,w)

�Qn
X

d
(
X, y

)

|Mn‖Wn |

(c)≤ η (150)

where (a) uses the union bound and the fact that X(m′, w′) ∼
Qn

X , for all (m′, w′) ∈Mn ×Wn , (b) is Markov’s inequality
and (c) follows by the assumption that �Qn

X
d(X, y) ≤ 1, for

all y ∈ Yn .

Plugging (150) back into (149) completes the proof:

Em,w(Wn, C̃n)

≤
∑

(x,y)∈X n×Yn :
d(x,y)< |Mn‖Wn |

η

Qn
X (x)Wn(y|x) · 1

+
∑

(x,y)∈X n×Yn :
d(x,y)≥ |Mn‖Wn |

η

Qn
X (x)Wn(y|x) · η

≤ �Qn
X Wn

(
d(X, Y) <

|Mn‖Wn |
η

)
+ η. (151)

APPENDIX C
PROOF OF LEMMA 5

First define

WQ �
{

WQ : X → P(Y)
∣∣
∣Q ∈ Q

}
, (152)

and note that the convexity of Q implies that WQ is also a
convex set. Throughout this proof we make use of a slightly
modified notation of mutual information. Specifically, we
represent the mutual information between a pair of random
variables in terms of their underlying joint distribution, i.e.,
for any P ∈ P(X ) and W : X → P(Y), let I (P, W ) �
I (X; Y ), where (X, Y ) ∼ P × W . Accordingly, we may
write

min
Q∈Q

IQ(X; Y ) = min
W∈WQ

I (QX , W ). (153)

Let W̃ ∈WQ be a channel that achieves the RHS of (153), i.e.,
with respect to the notation in the error probability analysis
from Section V, we have

I
(
QX , W̃

) = IQ̃ (X; Y ). (154)

The convexity of WQ implies that for every W ∈ WQ and
α ∈ [0, 1]

I
(
QX , αW + (1− α)W̃

) ≥ I
(
QX , W̃

)
, (155)

and therefore,

lim
α↘0

∂

∂α
I
(
QX , αW + (1− α)W̃

) ≥ 0. (156)

Similarly to [47, eq. (12.19)], since

∂

∂α
I
(
QX , αW + (1− α)W̃

)

=
∑

(x,y)∈X×Y
QX (x)

(
W (y|x)− W̃ (y|x)

)

× log

(
αW (y|x)+ (1− α)W̃ (y|x)

αQY (y)+ (1− α)Q̃Y (y)

)

, (157)
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where QY (y) = ∑
x∈X QX (x)W (y|x) and Q̃Y (y) =∑

x∈X QX (x)W̃ (y|x), it follows that

∑

(x,y)∈X×Y
QX (x)W (y|x) log

(
W̃ (y|x)

Q̃Y (y)

)

≥ I
(
QX , W̃

)

= IQ̃(X; Y ). (158)

APPENDIX D
PROOF OF LEMMA 7

Fix QS ∈ Q, α ∈ (0, 1], n ∈ �� and s1 ∈ T n
α (QS). Clearly,

there exists an s2 ∈ T n
Q S

, such that

dH (s1, s2) ≤ nα, (159)

where dH : Sn × Sn → [0 : n] is the Hamming distance
function. Let A be the set of indices for which the components
of s1 and s2 coincide, i.e.,

A = {
i ∈ [1 : n]∣∣s1,i = s2,i

}
. (160)

Note that (159) implies that |Ac| ≤ nα.
Recall that for any subset ∅ �= A ⊆ [1 : n] and any

n-dimensional vector x ∈ X n , we denote the vector of ele-
ments from x with indices in A by xA, that is, xA = (xi )i∈A.
Similar convention is used for random vectors, while using
uppercase letters. By the mutual information chain rule, the
absolute value of the difference of mutual information terms
from (126) is upper bounded as follows:
∣
∣Iϒ(M; Zn |Sn = s1, Cn)− Iϒ(M; Zn |Sn = s2, Cn)

∣
∣

≤
∣
∣∣Iϒ

(
M;ZA∣

∣Sn = s1, Cn
)− Iϒ

(
M;ZA∣

∣Sn = s2, Cn
)∣∣∣

+
∣
∣
∣Iϒ

(
M;ZAc ∣∣ZA, Sn = s1, Cn

)

− Iϒ
(
M;ZAc ∣∣ZA, Sn = s2, Cn

)∣∣
∣

(a)≤
∣∣
∣Iϒ

(
M;ZA∣∣SA = sA1 , Cn

)− Iϒ
(
M;ZA∣∣SA = sA2 , Cn

)∣∣
∣

+ max

{
Iϒ

(
M;ZAc ∣∣ZA, S = s1, Cn

)
,

Iϒ
(
M;ZAc ∣∣ZA, S = s2, Cn

)

}

.

(b)≤ max
{

Hϒ

(
ZAc ∣∣Sn = s1

)
, Hϒ

(
ZAc ∣∣Sn = s2

)}

(c)≤ nα log |Z| (161)

where:

(a) is because for any m ∈Mn , zA ∈ Z |A| and s j , where
j = 1, 2, (124) implies

ϒ
(
m, zA

∣
∣s j

)

=
∑

γ∈�n

μn(γ )
1

Mn

∑

x∈X n

fγ (x|m)V |A|
sAj

(
zA

∣
∣xA

)

= ϒ
(
m, zA

∣
∣sAj

); (162)

(b) is since sA1 = sA2 , because conditioning cannot increase
entropy and the memoryless property from (162);

(c) holds since entropy is maximized by the uniform distri-
bution and because |Ac| ≤ nα.

APPENDIX E
PROOF OF LEMMA 8

Fix QS ∈ Q and α ∈ (0, 1]. First observe that for any
n ∈ ��, we have

max
s∈T n

α (Q S)
Iϒ(M; Zn |Sn = s, Cn)

(a)≤ max
s∈T n

QS

Iϒ(M; Zn |Sn = s, Cn)+ nα log |Z|
(b)= L(Vn, QS , Cn)+ nα log |Z|, (163)

where (a) follows from Lemma 7, while (b) is because
ϒM,Z|S=s = P(s)

M,Zs
, for every s ∈ Sn , and the notation in

(123). On account of (123), for sufficiently large values of n
that are independent of QS ∈ Q, it holds that

L(Vn, QS , Cn) ≤ ε. (164)

Consequently, for those values of n, we have13

Iϒ(M; Zn |Sn, Cn)

=
∑

s∈Sn

Qn
S(s)Iϒ(M; Zn|Sn = s, Cn)

≤
∑

s∈T n
α (Q S)

Qn
S(s)Iϒ(M; Zn|Sn = s, Cn)

+
∑

s/∈T n
α (Q S)

Qn
S(s)n log |Z|

≤ max
s∈T n

α (Q S)
Iϒ(M; Zn |Sn = s, Cn)

+ n log |Z| · �Qn
S

(
Sn /∈ T n

α (QS)
)

(a)≤ L(Vn, QS , Cn)+ n log |Z|
(

α + 2|S|e−2n α2

|S|2
)

(b)≤ nη(1)
n,α, (165)

where (a) uses (163) and the upper bound on the probability
of drawing an atypical sequence from (5), while (b) follows
from (164).

APPENDIX F
PROOF OF LEMMA 9

Fix QS ∈ Q. For any n ∈ ��, let EU (Wn, QS , Cn) be
the average error probability under the CR-code Cn when the
state sequence is chosen randomly and uniformly over T n

Q S
.

Clearly, for any n sufficiently large (that is independent of
QS), we have

EU (Wn, QS , Cn) ≤ Ē(Wn, QS, Cn)
(a)≤ ε, (166)

where (a) is on account of (122).
For each γ ∈ �n , the PMF on Sn ×Mn × X n × Yn ×

Zn × M̂n describing the random experiment where the state
sequence is uniformly drawn from T n

Q S
is

�
(γ )
1 (s, m, x, y, z, m̂) �

1{
s∈T n

QS

}

|T n
Q S
| P(γ ,s)(m, x, y, z, m̂),

(167)

13Only the last step relies on n being sufficiently large; all other steps are
valid for every n ∈ ��
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for all (s, m, x, y, z, m̂) ∈ Sn ×Mn ×X n × Yn ×Zn × M̂n .
As before, we set

�1
(
cn(γ ), s, m, x, y, z, m̂

)
� μn(γ )�

(γ )
1 (s, m, x, y, z, m̂).

(168)

By (166) and Fano’s inequality, we have

H�1(M|Y n, Cn) ≤ 1+ EU (Wn, QS, Cn) · log Mn

≤ 1+ ε log Mn , (169)

where the last inequality holds for the aforementioned suffi-
ciently large n values.

To upper bound Hϒ(M|Y n, Cn) in terms of
H�1(M|Y n, Cn), we first index all the types in Pn(S)
by i ∈ B �

[
1 : |Pn(S)|]. Set Q1 = QS , and

associate with every Qi ∈ Pn(S), i �= 1, a PMF �i

on Cn × Sn ×Mn × X n × Yn × Zn × M̂n , that is defined
analogously to �1 from (168). Thus, with respect to �i , the
state sequence is uniformly chosen from T n

Qi
.

Let B be a random variable over B that takes the value
B = i , for i ∈ B, if an i.i.d. state sequence Sn ∼ Qn

S satisfies
Sn ∈ T n

Qi
. First note that

Iϒ(M; Y n |Cn) = Iϒ(M; B, Y n|Cn)− Iϒ(M; B|Y n, Cn)

≥ Iϒ(M; B, Y n|Cn)− log |B|
≥ Iϒ(M; B, Y n|Cn)− |S| log(n + 1),

(170)

which implies

Hϒ(M|Y n, Cn) ≤ Hϒ(M|Y n, B, Cn)+ |S| log(n + 1).

(171)

Next, we expand the conditional entropy from the RHS of
(171) with respect to B , while splitting it into typical and
atypical realizations of B . Fix α ∈ (

0, 1
2

]
and define

I(QS, α) =
{

i ∈ B
∣
∣
∣T n

Qi
⊂ T n

α (QS)
}
. (172)

For any n ∈ ��, we have

Hϒ(M|Y n, B, Cn)

≤
∑

i∈I(Q S,α)

�Qn
S

(
Sn ∈ T n

Qi

)
Hϒ(M|Y n, B = i, Cn)

+�Qn
S

(
Sn /∈ T n

α (QS)
) · log Mn

(a)≤
∑

i∈I(Q S,α)

�Qn
S

(
Sn ∈ T n

Qi

)
Hϒ

(
M
∣
∣Y n, Sn ∈ T n

Qi
, Cn

)

+ 2|S|e−2n α2

|S|2 log Mn , (173)

where (a) uses (5) and the definition of B . Recall that

�Qn
S

(
Sn = s

∣
∣Sn ∈ T n

Qi

) =
1{

s∈T n
Qi

}

|T n
Qi
| , ∀s ∈ Sn , ∀i ∈ B,

(174)

and therefore,

Hϒ(M|Y n, B = i, Cn) = Hϒ

(
M
∣
∣Y n, Sn ∈ T n

Qi
, Cn

)

= H�i (M|Y n, Cn). (175)

Having this, we remark that the main idea in upper bounding
Hϒ(M|Y n, Cn) is to use (171) and (173), while arguing that
the conditional entropy H�i (M|Y n, Cn) is small for any 1 �=
i ∈ I(QS, α) (i.e., for any random state sequence in the typical
set) as long as we know it is small for one single type in the
typical set (i.e., as long as (169) holds). To do so, we show
that H�i (M|Y n, Cn), for all i ∈ I(QS , α), can be replaced
with H�1(M|Y n, Cn) with a correction term that can be made
arbitrarily small when normalized by n. With some abuse of
notation, we henceforth denote by �1 the marginal PMF of
(168) on Sn×Mn×X n×Yn . Similarly, for any i ∈ I(QS, α),
�i denotes the marginal on Sn ×Mn × X n × Yn of the
original �i .

Fix i ∈ I(QS, α) and let �1,i be a coupling of �1 and �i ,
which is a PMF on Sn ×Mn × X n × Yn × Sn × Yn that is
defined by the following steps:

1) Similarly to the definition of the set A from (160), for
any (s, s̃) ∈ Sn × Sn set

A(s, s̃) �
{

j ∈ [1 : n]∣∣s j = s̃ j
}
. (176)

2) For any γ ∈ �n , define

�
(γ )
1,i (s, m, x, y, s̃, ỹ)

� �
(γ )
1 (s, m, x, y)�1,i (s̃|s)�1,i (ỹ|s, x, y, s̃), (177)

where

�1,i (ỹ|s, x, y, s̃) = 1 ⋂

j∈A(s,s̃)

{
ỹ j=y j

}
∏

j∈A(s,s̃)c

Ws̃ j (ỹ j |x j ),

(178)

and �1,i(s̃|s) is defined by the pseudo-algorithm given
at the next page.
Namely, in each step the algorithm first uniformly
chooses an index j ∈ [1 : n], such that the number
of appearances of s j in s is above the quota allowed
by Qi . Then, s j is replaced with a symbol s ∈ S that is
uniformly chosen from the set of symbols whose number
of appearances in s is below the quote subscribed by Qi .
The procedure repeats itself until the modified sequence
belongs to T n

Qi
. Clearly, the algorithm stops after a finite

number of cycles, since in each cycle the sequence s′ is
adjusted so that its empirical PMF of νs′ is closer to Qi .
We give a formal justification for the finite running time
argument subsequently.

3) As a last step, we set

�1,i
(
cn(γ ), s, m, x, y, s̃, ỹ

)

= μn(γ )�
(γ )
1,i (s, m, x, y, s̃, ỹ). (179)

For any 1 �= i ∈ I(QS, α), the symmetry in constructing
�1,i (s̃|s), the uniformity of �1,i (s) over T n

Q S
, and the fact that

sequences of the same type are merely permutations of one
another, imply that the marginal PMF of S̃n with respect to
�1,i is uniform over T n

Qi
, i.e.,

�1,i(s̃) = �i (s̃) =
1{

s̃∈T n
Qi

}

∣∣T n
Qi

∣∣ . (180)



7242 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 12, DECEMBER 2016

Algorithm 1 Construction of �1,i (s̃|s)
1: s′ ← s
2: while s′ /∈ T n

Qi
do

3: J (s′) := {
j ∈ [1 : n]∣∣N(s′j |s′) > nQi (s′j )

}

4: L(s′) := {
s ∈ S

∣
∣N(s|s′) < nQi (s)

}

5: Draw j ∼ Unif
(
J (s′)

)

6: Draw s ∼ Unif
(
L(s′)

)

7: s′j ← s
8: end while

Recalling the definition of �1,i (ỹ|s, x, y, s̃) from (178), we
thus obtain

�1,i (s̃, m, x, ỹ) = �i (s̃, m, x, ỹ), (181)

which shows that �1,i is a valid coupling of �1 and �i .
Some additional properties of the algorithms output are

needed. Denote by K ∈ � ∪ {∞} the number of cycles it
takes until Algorithm 1 terminates (i.e., for now, K may be
infinite). For each k ∈ [1 : K ] (if K = ∞ then k ∈ [1 : K ] is
to be understood as k ∈ �), denote by s′k the s′ sequence
obtained after the k-th cycle. Accordingly, s′0 = s, and if
indeed K < ∞, then s′K = s̃. To analyse the algorithm’s
operation, for each k ∈ [1 : K ], define

L(h)
k =

{
s ∈ S

∣
∣
∣N(s|s′k) > nQi (s)

}
(182a)

L(l)
k =

{
s ∈ S

∣
∣
∣N(s|s′k) < nQi (s)

}
, (182b)

and further set

N (h)
k =

∑

s∈L(h)
k

∣
∣N(s|s′k)− nQi (s)

∣
∣ (183a)

N (l)
k =

∑

s∈L(l)
k

∣∣N(s|s′k)− nQi (s)
∣∣. (183b)

Note that N (h)
k = N (l)

k , for every k ∈ [1 : K ], and that in each
iteration both N (h)

k and N (l)
k reduce by 1, i.e.,

N (h)
k = N (h)

k−1 − 1, k ∈ [1 : K ]. (184)

Clearly, Algorithm 1 terminates once L(h)
k = L(l)

k = ∅,
or equivalently, once N (h)

k = N (l)
k = 0. When combined

with (184), this characterizes K = N (h)
0 , thus justifying

the finite running time of the algorithm. Consequently, if(
Sn, S̃n

) ∼ �1,i , then

��1,i

((
Sn, S̃n) ∈ T n

Q S
× T n

Qi

)
= 1. (185)

Another important outcome of the algorithm’s operation is
that the sequences Sn and S̃n jointly distributed according to
�1,i are almost surely within a Hamming distance of at most
nα. Namely, we claim that

��1,i

(
dH

(
Sn, S̃n) ≤ nα

)
= 1. (186)

To see the validity of (186), note that in each iteration one
symbol of the current s′k is altered. Furthermore, an altered

symbol is never modified again in any of the succeeding
iterations. As a consequence, this observation implies that

dH (s′k−1, s′k) = 1, ∀k ∈ [1 : K ], (187)

and when combined with the fact the dH (s, s′0) = 0, we obtain

dH (s, s′k) = dH (s, s′k−1)+ 1, ∀k ∈ [1 : K ]. (188)

Thus, to show that for dH (s, s̃) ≤ nα, it suffices to show that
the number of cycles K ≤ nα (keeping in mind that s′K = s̃).
Indeed, we have

K = N (h)
0

(a)=
∑

s∈L(h)
0

∣∣N(s|s)− nQi (s)
∣∣ (b)≤ n

∑

s∈L(h)
0

α

|S|
(c)≤ nα,

(189)

where (a) uses (183a), (b) is because T n
Qi
⊂ T n

α (QS), while

(c) follows since
∣∣L(h)

0

∣∣ ≤ |S|.
Having (185)-(186), let Ai

(
Sn, S̃n

)
be a random variable

defined by (176), where
(
Sn, S̃n

) ∼ �1,i and 1 �= i ∈
I(QS, α). We abbreviate Ai

(
Sn, S̃n

)
as Ai (and further omit

the index i , when it is clear from the context). Define the
random variable Ac

i � [1 : n]\Ai , and denote its alphabet by
Ac

i . As a consequence of (185), for any n ∈ ��, the cardinality
of Ac

i is upper bounded by [53, Sec. 3.1]

|Ac
i | =

�nα�∑

j=0

(
n

j

)
≤ 2nh(α), ∀1 �= i ∈ I(QS, α), (190)

where h is the binary entropy function. Since Ai and Ac
i

uniquely define one another, (190) yields

H�1,i (A)=H�1,i (Ac) ≤ log |Ac
i | ≤ nh(α), ∀i ∈I(QS , α),

(191)

We are now ready to link the mutual information between
the message and the legitimate user’s output sequence under
�i , to the corresponding term under �1. This, in turn,
yields an upper bound on H�i (M|Y n, Cn) in terms of
H�1(M|Y n, Cn), that when combined with (173), suffices to
establish Lemma 9. In the following chain of inequalities
(S̃n, Ỹ n) and (Sn, Y n) denote the state sequence and legitimate
channel output when distributed according to �i and �1,
respectively. Fix 1 �= i ∈ I(QS, α) and for any n ∈ ��

consider:

I�i (M; Ỹ n|Cn)
(a)≥ I�1,i (M; Ỹ n|A, Cn)− H�1,i (A)

≥ I�1,i (M; ỸA|A, Cn)− H�1,i (A)

(b)= I�1,i (M;YA|A, Cn)− H�1,i (A)

= I�1,i (M;YA|A, Cn)+ I�1,i (M;YAc |YA,A, Cn)

− I�1,i (M;YAc |YA,A, Cn)− H�1,i (A)

(c)≥ I�1,i (M; Y n|A, Cn)− nα log |Y| − H�1,i (A)

(d)≥ I�1(M; Y n|Cn)− nα log |Y| − 2H�1,i (A)

(e)≥ I�1(M; Y n|Cn)− nα log |Y| − 2nh(α), (192)
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where:
(a) and (d) follow by similar arguments as in the lower bound
from (170);
(b) is since since Ỹ j = Y j almost surely, for all j ∈ A
(cf. (178));
(c) is because for every a ∈ Ai , we have

I�1,i (M;Yac |Ya,A = a, Cn) ≤ |ac| log |Y| ≤ nα log |Y|;

(e) uses (191).
Clearly, (192) yields

H�i (M|Ỹ n, Cn)≤ H�1(M|Y n, Cn)+nα log |Y|+2nh(α),

(193)

for each 1 �= i ∈ I(QS, α). Inserting this back into (173),
while keeping (171) and (175) in mind, for any n sufficiently
large (that is independent of QS and α), we have

Hϒ(M|Y n, Cn)

≤
∑

i∈I(Q S,α)

�Qn
S

(
Sn ∈ T n

Qi

)
H�i (M|Y n, Cn)

+ 2 log Mn |S|e−2n α2

|S|2 + |S| log(n + 1)
(a)≤ H�1(M|Y n, Cn)+ nα log |Y| + 2nh(α)

+ 2 log Mn |S|e−2n α2

|S|2 + |S| log(n + 1)
(b)≤ nη(2)

n,α, (194)

where (a) uses (193), while (b) follows by (169) and by setting

η
(2)
n,α = 1

n+ 1
n log Mn

(

ε + 2|S|e−2n α2

|S|2
)

+α log |Y|+2h(α)+
|S| log(n+1)

n .
APPENDIX G

PROOF OF LEMMAS 10 AND 11

A. Lemma 10

Fix QS ∈ Q, γ ∈ �n and i ∈ [1 : n]. For any si ∈ S
and

(
cn(γ ), sn\i , m, xn, yn\i , zn\i) ∈ Cn×Sn−1×Mn×X n×

Yn−1 × Zn−1, for some γ ∈ �n , we have

ϒ
(
cn(γ ), sn\i , m, xn, yn\i , zn\i ∣∣si

)

= ϒ
(
cn(γ ), si , sn\i , m, xn, yn\i , zn\i ∣∣si

)

ϒ(si )
. (195)

The marginal distribution of Si with respect to ϒ from
(125a), is

ϒ(si ) = QS(si ), (196)

while for the numerator, we have

ϒ
(
cn(γ ), si , sn\i , m, xn, yn\i , zn\i)

= μn(γ )ϒ(γ )(si )ϒ
(γ )

(
sn\i , m, xn, yn\i , zn\i ∣∣si

)

= μn(γ )QS(si )Qn−1
S

(
sn\i ) 1

Mn
fγ (xn|m)

×W n−1
sn\i

(
yn\i ∣∣xn\i)V n−1

sn\i
(
zn\i ∣∣xn\i)

= μn(γ )QS(si )ϒ
(γ )

(
sn\i )ϒ(γ )

(
m
∣
∣sn\i)

×ϒ(γ )
(
xn

∣
∣sn\i , m

)
ϒ(γ )

(
yn\i , zn\i ∣∣sn\i , m, xn)

= ϒ(si )ϒ
(
cn(γ ), sn\i , m, xn, yn\i , zn\i). (197)

Inserting (196) and (197) back into (195) completes the proof.

B. Lemma 11

Again, fix QS ∈ Q and recall that V = (VT , T ),
where VT = (Y T−1, Sn

T+1, Zn
T+1, Cn). Therefore, we rep-

resent a realization v of V as v = (ṽt , t), where ṽt �(
yt−1, sn

t+1, zn
t+1, cn(γ )

) ∈ Y t−1 × Sn−t × Zn−t × Cn , for
some γ ∈ �n , and t ∈ [1 : n]. For any (v, u, x, s, y, z) ∈
V × U × X × S × Y × Z , we have

�ϒ(S = s|V = v, U = u, X = x)
(a)= �ϒ

(
ST = s

∣
∣(VT , T ) = (ṽt , t), M = m, XT = x

)

(c)= �ϒ(γ )(St = s)

= QS(s), (198)

where (a) is because U = (M, VT , T ), while (b) uses the inde-
pendence of T and (M, Xn , Sn, Y n, Zn) and the independence
relation from Lemma 10.

By similar steps to those in the derivation of (198), we also
obtain

�ϒ(Y = y, Z = z|V = v, U = u, X = x, S = s)
(a)= �ϒ(γ )(Yt = y, Zt = z|Xt = x, St = s)

= Ws(y|x)Vs(z|x), (199)

where (a) also relies on the Markov relation induced by the
channel.
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