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The Duality Upper Bound for Finite-State
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Abstract—This paper investigates the capacity of finite-state
channels (FSCs) with feedback. We derive an upper bound on
the feedback capacity of FSCs by extending the duality upper
bound method from mutual information to the case of directed
information. The upper bound is expressed as a multi-letter
expression that depends on a test distribution on the sequence
of channel outputs. For any FSC, we show that if the test
distribution is structured on a Q-graph, the upper bound can
be formulated as a Markov decision process (MDP) whose state
being a belief on the channel state. In the case of FSCs and states
that are either unifilar or have a finite memory, the MDP state
simplifies to take values in a finite set. Consequently, the MDP
consists of a finite number of states, actions, and disturbances.
This finite nature of the MDP is of significant importance, as
it ensures that dynamic programming algorithms can solve the
associated Bellman equation to establish analytical upper bounds,
even for channels with large alphabets. We demonstrate the
simplicity of computing bounds by establishing the capacity of
a broad family of Noisy Output is the State (NOST) channels
as a simple closed-form analytical expression. Furthermore, we
introduce novel, nearly optimal analytical upper bounds on the
capacity of the Noisy Ising channel.

Index Terms—Feedback capacity, dual capacity upper bound,
dynamic programming (DP), finite state channels (FSCs).

I. INTRODUCTION

F INITE-STATE channels (FSCs) [2], [3], [4] are com-
monly used to model scenarios in which the channel or

the system have memory, as encountered in many practical
applications such as wireless communication [5], [6], [7],
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Fig. 1. Finite-state channel with feedback.

magnetic recording [8], and molecular communication [9],
[10]. Despite their significance in theory and practice, both the
capacity and the feedback capacity of FSCs are characterized
by multi-letter formulas that are hard to compute. This paper
investigates the capacity of FSCs with feedback (see Fig. 1),
and develops a methodology to derive computable upper
bounds on their feedback capacity.

A common approach for computing the feedback capacity
of FSCs is via the Markov decision process (MDP) formu-
lation of the capacity expression [11], [12], [13]. In certain
cases, employing dynamic programming (DP) methods yields
a numerical solution that can be translated into a conjectured
optimal solution. To conclude its optimality and derive a
corresponding analytical capacity expression, a solution for
the involved Bellman equation is required, as has been done
for several particular channels [11], [14], [15], [16], [17], [18],
[19]. However, due to the inherent high complexity associated
with the continuous states and actions of the MDP, obtaining
such an analytical solution is generally infeasible for the
majority of channels, particularly when the channel alphabets
extend beyond binary. In [20], reinforcement learning (RL)
algorithm was employed to evaluate the MDP in [11] and
enable the numerical computation of feedback capacity for
unifilar FSCs with large alphabets; however, their work only
offers numerical evaluations rather than analytical bounds.
Notably, their work draws upon the approach presented in this
paper, which was partially introduced in [1], to establish tight
analytical upper bound on the capacity of the Ising channel
with large alphabets. This highlights the applicability of our
method for deriving analytical upper bounds for channels with
large alphabets.

In a recent paper [21], the authors introduced an upper
bound on the feedback capacity of unifilar FSCs, expressed
as a single-letter formula applicable to any choice of a
Q-graph.1 Additionally, it was demonstrated that this bound

1The Q-graph, introduced in [21], is an auxiliary directed graph used to
map output sequences onto one of the auxiliary graph nodes (see Fig. 2 for
an example).
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can be transformed into a finite-dimensional convex opti-
mization [22]. While it has yielded new capacity results,
the analytical computation of this bound remains challenging
due to the need to verify the Karush–Kuhn–Tucker (KKT)
conditions. This complexity is especially pronounced when
the channel parameters involve large alphabets. The method
proposed in this paper offers greater versatility, applying to any
FSC rather than being limited to specific families of FSCs, as
in [22], while also providing a significantly simpler approach
for deriving analytical upper bounds. Moreover, recent work
[23] showed that the capacity of an FSC with delayed feedback
can be computed as that of a new FSC with instantaneous
feedback and an extended state. As a result, [23] builds on the
framework developed in this paper (previously introduced in
[1]) to derive analytical upper bounds on the delayed feedback
capacity of FSCs.

Motivated by these challenges, the current paper focuses on
simple derivation of analytical upper bounds that are suitable
to channels with large alphabets. In [24], we previously
introduced computable upper bounds for a broad class of FSCs
without feedback, based on the dual upper-bounding technique
[25], [26]. Inspired by this work, the derivation in this paper
also employs the dual upper-bounding technique but is adapted
to directed information. The resulting duality bound is a multi-
letter formula that is a function of a test distribution on the
channel outputs that needs to be optimized for meaningful
bounds. The choice of the test distribution is crucial as it
directly affects the performance of the upper bound. As in
the case of a memoryless channel, if the test distribution
matches the optimal output distribution, the resulting upper
bound is tight. In most cases, the optimal output distribution
for channels with memory is not i.i.d. While Markov test
distributions are commonly chosen [27], [28], [29], it has been
demonstrated that certain channels do not admit a Markovian
structure of any finite order. To address this limitation, we
adopt graph-based test distributions introduced in [24]. These
test distributions are structured on Q-graphs and provide
a generalization of the standard Markov test distributions,
allowing for a variable-order Markov process on the channel
output sequence.

A. Main Contributions

Our main contributions are summarized as follows:
• We derive a new multi-letter dual upper bound on the

feedback capacity of FSCs, expressed as a function of a
test distribution over the channel outputs.

• If the test distribution is structured on a Q-graph, we
show that the upper bound can be formulated as an MDP,
making the bound computable. This formulation applies
to any FSC and any graph-based test distribution.

• For unifilar FSCs and finite-memory state channels, our
MDP formulation simplifies to an MDP that has a finite
number of states, actions, and disturbances. This simpli-
fication facilitates the use of analytical MDP methods,
allowing for straightforward numerical evaluations and
corresponding analytical upper bounds, even for channels
with large alphabets.

To illustrate the effectiveness of our approach, we provide new
capacity results for several FSCs:
• We analyze a broad class of Noisy Output is the State

(NOST) channels [30] and derive a closed-form expres-
sion for their feedback capacity.

• We introduce novel upper bounds on the capacity of the
Noisy Ising (N-Ising) channel, a generalized version of
the well-known Ising channel [31], demonstrating that the
upper bounds are nearly tight.

B. Organization

The remainder of the paper is organized as follows. Sec-
tion II provides our notations and the model definition.
Section III introduces the dual capacity upper bound and
provides background on Q-graphs. Section IV outlines our
main results. Section V provides a concise overview of infinite-
horizon DP and introduces our MDP formulation of the dual
capacity upper bound for FSCs with feedback. Section VI
presents several techniques to explore for Q-graphs that yield
good performance upper bounds. Section VII presents our
analytic results on the capacity of several FSCs. Finally, our
conclusion appears in Section VIII. To maintain the flow of
the presentation, some proofs are given in the appendices.

II. NOTATION AND MODEL DEFINITION

In this section, we introduce our notation and define the
FSC model.

A. Notation

Throughout this paper, we use the following notations. The
set of natural numbers, excluding zero, is denoted by N,
and R denotes the set of real numbers. Random variables
will be denoted by capital letters, and their realizations will
be denoted by lower-case letters, e.g., X and x, respectively.
Calligraphic letters denote sets, e.g., X . We use the notation Xn

to denote the random vector (X1, X2, . . ., Xn) and xn to denote
the realization of such a random vector. For a real number
α ∈ [0, 1], we define ᾱ = 1−α. The binary entropy function is
defined by H2(α) = −α log2(α)− ᾱ log2(ᾱ) with the convention
of 0 log2 0 = 0. The probability mass function of X is denoted
by PX , the conditional probability of X given Y is denoted
by PX|Y , and the joint distribution of X and Y is denoted by
PX,Y . The probability Pr[X = x] is denoted by PX(x). When
the random variable is clear from the context, we write it in
shorthand as P(x).

Let PY and TY be two discrete probability measures on the
same probability space. The relative entropy between PY and
TY is denoted by D (PY‖TY ). The conditional relative entropy
is defined as D(PY |X‖TY |PX) = EX

˚
D(PY |X‖TY )

	
, where EX[·]

denotes the expectation operator over PX . We use the standard
notation of directed information, as in [32],

I(Xn → Yn) =

nX
i=1

I(Xi; Yi|Y i−1),

and causal conditioning

P(yn‖xn) =

nY
i=1

P(yi|yi−1, xi).
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When referring to causal conditioning particularized for deter-
ministic functions, we employ the notation f (xn‖yn), defined
as

f (xn‖yn−1) =

nY
i=1

1{xi = fi(xi−1, yi−1)}, (1)

where fi : X i−1 × Y i−1 → X are deterministic functions.
Finally, the conditional causal conditioning is defined as

P(yn‖xn|z) =

nY
i=1

P(yi|yi−1, xi, z).

B. Finite-State Channels

A FSC is defined by the triplet (X × S , PS +,Y |X,S , Y × S),
where X is the channel input, Y is the channel output, S is
the channel state at the beginning of the transmission, and
S + is the channel state at the end of the transmission. The
cardinalities X , Y , and S are assumed to be finite. The channel
has the following probabilistic property

P(st, yt |xt, yt−1, st−1,m)
= PS +,Y |X,S (st, yt |xt, st−1), t = 1, 2, . . ., (2)

for a given message m.
In this paper, we consider a communication setting with

feedback as depicted in Fig. 1. It is assumed that the initial
state, s0, is available to both the encoder and the decoder. The
encoder has access to the message M, and the previous channel
outputs. Accordingly, the encoder outputs xt as a function of
M and the channel outputs up to time t−1. The channel input
xt then goes through a FSC and the resulting output yt enters
the decoder.

A FSC is strongly connected if, for any states s, s′ ∈ S,
there exits an integer T and an input distribution {PXt |S t−1 }

T
t=1

such that
PT

t=1 PS t |S 0 (s|s′) > 0. We are using the definition of
achievable rate and capacity as given in the book by Cover
and Thomas [33]. It was shown in Theorem 1 of [34] that
the feedback capacity of a strongly connected FSC is given
by

Cfb = lim
n→∞

1
n

max
P(xn‖yn−1)

I(Xn → Yn), (3)

for any initial state.
As can be seen above, the feedback capacity is expressed by

a multi-letter formula. In the sequel, we present upper bounds
for general FSCs, but these bounds are significantly simplified
for two important classes of channels:
• Unifilar FSCs: for these channels, the channel state

evolves according to a deterministic function of the
channel input and output, and the previous channel state.
That is, (2) is simplified to:

P(st, yt |xt, st−1)
= 1{st = f (xt, yt, st−1)}PY |X,S (yt |xt, st−1), (4)

where f : X × Y × S → S.
• Finite-memory state channels: for these channels, the

channel state depends on a finite number of past inputs

and outputs. Specifically,

P(st, yt |xt, yt−1, st−1)
= P(st |xt

t−k1
, yt

t−k2
)PY |X,S (yt |xt, st−1), (5)

where k1, k2 are arbitrary non-negative finite integers.
In Section VI-C, we show that the capacity of a finite-
memory state channel can be computed as that of a new
unifilar FSC, which is derived by reformulating the original
channel. Specifically, we define the new channel state as
S̃ t , (Xt

t−k1
,Y t

t−k2
), while the channel input and the channel

output remain the same.

III. PRELIMINARIES

In this section, we first introduce the dual capacity upper
bound for memoryless channels. We then extend the technique
to derive the duality bound for the case of directed information.
Finally, we present an auxiliary tool called the Q-graph that
will be used to produce test distributions.

A. Dual Capacity Upper Bound

The dual capacity upper bound was first introduced in [35].
For a memoryless channel PY |X and any test distribution TY ,
the bound is given by

C ≤ max
x∈X

D(PY |X=x‖TY ), (6)

as shown in Theorem 8.4 of [36].
The bound is referred to as the duality upper bound since it

is derived from the dual capacity expression [37], and it fol-
lows from the non-negativity of the KL divergence D(PY ||TY ).
If the test distribution TY is chosen to be the unique optimal
output distribution P∗Y , i.e., the output distribution induced by
an optimal input distribution, the bound is tight. Therefore, to
minimize the upper bound, one should carefully select TY to
be as close as possible to P∗Y .

Following a similar methodology, we obtain the following
result for the directed information.

Lemma 1 (Duality UB for Directed Information): For a
fixed P(xn, yn) and any test distribution T (yn),

I(Xn → Yn) ≤ max D
�
PYn‖Xn=xn‖TYn

�
, (7)

where the maximum is over f (xn‖yn−1) as defined in (1).
It is worth noting that the directed information serves as

the capacity expression objective for both feedback and non-
feedback settings. The only difference lies in the optimization
domain, where we optimize over causally conditioned input
distributions P(xn‖yn) in the case of feedback and P(xn) in the
case of no feedback. The duality bound also holds for non-
feedback settings, but the optimization is done over sequences
xn rather than feedback-dependent sequences f (xn‖yn−1). The
following proof illustrates this fact.

Proof of Lemma 1: Consider the following chain of
inequalities

I(Xn → Yn)

=
X
xn,yn

P(xn, yn) log2

�
P(yn‖xn)

P(yn)

�
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Fig. 2. A 1st-order Markov Q-graph for channel output alphabet Y = {0, 1}.

=
X
xn,yn

P(xn, yn) log2

�
P(yn‖xn)T (yn)

P(yn)T (yn)

�
=
X
xn,yn

P(xn, yn) log2

�
P(yn‖xn)

T (yn)

�
− D(PYn‖TYn )

(a)
≤
X
xn,yn

P(xn‖yn−1)P(yn‖xn) log2

�
P(yn‖xn)

T (yn)

�
≤
X

yn

max
xn: P(xn‖yn−1)>0

P(yn‖xn) log2

�
P(yn‖xn)

T (yn)

�
(b)
= max

f (xn‖yn−1)
D
�
PYn‖Xn=xn‖TYn

�
, (8)

where step (a) follows from the non-negativity of the relative
entropy and the fact that P(xn, yn) = P(xn‖yn−1)P(yn‖xn), and
the maximum in step (b) is taken over the deterministic causal
conditioned mapping f (xn‖yn−1) =

Qn
i=1 1{xi = fi(xi−1, yi−1)},

which is characterized by the sequence of deterministic func-
tions fi : X i−1 × Y i−1 → X for i = 1, . . ., n. �

Note that Lemma 1 holds for any channel PYn‖Xn . As
clarified, for channels with memory, one should consider
choosing test distribution with memory [22], [24]. Markov test
distributions are a standard choice in the literature [27], [28],
[29], but it has been shown that the optimal outputs distribution
for certain channels does not admit a Markovian structure of
any finite order [21]. In this paper, we choose a test distribution
that extends the Markov model to a variable-order Markov
model using Q-graph.

Remark 1: In this work, we refer to both k-order and
variable-order Markov models. A k-order Markov model
assumes that the probability of transitioning to the next state
conditioned on the entire past depends only on the previous k
states. For instance, in a 1-order Markov model, the next state
depends solely on the current state, embodying the Markov
property. In contrast, a variable-order Markov model allows
the probability of the next state to depend on a summarized
context of the preceding states, effectively capturing a broader
history.

B. The Q-Graph

The Q-graph is a directed and connected graph defined on a
finite set of nodes Q, with edges labeled by symbols from the
channel output alphabet Y . It can be viewed as a finite-state
machine whose input is the channel output taking values from
Y . It possesses the property that the outgoing edges from each
node are labeled with distinct symbols from Y (see Fig. 2).
Consequently, the Q-graph can be utilized as a mapping of
(any length) output sequences to the graph nodes by traversing
the labeled edges. Specifically, for an initial node q0 ∈ Q, we
define a distinct mapping denoted by Φq0 : Y∗ → Q, where Y∗
encompasses all finite-length sequences over Y . To elaborate,
Φq0 (yt) signifies the node reached by traversing along the

unique directed path of length t labeled by yt = (y1, y2, . . . , yt)
while originating from node q0. For notational convenience,
we frequently omit the subscript from Φq0 when there is
no ambiguity. Alternatively, the induced mapping can be
expressed through a time-invariant function φ : Q× Y → Q,
where a new node is computed from the previous node and
the channel output.

Following [24], we use here graph-based test distribu-
tions which extend the standard Markov test distributions to
variable-order Markov models. For a fixed Q-graph, a graph-
based test distribution, TY |Q, is defined by a collection of
probability distributions TY |Q=q on Y for each node q ∈ Q.
It satisfies the following equation:

TYn |Q0 (yn|q0) =

nY
t=1

TY |Q(yt |qt−1), (9)

where qt−1 = Φ(yt−1).
Remark 2: Note that a Markov model of any order is a

special case of the variable-order Markov model. To elaborate,
when considering a Markov model of order k, we construct a
graph with Yk nodes, where each node represents a tuple of
k channel outputs, and the edges are connected accordingly.
Fig. 2 depicts an example of a first-order Markov model with
Y = {0, 1} and k = 1.

IV. MAIN RESULTS

In this section, our main results are summarized. We begin
by presenting the duality upper bound in Lemma 1 restricted
to graph-based test distributions.

Theorem 1 (Duality UB for FSCs using Q-graphs): For any
graph-based test distribution TY |Q, the feedback capacity of a
strongly connected FSC is bounded by

Cfb ≤ lim
n→∞

max
f (xn‖yn−1,s0)

min
s0,q0

1
n

nX
i=1

E

�
D
�X

si−1

P(si−1|Y i−1, xi−1)PY |X,S (·|xi, si−1)



T (·|Qi−1)

��
,

where the joint distribution is defined by
P(xi, yi, si, qi|xi−1, yi−1, si−1, s0, q0) that factorizes as

1{xi = fi(xi−1, yi−1, s0)}PY |X,S (yi|xi, si−1)

× PS + |X,Y,S (si|xi, yi, si−1)1{qi = Φq0 (yi−1)}.

The proof of Theorem 1 is shown in Appendix A. While
our upper bound in Theorem 1 is expressed as a multi-letter
expression, we introduce the following theorem, stating our
main result concerning the computability of the bound by
formulating it as an MDP problem.

Theorem 2: For any FSC, the dual capacity upper bound in
Theorem 1 can be formulated as an MDP that is presented in
Table I. In particular, P(S) × Q is the state space, X is the
action space, and Y is the disturbance space. For unifilar FSCs
or finite-memory state channels, the MDP state simplifies to
a singleton and takes values in the finite set S ×Q.

The proof of Theorem 2 is provided in Section V-B. We
begin by presenting the MDP formulation of the dual capacity
upper bound as stated in Theorem 2. Subsequently, we proceed
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TABLE I
MDP FORMULATION

to demonstrate its validity as a well-defined MDP, establishing
that its induced average reward equals the dual capacity upper
bound. For unifilar FSCs and finite-memory state channels,
the MDP formulation in Theorem 2 simplifies significantly to
an MDP with finite states, actions, and disturbances. MDPs
have been extensively studied in the field of optimization and
control (e.g., [38], [39], [40]). When the MDP states, actions,
and disturbances have finite spaces, the MDP can be solved
relatively easily using standard DP algorithms such as the
value iteration and the policy iteration. In particular, these
algorithms are used to evaluate the MDP and to extract a
conjectured solution. The conjectured solution is then proved
using the Bellman equation, leading to the simplification of the
involved upper bound in Theorem 1 into explicit expressions.

In Section VII, we demonstrate that the duality bound pro-
vides simple upper bounds when the test distribution is chosen
correctly. Specifically, we apply the developed framework to
several FSCs, resulting in novel analytical upper bounds on
their capacity. The results are summarized as follows:
• We investigate a wide family of NOST channels and

derive their capacity as a simple closed-form analytical
expression, as shown in Theorem 4.

• We establish new upper bounds on the feedback capacity
of the N-Ising channel. The bounds are provided in
Theorem 5 and Theorem 6.

Additionally, in Section VI, we present two methods based
on convex optimization and RL [11], [22] to extract Q-
graphs with good performance. Although these approaches
were initially proposed for unifilar FSCs, we demonstrate in
Section VI that they can be adapted to finite-memory state
channels by reformulating the channel to a new unifilar FSC,
with its capacity being the same as that of the original channel.

V. UPPER BOUNDS VIA MDP

In this section, we first introduce our MDP framework
and the Bellman equation. Then, for a fixed graph-based test
distribution, we present the MDP formulation of the dual
capacity upper bound for FSCs with feedback in Theorem 2.

A. MDP and the Bellman Equation

MDP is a mathematical framework for modeling sequential
decision-making problems involving uncertain outcomes that
depend on the system’s current state. We consider an MDP
scenario encompassing a state space denoted as Z , an action
space denoted as U , and a disturbance space denoted as
W . First, the initial state z0 is drawn randomly from the
distribution PZ . At each time step t, the system resides in
a state zt−1 ∈ Z , wherein the decision-maker selects an action

ut ∈ U and a disturbance wt ∈W is drawn from the conditional
distribution Pw(·|zt−1, ut). The state zt then evolves according
to the transition function F : Z × U ×W → Z , resulting in
zt = F(zt−1, ut,wt).

To determine the action ut, the decision-maker relies on
the function µt, which maps histories ht = (z0,w0, . . .,wt−1) to
corresponding actions, denoted as ut = µt(ht). Our objective,
given a policy π = {µ1, µ2, . . .} and a bounded reward function
g : Z × U → R, is to maximize the average reward over an
infinite time horizon. The average reward achieved by policy
π is defined as ρπ = lim infn→∞

1
nEπ

hPn−1
t=0 g

�
Zt, µt+1(z0)

�i
.

Accordingly, the optimal average reward is given by ρ∗ =

supπ ρπ.
The Bellman equation provides an alternative characteriza-

tion for the optimal average reward in MDPs. The following
statement encapsulates the Bellman equation [38] for our
formulation. If a scalar ρ ∈ R and a bounded function
h : Z → R satisfy

ρ+ h(z) = max
u∈U

�
g (z, u) +

Z
Pw(dw|z, u)h (F (z, u,w))

�
(10)

for all z ∈ Z , then ρ∗ = ρ.
For MDPs with finite states, actions, and disturbances, the

process of finding the function h(·) and the scalar ρ∗ in
the Bellman equation simplifies significantly. Specifically, the
optimal policy π∗ can be determined using DP algorithms like
value iteration, policy iteration, or RL techniques. Once an
optimal policy is established, the Bellman equation transforms
into a finite set of linear equations that can be easily solved. In
the subsequent section, we delve into the MDP formulation of
the dual upper bound and elucidate that, for unifilar FSCs and
finite-memory state channels, the MDP formulation consists
of finite states, actions, and disturbances.

B. MDP Formulation of the Dual Upper Bound (Proof of
Theorem 2)

In the following, we formally present the MDP formulation
of the dual capacity upper bound for FSCs with feedback
stated in Theorem 2. Fix a Q-graph and a corresponding graph-
based test distribution TY |Q. The MDP state at time t is defined
as zt−1 , (βt−1, qt−1), where βt−1 ,

�
βt−1(0) · · · , βt−1(|S | − 1)

�
and βt−1(s) , P(S t−1 = s|xt−1, yt−1, s0). The action is defined
as the channel input ut , xt, and the disturbance is defined as
the channel output wt , yt. The reward function is defined as
follows:

g(zt−1, xt)

, D

 X
st−1

βt−1(st−1)PY |X,S (·|xt, st−1)



TY |Q(·|qt−1)

!
. (11)

The MDP formulation is summarized in Table I. The induced
average reward in the infinite horizon regime of this MDP is
given by

ρ∗ = sup lim inf
n→∞

min
s0,q0

1
n

nX
t=1

E

�
D
�X

st−1

βt−1(st−1)PY |X,S (·|xt, st−1)



TY |Q(·|Qt−1)

��
, (12)
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where the supremum is over all deterministic functions { fi :
X i−1 ×Y i−1 → X }i≥1. The following theorem summarizes the
relationship between the upper bound in Theorem 1 and ρ∗.

Theorem 3: The upper bound in Theorem 1 is equal to the
optimal average reward in (12). That is, the capacity is upper
bounded by ρ∗.

The proof of Theorem 3 is given in Appendix B. As part
of the proof, we show that the formulation above constitutes
a valid MDP.

C. Simplified MDP Formulation

In the previous section, we introduced an MDP formulation
of the dual upper bound that holds for any FSC. In this
section, we highlight that the proposed formulation simplifies
significantly in the case of unifilar FSCs and finite-memory
state channels. Specifically, we demonstrate that, for these
cases, the MDP state space is finite.

Recall the MDP state is zt−1 , (βt−1, qt−1), where βt−1 ,
P(S t−1|xt−1, yt−1, s0). For unifilar FSCs, note that

βt−1(st−1) , P(st−1|xt−1, yt−1, s0)
= 1{st−1 = f (xt−1, yt−1, st−2)}.

Consequently, for unifilar FSCs, the vector βt−1 is equal to 1
at the corresponding coordinate where st−1 = f (xt−1, yt−1, st−2)
and is 0 otherwise. Thus, the MDP state can be represented
as zt−1 = (st−1, qt−1), which takes values in S ×Q.

For finite-memory state channels, we observe that

βt−1(st−1) , P(st−1|xt−1, yt−1, s0)

= P(st−1|xt−1
t−k1

, yt−1
t−k2

), (13)

where k1, k2 > 0 are finite and do not depend on t. Therefore,
according to (13), the MDP state space is finite and at most
of size |X |k1 · |Y |k2 .

Remark 3: In this simplified MDP formulation, the state
space, actions, and disturbances are all finite. Consequently,
solving the MDP and finding the optimal policy becomes
straightforward using standard dynamic programming algo-
rithms, which are guaranteed to converge within at most
|U ||Z | steps when using policy iteration algorithm, or at a
geometric rate when using value iteration algorithm. Moreover,
with an optimal policy in hand, the Bellman equation can be
represented as a finite set of linear equations due to the finite
alphabets. These equations can be directly solved to obtain
the scalar ρ∗ and the function h(·) that satisfy the Bellman
equation. This provides an explicit expression for the upper
bound on capacity (rather than a numerical approximation).
The upper bound on capacity is determined by the previously
found ρ∗, i.e., Cfb ≤ ρ

∗.

VI. Q-GRAPH EXPLORATION

The main challenge so far lies in finding a suitable Q-
graph such that its corresponding graph-based test distribution
will result in a good or tight upper bound when optimized.
Once a Q-graph is selected, our methodology allows us to
evaluate the upper bound and derive its analytical expression
by solving the MDP problem. In this section, we introduce

two approaches, proposed in [20] and [22], to address this
challenge. Although these approaches hold for unifilar FSCs,
we show in Section VI-C that they can be adapted to finite-
memory state channels.

A. Exploration via the Q-Graph Bounds

In [22], the authors introduced optimization algorithms to
compute upper and lower bounds on the capacity of unifilar
FSCs with feedback. For a fixed Q-graph, these algorithms
were based on single-letter bounds derived in [21]. To identify
a suitable Q-graph, they suggested conducting an exhaustive
search over all valid Q-graphs.2 However, the computational
complexity of this exhaustive search increases exponentially
with the graph size and the cardinality of the channel output.
For example, when |Y | = 2 and we search over all valid
Q-graphs of size 6, there are 655,424 different graphs. Con-
sequently, this approach is primarily suitable for exploring
small-sized Q-graphs.

Remark 4: In [22], it is demonstrated that the Q-graph upper
bound from [21] can be formulated as a standard convex
optimization problem. However, the analytical computation
of the bound remains challenging due to the need to verify
the KKT conditions. The approach introduced in this paper
offers an alternative and significantly simpler approach to
derive analytical upper bounds, even for channels with large
alphabets. However, it is worth noting that, for a fixed Q-graph,
our methodology mandates optimizing the corresponding
graph-based test distribution to obtain meaningful bounds. In
contrast, the Q-graph upper bound does not necessitate such
optimization as it does not involve the use of a test distribution.

Remark 5: For a fixed Q-graph, the convex optimization
problem associated with the Q-graph upper bound [22] can be
solved to determine the corresponding optimal graph-based
test distribution. Specifically, since this problem is formulated
as a convex optimization, convergence to the optimal solu-
tion is guaranteed. Upon convergence, the output distribution
PY |Q can be extracted, providing the optimal graph-based test
distribution, which leads to the tightest possible upper bound
for that particular Q-graph. With this optimal distribution in
hand, the corresponding upper bound can then be derived
analytically using the approach presented in this paper.

B. Exploration via RL

In [11], the feedback capacity of unifilar FSCs was for-
mulated as an MDP problem. Then, in [20], the authors
presented an RL-based algorithm to compute the feedback
capacity based on this MDP formulation. The key advantage
of the algorithm is its ability to evaluate the capacity even
for channels with large alphabets. While this methodology is
primarily employed for numerical evaluation of the capacity,
in some cases, it can also be utilized to extract optimal or
near-optimal Q-graphs. Specifically, the algorithm generates a
histogram of the MDP states that are visited under an estimated
optimal policy. If the resulting histogram of the MDP states

2A valid Q-graph is a directed graph that is aperiodic, i.e., connected and
has period 1.
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is discrete, indicating that only a finite number of MDP states
that are visited, a Q-graph can be extracted. In this case, each
visited MDP state serves as a node in the Q-graph, and the
labeled edges capture the evolution of the MDP states as a
function of the channel outputs. For additional details, we refer
the reader to [11].

C. Extension to Finite-Memory State Channels

In this section, we demonstrate that the two approaches in
Sections VI-A and VI-B can be adapted to finite-memory state
channels. The idea is to show that the capacity of a finite-
memory state channel can be computed as the capacity of
a new unifilar FSC obtained by reformulating the original
channel.

Consider a finite-memory state channel and define the
following transformation:
• The channel state is S̃ t , (Xt

t−k1
,Y t

t−k2
).

• The channel input and the channel output remain the
same.

We show that the above transformation defines a new unifilar
FSC with a transition kernel PY,S̃ + |X,S̃ . In other words, the
new channel follows the time-invariant Markov property of
FSCs defined in Eq. (2). Further, we establish the relationship
between the capacity of the original channel and its trans-
formed version through the following theorem.

Lemma 2: The capacity of any finite-memory state channel
is equal to the capacity of its transformed FSC PY,S̃ + |X,S̃ .
Further, the transformed channel is a unifilar FSC.

Proof of Lemma 2: We first show that the new channel is a
unifilar FSC. The proof consists of the following three steps.

1) Conditioned on the previous channel state S̃ t−1 and the
channel input Xt, the channel output Yt is independent
of any past states, inputs, and outputs. In particular, note
that

P(yt |xt, yt−1, s̃t−1)

=
X
st−1

P(st−1|xt, yt−1, s̃t−1)P(yt |xt, yt−1, s̃t−1, st−1)

(a)
=
X
st−1

P(st−1|xt, yt−1, s̃t−1)PY |X,S (yt |xt, st−1)

(b)
=
X
st−1

P(st−1|s̃t−1)PY |X,S (yt |xt, st−1), (14)

where (a) follows by the Markov property of the original
channel, which implies the Markov chain Yt−(Xt, S t−1)−
(Xt−1,Y t−1, S̃ t−1), and (b) follows by the fact that s̃t−1
includes (xt−1

t−k1−1, y
t−1
t−k2−1). Hence, according to (14), the

required property holds.
2) Next, we show that the unifilar property holds. Since

s̃t =
�
xt

t−k1
, yt

t−k2

�
, it follows directly that there exits a

deterministic function f̃ : X × Y × S̃ → S̃ such that
s̃t = f̃ (xt, yt, s̃t−1). This implies that the unifilar property
indeed holds.

3) Recall that both X and Y are finite cardinalities. Accord-
ingly, we directly deduce that the cardinality of the new
channel state is finite as well.

Fig. 3. The feedback capacity of the NOST channel as a function of the state
parameter ε.

Finally, we note that the capacity of the new unifilar FSC
is equal to the capacity of the original channel. Specifically,
given an input sequence, the corresponding outputs of the
new channel are drawn according to the statistics of the orig-
inal channel model. Furthermore, the maximization domain
remains unchanged as we still maximize over P(xn‖yn−1). �

VII. EXAMPLES

In this section, we present several examples of FSCs. For
all examples, both the channel input and the channel state
take values from the binary alphabet, i.e., S = X = {0, 1}. The
studied examples illustrate the simplicity of deriving analytical
upper bounds using our proposed methodology.

A. The NOST Channels

The NOST channels, studied in [30], are an extension of the
well-known Previous Output is the STate (POST) channels
[41]. For these channels, the state of the channel depends
stochastically on the previous channel output according to
P(st |yt). We focus on a broad family of NOST channels that is
defined as follows. At time t, the channel is defined as follows:

Yt =

(
Xt, w.p. 0.5,
S t−1, w.p. 0.5.

(15)

The state evolution P(st |yt) follows a binary symmetric channel
(BSC) with a transition parameter of ε.

The feedback capacity of POST channels was derived in
[41]. In a subsequent extension, [30] expressed the capacity of
NOST channels with stochastic state evolution (including BSC
state evolution, as considered here) as a finite-dimensional
convex optimization, requiring an optimization process. In
contrast, our work focuses on NOST channels with BSC state
evolution, but it provides a closed-form capacity expression,
and thus eliminating the optimization in [30]. To illustrate,
Fig. 3 presents a numerical evaluation of the capacity, as given
by the theorem below.
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Theorem 4: For any ε ∈ [0, 1], the capacity of the NOST
channels is given by

CNOST(ε) =
1
2

log2

 
1
4

� ε

1 − a

�ε �1 + ε̄

a

�1+ε̄
!
,

where

a =
εε(1 + ε̄)1+ε̄

εε(1 + ε̄)1+ε̄ + ε̄ ε̄(1 + ε)1+ε .

The proof of Theorem 4 is provided at the end of this
section, where both upper and lower bounds are presented
and shown to be equal, thereby establishing the capacity.
These bounds were obtained using a first-order Markov Q-
graph. In fact, it can be concluded from [30] that a first-order
Markov Q-graph is sufficient to solve any instance of NOST
channels, where the dependence of the channel state on the
previous channel output does not necessarily have to follow
a BSC.

Remark 6: As mentioned earlier, POST channels are
instances of NOST channels, where the channel state is a deter-
ministic function of the output, that is, P(st |yt) = 1{st = yt}.
Notably, when ε = 0, we obtain a POST channel instance.
In this case, the capacity is CNOST(0) = log2(5/4), precisely
matching the capacity outlined in [41] for this specific POST
channel.

Proof of Theorem 4: The proof of Theorem 4, concerning
the capacity of the NOST channel, consists of two parts. First,
we derive a tight upper bound on its capacity. Following that,
we provide a corresponding lower bound to demonstrate the
tightness of the upper bound. The upper bound is shown in
this section to elucidate the process of deriving analytical
upper bounds using our methodology. Conversely, the lower
bound is detailed in Appendix C to maintain the flow of the
presentation.

To derive the upper bound, we solve the Bellman equation
in (10). Consider the first-order Markov Q-graph in Fig. 2.
For any state parameter ε ∈ [0, 1], we define the following
graph-based test distribution:

TY |Q(0|0) = TY |Q(1|1) = a,

where

a =
εε(1 + ε̄)1+ε̄

εε(1 + ε̄)1+ε̄ + ε̄ ε̄(1 + ε)1+ε . (16)

Since the NOST channel is a finite-memory state channel,
the MDP state is defined as zt = (βt, qt), corresponding to the
MDP formulation in Section V, where

βt = P(S t |xt) =

(
[1 − ε, ε], xt = 0,
[ε, 1 − ε], xt = 1.

By iterating the value iteration algorithm, one can deduce
a conjectured solution3 for the value function h(z) and ρ∗,
which are required for the solution of the Bellman equation.
Specifically, define

ρ∗ =
1
2

log2

 
1
4

� ε

1 − a

�ε �1 + ε̄

a

�1+ε̄
!
. (17)

3Further reading on the numerical evaluation of MDPs can be found in [11]
and [16].

Further, define the value function as follows:

h([1 − ε, ε], 1) = h([ε, 1 − ε], 2) = 0

h([1 − ε, ε], 2) = h([ε, 1 − ε], 1) = log2

�
āaε

aāε

�
. (18)

In the following, we show that ρ∗ in (17) and h(z) in (18)
solve the Bellman equation. We begin with computing the
MDP operator at the state (β = [1 − ε, ε], q = 1). Specifically,
it is the maximum (on the right-hand side of the Bellman
equation in (10)) between two terms:

x = 0 : D
�
[1 − 0.5ε, 0.5ε]



 [a, 1 − a]
�

+
�

1 −
ε

2

�
· h([1 − ε, ε], 1) +

ε

2
· h([ε, 1 − ε], 2)

x = 1 : D
�
[0.5(1 − ε), 0.5(1 + ε)]



 [a, 1 − a]
�

+
1 − ε

2
· h([1 − ε, ε], 1) +

1 + ε

2
· h([ε, 1 − ε], 2).

(19)

After substitution, we can express (19) as

x = 0 : (1 − 0.5ε) log2

�
1 − 0.5ε

a

�
+ 0.5ε log2

� ε
2ā

�
x = 1 :

ε̄

2
log2

�
ε̄

2a

�
+

1 + ε

2
log2

�
1 + ε

2ā

�
. (20)

By substituting a into (20) and comparing the expressions
for x = 0 and x = 1, it can be shown that both actions
yield the same result. Furthermore, it can be directly verified
that (20) equals ρ∗ by comparing ρ∗ with the expression for
x = 0. On the other hand, we note that the left-hand side
of the Bellman equation is also ρ∗ + h([1 − ε, ε], 1) = ρ∗.
Accordingly, the Bellman equation holds for the MDP state
z = ([1 − ε, ε], 1). The verification for the remaining MDP
states can be conducted similarly. �

B. The Noisy Ising Channel

The Ising channel, introduced by Berger and Bonomi in
1990 [31], models a channel with intersymbol interference.
The channel is defined as follows:

Yt =

(
Xt, w.p. 0.5,
Xt−1, w.p. 0.5.

(21)

The channel state st is equal to the channel input xt, making
this channel a unifilar FSC. The feedback capacity of this
channel has been determined in [15].

We study here the Noisy Ising (N-Ising) channel, a gener-
alized version of the Ising channel, where the channel state
is determined stochastically rather than deterministically by
the previous channel input. Specifically, the channel is given
by Eq. (21), but the new channel state is randomly chosen
according to a distribution P(si|xi) resembling a BSC with a
transition probability ε. Note that the N-Ising channel is not
a unifilar FSC, but it is a finite-memory state channel. In the
following theorem, we provide a simple upper bound on its
capacity.

Theorem 5: For any ε ∈ [0, 0.5), the capacity of the N-Ising
channel is upper bounded by

CN−Ising(ε) ≤
1

2 + 4ε̄
· log2

 
16εεεε̄ (ε̄(1 + ε̄))ε

2−3ε+2

64ā2(aā)2ε̄(1 + ε)ε2−ε−2

!
,
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Fig. 4. Bounds on the capacity of the N-Ising channel. The upper bound
is obtained by a single Q-graph of size 4 (Theorem 6). The lower bound is
evaluated with two different Q-graphs of size 10 and 12.

where

a =
εεγ

εεγ + (ε̄ ε̄(1 + ε̄)ε−2)γ(1 + ε)γ(1+ε) , γ =
1

2ε2 − 3ε + 2
.

The proof of Theorem 5 is provided in Appendix D. The
upper bound is derived using a first-order Markov Q-graph.
Transforming the N-Ising channel into a new unifilar FSC,
as outlined in Section VI-C, yields a symmetric channel. The
inherent symmetry of the channel leads to the observation that,
for any ε ∈ (0.5, 1], we have CN−Ising(ε) = CN−Ising(1 − ε).
Additionally, for ε = 0.5, the transformed channel is a BSC
with parameter 0.25 for any channel state. Thus, for ε = 0.5,
the capacity is CN−Ising(0.5) = 1 − H2(0.25).

In the following theorem, we present an additional upper
bound that is at least as good as the upper bound in Theorem 5,
and is tighter in the case of small values of the state parameter
ε. The difference between the upper bounds in Theorems 5
and 6 has an order of ∼ 10−2. Considering the simplicity of
the expression and the absence of optimization procedures in
Theorem 5, we present it as well.

Theorem 6: For any ε ∈ [0, 0.5), the capacity of the N-Ising
channel is upper bounded by

CN−Ising(ε) ≤ min
1

2(1 + 2ε̄)(2 + ε)

× log2

 
24ε2+2ε−12ā4ε2−6ε−4(ε2 − 3ε + 2)ε

3−ε2−4ε+4

a4ε̄b2εε̄(1 + ε)ε3+ε2−4ε−4εε
3+ε2−2ε b̄2ε2−6ε+4

!
,

where the minimum is over all (a, b) ∈ [0, 1]2 that satisfy:

b7ε3−2ε4+4ε2−18ε+12b̄2ε4−7ε3+16ε−8εε
3−2ε2−8ε ε̄ε

3−3ε2−6ε+8

a2ε−4ε2−4ā8ε2−4ε+8(1 + ε)ε3−ε2−10ε−8(2 − ε)ε3−4ε2−4ε+16

≥ 1

The proof of Theorem 6 is shown in Appendix D. This
upper bound is obtained by using a unique Q-graph of size 4,
that is given within the proof of the theorem.

In Fig. 4, we present a numerical evaluation of upper
and lower bounds on the capacity of the N-Ising chan-
nel as a function of the state parameter ε. To evaluate
the performance of the upper bounds, Fig. 4 compare the
upper bound in Theorem 6 with a lower bound obtained
using the Q-graph lower bound [22]. As explained in Sec-
tion VI-A, this lower bound is applicable only to unifilar
FSCs. Therefore, we first reformulate the N-Ising channel
as a new unifilar FSC, as described in Section VI-C, and
then apply the Q-graph lower bound on the reformulated
channel.

We evaluated the lower bound using two different Q-graphs
of sizes 10 and 12, which were obtained through the RL
methodology described in Section VI-B. In particular, to
illustrate this, Fig. 5 presents two histograms, each corre-
sponding to a different value of the state parameter. These
histograms depict the MDP states visited under an estimated
optimal policy learned by RL. Following this, we performed
a quantization process to extract finite-sized Q-graphs. It is
worth noting that such quantization may lead to sub-optimal
Q-graphs, which may not result in a tight bound. However,
in many cases, it offers insights into the optimal Q-graph or
leads to a Q-graph that provides a reasonably good bound. In
the case of the N-Ising channel, as can be seen in Fig. 4, the
RL algorithm indeed converged to near-optimal Q-graphs that
provide an almost tight lower bound. The difference between
the upper and lower bounds is negligible, with an order of at
most ∼ 10−5.

Remark 7 (Ising Channel With Larger Alphabet): In a recent
advancement to RL algorithms [20], the capacity of the Ising
channel with alphabet size |X | ≤ 8 has been established. The
duality bound, derived in the current paper, was used to prove
the converse. As shown in our MDP formulation, despite the
large alphabets, the computation of the duality bound remains
relatively simple as the MDP state takes values in a finite
space.

VIII. CONCLUSION

In this paper, we presented a novel approach for deriving
upper bounds on the feedback capacity of FSCs. Our upper
bounds leverage an extension of the duality upper bound from
mutual information to the case of directed information. The
bounds are expressed as a function of a test distribution, and
we propose the use of graph-based test distributions as an
extension to the commonly used Markov test distributions.
For a fixed graph-based test distribution, we demonstrate that
the upper bounds can be formulated as a MDP problem,
making them computationally tractable. Moreover, in the cases
of unifilar FSCs and finite-memory state channels, the MDP
formulation exhibits finite states, actions, and disturbances. As
a result, for such channels, our methodology is capable of
handling channels with large alphabets, and deriving analytical
upper bounds becomes relatively straightforward through the
solution of the associated Bellman equation. Additionally,
we have introduced several exploration methodologies of
Q-graphs and evaluated their effectiveness on well-known
channels, yielding either tight or near-optimal bounds on their
capacity.
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Fig. 5. Histograms of the MDP states visited under an estimated optimal policy learned by RL in the case of the N-Ising channel. The left figure presents
the histogram of MDP states when the channel state parameter is ε = 0.1, while the right figure presents the histogram when the channel state parameter is
ε = 0.4.

APPENDIX A
DERIVATION OF THE UPPER BOUND — PROOF OF

THEOREM 1

In this section, we prove Theorem 1. We simplify (8) for
the case where the test distribution is defined on a Q-graph.
For convenience, we omit the dependence on the initial pair
(s0, q0). For a fixed (s0, q0), consider the following chain of
inequalities:

D(PYn‖Xn=xn‖TYn )

=
X

yn

P(yn‖xn) log2

�
P(yn‖xn)
TYn (yn)

�
=
X

yn

P(yn‖xn) log2

 
nY

i=1

P(yi|yi−1, xi)
T (yi|yi−1)

!
(a)
=

nX
i=1

X
yn

P(yn‖xn) log2

�
P(yi|yi−1, xi)

T (yi|yi−1)

�
(b)
=

nX
i=1

X
yi

X
qi−1

P(yi‖xi) log2

�
P(yi|yi−1, xi)
TY |Q(yi|qi−1)

�
× 1{qi−1 = Φ(yi−1)}

=

nX
i=1

X
yi−1

X
qi−1

P(yi−1‖xi−1)1{qi−1 = Φ(yi−1)}

×
X

yi

P(yi|yi−1, xi) log2

�
P(yi|yi−1, xi)
TY |Q(yi|qi−1)

�
(c)
=

nX
i=1

X
yi−1

X
qi−1

P(yi−1‖xi−1)1{qi−1 = Φ(yi−1)}

× D
�
PYi |Y i−1,Xi (·|yi−1, xi) ‖ T (·|qi−1)

�
≤ max

f (xn‖yn−1)

nX
i=1

E
�
D
�
P(·|Y i−1, xi) ‖ T (·|Qi−1)

��
(d)
= max

f (xn‖yn−1)

nX
i=1

E

�
D
�X

si−1

P(si−1|Y i−1, xi−1)

× PY |X,S (·|xi, si−1)



 T (·|Qi−1)

��
, (22)

where (a) follows by exchanging the order of summation, (b)
follows by marginalizing over yn

i+1 and the fact that qi−1 is a
function of yi−1, (c) follows by identifying the relative entropy,
and (d) follows by the Markov chain S i−1−(Xi−1,Y i−1, S 0)−Xi

and the channel law.
By dividing the term in (22) by n, minimizing over (s0, q0),

and taking the limit we obtain

Cfb

≤ lim
n→∞

min
s0,q0

max
f (xn‖yn−1)

1
n

nX
i=1

E

�
D
�X

si−1

P(si−1|Y i−1, xi−1, s0)P(·|xi, si−1)



T (·|Qi−1)

��
(23)

= lim
n→∞

max
f (xn‖yn−1,s0)

min
s0,q0

1
n

nX
i=1

E

�
D
�X

si−1

P(si−1|Y i−1, xi−1, s0)P(·|xi, si−1)



T (·|Qi−1)

��
, (24)

where the existence of the limit is shown next.

A. Existence of the Limit in (23)

In this section, we prove the existence of the limit in (23),
consequently implying the existence of the limit in (24). We
first introduce a technical lemma that will be utilized in the
proof. The proof of the lemma is provided in Appendix A-B.

Lemma 3: For any FSC PS +,Y |X,S and a test distribution
TYn , and for any xn, ym, s0 s.t. n > m ≥ 1, the following bound
holds:ˇ̌̌

D
�

PYn
m+1‖x

n
m+1 |x

m,ym,S m,s0




TYn
m+1 |y

m,q0

ˇ̌̌
PS m |xm+1,ym,s0

�
− D

�
PYn

m+1‖x
n
m+1 |x

m,ym,s0




 TYn
m+1 |y

m,q0

�ˇ̌̌
≤ log2(|S |). (25)

That is, the divergence is changed by at most log2(|S |) when
conditioning over S m.

We proceed to show the existence of the limit. Let us define

c(xn, s0, q0) ,
1
n

D
�
PYn‖Xn=xn,S 0=s0‖TYn |Q0=q0

�
. (26)

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 01,2025 at 14:12:24 UTC from IEEE Xplore.  Restrictions apply. 



HULEIHEL et al.: DUALITY UPPER BOUND FOR FINITE-STATE CHANNELS WITH FEEDBACK 3265

In addition, we define Cn as

Cn , min
s0,q0

max
f (xn‖yn−1)

c(xn, s0, q0)

=
1
n

min
s0,q0

max
f (xn‖yn−1)

D
�
PYn‖Xn=xn,S 0=s0‖TYn |Q0=q0

�
. (27)

Our objective is to show the existence of the limit limn→∞ Cn,
which in turn implies the existence of the limit in (23). The
idea of the proof is to show that the sequence n

�
Cn −

log2(|S |)
n

�
is super-additive. Then, by Fekete’s lemma [42], the limit
lim
n→∞

Cn exists, and is equal to supn

h
Cn −

log2 |S |
n

i
. Recall that

a sequence an is super-additive if it satisfies the inequality
am+k ≥ am + ak for any positive integers m and k.

Consider two positive integers m and k such that m + k =

n. Assume that f̂1(xm‖ym−1) and f̂2(xk‖yk−1) are the mapping
functions that achieve the maximum for Cm and Ck in (27),
respectively. Define a new mapping f̂ (xn‖yn−1) as follows:

f̂ (xn‖yn−1) = f̂1(xm‖ym−1) f̂2(xn
m+1‖y

n−1
m+1). (28)

Accordingly, since f̂ (xn‖yn−1) is not necessarily the input
mapping that achieves the maximum for Cn, then under the
choice of f̂ (xn‖yn−1) we have

nCn

≥ min
s0,q0

D
�
PYn‖xn,s0‖TYn |q0

�
(a)
= min

s0,q0

�
D
�
PYm‖xm,s0



 TYm |q0

�
+ D

�
PYn

m+1‖x
n
m+1 |Y

m,xm,s0




 TYn
m+1 |Y

m,q0

ˇ̌̌
PYm‖xm,s0

��
(b)
≥ min

s0,q0
D
�
PYm‖xm,s0



 TYm |q0

�
+ min

s0,q0
D
�

PYn
m+1‖x

n
m+1 |Y

m,xm,s0




TYn
m+1 |Y

m,q0

ˇ̌̌
PYm‖xm,s0

�
= mCm

+ min
s0,q0

D
�

PYn
m+1‖x

n
m+1 |Y

m,xm,s0




TYn
m+1 |Y

m,q0

ˇ̌̌
PYm‖xm,s0

�
, (29)

where (a) follows by the chain rule for relative entropy, (b)
follows from mint

�
f (t) + g(t)

�
≥ mint f (t) + mint g(t).

We show now that the second term in (29) is at least kCk.
For any initial pair (s0, q0) we have

D
�

PYn
m+1‖x

n
m+1 |Y

m,xm,s0




 TYn
m+1 |Y

m,q0

ˇ̌̌
PYm‖xm,s0

�
(a)
≥ D

�
PYn

m+1‖x
n
m+1 |Y

m,xm,S m,s0





TYn

m+1 |Y
m,q0

ˇ̌̌
PYm‖xm,s0 PS m |Ym,xm+1,s0

�
− log2(|S |)

(b)
= D

�
PYn

m+1‖x
n
m+1 |Y

m,xm,S m,s0





TYn

m+1 |Qm,Ym,q0

ˇ̌̌
PYm‖xm,s0 PS m,Qm |Ym,xm+1,s0,q0

�
− log2(|S |)

(c)
= D

�
PYn

m+1‖x
n
m+1,S m




TYn
m+1 |Qm

ˇ̌̌
PYm‖xm,s0 PS m,Qm |Ym,xm+1,s0,q0

�
− log2(|S |)

=
X
ym

P(ym‖xm, s0)
X
sm,qm

P(sm, qm|ym, xm+1, s0, q0)

× D
�

PYn
m+1‖x

n
m+1,sm




 TYn
m+1 |qm

�
− log2(|S |)

≥
X
ym

P(ym‖xm, s0) min
sm,qm

D
�

PYn
m+1‖x

n
m+1,sm




 TYn
m+1 |qm

�
− log2(|S |)

= min
sm,qm

D
�

PYn
m+1‖x

n
m+1,sm




 TYn
m+1 |qm

�
− log2(|S |)

= kCk − log2(|S |). (30)

where (a) follows because the relative entropy term is changed
by at most log2(|S |) when conditioning on S m (see Lemma 3),
(b) follows because Qm = Φ(Ym), and (c) follows due to
the Markov chain Yn

m+1 − (S m, Xn
m+1)− (Xm,Ym, S 0) and since

T (yn
m+1|qm, ym, q0) = T (yn

m+1|qm).
Hence, from (29) and (30), we observe that

nCn ≥ mCm + kCk − log2(|S |).

By rearranging the inequality, we obtain

n
�
Cn −

log2(|S |)
n

�
≥ m

�
Cm −

log2(|S |)
m

�
+ k

�
Ck −

log2(|S |)
k

�
.

Accordingly, we obtained that the sequence n
�
Cn −

log2(|S |)
n

�
is super-additive which concludes the existence of the limit
lim
n→∞

Cn, as required.

B. Proof of Lemma 3

In the following, we introduce a new random vector S̃ n

defined as: S̃ m+1 = S m and S̃ i = 0 for i , m + 1. We begin
by establishing a preliminary lemma that will be used for the
proof of Lemma 3.

Lemma 4: For any FSC, and any xn, yn, s0, and n > m ≥ 1,
the following equality holds:X

sm

P(sm|xm+1, ym, s0)P(yn
m+1‖x

n
m+1|y

m, xm, sm, s0)

= P(yn
m+1‖x

n
m+1|x

m, ym, s0). (31)

Proof of Lemma 4: We begin with the following derivation:

P(xn
m+1, y

n
m+1|x

m, ym, s0)

=
X
s̃n

m+1

P(xn
m+1, y

n
m+1, s̃

n
m+1|x

m, ym, s0)

=
X
s̃n

m+1

P(xn
m+1‖y

n−1
m+1, s̃

n−1
m+1|x

m, ym, s0)

× P(yn
m+1, s̃

n
m+1‖x

n
m+1|x

m, ym, s0)
(a)
=
X
s̃n

m+1

P(xn
m+1‖y

n−1
m+1|x

m, ym, s0)

× P(yn
m+1, s̃

n
m+1‖x

n
m+1|x

m, ym, s0)

= P(xn
m+1‖y

n−1
m+1|x

m, ym, s0)

×
X
s̃n

m+1

P(yn
m+1, s̃

n
m+1‖x

n
m+1|x

m, ym, s0), (32)
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where (a) follows from the Markov chain Xi−(Xi−1,Y i−1, S 0)−
S m, which holds for any i ≥ m + 1. On the other hand, we
have

P(xn
m+1, y

n
m+1|x

m, ym, s0)

= P(xn
m+1‖y

n−1
m+1|x

m, ym, s0)P(yn
m+1‖x

n
m+1|x

m, ym, s0). (33)

By comparing (32) and (33), we deduce thatX
s̃n

m+1

P(yn
m+1, s̃

n
m+1‖x

n
m+1|x

m, ym, s0)

= P(yn
m+1‖x

n
m+1|x

m, ym, s0). (34)

The proof is thereby concluded, noting that the left-hand side
of Eq. (31) is equal to

P
s̃n

m+1
P(yn

m+1, s̃
n
m+1‖x

n
m+1|x

m, ym, s0)
due to the unique construction of s̃n. �

Proof of Lemma 3: We proceed with the proof of Lemma 3.
For convenience, we omit the dependence on the initial pair
(s0, q0), and bound the difference in (25) by log2(|S |) as
follows:ˇ̌̌

D
�

PYn
m+1‖x

n
m+1 |x

m,ym,S m




 TYn
m+1 |y

m

ˇ̌̌
PS m |xm+1,ym

�
− D

�
PYn

m+1‖x
n
m+1 |x

m,ym




 TYn
m+1 |y

m

�ˇ̌̌
(a)
≤

ˇ̌̌̌X
sm

P(sm|xm+1, ym)
X
yn

m+1

P(yn
m+1‖x

n
m+1|x

m, ym, sm)

× log2(P(yn
m+1‖x

n
m+1|x

m, ym, sm))

−
X
yn

m+1

P(yn
m+1‖x

n
m+1|x

m, ym)

× log2(P(yn
m+1‖x

n
m+1|x

m, ym))
ˇ̌̌̌

+

ˇ̌̌̌X
sm

P(sm|xm+1, ym)

×
X
yn

m+1

P(yn
m+1‖x

n
m+1|x

m, ym, sm)log2(T (yn
m+1|y

m))

−
X
yn

m+1

P(yn
m+1‖x

n
m+1|x

m, ym) log2(T (yn
m+1|y

m))
ˇ̌̌̌

(b)
=

ˇ̌̌̌X
sm

P(sm|xm+1, ym)
X
yn

m+1

P(yn
m+1‖x

n
m+1|x

m, ym, sm)

× log2(P(yn
m+1‖x

n
m+1|x

m, ym, sm))

−
X
yn

m+1

P(yn
m+1‖x

n
m+1|x

m, ym)

× log2(P(yn
m+1‖x

n
m+1|x

m, ym))
ˇ̌̌̌

(c)
=

ˇ̌̌̌ X
s̃n

m+1,y
n
m+1

P(s̃n
m+1, y

n
m+1‖x

n
m+1|x

m, ym)

× log2(P(yn
m+1‖x

n
m+1|x

m, ym, s̃n
m+1))

−
X
yn

m+1

P(yn
m+1‖x

n
m+1|x

m, ym)

× log2(P(yn
m+1‖x

n
m+1|x

m, ym))
ˇ̌̌̌

,
ˇ̌̌
H(Yn

m+1‖x
n
m+1|x

m, ym)

−H(Yn
m+1‖x

n
m+1|S̃

n
m+1, x

m, ym)
ˇ̌̌

, I(S̃ n
m+1; Yn

m+1‖x
n
m+1|x

m, ym)
≤ H(S̃ n

m+1‖x
n
m+1|x

m, ym)
≤ log2(|S |), (35)

where (a) follows by explicitly extracting the relative
entropies and then applying the triangle inequality, (b) follows
since

P
sm

P(sm|xm+1, ym, s0)P(yn
m+1‖x

n
m+1|x

m, ym, sm, s0) =

P(yn
m+1‖x

n
m+1|x

m, ym, s0) (see Lemma 4), which implies that
the second absolute value expression is equal to zero, and (c)
follows directly by the fact that S̃ n

m+1 , {S m, 0, . . ., 0}. �

APPENDIX B
MDP FORMULATION OF THE DUAL UPPER

BOUND (THEOREM 3)

In this section, we prove Theorem 3, which concerns the
representation of the upper bound in Theorem 1 as an MDP.
The proof consists of four technical parts, summarized in
Lemma 5. The last part of the lemma relates the average
reward induced by the MDP to the upper bound in Theorem 1.

Lemma 5:
1) The reward is a time-invariant function of zt−1 and xt.
2) The MDP state, zt, is a time-invariant function of zt−1,

yt, and xt.
3) Given zt−1 and xt, the disturbance, yt, is conditionally

independent of the past.
4) The limit and the maximization in the upper bound in

Theorem 1 can be exchanged, i.e.,

lim
n→∞

min
s0,q0

max
f (xn‖yn−1)

c(xn, s0, q0)

= sup lim inf
n→∞

min
s0,q0

c(xn, s0, q0),

where the supremum is over all deterministic functions
{ fi : X i−1 × Y i−1 → X }i≥1, and c(xn, s0, q0) is defined
in (26).

Accordingly, we can conclude from the last item that
Cfb ≤ ρ

∗.
Proof of Lemma 5:
1) The reward function in (11) is defined as

g(zt−1, xt) ,D
�X

st−1

βt−1(st−1)PY |X,S (·|xt, st−1)





TY |Q(·|qt−1)
�
.

Clearly, for a fixed FSC and test distribution, the reward
is a time-invariant function of the previous MDP state
zt−1 = (βt−1, qt−1) and the action xt.

2) Let us first express βt as a function of (βt−1, xt, yt). For
any st ∈ S , we have

βt(st)
= P(st |xt, yt, s0)

=
P(yt, st |xt, yt−1, s0)

P(yt |xt, yt−1, s0)

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on December 01,2025 at 14:12:24 UTC from IEEE Xplore.  Restrictions apply. 



HULEIHEL et al.: DUALITY UPPER BOUND FOR FINITE-STATE CHANNELS WITH FEEDBACK 3267

=

P
st−1

P(st−1, yt, st |xt, yt−1, s0)P
s̃t−1

P(s̃t−1, yt |xt, yt−1, s0)

(a)
=

P
st−1

P(st−1|xt−1, yt−1, s0)P(yt, st |st−1, xt)P
s̃t−1

P(s̃t−1|xt−1, yt−1, s0)P(yt |s̃t−1, xt)

=

P
st−1

βt−1(st−1)P(yt |st−1, xt)P(st |xt, yt, st−1)P
s̃t−1

βt−1(s̃t−1)P(yt |s̃t−1, xt)
, (36)

where (a) follows from the Markov chain S t−1 −

(Xt−1,Y t−1, S 0) − Xt and the channel law. Accordingly,
βt is a deterministic function of the previous MDP
state, zt−1, the action xt, and the disturbance yt. Further,
since qt = φ(qt−1, yt), then there exists a time-invariant
function F(·) such that zt = F(zt−1, xt, yt).

3) In this item, we show that P(yt |zt−1, yt−1, xt) =

P(yt |zt−1, xt). In particular,

P(yt |zt−1, yt−1, xt)

=
X
st−1

P(st−1, yt |zt−1, yt−1, xt)

(a)
=
X
st−1

P(st−1|zt−1, yt−1, xt)P(yt |xt, st−1, zt−1)

(b)
=
X
st−1

P(st−1|zt−1, xt)P(yt |xt, st−1, zt−1)

=
X
st−1

P(st−1, yt |zt−1, xt)

= P(yt |zt−1, xt), (37)

where (a) follows from applying the chain rule and the
Markov property induced by the channel law, and (b)
follows since zt−1 consists of βt−1 = P(S t−1|xt−1, yt−1).

4) The proof here is similar to the proof of Lemma 6 in
[24], which is based on the super-additivity property of
the sequence n

�
Cn −

log2(|S |)
n

�
. However, for complete-

ness, as it is not a special case of this lemma, we provide
here the proof. The equality will be shown by proving
the corresponding two inequalities. The first inequality
can be shown as follows:

lim
n→∞

Cn

= lim
n→∞

min
s0,q0

max
f (xn‖yn−1)

c(xn, s0, q0)

= lim
n→∞

max
f (xn‖yn−1,s0)

min
s0,q0

c(xn, s0, q0)

(a)
= sup

n
max

f (xn‖yn−1,s0)
min
s0,q0

�
c(xn, s0, q0) −

log2 |S |
n

�
= sup sup

n
min
s0,q0

�
c(xn, s0, q0) −

log2 |S |
n

�
≥ sup lim inf

n→∞
min
s0,q0

�
c(xn, s0, q0) −

log2 |S |
n

�
= sup lim inf

n→∞
min
s0,q0

c(xn, s0, q0), (38)

where (a) follows by Fekete’s lemma, and the supremum
in the last three steps is over all deterministic functions
{ fi : X i−1 × Y i−1 × S → X }i≥1.
We now show the reverse inequality. Using the notation
and the main result from Appendix A-A, the existence

of lim
n→∞

Cn implies that, for any ε > 0, there exists an
N(ε) such that for all k > N(ε)

Ck ≥ lim
n→∞

Cn − ε. (39)

Fix k > N(ε), and let f̂ (xk‖yk−1) be the input mapping
that achieves the maximum for Ck. Let us construct

f̃ (xn‖yn−1)

= f̂ (xk‖yk−1) f̂ (x2k
k+1‖y

2k−1
k+1 ) f̂ (x3k

2k+1‖y
3k−1
2k+1) · · · . (40)

Consider now the following chain of inequalities

sup lim inf
n→∞

min
s0,q0

c(xn, s0, q0)

= sup lim inf
n→∞

min
s0,q0

1
n

D
�
PYn‖Xn=xn,S 0=s0‖TYn |q0

�
(a)
≥ lim inf

n→∞
min
s0,q0

1
n

D
�
PYn‖Xn=x̃n,S 0=s0‖TYn |q0

�
(b)
= lim inf

n→∞
min
s0,q0

1
n

b n
k c−1X
i=0

D
�

PY (i+1)k
ik+1 ‖x̃

(i+1)k
ik+1 |Y

ik ,x̃ik ,s0





TY (i+1)k

ik+1 |Y
ik ,q0

ˇ̌̌
PY ik‖x̃ik ,s0

�
(c)
≥ lim inf

n→∞

1
n

b n
k c−1X
i=0

min
sik ,qik

D
�

PY (i+1)k
ik+1 ‖x̃

(i+1)k
ik+1 ,sik





TY (i+1)k

ik+1 |qik

�
(d)
≥ lim inf

n→∞
min
s0,q0

k
n

jn
k

k �1
k
· D
�

PYk‖x̃k ,s0




TYk‖q0

��
(e)
≥ lim

n→∞
Cn − ε, (41)

where (a) follows by considering the inputs that follow
the mapping f̃ (xn‖yn−1), which is not necessarily the
mapping that achieves the maximum, (b) follows from
the chain rule and the fact that k is fixed and the diver-
gence is bounded (otherwise the bound is meaningless),
and therefore, when rounding n to kbn/kc the residual
goes to zero, (c) holds by following the derivation in
(30) for each relative entropy term in the sum, (d)
follows since each term in the sum is identical due to
the construction of the input distribution, and, finally, (e)
follows from (39). �

APPENDIX C
NOST CHANNEL — LOWER BOUND

Proof: In this section, we derive a lower bound on the
capacity of the NOST channel to demonstrate the tightness
of our upper bound and conclude the proof of Theorem 4. We
establish the lower bound by employing the Q-graph lower
bound derived in [22], which holds for unifilar FSCs. To
introduce this lower bound, we first define a property termed
BCJR-invariant input distribution. An input distribution is
considered BCJR-invariant if it satisfies the Markov chain
S + −Q+ − (Q,Y). A simple verification of this Markov chain
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is given by the following equation:

πS |Q(s+|q+)

=

P
x,s πS |Q(s|q)P(x|s, q)P(y|x, s)1{s+= f̃ (x,y,s)}P

x′,s′ πS |Q(s′|q)P(x′|s′, q)P(y|x′, s′)
, (42)

which needs to hold for all (s+, q, y) and q+ = φ(q, y), where
πS ,Q = πQπS |Q is the induced stationary distribution on the
(S ,Q)-graph.4

Having defined a BCJR-invariant input distribution, we
proceed to introduce the Q-graph lower bound from [22]
through the following theorem.

Theorem 7 [21, Theorem 3]: If the initial state s0 is avail-
able to both the encoder and the decoder, then the feedback
capacity of a strongly connected unifilar FSC is bounded by

Cfb ≥ I(X, S ; Y |Q), (43)

for all aperiodic inputs PX|S ,Q that are BCJR-invariant, and
for all Q-graphs with q0 such that (s0, q0) lies in an aperiodic
closed communicating class.

Hereafter, we refer to a pair comprising a Q-graph and
an input distribution PX|S ,Q that satisfies the BCJR-invariant
property as a graph-based encoder.

It is essential to note that the NOST channel, being a finite-
memory state channel, does not meet the unifilar channel
requirement for the lower bound. Consequently, we reformu-
late the channel to a unifilar FSC following Section VI-C.
Once reformulated, the transformed channel is defined with
the following transition probability

PY |X,S̃ (0|x, s̃) =

x = 0 x = 1
s̃ = 0 1 − 0.5ε 0.5(1 − ε)
s̃ = 1 0.5(1 + ε) 0.5ε

, (44)

while the new channel state evolves according to s̃t = yt.
Using the transformed channel, we derive the lower bound

employing a specific graph-based encoder. We demonstrate
that the achievable rate resulting from this graph-based
encoder precisely matches the upper bound derived in the
preceding section. Also here, the Q-graph used in deriving
the lower bound is the first-order Markov Q-graph in Fig. 2.
For this Q-graph, we define the following input distribution,
where a is defined in Eq. (16):

PX|S̃ ,Q(x|s̃, q) =

x = 0 x = 1
q = 1 2a − ε̄ 2ā − ε
q = 2 2ā − ε 2a − ε̄

, (45)

for any s̃ ∈ S̃.
Next, we proceed to calculate the stationary distribution

πS̃ ,Q, which is necessary for the computation of I(X, S̃ ; Y |Q).
The required transition probability for this computation is
given by:

P(s̃+, q+|s̃, q)

=
X
x,y

P(x|s̃, q)P(y|x, s̃)1{q+=φ(q,y)}1{s̃+= f̃ (x,y,s̃)}.

4The (S ,Q)-graph is a directed and connected graph that integrates both
the Q-graph and the evolution of the channel states. For further details, refer
to [22].

Consequently, standard computation of the stationary distribu-
tion yields:

πS̃ |Q(s̃|q) =

s̃ = 0 s̃ = 1
q = 1 1 0
q = 2 0 1

.

We now verify that the proposed graph-based encoder
satisfies the BCJR-invariant property. Let us demonstrate this
explicitly for the case where (q, y) = (1, 1) and s̃+ = 1. Since
φ(1, 1) = 2, the left-hand side of Eq. (42) is equal to πS̃ |Q(1|2),
while the right-hand side is equal to:P

x,s πS̃ |Q(s|1)PX|S̃ ,Q(x|s, 1)PY |X,S̃ (1|x, s)1{1= f̃ (x,1,s)}P
x′,s′ πS̃ |Q(s′|1)PX̃|S̃ ,Q(x′|s′, 1)PY |X,S̃ (1|x′, s′)

(a)
= 1,

where (a) holds because 1{1= f̃ (x,1,s)} = 1 for any x, s, implying
the numerator is equal to the denominator. Accordingly, it is
indeed equal to πS̃ |Q(1|2), as required. The verification of for
the other cases can be done in a similar manner.

Finally, the achievable rate of the graph-based encoder is

R = I(X, S̃ ; Y |Q)

=
X
q∈Q

πQ(q) · I(X, S̃ ; Y |Q = q)

=
X
q∈Q

πQ(q) ·
�
H2 (Y |Q = q) − H2(Y |X, S̃ ,Q = q)

�
(a)
=
X
q∈Q

0.5 ·
�
H2 (a) − H2(Y |X, S̃ ,Q = q)

�
= H2(a) −

2a − ε̄
2

H2

� ε
2

�
−

2ā − ε
2

H2

�
1 + ε

2

�
(b)
=

1
2

log2

 
1
4

� ε

1 − a

�ε �1 + ε̄

a

�1+ε̄
!
, (46)

where (a) follows due to the fact that

PY |Q(0|q) =
X
x,s̃

π(s̃|q)P(x|s̃, q)PY |X,S̃ (0|x, s̃)

=

(
a, q = 1,
1 − a, q = 2,

which implies that πQ(q) = [0.5, 0.5] due to the symmetry,
and (b) follows by simplifying the expression. The proof of
Theorem 4 is concluded by noting that the induced achievable
rate in (46) is equal to the upper bound that we derived at the
end of Section VII-A.

APPENDIX D
N-ISING CHANNEL — PROOF OF THEOREMS 5 AND 6

Proof of Theorem 5: Consider the first-order Markov Q-
graph depicted in Fig. 2. For some ε ∈ [0, 0.5], define the
following graph-based test distribution

T (y = 0|q) = [a, 1 − a] , (47)

where

a =
εεγ

εεγ + (ε̄ ε̄(1 + ε̄)ε−2)γ(1 + ε)γ(1+ε) , γ =
1

2ε2 − 3ε + 2
.
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Define the constant:

ρ∗ =
1

2 + 4ε̄
· log2

 
16εεεε̄ (ε̄(1 + ε̄))ε

2−3ε+2

64ā2(aā)2ε̄(1 + ε)ε2−ε−2

!
. (48)

Recall that the MDP state is defined as zt = (βt, qt), where

βt = P(S t |xt) =

(
[1 − ε, ε], xt = 0,
[ε, 1 − ε], xt = 1.

Accordingly, define the following value function:

h([1 − ε, ε], 1) = h([ε, 1 − ε], 2) = 0
h([1 − ε, ε], 2) = h([ε, 1 − ε], 1)

=
1

2ε − 3
· log2

�
āε̄(1 + a)
a(1 + ε̄)2 ·

�
a2(1 + ε)(1 + ε̄)

ā2εε̄

�ε�
. (49)

It can be shown that the constant ρ∗ in (48) and the value
function in (49) solve the Bellman equation under the policy
defined below.

u∗(β, q) =

(
1, q = 1,
0, q = 2.

(50)

The verification is omitted as it involves the same technical
steps performed in proving Theorem 4. �

Proof of Theorem 6: Consider a Q-graph consists of four
nodes with an evolution function that is given by the vectors
representation φ(q, y = 0) = [2, 1, 1, 1] and φ(q, y = 1) =

[3, 3, 4, 3]. For some (a, b) ∈ [0, 1]2, define the following
graph-based test distribution

T (y = 0|q) = [a, b, 1 − a, 1 − b] .

Define the constant:

ρ∗ =
1

2(1 + 2ε̄)(2 + ε)

× log2

 
24ε2+2ε−12ā4ε2−6ε−4(ε2 − 3ε + 2)ε

3−ε2−4ε+4

a4ε̄b2εε̄(1 + ε)ε3+ε2−4ε−4εε
3+ε2−2ε b̄2ε2−6ε+4

!
. (51)

Further, define the following value function:

h([1 − ε, ε], 1) = h([ε, 1 − ε], 3)

=
1

(1 + 2ε̄)(2 + ε)

× log2

 
(1 + ε)ε

2+3ε+2(2 − ε)ε
2−4b2ε3−ε2−5ε+6

a2−2ε2−ε b̄2ε3−ε2−5ε+2εε
2+2ε ā2ε2+ε+2ε̄ε

2+ε−2

!
h([1 − ε, ε], 2) = h([ε, 1 − ε], 4) = 0

h([1 − ε, ε], 3) = h([ε, 1 − ε], 1) =
1

2 + ε
· log2

 
āε−2b̄ε

2

aεbε2−2

!
h([1 − ε, ε], 4) = h([ε, 1 − ε], 2) = log2

�
bb̄ε

b̄bε

�
. (52)

Similarly †here, the constant ρ∗ in (51) and the value function
in (52) satisfy the Bellman equation. The verification is
omitted and follows the same technical steps. �
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