
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 6379

Message and State Cooperation in Multiple
Access Channels
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Abstract—We investigate the capacity of a multiple access
channel with cooperating encoders where partial state infor-
mation is known to each encoder and full state information is
known to the decoder. The cooperation between the encoders
has a two-fold purpose: to generate empirical state coordination
between the encoders, and to share information about the private
messages that each encoder has. For two-way cooperation, this
two-fold purpose is achieved by double-binning, where the first
layer of binning is used to generate the state coordination similarly
to the two-way source coding, and the second layer of binning
is used to transmit information about the private messages. The
complete result provides the framework and perspective for
addressing a complex level of cooperation that mixes states and
messages in an optimal way.

Index Terms—Channel state information, cooperating encoders,
coordination, double-binning, message-state cooperation, multiple
access channel, superbin.

I. INTRODUCTION

S TATE-DEPENDENT channels describe a rich variety
of communication models spanning the cases where the

states are governed by physical phenomena (such as fading),
and accounting also for situations where the states model effects
of interfering transmissions. Their wide applicability, theoret-
ical importance, and practical implications, led to intensive
information theoretic studies. We focus here on a multiple-ac-
cess channel (MAC), where the channel is affected by the state

known partly at the transmitters. That is, state is
available at Transmitter 1, while is known at Transmitter 2.
This can be associated with local cognition, that is, Transmitter
1 learns beforehand about the sequence , while Transmitter
2 learns about . We further assume that the states, which
can be viewed as channel-affecting parameters, are known at
the receiving point, or alternatively are retrieved accurately
by the receiver. This is a standard problem, which falls within
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the class of decentralized processing at the transmitters. The
focus of this work is the implications of transmitter cooperation
facilitated by an orthogonal finite capacity link. This link can
be used both to share state information, as to facilitate a more
coordinated operation, up to a degree of central coordination,
achieved when both transmitters know accurately . The
cooperation link can also be employed to share messages, to
the extreme of full message cooperation, turning the problem
into a single two-elements (antennas) transmitter. The interplay
among these types of cooperation is at the center of our paper,
and here the optimal approach, given in terms of the associated
capacity region, is found. Evidently the derivation of this
general result is extending previous important cases as it is
detailed in the following.
Willems [1], [2] introduced and derived the capacity region of

the multiple access channel (MAC) with cooperating encoders.
He showed that to achieve the capacity region the encoders
should use the cooperation link in order to share parts of their
private messages and then use a coding scheme for the ordi-
nary MAC, which was found earlier by Slepian and Wolf [3].
Willems’ model allows interactive communication between the
encoders, however Willems showed [1], [2] that the optimality
is achieved even in a single round of communication between
the encoders.
In this paper, we consider the problem of MAC with cooper-

ating encoder, where different partial state information is known
at each encoder and perfect state information is known at the
decoder. The setting of the problem is depicted in Fig. 1. The
state of the channel is given by the pair , where En-
coder 1 knows , Encoder 2 knows , and the decoder knows
the pair . The cooperation links and may in-
crease the capacity region by transmission of the state informa-
tion that is missing to the encoders and by sharing parts of the
private messages . Here the transmission of the state
information is done by achieving an empirical coordination [4]
of the state information, namely, generating sequences of ac-
tion that are functions of the cooperation and are jointly typical
with the state information. Simultaneously, these sequences of
action are designed in such a way that they allow the encoders
to share parts of their private messages. We illustrate the idea of
simultaneity generating coordination and sharing a message by
a simple toy-problem that is presented in Section II. In the two
way cooperation we use double-binning to generate coordina-
tion and share message. The double-binning is a technique that
was used previously by Liu et al. [5], [6] for achieving secrecy
capacity in the broadcast channel.
The problem of cooperating encoders with partial state infor-

mation combines two kinds of settings that are widely treated
in the literature; the first is limited-rate noise-free cooperation
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Fig. 1. MAC with cooperation where different partial state information is known to each encoder, and full state information is known to the decoder.

Fig. 2. MAC with one-way conferencing and state information at one encoder and the decoder.

between users and the second is limited-rate noise-free state in-
formation that is available to encoders/decoders.
Cooperation between users through a noise-free limited-rate

link has been investigated in various of multi-user settings
such as in MAC [1], [2], [7], [8], interference channel [9]–[15],
broadcast channel [16], relay channels [17]–[19], and cellular
networks [20]. A comprehensive survey of cooperation and its
role in communication is given in [21]. Recently, cooperation
between encoders where state information is available was con-
sidered in [22], [23] where it is assumed that the cooperation
is allowed only before the state information is available at the
encoders. In this paper, we take a different approach, assuming
that the cooperation occurs after the state information becomes
available, the cooperation may include parts of the private
message and the state information as well.
The second setting, that is, limited-rate state information at

encoders/decoders, was first treated by Heegard and El-Gamal
[24]. The case, most related to the setting in this paper, where
full state information is available at the decoder and limited-rate
state information is known at the encoder was solved by Cemal
and Steinberg for the point-to-point channel [25] and for the
MAC [26]. The main difference between the setting here and
the setting in [26] is that here the limited-rate encoder knows
the state and the private message rather than just the state; there-
fore, a scheme which combines message information and state
information is needed.
The remainder of the paper is organized as follows. In

Section II, we derive the capacity region where only one coop-

eration link from Encoder 1 to Encoder 2 exists. This setting
helps us to gain the intuition necessary for solving the extended
problem of two-way cooperation, which is solved in Section III.
In Section IV, we solve a specific example and compare the
capacity region to two different cooperation settings given
in [22] and in [26]. In addition, in Section IV, we check the
strategy of splitting the cooperation link into message-only
link and state-only link, and we show that this naive strategy is
strictly suboptimal.

II. ONE-WAY COOPERATION

In this section, we consider a special case, in which there
is only one-way cooperation from Encoder 1 to Encoder 2. In
addition, we assume that Encoder 1 and the decoder have full
non-causal state information. This setting captures the idea of,
simultaneously, sharing a part of the private message and
sharing the information on channel state . The setting is de-
picted in Fig. 2. We start by defining the notation and the code
for this setting, then we state the capacity region, explain the
intuition and provide its proof.
The MAC setting consists of two transmitters (encoders) and

one receiver (decoder). Each sender chooses an
index uniformly from the set and indepen-
dently of the other sender. The input to the channel from en-
coder is denoted by , and the
output of the channel is denoted by . The state
at time , i.e., , takes values in a finite set of possible
states . The channel is characterized by a conditional prob-
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ability and by the state probability .
Both probabilities do not depend on the time index and satisfy

(1)

where the superscripts denote sequences in the following way:
, .

Definition 1: A code with one-way
cooperating encoder as shown in Fig. 2 consists of three en-
coding functions

(2)

and a decoding function,

(3)

The average probability of error for
code is defined in (4) at the bottom of the page. A rate

is said to be achievable for the one-way cooperating
MAC with cooperation link , if there exists a sequence of

codes with . The capacity
region of MAC is the closure of all achievable rates. The
following theorem describes the capacity region of one-way
cooperating MAC.

Theorem 1: The capacity region of the MAC with a cooper-
ating encoder that has state information as shown in Fig. 2 is the
closure of the set that contains all rates that satisfy

(5)

(6)

(7)

(8)

for some joint distribution of the form

(9)

Lemma 2:
1) The capacity region described in Theorem 1, given in
(5)–(9), is convex.

2) It is enough to restrict the alphabet of the auxiliary random
variable in Theorem 1 to satisfy

(10)

Before proving the theorem and the lemma let us investigate
the role of the auxiliary random variable in Theorem 1. The
random variable plays a double role: first, it generates an
empirical coordination between the two encoders regarding the
state of the channel, i.e., with high probability the sequence
would be jointly typical with ; second, it generates a common
message between the two encoders. Let us look at two special
cases which emphasize these two roles.

Case 1: The Point-to-Point Case [25], i.e., and
: For this case the rate region of

Theorem 1 becomes

(11)

(12)

(13)

which is simply

(14)

(15)

for a joint distribution of the form

Case 2: , the Memoryless Case [2]: In this case
, hence we obtain a special case of MAC with co-

operation and the rate region of Theorem 1 becomes

(16)

(17)

(18)

for a joint distribution of the form

(4)



6382 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

Fig. 3. A problem that illustrates the double role of cooperation. On one hand, the sequence needs to be jointly typical with , and on the other hand, one
should be able to reconstruct the message with high probability.

Note that in the first case the role of the auxiliary random vari-
able is to generate an empirical coordination , and then
use the sequence as common side information at the encoder
and decoder. In the second case, the auxiliary random variable
represents the common message between the two encoders,
and the decoder needs to decode it. In Theorem 1, these two
roles are combined. Namely, the sequence needs to be coor-
dinated with and simultaneously represents a common mes-
sage. Fig. 3 illustrates the role of cooperation. The cooperation
is generated through a transmission of a limited-rate message

which is a function of another message
and of a sequence . On one hand, the

cooperation needs to generate a sequence that is jointly typ-
ical with , i.e., ,
and on the other hand, there should be a function such
that one can estimate the message with high probability, i.e.,

. If and
, this goal can be achieved. Combining these

two roles (generating empirical coordination and transmitting a
message) is done by binning,1 where the bin number represents
the commonmessage and in each bin there will be enough code-
words such that at least one codeword is jointly typical with
. This is similar to the role of the auxiliary random variable

in Gelfand-Pinsker [28], where the sequence of the auxiliary
random variables that is generated needs to represent a message
that is transmitted via the channel and needs to be jointly typical
with the sequence of the channel states.
We would like to mention two comments about the impor-

tance of using the binning technique in the achievability proof.
First, a naive scheme that splits the rate into two parts, one for
generating coordination with the state sequence and one for
sharing part of themessage, is not optimal as it is shown in an ex-
ample in Section IV. Second, we should note that since the aux-
iliary random variable is a function of the sequence and
the message, the receiver of the MACwhich knows does not
know but needs to decode it, which is different from Case
1 (the point-to-point case [25]), discussed previously, where the
auxiliary random variable is a function of only the sequence
.
Next we present a formal proof of Theorem 1. Throughout

the achievability proofs in the paper we use the def-
inition of a strong typical set. The set
of -typical -sequences is defined by

, where is the number of
appearances of in the -sequence . Fur-

1In channel coding problems, the collection of codewords in a bin, are also
called a subcodebook [26] and whole codebook is called multicoding.

thermore, we will use the following well-known lemma [27],
[29]–[31],

Lemma 3 (Joint Typicality Lemma): Consider a joint distri-
bution and suppose . Let be
distributed according to . Then,

(19)
where .

Proof of Theorem 1: Achievability Part: Fix a joint distri-
bution where and

are given by the channel.
Code Construction: Generate codewords in-

dependently using i.i.d. , and assign them into
bins. Hence, in each bin there are

codewords. The role of the auxiliary random variable here is the
same as in the example depicted in Fig. 3, namely to transmit
a message at rate that is associated with
a bin number and generate coordination via the fact that in
each bin there are codewords. For each codeword

, where and for each gen-
erate codewords according to i.i.d.

and for each , where ,
generate codewords according to i.i.d.

.
Encoder: Split message into

two messages and
. Now, associate

each message with a bin,
where in each bin there are codewords , in-
dexed by . Find in the chosen bin a
codeword, denoted by , with the smallest lexi-
cographical order that is jointly typical with and send its
index to Encoder 2. If such a codeword does
not exist, namely, among the codewords in the bin none is
jointly typical with , choose an arbitrary from the bin (in
such a case the decoder will declare an error). Now, Encoder 1
transmits , and Encoder 2 transmits

.
Decoder: The decoder knows and and looks for

the indices ,
, such

that (see (20) at the bottom of the next page), where throughout
the proof, the joint distribution that specifies the typical set

is the one we have fixed at the beginning
of the proof, i.e., . If
none or more than one such triplet is found, an error is declared.
The estimated message sent from Encoder 1 is ,
and the estimated message transmitted from Encoder 2 is .
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Error Analysis: Assume . Let
us define the event as shown in (21) at the bottom of the page.
An error occurs if either the correct codewords are not jointly
typical with the received sequences, i.e., , or there exists
a different such that occurs. From the
union of bounds we obtain that

(22)

Now let us show that each term in (22) goes to zero as the block-
length of the code goes to infinity.
• Upper-bounding : Since the number of code-
words in each bin is larger than , and since the
codewords were generated i.i.d., with high probability
there will be at least one codeword that is jointly typical
with . We denote this sequence as . Further-
more, given that , it follows
from the law of large numbers that as
goes to infinity.

• Upper-bounding : The prob-
ability that , which is generated according to

, is jointly typical with , which was
generated according to , where

is bounded by (Lemma 3)

(23)

Hence, we obtain

(24)

• Upper-bounding : The prob-
ability that which is generated according to

is jointly typical with which was gen-
erated according to , where

is upper bounded by
, hence

(25)

• Upper-bounding

(26)

• Upper-bounding : see (27) at the
bottom of the page.

Therefore, combining the upper bounds (24)–(27) into
(22), we obtain that if rate-pair is inside the rate
region given by (5)–(9), then there exists a sequence of codes

such that goes to zero as .
Converse Part: The converse is deferred to Appendix A.
Proof of Lemma 2: First we prove that the capacity region

described in Theorem 1, (5)–(9), is convex and therefore there is
no need to convexify it. Let , , 2, 3 be three distributions
of the form

(28)

which induce the quantities shown in (29) at the bottom of
the next page. for , 2, 3, respectively. In addition, let

, where and , further-
more when the distribution of , , is according
to and when it is according to . Let be a binary
random variable with and
independent of . Let us denote , and note that

(20)

(21)

(27)
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is of the form of (28) and is obtained when we marginalize
which equals to
over . Finally,

the convexity of the region in (5)–(9) follows from the equali-
ties , and similar equalities
for the other terms in (29), and from the inequality

(30)

Now, to prove the cardinality bound on , we invoke the sup-
port lemma [29, p. 310]. The auxiliary random variable needs
to have letters to preserve plus four
more to preserve the expressions , ,

, and . Note that the
joint distribution is preserved because of the
Markov form . Alternatively, the external
random variable needs to have letters to preserve

plus five more to preserve the expressions ,
, , ,

and .

III. TWO-WAY COOPERATION

Here we extend the setting from the previous section to a
MAC with two-way cooperation where different state informa-
tion is available at each encoder and full state information is
available at the receiver, as depicted in Fig. 1.

Definition 2: A code with
two-way cooperating encoders, where each encoder has partial
state information, consists of four encoding functions

(31)

and a decoding function,

(32)

The probability of error, achievable rates, and the capacity re-
gion are defined similarly to Definition 1. The next theorem
states the capacity region of the two-way cooperating encoders
with partial state information.

Theorem 4: The capacity region of the MAC with two-way
cooperating encoders and with partial state information as
shown in Fig. 1 is the closure of the set of rates that satisfy
(33)–(37) at the bottom of the page. for some joint distribution
of the form shown in (38) at the bottom of the page, where
and are auxiliary random variables with bounded cardinality.
In the achievability proof of the theorem we use double-bin-

ning, which was introduced by Liu et al. [5], [6] to achieve
secrecy capacity in the broadcast channel. Here the double-bin-
ning is needed since one layer of binning will be used for
transmitting a common message between the encoders and
an additional layer of binning is needed for choosing a spe-
cific typical sequence using side information as done in the
Wyner-Ziv problem [32] and two-way source coding [33]. In
a double-binning coding scheme we have special bins that
contain other bins rather than codewords, and we call such a
special bin a superbin, as depicted in Fig. 4.
We would like to emphasize that in the two way cooperation

problem that we discuss here the ordering of operations on the
conferencing links (first transmitter 1, then transmitter 2) is im-
posed in the problem definition in (31). This is different from the
definition of conferencing that is inWillems’ work [2] which al-
lows for any ordering and for multiple rounds of conferencing.
In order to deal with multiple rounds of conferencing one should
use techniques of two-way source coding developed by Kaspi

(29)

(33)

(34)

(35)

(36)

(37)

(38)
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Fig. 4. Double-binning for the achievability of Theorem 4. Double-binning [5] consists of two-layer bins, where in the first layer we have bins that contain
codewords and in the second layer we have superbins that contain bins.

[33] for the state cooperation and to combine it with message
cooperation.

Proof:
Achievability Part:
Code Construction: We generate

superbins, where each superbin contains
bins, and each bin contains codewords , gen-
erated i.i.d. . There are codewords in each
superbin and the codewords are assigned randomly to the bins
in the superbin using uniform distribution over the bins2. In total
there are different bins. The index sent from Encoder 1 to
Encoder 2 will be a bin number, and the superbin that contains
the bin will represent a common message that is sent from En-
coder 1 to Encoder 2.
For each codeword , we generate

suberbins, where each superbin contains

bins, and each bin contains codewords , gen-
erated i.i.d. . Hence, there are code-
words in each superbin and there are total of different
bins. The codewords are assigned to the bin randomly using uni-
form distribution over the bins in the superbin.

2The reason we assign the codewords randomly to the bins is because it sim-
plifies the error analysis, however it is also possible to prove the achievability
even if we assign the codewords deterministically. When the codewords are
assigned deterministically to the bin then the fact that codeword is jointly typ-
ical with implies that the first codewords are not jointly typical since
we choose the first codeword that is jointly typical with . The codewords in
the bin were generated according to i.i.d., but the distribution of a code-
word given the fact that is not jointly typical with is not i.i.d. any-
more. However, a codeword that is generated i.i.d. according to is with
high probability not jointly typical with . Furthermore, the probability of the
event given is bounded by , hence if
goes to 1 as then for any for
large enough. Therefore

for large enough and therefore we can
apply similar analysis as in the case where the codewords are i.i.d..

For each pair of codewords and for each sequence
generate codewords

of i.i.d. . Similarly, For each pair of
codewords and for each sequence generate

codewords of i.i.d.
.

Encoder: Split message into two mes-
sages and

.
Associate each message with a superbin, where in each

superbin there are total of codewords . Search
the chosen superbin for a codeword, denoted by ,
with the smallest lexicographical order that is jointly typical
with and send its bin number to Encoder 2. If
such a codeword does not exist, namely, among the code-
words in the bin none is jointly typical with , choose an ar-
bitrary from the bin (in such a case the decoder will declare
an error). Now, Encoder 2 receives a bin number that contains

possible codewords, and looks for the code-
word with smallest lexicographical order that is jointly typical
with . If such a codeword does not exist, namely, among
the codewords in the bin none is jointly typical with , choose
an arbitrary from the bin (in such a case an error will be
declared).
Now, split message into two messages

and
.

Associate each message with a superbin, where in
each superbin there are in total codewords
. Find in the chosen superbin a codeword, denoted by

, with the smallest lexicographical order
that is jointly typical with and send its bin number

to Encoder 1. If such a codeword does not
exist, namely, among the codewords in the bin none is jointly
typical with , choose an arbitrary from the bin
(in such a case the decoder will declare an error). Now, En-
coder 1 receives a bin number that contains
possible codewords, and looks for the codeword with
the smallest lexicographical order that is jointly typical with

. If such a codeword does not exist,
namely, among the codewords in the bin none is jointly typical
with , choose an arbitrary from the bin
(in such a case an error will be declared).
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Now, Encoder 1 transmits , and Encoder
2 transmits .
Decoder: The decoder knows and looks for the

indices , , and such that (see (39) at the
bottom of the page), where and which are not indexed
denote and , respec-
tively. If none or more than one such quadruplet is found, an
error is declared. The estimated message sent from Encoder 1 is

, and the estimated message transmitted from En-
coder 2 is .
Error Analysis: Assume

. Let us define the event shown in (40) at the bottom
of the page, where and which are not indexed denotes

and , respectively.
We have an error if either the correct codewords are not

jointly typical with the received sequences, i.e., , or
there exists a different such that
occurs. From the union of bounds we obtain that

(41)

Now let us show that each term in (41) goes to zero as the block-
length of the code goes to infinity.
• Upper-bounding : Since the total number of
codewords in each supperbin associated with (or ) is
larger than , and since the codewords were gen-
erated i.i.d. , with high probability there will be
at least one codeword that is jointly typical with . Let
us denote this codeword by . Since the Markov
form holds, from the Markov lemma [34]
with high probability would be jointly typical
with . Furthermore, since each bin in the superbin that

is associated with contains codewords, with
high probability, there will not be any additional codeword
that is jointly typical with , hence, Encoder 2would iden-
tify from the received bin.
Similarly, for a given , which is
known to Encoder 2, the total number of codewords in
each supperbin associated with (or ) is larger than

, and since the codewords were generated i.i.d.
according to , with high probability there will be
at least one codeword that is jointly typical with .
Let us denote this codeword by . Since the
Markov form holds, it follows from the
Markov lemma that with high probability
would be jointly typical with . Furthermore, since
each bin in the superbin that is associated with contains

codewords, with high probability, there
would not be any additional codeword that is jointly
typical with , hence, Encoder 2, would identify

from the bin.
Furthermore, given that

, it follows from the law of
large numbers that as goes to infinity.
Note that the event includes the error that may
occur at the encoders side.

• Upper-bounding :
The probability that , which is generated ac-
cording to , is jointly typical with ,
which was generated according to

, where
is upper bounded according to

Lemma 3 by (42) at the bottom of the page. Hence, we
obtain (43) at the bottom of the next page.

• Upper-bounding :
The probability that , which is generated ac-
cording to , is jointly typical with ,
which was generated according to

, where

(39)

(40)

(42)
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is upper bounded according to
Lemma 3 by (44) at the bottom of the page. Hence, we
obtain

(45)

• Upper-bounding : see (46)
at the bottom of the page.

• Upper-bounding

(47)

Finally, we note that if the rate-pair is in the rate
region that is given by (33)–(38), then each term in (41)
goes to zero as ; hence there exists a sequence of
codes such that goes to
zero as .

Converse Part: The converse part combines
techniques from cooperation in a MAC [2] and
two-way source coding [33]. Assume that we
have a code as
in Definition 2.Wewill show the existence of a joint distribution

that satisfies (33)–(37) within some , where goes to zero
as . Consider

(48)

where (a) follows from the Markov chain
and (b) follows from the

definition

(49)

Now, consider

(50)

where (a) follows from the Markov chain
and (b) follows from the

definitions of given in (49) and which is given by

(51)

(43)

(44)

(46)
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Now, consider

(52)

Now, let us consider the terms and
separately.

(53)

where (a) follows from the fact that is independent
of , and (b) follows from (48), where it is shown that

. Now consider the
second term,

(54)

where (a) follows from Fano’s inequality and and
(b) from that fact that conditioning reduces entropy. Substituting
Inequalities (53) and (54) into (52), we obtain

(55)

Fig. 5. Proof of the Markov chain
using an undirected graph-

ical technique [35]. The undirected graph corresponds to the
joint distribution

. The Markov chain
follows from the fact that all the paths from to go through
the nodes .

Similarly, we obtain

(56)

Regarding the sum-rate we have

(57)

and

(58)

and now using (53) we bound

(59)

and similarly

(60)
Using similar steps as in (54) we bound

(61)
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Fig. 6. An example of a MAC with one-way cooperation and state information at one encoder and the decoder. The state controls the switch. When ,
and when , , and .

Hence we obtain

Now we need to verify that the following Markov chains
hold:

(62)

(63)

(64)

(65)

Proving the Markov chains (62)–(64) is straightforward and
therefore omitted. To prove the Markov chain in (65), we
use the undirected graphical method from [35, Section II],
(the technique is similar in spirit to techniques in [36, Ch
1.2], [37], [38, pp. 231]). Fig. 5 proves the Markov chain

, and
as a consequence the Markov chain in (65) holds too.
Finally, let be a random variable independent of

, and uniformly distributed over the set
. Define the random variables ,

, and we obtain that the region given by (33)–(38)
is an outer bound to the set of all achievable rate-pairs.
To show that the cardinalities of the random variables

and are bounded we follow similar steps as in Lemma
2, first for and then for . We note that the cardinality
of auxiliary random variables and may be bounded
by , and

.

IV. EXAMPLE AND COMPARISON TO MESSAGE-ONLY AND
STATE-ONLY COOPERATION

Consider the example given in Fig. 6, where the state of the
channel controls the switch that determines which input goes
through a binary symmetric channel (BSC) with parameter .
When , the binary input goes through and when

the binary input goes through, hence the output of the
channel is given by

(66)

where and is independent of , the
symbol denotes XOR, and denotes . We also
have the constraint on the portion of ’1’s at the encoders,
namely for any pair of codeword ,
and . The capacity region is given by
Theorem 1 where additional constraints and

are needed ( denotes expectation). The
achievability proof of the Theorem 1 with the input con-
straint is the same since by the law of large numbers the
constraints are satisfied with high probability for each
codeword. The Converse is also similar just adding a step

where the last equality follows from the definition of the
random variable to be . The cardinality bound in
Lemma 2 when there are two input constraints increases to

since additional terms
and need to be

preserved.
Invoking the following identities

(67)
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Fig. 7. Capacity region of the example depicted in Fig. 6 where , , .

we obtain from Theorem 1 that the capacity region is the set of
all rate-pairs that satisfy

(68)

for some conditional distributions and where
. The term denotes the binary entropy

function, which is defined for as
. The term denotes the parameter of a

Bernoulli distribution that results from convolving mod-2 two
Bernoulli distributions with parameters and , i.e.,

.
Fig. 7 depicts the capacity region for the case where
, and . The capacity region

was numerically evaluated using (68), where the cardinality of
the auxiliary random variable was assumed to be ;
changing the cardinality to 3, 4, 5 did not increase the numerical
capacity region.
Fig. 8 illustrates the influence of the cooperation rate on the

capacity region. It shows the capacity regions for several rates
of cooperation where ,

. One can see that when the cooperation rate is small
an increase in the cooperation rate significantly influences the
capacity region; however, for a large cooperation rate, such as

, an increase in the cooperation rate hardly influences
the capacity region.
Comparison to Two Different Kinds of Cooperation: In the

setting analyzed in this paper, we assumed a cooperation link
that may use both the message and the state information. Recent
works assumed similar settings where the cooperation depends

Fig. 8. Capacity region of the example depicted in Fig. 6 for several values of
, i.e, and , .

only on the state [26], as depicted in Fig. 9, or on the message
only [22], [23] as depicted in Fig. 10. For the first case where
the cooperation may use only the state information (Fig. 9), the
capacity region was derived in [26] and may be written as

(69)

(70)

(71)

(72)

for some joint distribution of the form

(73)

For the second case where the cooperation may use only the
message (Fig. 10) the capacity region was considered in [22],
[23] and may be written as

(74)

(75)

(76)

for some joint distribution of the form

(77)
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Fig. 9. State cooperation. An example inspired by the setting in [26], where the cooperation is a limited rate state information and is independent of the message.

Fig. 10. Message cooperation. An example inspired by the setting in [22], where the cooperation is a function of the message only, and then after the cooperation
stage the channel state is available to Encoder 1.

Fig. 11. The regions of three settings with a cooperation link . The blue region corresponds to the case where the cooperation is based only on the state
information as depicted in Fig. 9. The green region corresponds to the case where the cooperation is based only on the message and not on the state as depicted
in Fig. 10. Finally, the red region is the one that corresponds to the setting of this paper where the cooperation may use both the state and the message as depicted
in Fig. 6.

where and are auxiliary random variables with bounded
cardinality.
Both regions, the one in (72)–(73) and the one in (76)–(77),

are contained in the region of Theorem 1 where the coopera-
tion may use both the message and the state. It is interesting to
note that one can obtain the regions (72)–(73), and (76)–(77) by
adding only an additional constraint to the region of Theorem
1. More precisely, to obtain the regions (72)–(73) add the con-
straint , and to obtain the region (76)–(77) add
the constraint to the region (5)–(9) of Theorem 1.
Fig. 11 depicts the capacity regions obtained for a cooperation

link for the three settings:
1) state-cooperation, where the cooperation is based only on
the state information (Fig. 9),

2) message-cooperation, where the cooperation is based only
on the message (Fig. 10),

3) message-state cooperation, where the cooperation may use
both the state and the message (Fig. 6).

In this example, one can note from Fig. 11 that state coopera-
tion and message cooperation have different gains that are com-

bined in the message-state cooperation. The state-cooperation
increases the capacity region only in the direction of since
only Encoder 2 receives the state information via the cooper-
ation link. Message-cooperation increases the capacity region
only in the direction of since only the message from En-
coder 1 is transmitted via the cooperation link. However the
message-state cooperation increases the capacity region in the
direction of both and since it combines the advantages
of both message and state cooperation.
From the comparison above, it is interesting to note that there

are special cases where the state-only cooperation or the mes-
sage-only cooperation performs as well as the combined state-
message cooperation.
Equal rates, i.e., : consider the example of one-way

cooperation depicted in Fig. 6, where we are interested in equal-
rates working-point, i.e., . Since on the boundary re-
gion , the best equal-rate working point is achieved by
maximizing . To maximize in one-way cooperation, there
is no need for message cooperation and therefore the state-only
cooperation achieves the maximum equal rate point.
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Fig. 12. Separate message and state cooperation. There are two cooperation links at rates and . The first link uses only the message information , the
second link uses only the state information .

Fig. 13. An example with separate message and state cooperation.

Effectively, no power constraint, : consider the
one-way cooperation as depicted in Fig. 6, where, effectively,
there is no power constraint; this means that , may be equal
to or larger than 0.5. For this case, the state information at the
transmitter does not enlarge the rate region, hence the message-
only cooperation as introduced by Willems [2] is optimal.

A. Splitting the Cooperation Link in Message-Only and and
State-Only Links

In this subsection we investigate what happens if we split the
cooperation link into two links: one link for message-only coop-
eration at rate and the other link for state-only cooperation
at rate as shown in Fig. 12. We derive the capacity region
for this setting for a general MAC with state and
show that the split is strictly suboptimal.

Theorem 5: The capacity region of the MAC with separated
links, for message and state cooperation, as shown in Fig. 12 is
the closure of the set that contains all rates that satisfy

(78)

(79)

(80)

(81)

for some joint distribution of the form

(82)

The proof of the theorem for the case where the MAC is of
the general form is given in Appendix B. The
converse is based on the identification of the auxiliary random
variable being a function of the state sequence only, and the
identification of the auxiliary random variable being a func-
tion of the message only; hence the pair is indepen-
dent of , since is independent of . The achievability part
is based on generating the coordination and then multi-
plexing the cooperation MAC codebooks according to . There
is no need for binning in the achievability part where the coop-
ertaion link is split.
Fig. 14 depicts the capacity region of the example shown in

Fig. 13 where separate state cooperation and message coopera-
tion exists and . From Fig. 14 we learn that
using the naive strategy of splitting the cooperation link into
message-only cooperation and state-only cooperation is strictly
suboptimal.

APPENDIX A
CONVERSE PROOF OF THEOREM 1

Converse Part: Assume that we have a
code as in Definition 1.
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Fig. 14. Comparison between the capacity regions of separate state and message cooperation and joint state-message cooperation. The blue line corresponds to
the capacity region of the setting in Fig. 14 where . The red line corresponds to the capacity region of the setting in Fig. 10 where .

We will show the existence of a joint distribution
that satisfies

(5)–(8) within some , where goes to zero as .
Denote . Then,

(83)

where (a) follows from the fact that is i.i.d. and (b) follows
from the definition of , which is

(84)

Next, consider

(85)

where step (a) follows from the fact that is a function of
and . Now, let us consider the terms and

separately.

(86)

where the last equality follows from (83) where it is shown that
. Further,

(87)

where (a) follows from Fano’s inequality which state that
and from the definition

, (b) follows from the fact that is
a deterministic function of and is a deter-
ministic function of , and (c) from the fact that
conditioning reduces entropy and from the Markov chain

. Substi-
tuting Inequalities (86) and (87) into (85), we obtain

(88)

Similarly, we have

(89)

where the last inequality follows from similar steps as in (87).
Regarding the sum-rate we have

(90)
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and

(91)

and now using (86) and similar steps as in (87) we obtain

(92)
Now we verify that the Markov chain

holds (this is due to the Markov chain
). Finally, let be a random variable inde-

pendent of , and uniformly distributed
over the set . Define the random vari-
ables . Using the simple observation that

, we obtain that the
region given in (5)–(9) is an outer bound to any achievable rate.

APPENDIX B
PROOF OF THEOREM 5

Here we present the proof of Theorem 5, where MAC is of
the general form .

Proof of Theorem 5:
Converse Part: Assume that we have a

code. We will
show the existence of a joint distribution

that satisfies (78)–(102) within some , where goes
to zero as . Let and

be the message sent on the
state cooperation link and the message cooperation link,
respectively. Consider

(93)

where (a) follows from the fact that is i.i.d. and (b) follows
from the definition of , which is

(94)

Now, consider

(95)

where (a) follows from the fact that is a deterministic func-
tion of , (b) from the fact that is independent of and

is a deterministic function of , (c) from Fano’s inequality
and the definition of . Step (d) follows from
the definition of the auxiliary random variable

(96)

Now using similar steps as above we obtain the following addi-
tional upper bounds

(97)

and

(98)

and

(99)

Now, we note that is independent of since is
independent of , and is a Markov
chain since
holds. Finally, let be a random variable independent
of , and uniformly distributed over the set

. Define the random variables ,
, and we obtain that the region given by (78)–(82)

is an outer bound to the achievable region.
To show that the cardinality of the random variables and
is bounded we follow similar steps as in Lemma 2, first for

and then for . We note that the cardinality of auxiliary random
variables may be bounded by and for auxil-
iary random variables , we have

.
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Outline of Achievability Part: The achievability part is
straightforward once we observe that we can generate a coor-
dination with a rate and then use a mul-
tiplexer where , which is known to all encoders and to the
decoder, is the control sequence of the multiplexer. For a given

we obtain a MAC with cooperation where the state
is known to one encoder and to the decoder, hence the region

(100)

(101)

(102)

is achievable. Averaging over results in the region given
by (78)–(82).
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