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Abstract— This work develops a new method for estimating
and optimizing the directed information rate between two jointly
stationary and ergodic stochastic processes. Building upon recent
advances in machine learning, we propose a recurrent neural
network (RNN)-based estimator which is optimized via gradient
ascent over the RNN parameters. The estimator does not require
prior knowledge of the underlying joint/marginal distributions
and can be easily optimized over continuous input processes
realized by a deep generative model. We prove consistency of the
proposed estimation and optimization methods and combine them
to obtain end-to-end performance guarantees. Applications for
channel capacity estimation of continuous channels with memory
are explored, and empirical results demonstrating the scalability
and accuracy of our method are provided. When the channel is
memoryless, we investigate the mapping learned by the optimized
input generator.

Index Terms— Channel capacity, directed information, neural
estimation, recurrent neural networks.

I. INTRODUCTION

DIRECTED information (DI), introduced by Massey [2],
quantifies the amount of information one stochastic

process causally conveys about another. It possesses structural
properties that render it as the natural causal analog of mutual
information (MI), and it emerges as the solution to various
operational problems involving causality [3]. Applications
of DI are abundant, from the capacity of communication
channels with or without memory, which is generally given
by maximized DI [4], [5], to causal hypothesis testing and
portfolio theory [6], where DI intricately relates to optimal
tests and investment strategies, respectively. DI has also
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seen a myriad applications in machine learning [7], [8],
[9], [10], [11], neuroscience [12], [13], [14], and control
[15], [16], to name a few. It is oftentimes of interest
not only to evaluate DI but also to optimize it (e.g.,
to characterize capacity, to bound growth rates of optimal
portfolios, to extract informative features, etc.). However, this
optimization is challenging since analytic computation of DI
requires knowledge of the underlying probability law, which
is typically unavailable in practice. Furthermore, even when
the probability law is given, tractable DI characterizations that
lend well for optimization are rare [17], [18], as it is generally
given by a multiletter expression. To address this, the goal of
the paper is to develop a computable and provably accurate
estimate of DI.

A. Estimation and Optimization of Directed Information

Existing estimators of DI operate under rather restrictive
assumptions on the data, hence covering a small class of
problems. DI estimation between discrete-valued processes
using universal probability assignments and context tree
weighting was studied in [19]. Their estimator is provably
consistent, but requires that the depth of the context tree
is greater than the assumed memory of the processes.
An approach based on maximum likelihood estimation of the
associated PMF was developed in [20]. However, both [19]
and [20] are limited to the class of discrete-valued, stationary
Markov processes of relatively small order. Continuous-
valued processes, which are of central practical interest, were
treated in [21], and [22] using k nearest neighbors (kNN)
estimation techniques, but as the memory or dimension of
the data increase, the performance of kNN-based techniques
deteriorates, due to the curse of dimensionality [23].

Neural estimation is a modern technique for estimating
divergences and information measures. Originally proposed
in [24], the MI neural estimator (MINE) parametrizes the
Donsker-Varadhan (DV) variational form [25] by a neural
network (NN), and optimizes it over a parameter space.
Several variations of the MINE were proposed in followup
work, e.g., replacing the DV representation with other
variational lower bounds [26], [27], or by incorporating
auxiliary distributions [28]. Consistency of MINE in the
infinite-width NN regime was established in [24], and non-
asymptotic error bounds were later derived in [29] and [30].
The latter, in particular, showed that MINE is minimax optimal
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under appropriate regularity assumptions on the distributions
(see also [31] for formal limitations on MINE performance).
For data with memory, [32] leveraged MINE for transfer
entropy, while [33] constructed a conditional MI estimator and
extended it to DI between 1st order Markov processes.

In many applications, it is of interest to optimize DI
over the involved processes. A prominent example is channel
capacity computation, which is also the main application
considered herein. Tools from dynamic programming were
used in [34] and [35] to estimate the feedback capacities
of a class of binary finite state channels (FSCs). This
approach was later generalized to large discrete alphabets
using reinforcement learning [36]. Another approach towards
maximizing information measures relies on the Blahut-
Arimoto (BA) algorithm [37], [38], originally proposed for
MI maximization between discrete random variables. Subse-
quently, the algorithm was extended to FSCs [39], to DI [40],
and to MI between continuous random variables [41]. The
main drawback of BA algorithms is that they require full
knowledge of the involved densities or the availability of
consistent estimates thereof. Moreover, the continuous BA
algorithm is based on space quantization, and therefore
its computational complexity grows exponentially with the
variables dimension.

B. Contributions

Building on the computational potency of modern machine
learning techniques, we develop herein a neural estimation and
optimization framework for the DI rate between continuous-
valued stochastic processes. Inspired by [24] and [28],
we derive the DI neural estimator (DINE) by expressing DI
in terms of certain Kullback-Leibler (KL) divergences (plus
cross-entropy residuals) and invoking the DV representation
to arrive at a variational form. To account for causal
dependencies, we parametrize the DV feasible set with the
set of recurrent neural networks (RNNs) and approximate
expected values by sample means. This results in a
parametrized empirical objective that lends well to gradient-
based optimization. We prove that the DINE is consistent
whenever the stochastic processes are stationary and ergodic.
The proof is based in a generalized version of Birkhoff’s
ergodic theorem [42], martingale analysis, and the universal
approximation property of RNNs [43].

Having the DINE, we consider optimization of the estimated
DI rate over the input stochastic process. To that end,
we simulate the input process by an RNN deep generative
model, whose parameters can be tuned to increase the
estimated DI rate. By jointly optimizing the DINE and the
input generative model, we obtain an estimation-optimization
scheme for estimating the capacity of continuous channels
with memory. Consistency of the overall method is established
using the functional representation lemma (FRL) [44], [45]
and universal approximation arguments [43]. We provide
an extensive empirical study of the proposed method,
demonstrating its efficiency and accuracy in estimating the
feedforward and feedback capacities of various channels with
and without memory, encompassing the average and peak

power constrained additive white Gaussian noise channels
(AWGN) [46], [47], [48], moving-average (MA) AWGN [49]
and MIMO auto-regressive (AR) AWGN channels [50].
Lastly, we discuss the structure of the learned optimal input
distribution and furnish connections to probability integral
transforms. We note that following the earlier conference
version of this paper [1], several neural optimization
techniques were proposed [51], [52], [53] and an empirical
comparison was the focus of [54]. However, these methods
are only applicable to memoryless channels.

C. Organization

The text is organized as follows. Section II provides
preliminaries and technical background. Section III sum-
marizes the main results of this paper. Section IV derives
the DINE, provides theoretical guarantees, and discusses its
implementation. The optimization procedure of DINE over
continuous-valued input processes is the focus of Section V,
where consistency of the overall method and implementation
details are also given. Section VI provides empirical results for
channel capacity estimation. Proofs are given in Section VIII,
while Section VII provides concluding remarks and discusses
future research directions.

II. BACKGROUND AND PRELIMINARIES

A. Notation

Subsets of the d-dimensional Euclidean space are denoted
by calligraphic letters, e.g., X ⊆ Rd. For any n ∈ N, Xn is
the n-fold Cartesian product of X , while xn = (x1, . . . , xn)
denotes an element thereof. For i, j ∈ Z with i ≤ j, we use the
shorthand xj

i := (xi, . . . , xj); the subscript is omitted when
i = 1. We denote by (Ω,F , P) the underlying probability
space on which all random variables are defined, with E
denoting expectation. The set of all Borel probability measures
on X ⊆ Rd is denoted by P(X ). The subset of P(X )
of Lebesgue absolutely continuous measures is denoted by
Pac(X ). The density of P ∈ Pac(X ) is designated by its
lowercase version p; n-fold product extensions of P and p
are denoted by P⊗n and p⊗n, respectively. Random variables
are denoted by upper-case letters, e.g., X , using the same
conventions as above for random vectors. Stochastic processes
are denoted by blackboard bold letters, e.g., X := (Xi)i∈N.

For P,Q ∈ P(X ) such that Q ≪ P , i.e., Q is
absolutely continuous with respect to (w.r.t.) P , we denote
the Radon-Nikodym derivative of P w.r.t. Q by dP

dQ . The KL
divergence between P and Q is DKL(P∥Q) := EP

[
log dP

dQ

]
.

If Q ∈ Pac(X ) with probability density function (PDF) q,
then the cross-entropy between P and Q is hCE(P,Q) :=
−EP [log q]. The MI between (X,Y ) ∼ PXY ∈ P(X ×
Y) is I(X; Y ) := DKL(PXY ∥PX ⊗ PY ), where PX

and PY are the marginals of PXY . The conditional KL
divergence between two probability measures PY |X , QY |X
with X ∼ PX is given by DKL(PY |X∥QY |X |PX) :=
EPX

[
DKL(PY |X∥QY |X)

]
. Consequently, for (X, Y, Z) ∼

PXY Z , we define the conditional MI as I(X; Y |Z) :=
DKL(PXY |Z∥PX|Z ⊗ PY |Z |PZ). The differential entropy of
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X ∼ P is h(X) := hCE(P, P ) whenever P ∈ Pac(X ).
We denote the convolution between two probability measures
µ and ν with (µ ∗ ν)(A) :=

∫ ∫
1A(x + y) dµ(x) dν(y) and

1A as the indicator of A For an open set U ⊆ Rd and k ∈ N,
the class of functions such that all partial derivatives up to
order k exist and are continuous is denoted by Ck(U), with
C(U) := C0(U) and we denote by ∂j

xi
f the jth order partial

derivative of f w.r.t. xi.

B. Directed Information and Channel Capacity

Originally proposed by Massey [2], DI quantifies the
amount of information one sequence of random variables
causally conveys about another.

Definition 1 (Directed Information): Let (Xn, Y n) ∼
PXnY n ∈ P(Xn × Yn). The DI from Xn to Y n is

I(Xn → Y n) :=
n∑

i=1

I(Xi; Yi|Y i−1). (1)

DI entails the concept of causal conditioning, i.e., condition-
ing only on present and past values of the sequences, which is
seen through its decomposition using causal conditioned (CC)
entropies [55]. For (Xn, Y n) ∼ PXnY n ∈ P(Xn × Yn), the
entropy of Y n CC on Xn is given by

h (Y n∥Xn) := E
[
− log pY n∥Xn (Y n∥Xn)

]
,

where pY n∥Xn (yn∥xn) :=
∏n

i=1 pYi|Y i−1,Xi

(
yi|yi−1, xi

)
is

the CC-PDF of Y n given Xn = xn. As the CC entropy can be
expressed as h(Y n∥Xn) :=

∑n
i=1 h(Y i|Xi, Y i−1), we have

the following representation for DI:

I (Xn → Y n) = h (Y n)− h (Y n∥Xn) . (2)

This poses DI as the reduction in the uncertainty about Y n as a
result of causally observing (the elements of) Xn. Since DI (as
well as MI) tends to grow with the number of observations,
the appropriate figure of merit when considering stochastic
processes is the DI rate.

Definition 2 (Directed Information Rate): Let X and Y be
jointly stationary stochastic processes. The DI rate from X to
Y is given by

I(X→ Y) := lim
n→∞

1
n

I(Xn → Y n). (3)

The limit exists whenever the processes are jointly station-
ary [56]. Due to the averaging, the DI rate captures prominent
interactions, while the effect of transient phenomena decays
to zero.

Remark 1 (Channel Capacity): We consider channels with
and without a feedback link from the channel output back
to the encoder. The feedforward capacity of a sequence of
channels {PY n∥Xn}n∈N is [4]1

CFF = lim
n→∞

sup
PXn

1
n

I(Xn; Y n). (4)

1This formula assumes the so-called information stability property
(see [57]).

In the presence of feedback, the capacity becomes [58]

CFB = lim
n→∞

sup
PXn∥Y n−1

1
n

I(Xn → Y n). (5)

The achievability of (4) and (5) is discussed in [57] and [58],
respectively. As shown in [2, Theorem 1], when feedback is
not present, the optimization problem (5) (which amounts to
optimizing over PXn rather than PXn∥Y n ) coincides with (4).
Thus, DI provides a unified framework for the calculation of
both feedforward and feedback capacities.

C. Neural Networks and Recurrent Neural Networks

The class of shallow NNs with fixed input and output
dimensions is defined as follows [59].

Definition 3 (NN Function Class): For the ReLU activation
function σR(x) = max(x, 0) and di, do ∈ N, define the class
of neural networks with k ∈ N neurons as:

G(di,do)
k :={
g : Rdi → Rdo : g(x) =

k∑
j=1

βjσR(Wjx− bj), x ∈ Rdi

}
,

(6)

where σR acts component-wise, βj ∈ R, Wj ∈ Rdo×di and
bj ∈ Rdo are the parameters of g ∈ G(di,do)

k . Then, the class
of NNs with input and output dimensions (di, do) is given by

G(di,do)
nn :=

⋃
k∈N
G(di,do)

k . (7)

NNs form a universal approximation class under mild
smoothness conditions [59]. However, feedforward networks
such as those defined in (6) cannot capture temporal evolution,
which is inherent to DI. Therefore, our neural estimator
employs RNNs [60], which map an input sequence (ut)T

t=1 ⊂
Rdi to an output sequence (xt)T

t=1 ⊂ Rdo via a parametric
nonlinear time-invariant transformation. The class of RNNs is
defined as follows.

Definition 4 (RNN Function Class): Fix k, di, do ∈ N. The
class G(di,do,k)

rnn of RNNs with k neurons and input-output
dimensions (di, do) is the set of discrete-time, nonlinear
systems with the following structure:

st = −αst−1 + Aσ(st−1 + Bxt),
yt = Cst, (8)

where s0 ∈ Rk is the initial RNN state, st ∈ Rk, xt ∈ Rdi ,
and yt ∈ Rdo are, respectively, the state, input, and output
(column) vectors, A ∈ Rk×k, B ∈ Rk×di , and C ∈ Rdo×k

are the associated weight matrices, α ∈ (−1, 1) is a fixed
constant for controlling state decay, and σ(x) = 1

1+e−x is the
sigmoid function which acts on vectors component-wise. The
class of RNNs (of all possible sizes) with dimensions (di, do)
is defined as

G(di,do)
rnn :=

⋃
k∈N
G(di,do,k)

rnn . (9)

Every element of G(di,do)
rnn is a function, such that for a given

input sequence, its output is calculated sequentially according
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to (8). An RNN is therefore a causal input-output discrete-time
mapping of T elements of Rdi to T elements of Rdo , for any
di, do, T ∈ N.

Note that both G(di,do)
k and G(di,do,k)

rnn are parametric models
whose (finitely many) parameters belong to some parameter
space Θ ⊂ Rd, for an appropriate dimension d. When k
is fixed, interchangeably denote functions from the above
classes explicitly, as g ∈ G(di,do)

k , or in their corresponding
parametrized form: gθ where θ ∈ Θ.

D. Mutual Information Neural Estimation

The mutual information neural estimator (MINE) [24] is a
NN-based estimator of the MI between two random variables.
The technique relies on the DV variational representation of
KL divergence [25, Theorem 3.2].

Theorem 1 (DV Representation): For any P,Q ∈ P(X ),
we have

DKL (P∥Q) = sup
f :X→R

EP [f ]− log
(
EQ[ef ]

)
, (10)

where the supremum is taken over all measurable functions f
for which expectations are finite.

Given n pairwise independent and identically distributed
(i.i.d.) samples Dn := (Xn, Y n) from PXY ∈ P(X ×Y), the
MINE parametrizes f by a NN g ∈ Gnn := G(dx+dy,1)

nn and
approximates expectations by sample means:

ÎMI(Dn) := sup
g∈Gnn

1
n

n∑
i=1

g(Xi, Yi)−log

(
1
n

n∑
i=1

eg(Xi,Ȳi)

)
︸ ︷︷ ︸

=̂IMI(Dn,g)

,

(11)

where (Xi, Ȳi) ∼ PX ⊗ PY . The functions over which
we optimize the DV objective are termed DV potentials.
We stress that only the correlated samples from Dn are given,
so negative (i.e., independent) samples must be constructed
from them, e.g., by random permutation [24]. In [24,
Theorem 2] the strong consistency of MINE is proved, i.e.,
limn→∞ ÎMI(Dn) = I(X; Y ), P-almost surely (a.s.).

Remark 2 (Non-Asymptotic Error Bound): Non-asymptotic
error bounds for neural estimation of f -divergence were
recently derived in [30]. Specifically, they established bounds
on the effective (approximation plus empirical estimation)
error of a neural estimator realized by a k-neuron shallow NN
with bounded parameters and n data samples. Instantiating
their result for the DKL(P∥Q) with P = PXY and
Q = PX ⊗ PY yields an O

(
d1/2k−1/2 + d3/2(log k)7n−1/2

)
error bound for MI estimation, uniformly over a class of
sufficiently regular d-dimensional distributions with bounded
supports. Evidently, there is a fundamental tradeoff between
the two sources of error: while good approximation needs
the NN class to be rich and expressive, empirical estimation
error bounds rely on controlling complexity.

Due to the consistency of the MINE, and since parameteri-
zation can only shrink the DV function class, it provably lower
bounds the ground truth MI in the limit of large samples.

Lemma 1 (MINE Lower Bounds MI): For any g ∈ Gnn,
we have

I(X; Y ) ≥ lim
n→∞

ÎMI(Dn, g), P-a.s. (12)

This property implies that the probability that MINE will
overestimate MI is small. This property is central when the
target MI is the underlying capacity of some communication
channel, as we can state that the estimate provides a lower
bound of it at worst. This property will be further discussed
in the context of the proposed methods.

III. MAIN RESULTS

This work develops a principled framework for neural
estimation and optimization of information measures, which
is then leveraged to estimate the feedforward and feedback
capacities of general channels. To that end we propose the
DINE, which generalizes the MINE for DI rate, and develop
methods for optimizing MINE and DINE over continuous
channel input distributions. While channel capacity estimation
is the focus of this work, the proposed estimation and
optimization techniques are applicable to any DI optimization
scenario.

A. Directed Information Neural Estimation

We set up the DINE, state its consistency, and provide a
pseudo-algorithm for its computation. We construct the DINE
as the difference between two DV-based KL estimators. Given
a sample Dn = (Xn, Y n) ∼ PXnY n and RNNs gy ∈ GY

rnn :=
G(dy,1)

rnn and gxy ∈ GXY
rnn := G(dy+dx,1)

rnn , the DINE is given by

ÎDI(Dn) := sup
gxy∈GXY

rnn

D̂Y ∥X(Dn, gxy)− sup
gy∈GY

rnn

D̂Y (Dn, gy),

where D̂Y , D̂Y ∥X are given by

D̂Y (Dn, gy)

:=
1
n

n∑
i=1

gy

(
Y i
)
− log

(
1
n

n∑
i=1

egy(Ỹi,Y
i−1)

)
(13a)

D̂Y ∥X(Dn, gxy)

:=
1
n

n∑
i=1

gxy

(
Y i, Xi

)
− log

(
1
n

n∑
i=1

egxy(Ỹi,Y
i−1,Xi)

)
,

(13b)

and Ỹ n i.i.d.∼ Unif(Y). A full derivation of the estimator
and further implementation details are provided in Section IV.
As stated next, the DINE is a consistent estimator of the DI
rate.

Theorem 2 (Consistency): Suppose X and Y are jointly
stationary, ergodic, regular stochastic processes. Then the
DINE is a strongly consistent estimator of I(X → Y), i.e.,
P-a.s. for every ϵ > 0, there exists N ∈ N such that for every
n > N we have∣∣∣ ÎDI(Dn)− I(X→ Y)

∣∣∣ ≤ ϵ. (14)

To compute the DINE in practice notice that GY
rnn and GXY

rnn

are parametric classes. We fix k and take their k-dimensional
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counterparts whose (finitely many) parameters belong to some
parameter space Θ ⊂ Rd, for an appropriate dimension d.
We therefore denote the DINE RNNs with gθy and gθxy , and
optimize the DINE objective over their parameters (θy, θxy).

Algorithm 1 DINE
Input: Dataset Dn.
Output: ÎDI(Dn) DI rate estimate.

Initialize gθy
, gθxy

with parameters θy, θxy .
Step 1 – Parameter optimization:
repeat

Draw a batch Bm for m < n & sample PỸ .
Compute D̂Y ∥X(Bm, gθxy

), D̂Y (Bm, gθy
) using (13).

Update networks parameters:
θxy ← θxy +∇θxy

D̂Y ∥X(Bm, gθxy
)

θy ← θy +∇θy D̂Y (Bm, gθy )
until convergence.
Step 2 – Evaluation: Evaluate over a sample Dn and
subtract losses to obtain ÎDI(Dn) (20).

As delineated in Algorithm 1, the DI estimation algorithm
consists of a training step and an evaluation step. At each
iteration of the training step, a batch is drawn and set
of reference samples is generated. The samples are then
sequentially processed by the models (gθy , gθxy ), whose
outputs are fed to the KL estimates in (13). The estimates
are then used to update the model parameters according to
the steepest descent direction. When the training phase is
done, an estimate of the DI rate is calculated from a long
sequence (Xn, Y n).

B. DINE Optimization Over Continuous Spaces

Given a sequence of transition kernels {PY n∥Xn}n∈N that
models a communication channel, we propose a method for
optimizing the DINE over continuous input distributions.
Specifically, we employ an RNN generative model termed
the neural distribution transformer (NDT), denoted hϕ ∈
G(dx,dx,k)

rnn , where k, dx ∈ N and ϕ ∈ Φ are its parameters. Let
Un ∼ P⊗n

U for some PU ∈ Pac(U) and U ⊂ Rdx . We define
hϕ through the following recursive relation

hϕ : (Ui, Z
ϕ
i−1) 7→ Xϕ

i , i = 1, . . . , n,

where Zϕ
i is determined according to whether feedback is

present or not. By sampling PU and passing those samples
through hϕ and the channel, we generate a dataset Dϕ

n =
(Xϕ,n, Y ϕ,n). We optimize the DINE over ϕ such that Dϕ

n

corresponds to the distribution that maximizes the DINE.
As described by Algorithm 2, our scheme alternates between

the optimization of the NDT and the DINE models. Each
iteration begins with a choice of one of the models. Then,
a set of channel input-output samples are calculated via the
NDT mapping and channel models. These are then fed into
the DINE and the corresponding DV-based loss is calculated,
from which gradients are drawn for parameters update of the
chosen model.

Algorithm 2 Continuous DINE Optimization
Input: Continuous channel, feedback indicator.
Output: Î⋆DI(U

n), optimized NDT.
Initialize gθy

, gθxy
and hϕ with parameters θy, θxy, ϕ.

if feedback indicator then
Add feedback to NDT.

repeat
Draw noise Um, m < n.
Compute Bϕ

m using NDT and channel
if training DINE then

Perform DINE optimization according to step 1 in
Algorithm 1.

else (Train NDT)
Compute ÎDI(Bϕ

m, gθy
, gθxy

, hϕ) using (13).
Update NDT parameters:
ϕ← ϕ +∇ϕ̂IDI(Bϕ

m, gθy
, gθxy

, hϕ)

until convergence.
Draw Un and perform a Monte Carlo evaluation of ÎDI(Dϕ

n).
return Î⋆DI(U

n), optimized NDT.

We prove the convergence of the joint estimation-
optimization method. We assume that both the channel and
input process adhere to a recursive nonlinear and stationary
state space model. We further assume that the channel output
and state mappings, given by fy and fz, meet some Lipschitz
continuity criterion (this is summarized by Assumption 1,
in Section V-B.1). We denote the class of such input processes
by XS and denote the maximal DI rate over XS by Cs.
We propose the following

Theorem 3 (Strong Consistency of the DINE-NDT Method):
Let {PYi|Y i−1,Xi}i∈N be a continuous unifilar state channel,
where fy, fz satisfy Assumption 1. Then, P-a.s. for every
ϵ > 0, there exist N ∈ N such that for every n > N and
Un ∼ P⊗n

U we have∣∣Cs − Î⋆DI(U
n)
∣∣ ≤ ϵ, (15)

where Î⋆DI(U
n) = sup

hϕ∈G(dx,dx)
rnn

ÎDI(Dϕ
n, hϕ).

For memoryless channels, where capacity is given by the
maximized MI, we consider MINE optimization and identify
the optimized NDT structure via multivariate generalization of
the capacity achieving input cumulative distribution function
(CDF), obtained by vectorizing the product of conditional
CDFs of the entries of X (see Theorem 6). For the full details
of the theoretical guarantees, see Section V-B.

As described in Algorithm 2, the joint DI estimation-
maximization procedure involves alternating optimization
between the DINE and NDT models. In Section VI,
we demonstrate the end-to-end procedure by estimating the
capacity of several channels, with and without memory,
accounting for both feedforward and feedback capacities.
We empirically demonstrate the accuracy of the algorithm
by comparing it with known results/bounds and analyse the
optimized NDT.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on February 08,2024 at 14:32:59 UTC from IEEE Xplore.  Restrictions apply. 



4782 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

IV. DIRECTED INFORMATION NEURAL ESTIMATION

This section describes the DI estimation method introduced
in Section III-A. We consider two jointly stationary and
ergodic processes X and Y, supported on X ⊆ Rdx and
Y ⊆ Rdy , respectively. Our goal is to devise a provably
consistent neural estimator of the DI rate from X to Y
based on a finite sample of these processes. The section is
organized as follows. We begin by demonstrating the difficulty
of generalizing the MINE framework to the DI estimation.
We then derive the DINE, discuss theoretical guarantees, and
illustrate its implementation.

A. Challenges in Generalizing MINE to Directed Information

Recall that the MINE (11) is derived by approximating
the potentials in the DV variational formula with NNs, and
estimating expectations by sample means. Generalizing to DI,
we consider the conditional MI corresponding to the DI rate
through limn→∞ I(Xn; Yn|Y n−1) = I(X → Y) [19]. The
corresponding KL term is given by

I(Xn; Yn|Y n−1)=DKL

(
PYn|Y n−1Xn︸ ︷︷ ︸

Ppos

∥PYn|Y n−1︸ ︷︷ ︸
Pneg

∣∣PXnY n−1

)
,

(16)

where DKL(PY |X∥QY |X |PX) is the conditional KL diver-
gence. Estimating the expectations in DV representation of
(16) requires samples of both Ppos and Pneg, while only
samples of PXnY n are available. Samples of Ppos are the
sampled channel outputs. On the other hand, samples from
Pneg require some manipulation of the data to break the
relation between X and Y, but maintain temporal inter
dependencies. For i.i.d. data, random permutation of the
samples is proposed [24], and for 1st order Markov processes
the 1-nearest neighbors algorithm is utilized [61]. To the best
of our knowledge, such a technique is unknown for unbounded
memory, as previous methods either affect both dependencies
between X and Y or the the temporal relations are restricted
only to short memory. As a solution, we derive a DV-based
estimator of the DI rate that solely relies on samples from Ppos,
exploiting samples from an auxiliary distribution over Y .

B. The Estimator

The DINE derivation relies on the following steps:
First, we express DI as the difference between certain
KL divergence terms. These are then represented via
the DV variational formula (Theorem 1). Then, the DV
potentials are parametrized using RNNs, and expected values
are approximated by sample means. Recall that DI is
given by

I (Xn → Y n) = h (Y n)− h (Y n∥Xn) . (17)

For simplicity, assume Y is compact2, and let Ỹ ∼ Unif(Y) =:
PỸ be independent of X and Y. Using the uniform reference

2This is a technical assumption that arises due to the choice of a uniform
reference measure. By changing P

Ỹ
to, e.g., Gaussian, this assumption is

removed.

measure we expand each entropy term as

h(Y n)
= hCE

(
PY n , PY n−1 ⊗ PỸ

)
− DKL

(
PY n

∥∥PY n−1 ⊗ PỸ

)
(18a)

h(Y n∥Xn)
= hCE

(
PY n∥Xn , PY n−1∥Xn−1 ⊗ PỸ

∣∣PXn∥Y n−1

)
− DKL

(
PY n∥Xn

∥∥PY n−1∥Xn−1 ⊗ PỸ

∣∣PXn∥Y n−1

)
,

(18b)

where hCE(PY |X , QY |X |PX) is the conditional cross-entropy.
With some abuse of notation, let X := {Xi}i∈Z and
Y := {Yi}i∈Z be the two-sided extension of the considered
processes (the underlying stationary and ergodic measure
remains unchanged). Inserting (18a)-(18b) into (17) and using
joint stationarity (which guarantees the existence of the
following limit) we have

I(X→ Y) = D∞Y ∥X − D∞Y = lim
n→∞

Dn
Y ∥X − lim

n→∞
Dn

Y ,

with
Dn

Y := DKL

(
PY 0

−(n−1)

∥∥∥PY −1
−(n−1)

⊗ PỸ

)
Dn

Y ∥X

:= DKL

(
PY 0

−(n−1)∥X
0
−(n−1)

∥∥∥PY −1
−(n−1)∥X

−1
−(n−1)

⊗ PỸ∣∣∣PX0
−(n−1)∥Y

−1
−(n−1)

)
. (19)

To arrive at a variational form we make use of the DV
theorem. The optimal DV potentials for Dn

Y and Dn
Y ∥X can

be represented as dynamical systems that are given by the
recursive relation zt+1 = f(zt, ut) for inputs ut and outputs
zt, respectively. The dynamical system formulation follows
from a representation of the optimal potentials in terms of
the corresponding likelihood ratios. As such, these potentials
can be approximated to arbitrary precision by elements of the
RNN function classes GY

rnn and GXY
rnn [60]. The expectations in

the DV formula are estimated with sample means (see Section
VIII-A, where consistency of the DINE is proved, for details).
The DINE objective is given by

ÎDI(Dn, gy, gxy) := D̂Y ∥X(Dn, gxy)− D̂Y (Dn, gy), (20)

where

D̂Y (Dn, gy)

:=
1
n

n∑
i=1

gy

(
Y i
)
− log

(
1
n

n∑
i=1

egy(Ỹi,Y
i−1)

)
, (21a)

D̂Y ∥X(Dn, gxy)

:=
1
n

n∑
i=1

gxy

(
Y i, Xi

)
− log

(
1
n

n∑
i=1

egxy(Ỹi,Y
i−1,Xi)

)
.

(21b)

Consequently, the DINE is given by the optimization of (20)

ÎDI(Dn) := sup
gxy∈GXY

rnn

D̂Y ∥X(Dn, gxy)− sup
gy∈GY

rnn

D̂Y (Dn, gy)

= sup
gxy∈GXY

rnn

inf
gy∈GY

rnn

ÎDI(Dn, gy, gxy). (22)
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The optimization can be executed via gradient-ascent over the
RNN parameters.

C. Theoretical Guarantees

We now provide formal guarantees for the DINE. To that
end, we consider the class of jointly stationary, ergodic, and
regular stochastic processes. A stationary process X is called
regular [62], [63], [64] if and only if the logarithm of its
power spectral density is absolutely integrable.3 This condition
is non-restrictive as it is met for stationary processes with
finite variance whose power spectral density does not contain
singularities. All the examples considered in this paper (cf. the
experiments in Section VI) satisfy this regularity condition.
The following theorem establishes consistency of the DINE.

Theorem 4 (Theorem 2, Restated): Suppose X and Y are
jointly stationary, ergodic, regular stochastic processes. Then
P-a.s. for every ϵ > 0, there exists N ∈ N such that for every
n > N we have∣∣∣ ÎDI(Dn)− I(X→ Y)

∣∣∣ ≤ ϵ. (23)

The proof can be divided into three main steps. First,
an information-theoretic step, in which we express the DI rate
as the difference of KL divergence terms, and represent it
with the DV formula (10). Second, an estimation step, that
utilizes a generalization of Birkhoff’s ergodic theorem [42],
[65] to approximate the expectations of the DV representation
by sample means. Third, an approximation step, in which we
show that the sequence of optimal DV potentials possesses a
certain sequential structure, and approximate it using RNNs,
utilizing a universal approximation theorem for RNNs [60].
The proof is given in Section VIII-A. We stress that the
choice of N depends on the underlying probability law P. This
dependence is implicitly encoded in the generalized AEP and
Birkhoff’s theorems (Theorems 7, 8 in Section VIII-A).

Remark 3 (Bound on the Underlying DI Rate): The DINE
is constructed as a difference of two maximization problems.
Therefore, while the DV representation induces a lower bound
on each KL term for any choice of gy and gxy , the overall
objective (20) does not bound the true DI-neither from above
nor below. For a DINE variant that does bound I(X→ Y), one
would need a variational upper bound of KL divergences that
can be optimized over RNNs. To the best of our knowledge,
such a representation is not known.

D. Implementation

We describe the implementation details of the DINE. Fix ky

and kxy with the corresponding RNN classes G(dy,1,ky)
rnn and

G(dy,1,kxy)
rnn . The corresponding compact parameter subsets are

denoted Θy ⊆ Rdθy and Θxy ⊆ Rdθxy with finite dθy and
dθxy

. The RNNs over which we optimize comprise a modified
long short-term memory (LSTM) layer and a fully connected
(FC) network. The architecture for D̂Y (Dn, gθy

) is depicted

3Such processes are sometime also called ‘purely non-deterministic’.
Loosely speaking, the defining property of a regular (or purely non-
deterministic) process X is that the amount of information contained in Xk

for the prediction of Xt vanishes as k → −∞, i.e., remote past does not
affect the prediction of Xt.

Fig. 1. The estimator architecture for the calculation of D̂Y (Dn, gθy ).

in Figure 1. We next present the modified LSTM cell, discuss
the optimization procedure, and propose an adjustment for the
DINE objective that accounts for possible estimation variance
induced by the reference samples.

1) Modified LSTM: Note that the RNN mappings in each
KL estimate in (21) consists of the same mapping, each time
differing on the ith input. Our goal is therefore to construct
a unified mapping for samples of both the joint and reference
distribution, while restricting memory to depend only on past
samples from the joint distribution. To this end, we adjust
the structure of the classic LSTM cell [66]. The modification
is presented for D̂Y and is straightforwardly adopted for
D̂Y ∥X . The classic LSTM is an RNN that recursively computes
a hidden state si from its input yi and the previous state
si−1through a gating mechanism whose goal is to amplify
relevant past information for computation of future states
and outputs (see [66] for more background on LSTMs).
We henceforth use the shorthand si = fL(yi, si−1) for the
relation between si and (yi, si−1) defined by the LSTM.
As DINE also employs the sequence ỹn drawn from the
reference distribution PỸ , the modified LSTM collects hidden
states for both yn and ỹn. At time i = 1, . . . , n, the cell
takes a pair (yi, ỹi) as input, and outputs two hidden states
si = fL(yi, si−1) and s̃i = fL(ỹi, si−1), with only si passed
on for calculating the next state. The state sequences are
then processed by the FC network to obtain the elements of
(21a). The states si and s̃i calculate a summary of yi−1 and
ỹi−1 through the LSTM cell recursive mapping. Therefore,
we interpret the computation of gθy

(yi) and gθy
(ỹ, yi−1) as

conditioning on past inputs. With some abuse of notation,
we use interchangeably the following conditional form for the
DINE outputs.

gθy (yi) = gθy (yi, si−1) = gθy (yi|yi−1)

gθy
(ỹi, y

i−1) = gθy
(ỹi, si−1) = gθy

(ỹi|yi−1). (24)

The notation on the right-hand sides (RHSs) of (24)
emphasizes that the input dimension is fixed for each time
step. The calculation of the hidden states for D̂Y ∥X in (21b)
is performed analogously, by replacing yi and ỹi with (xi, yi)
and (xi, ỹi), respectively. The modified LSTM cell is shown
in Figure 2.

2) Algorithm: The DINE algorithm computes ÎDI(Dn) by
optimizing the parameters θy ∈ Θy and θxy ∈ Θxy of the
RNNs gθy

and gθxy
, respectively. We divide the dataset into

batches of B sequences of length T , i.e., Bm := (Xm, Y m)
with m = BT < n. For each batch, we provide samples of the
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Fig. 2. The modified LSTM cell unrolled in the DINE architecture of D̂Y .
Recursively, at each time t, (Yt, St−1) and (Ỹt, St−1) are mapped to St

and S̃t, respectively.

reference measure4 and feed the sequences through the DINE
architecture to obtain the DV potentials gθy

and gθxy
. Those

are then used to calculate the DINE objective (20), from which
gradients are derived for the update of θy and θxy . We repeat
the above steps until some convergence criteria is met. See
Algorithm 1 in Section III for the full list of steps. The weights
of the FC networks within each RNN are shared since we wish
to produce the same function acting on different inputs.

3) Reference Samples: The exponential terms in (21a) and
(21b) can potentially cause instability in the estimation process
by biasing the estimate of the update gradients [24]. Existing
methods to account for this problem include moving average
filtering of the gradients [24] and clipping of the exponential
terms [27]. Herein, we exploit the reference uniform measure.
For each i, we collect KU reference samples {Ỹi,j}KU

j=1. These
are used to calculate the corresponding DV potentials by
averaging over the reference samples,

ḡθy
(Ỹi|Y i−1) :=

1
KU

KU∑
j=1

egy(Ỹi,j |Y i−1),

ḡθxy
(Ỹi|Y i−1, Xi) :=

1
KU

KU∑
j=1

egxy(Ỹi,j |Y i−1,Xi).

We then use ḡθy
and ḡθxy

instead of the aforementioned
exponential terms in (21a) and (21b). We observe empirically
that the averaging reduces bias and numerical instability in the
estimation process.

V. DINE OPTIMIZATION OVER CONTINUOUS SPACES

In this section we present our method for the optimization
of the DINE over continuous input distributions. We utilize a
generative model, whose objective is to construct a sample Dn

that maximizes (22). In what follows, we derive the optimizer,
discuss its theoretical properties, describe its implementation,
and discuss the joint estimation-optimization procedure.

A. Optimizer Derivation

We consider the optimization supPX
I(X → Y), where

PX = {PXi|Xi−1}i∈N for feedforward channels and

4In practice, we sample uniformly from the smallest d-dimensional
bounding hypercube of the samples Y n.

PX = {PXi|Xi−1Y i−1}i∈N for channels with feedback. To that
end, we propose the NDT, an RNN-based generative model
that maps an arbitrary i.i.d. sequence, Un ∼ P⊗n

U , to a
sequence of channel inputs. The NDT is given by hϕ ∈
GX

rnn = G(dx,dx,k)
rnn with parameters ϕ ∈ Φ. Recall that hϕ

recursively calculates the sequence of channel inputs Xϕ,n,
where Xϕ

0 = 0 and

Xϕ
i = hϕ(Ui, Z

ϕ
i−1), i = 1 . . . , n. (25)

The sequence Xϕ,n is passed through the channel to obtain
the corresponding outputs Y ϕ,n, to arrive at the dataset
Dϕ

n(Un) := (Xϕ,n, Y ϕ,n). For feedforward channels we take
Zϕ

i = Xϕ
i , while Zϕ

i = (Xϕ
i , Y ϕ

i ) for channels with feedback.
To simplify notation, we denote Dϕ

n(Un) = Dϕ
n and consider

the same distribution PU throughout. The overall optimization
is given by

Î⋆DI(U
n) := sup

hϕ∈GX
rnn

ÎDI(Dϕ
n, hϕ)

= sup
hϕ∈GX

rnn

(
sup

gxy∈GXY
rnn

inf
gy∈GY

rnn

ÎDI(Dϕ
n, hϕ, gy, gxy)

)
.

(26)

The DINE objective (20) acts as a loss function for the
optimization of hϕ, which is executed via gradient-based
optimization over ϕ. When the channel is memoryless
we focus on MI estimation and optimization, employing
the MINE. Consequently, hϕ only takes Ui as input and
the optimization is carried out over G(dx,dx)

k . We next
inspect the theoretical properties of the combined estimation-
optimization method.

B. Theoretical Guarantees

In this section we provide theoretical analysis of the
performance and structure of the proposed method. We first
account for the convergence of the joint optimization
procedure. Then, restricting attention to MI optimization for
memoryless channels, we characterize the optimized NDT
structure.

1) Consistency: We show that under appropriate assump-
tions on the channel transition kernel and input distribution, the
optimization in (26) converges to the maximal DI. We begin by
describing the class of channel inputs that our result accounts
for. We consider the class of stationary processes X, for which
there exist an auxiliary stationary process S over S ⊆ Rd′ and
a function fs ∈ C(X × S) such that

Si = fs(Hi, Si−1), i ∈ N,

and Hi−1 ↔ Si−1 ↔ Xi forms a Markov chain. We take
Hi = Xi for computing the feedforward capacity and Hi =
(Xi, Yi) for the feedback capacity. We call such processes
recursive-state processes (RSPs) and denote the class of RSPs
by XS . In Section VIII-B, where the consistency of the DINE-
NDT method is proved, we show that XS can be represented
as a special case of the general state-space model [67,
Eqn. (3.1)-(3.2)] by constructing a functional reformulation of
the aforementioned Markov relation. The structure allows fs
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to be a randomized function. To better understand the breadth
of the class XS , we make the following observation.

Lemma 2: The class of stationary Markov processes of
finite order is a subset of XS .

The proof is straightforward by choosing Si =
[Xi−(m−1), . . . , Xi], for i ≥ m − 1, with Markov order m.
When i < m− 1, the ith to (m− 1)th entries are zeros.

We next describe the considered class of channels. A unifilar
state channel (USC) [68, Section 2] is a channel whose latent
state Zi evolves according to

Zi = fz(Zi−1, Yi, Xi), i ∈ N,

for some fz ∈ C1(Z × X × Y), where (Xi−1, Y i−1) ↔
(Xi, Zi−1, Yi) ↔ Zi forms a Markov chain. We consider
USCs with continuous input and output spaces, whose outputs
adhere to the functional relation

Yi = fy(Zi, Xi, Ki),

for some fy ∈ C1(Z × X × Y) and an i.i.d. external process
with K1 ∼ PK ∈ Pac(RdK ) for some dK ∈ N. This structure
can be viewed as a variation of [69, Equation 7], in which
the channel mapping also receives past outputs and the state
is unifilar. To bound the effective estimation-optimization
error, we impose the following Lipschitz condition on the
functions fz, fy.

Assumption 1: fz and fy are Lipschitz continuous with
Lipschitz constants My and Mz , respectively, such that
My(Mz + 1) < 1.
This assumption can be lifted if we do not permit any
recursive relation in the channel structure (for more details,
see Sec. VIII-B). In addition, we assume that the DINE RNNs,
(gy, gxy), are Lipschitz with some finite Lipschitz constants
M1 and M2. We have the following consistency claim.

Theorem 5 (Theorem 3, Restated): Let {PYi|Y i−1,Xi}i∈N
be a continuous unifilar state channel, where fy, fz satisfy
Assumption 1. Then, P-a.s. for every ϵ > 0, there exist
N ∈ N such that for every n > N and Un ∼ P⊗n

U we have∣∣Cs − Î⋆DI(U
n)
∣∣ ≤ ϵ, (27)

where Î⋆DI(U
n) = sup

hϕ∈G(dx,dx)
rnn

ÎDI(Dϕ
n, hϕ).

The proof, which is given in Section VIII-B, is divided
into two steps by dividing the consistency error into two
pieces: (i) the error induced by replacing the optimal input
distribution with the proxy coming from the NDT, and (ii) the
error induced by estimating the ground-truth DI rate. The latter
is bounded due to the DINE consistency, while the former
uses the functional representation lemma to bound the error
induced by using a dataset calculated by the NDT and control
its propagation through the channel and DINE models. The full
proof also generalizes the statement to the case of channels
with feedback.

Remark 4 (Feasible Channels): In general, Cs lower
bounds the capacity of a given channel with memory, and the
characterization of capacity-achieving input distributions of
arbitrary stationary channels with continuous input and output
spaces is currently an open problem. However, when the
channel is Gaussian and the channel has a linear state-space

model, the capacity achieving distribution can be reformulated
as an RSP [50], [70].

2) Optimized NDT Structure: We now restrict attention to
memoryless channels, thereby focusing on MI estimation and
optimization. We employ MINE as the MI estimator and
discuss the structure of the optimized NDT. To that end,
we utilize the Rosenblatt transform [71], [72], also known
as the Knöthe-Rosenblatt rearrangement. The Rosenblatt
transform is a multivariate generalization of the CDF based on
triangular transformations (cf. [73]). Consider a d-dimensional
random vector X := (X1, . . . , Xd) ∼ PX ∈ P(X ), where
X ⊆ Rd, and define the associated vector-valued function
TX : X → [0, 1]d by[

TX(x)
]
1

= P(X1 ≤ x1)[
TX(x)

]
i

= P
(
Xi ≤ xi

∣∣∣[TX(X)
]
i−1

=
[
TX(x)

]
i−1

,

. . . ,
[
TX(X)

]
1

=
[
TX(x)

]
1

)
,

i = 2, . . . d. (28)

In words, for x ∈ X , each entry
[
TX(x)

]
i

is given
by the conditional distribution function of Xi at xi given
the values of the function in the preceding entries, i.e.,[
TX(x)

]
1
, . . . ,

[
TX(x)

]
i−1

. The mapping T−1
X is the inverse

Rosenblatt transform. We now have the following proposition.
Lemma 3: Let X ∼ PX ∈ Pac(X ) with X ⊆ Rdx , and

consider the map TX : X → [0, 1]dx defined above. Then:
(i) TX is Borel measurable and the random variable TX(X)

is uniformly distributed over [0, 1]dx .
(ii) TX is a bijection, and for U ∼ Unif

(
[0, 1]dx

)
, we have

T−1
X (U) d= X .

The results of Lemma 3 can be attributed to several past
works. Specifically, Part (i) was derived in [71], while Part
(ii) follows from the results in [74] and [75]. We subsequently
use this lemma to characterize the optimal NDT. The reader is
referred to [71], [73], [76], [77], and [78] for further discussion
and useful properties of the function TX .

Lemma 3 provides a distribution-equivalent representation
of continuous random variables as functions of uniformly
distributed variables 5.

We leverage this fact to characterize to MINE-maximizing
NDT. Let Pp(Rd) be the class of Borel probability measures
on Rd with finite p-th moment, i.e.,

∫
∥x∥p dµ(x) <∞. For a

given transition kernel PY |X , let C denote the capacity of the
corresponding memoryless channel bound to a second moment
input constraint. Denote the capacity-achieving distribution
PX⋆ := argmaxPX∈P2(X ) I(X; Y ), let X⋆ ∼ PX⋆ , and
consider its associated mapping TX⋆ . We quantify the distance
between the NDT-induced probability distribution and PX⋆

using the 2-Wasserstein distance. The p-Wasserstein distance
between µ, ν ∈ Pp(Rd) is given by

Wp(µ, ν) :=
[

inf
π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥p dπ(x, y)
]1/p

,

5As a consequence of Lemma 3, we can construct a transformation between
any two absolutely continuous random variables W and X provided they have
the same dimension, by utilizing the composition T−1

X ◦TW : W 7→ X [79].

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on February 08,2024 at 14:32:59 UTC from IEEE Xplore.  Restrictions apply. 



4786 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

Fig. 3. The NDT. The noise and past channel output (if feedback is present)
are fed into an RNN. The last layer imposes a constraint of our choice.

where Π(µ, ν) is the set of all couplings of µ and ν.
We propose the following theorem.

Theorem 6 (Optimal NDT): Fix ϵ > 0 and let PU be the
uniform distribution over U . Let PY |X with a bounded and
continuous PDF pY |X such that it induces a finite second
moment on the channel output for any second moment-
bounded input distribution. Then, there exist hϕ ∈ G(dx,dx)

nn ,
such that

W2 (hϕ♯PU , PX⋆) ≤ ϵ, (29)

where hϕ♯PU is the pushforward measure of PU by hϕ.
Moreover, P-a.s. for any ϵ > 0 there exist n0 ∈ N such that
for any n > n0 and Un ∼ P⊗n

U , we have∣∣∣ C− ÎMI

(
Dϕk

n

)∣∣∣ ≤ ϵ, (30)

where, Dϕ
n := {(hϕ(Ui), Yi)}ni=1.

The proof is given in Section VIII-C. It utilizes Gaussian
smoothing of probability distributions, which both helps us
account for optimal input distributions that are not necessarily
absolutely continuous, and induces additional structure and
regularity into the framework. We first leverage the universal
approximation of NNs and Gaussian smoothing to bound the
W2 error induced by the NN approximation of the optimal
input distribution. Having that, we decompose the capacity
estimation error into several terms, which are bounded using
Wasserstein continuity of KL-divergence [80], weak continuity
of differential entropy [81, Theorem 1], and the MINE
consistency [24, Theorem 2]. Theorem 6 guarantees the
existence of an NDT model that approximates the capacity
achieving distribution (under the p-Wasserstein distance),
which, in turn, yields a consistent MINE-based proxy of
capacity. We therefore conjecture that the MINE-maximizing
NDT is in fact an approximator of T−1

X . We empirically
validate this conjecture for the AWGN channel in the next
section.

Remark 5 (Lower Bounding Channel Capacity): When the
MINE is optimized, the NDT does not impede the DV-induced
lower bound (Lemma 1). Consequently, for any hϕ ∈ G(dx,dx)

nn ,
the corresponding MINE output lower bounds the channel
capacity. This property will serve us in Section VI-A.2 to
propose a bound on the capacity of the peak-power constrained
AWGN.

C. Implementation

The NDT is implemented using an LSTM stacked with 2 FC
layers. Chanel input constraints, such as average or peak-
power constraints, can be imposed on the NDT outputs, as long
as these can be realized with a differential function of the ϕ.

Fig. 4. The complete system for optimization over continuous spaces.
On each step gradients are passed to a predetermined model, while the other
one’s parameters are fixed.

The NDT model is shown in Figure 3. The overall optimization
over the NDT and DINE takes the form

sup
ϕ∈Φ,θxy∈Θxy

inf
θy∈Θy

ÎDI(Dϕ
n, gθy

, gθxy
, hϕ).

In every iteration, we draw a noise batch (Um), from which
Bϕ

m = (Xϕ,m, Y ϕ,m)B is computed. The batch Bm is
processed by gθy

and gθxy
, the loss Î(Bϕ

m, gθy
, gθxy

, hϕ) is
calculated, and gradients are propagated to update the models
weights. Figure 4 illustrates the complete architecture.

The training adheres to an alternating optimization proce-
dure. Namely, we iterate between updating (θy, θxy) and ϕ,
each time keeping the other parameters fixed. After the training
is done, we perform a long Monte-Carlo (MC) evaluation to
obtain an estimate of (20). The procedure is summarized in
Algorithm 2 and its implementation is available on GitHub.
This alternation between two models sharing a common
loss is found in other fields, such as generative adversarial
networks [82] and actor-critic algorithms [83]. We stress that
the proposed optimization scheme can be applied to any NN-
based estimator of information measures, inasmuch as it is
differentiable w.r.t. the NDT outputs.

VI. EMPIRICAL CAPACITY ESTIMATION RESULTS

We demonstrate the performance of Algorithm 2 for
continuous channel capacity estimation, considering both
feedforward and feedback scenarios for several channel
models. The numerical results are compared with the available
theoretical solution/bounds to verify the effectiveness of
the proposed method. The simulations are implemented in
TensorFlow [84]. The DINE is implemented using a modified
LSTM and two fully-connected layers with 50, 100 and
50 neurons, respectively. The NDT is implemented with an
LSTM and two fully connected layers, each with 100 neurons,
stacked with an output layer with dx neurons.

We note that the term calculated by the DINE-NDT method
differs from the general capacity expression in the following
way. In (26), we take the supremum over the estimated DI
rate, i.e., the limit is taken before the supremum. In contrast,
the general capacity expression (4) considers the opposite
order of limit and optimization. This order is known to be
interchangeable for stationary Gaussian channels [85], and
generally seems to have a minimal effect on the accuracy of
the numerical results for the considered examples. We also
stress that all methods with which we compare the DINE-NDT
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Fig. 5. AWGN with average power constraint.

method assume full knowledge of the channel model, which
our approach does not require.

A. AWGN Channel

1) Power Constraint: We consider the AWGN channel

Yi = Xi + Zi, i ∈ N, (31)

where Zi ∼ N
(
0, σ2

)
are i.i.d. and Xi is the channel

input sequence bound to the average power constraint
E
[
X2

i

]
≤ P . The capacity of this channel is given by

C = 1
2 log

(
1 + P

σ2

)
[56]. We set σ2 = 1 and estimate the

capacity via the optimized MINE for a range of P values.
The numerical results are compared to the analytic solution in
Figure 5, where a clear correspondence is seen.

2) Peak-Power Constraint: We consider the AWGN channel
with a peak power constraint |X| < A, for some A > 0.
The capacity of this channel is unknown, but upper and
lower bounds on it are available in the literature [46], [48].
In Figure 6 we present a comparison of the capacity estimate
obtained from our Algorithm 2 (with MINE instead of DINE)
and the aforementioned bounds. Evidently, the estimate falls
within the theoretical bounds. As MINE lower bounds the
channel capacity for any choice of hϕ (cf., Remark 5), our
estimate also provides new and tighter lower bounds on the
capacity of this channel.

3) Optimized NDT Structure: Considering the average
power constrained AWGN, we check two characteristics of
the MINE-maximizing NDT. First, we empirically validate
Theorem 6 by comparing the optimized NDT with T−1

X⋆ ,
where X⋆ ∼ N (0, P ) is the capacity-achieving input. The
correspondence is shown in Figure 7. Second, in Figure 8
we examine histograms to further verify that the optimized
NDT maps the input samples Un into samples of the capacity-
achieving Gaussian distribution.

B. Gaussian MA(1) Channel

We consider the MA-AWGN channel of order 1:

Zi = αNi−1 + Ni

Yi = Xi + Zi, (32)

Fig. 6. AWGN with peak power constraint. Estimate compared with known
capacity upper and lower bounds from [46] and [48], respectively.

Fig. 7. Optimized NDT structure comparison with F−1
X for AWGN with

average power constraint.

Fig. 8. NDT input vs. output histograms for AWGN with average power
constraint.

where Ni ∼ N (0, 1) are i.i.d., Xi is the channel input
sequence bound to the average power constraint E

[
X2

i

]
≤ P ,

and Yi is the channel output. We consider both feedforward
and feedback cases. The feedforward capacity can be
calculated via the water-filling algorithm [56]. When feedback
is present, we consider the capacity characterization from [49]
as − log(x0), where x0 is a solution to a 4th order polynomial
equation. In Figure 9, we compare our DINE-based capacity
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Fig. 9. MA(1)-AGN estimated capacity comparison with analytical solution.

Fig. 10. MIMO AR(1)-AGN estimated capacity comparison with analytical
solution.

estimator with the above solutions, again revealing clear
correspondence.

C. MIMO Gaussian AR(1) Channel

The AR(1) Gaussian channel is given by

Zi = αZi−1 + Ni

Yi = Xi + Zi, (33)

where Xi ∈ R4 and Ni ∼ N (0, I4) where I4 is the
4-dimensional identity matrix. We consider the power
constraint tr(KXi) ≤ P for some P ∈ R≥0, where KX is
the covariance matrix of X . The feedforward capacity of (33)
is obtained by the water filling algorithm, considering both the
spatial and frequency domains. For the feedback capacity, the
authors of [50] recently developed a method for calculating
the capacity of a general class of MIMO Gaussian channels
with memory through sequential convex optimization. This
class subsumes the MIMO AR(1) channel as a special case.
Figure 10 compares the performance of Algorithm 2 with
the above methods. The convergence of the algorithm is
shown in in Figure 11, presenting a long evaluation over
105 samples, taken every 20 training iterations. It is evident
that our method converges in a relatively small number of
iterations and the ground truth is attained in all considered
cases.

Fig. 11. Algorithm convergence for MIMO AR(1)-AGN with P/σ2 = 1.

VII. CONCLUDING REMARKS AND FUTURE WORK

This work proposed a new neural estimation-optimization
framework of the DI rate between two jointly stationary
and ergodic stochastic processes. Drawing upon recent neural
estimation techniques and modifying the LSTM architecture,
we developed the DINE, proved its consistency, and described
its implementation. Then, we utilized an auxiliary deep
generative model for the input process to obtain a provably
consistent joint estimation-optimization scheme of DI rate.
The method enables estimating channel capacity when the
channel model is unknown (but can be sampled) or when
the optimization objective is not tractable, accounting for both
feedback and feedforward scenarios. We provided an empirical
study that validated our theory and demonstrated the accuracy
of the proposed framework for capacity estimation of various
channel examples. The capacity estimates demonstrated
significant correspondence with known theoretical solutions
and/or bounds, and the learned input model was shown to
approximate capacity-achieving input distributions.

Our method enables consistent estimation of channel
capacity without the typically imposed model assumptions.
However, the obtained estimate generally does not lower
or upper bound the true capacity value. In future work,
we plan to explore modified neural estimation techniques
that would give rise to such theoretical bounds. Another
appealing avenue is utilizing the learned NDT-based input
distribution, or an appropriate adaptation thereof, to obtain
explicit capacity-achieving coding schemes. We also plan to
extend our method to multiuser channels with arbitrary input
and output spaces, targeting a unified and scalable framework
of channel capacity estimation. Moreover, we will look to
apply the proposed scheme to other time-series domains,
such as control, computer vision, speech recognition, and
reinforcement learning.

VIII. PROOFS

A. Proof of Theorem 2

With some abuse of notation, let {(Xi, Yi)}i∈Z be the
two-sided extension of the considered processes, and P be
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the underlying stationary ergodic measure over σ(X, Y).
An n-coordinate projection of P is denoted by PXnY n :=
P
∣∣
σ(Xn,Y n)

, where σ(Xn, Y n) is the σ-algebra generated
by (Xn, Y n). With this notation, Dn = (Xn, Y n) ∼
PXnY n . Lastly, let Ỹ ∼ Unif(Y) (recall that Y ⊂ Rdy

is compact) be independent of {(Xi, Yi)}i∈Z and denote
its distribution by PỸ . We divide the proof into three
steps: variational representation, estimation from samples, and
functional approximation.

Step 1: Representation of DI rate. We first write the DI rate
as the limit of certain KL divergence terms. To do so, we use
to following lemma:

Lemma 4 (DI rate vs. DKL): Let

D∞Y ∥X := DKL

(
PY 0

−∞∥X0
−∞

∥∥∥PY −1
−∞∥X

−1
−∞
⊗ PỸ

∣∣∣PX0
−∞∥Y

−1
−∞

)
D∞Y := DKL

(
PY 0

−∞

∥∥∥PY −1
−∞
⊗ PỸ

)
.

Then we have

I(X→ Y) = D∞Y ∥X − D∞Y . (34)

Lemma 4 is proven in Appendix IX-A. The proof uses
the stationarity of the considered processes and the monotone
convergence theorem for the KL divergence (cf., e.g.,
[86, Corollary 3.2]). We henceforth focus on estimating
D∞Y and D∞Y ∥X . Using the DV representation (Theorem 1),
we have

D∞Y = sup
fy :ΩY→R

E
[
fy

(
Y 0
−∞
)]
− log E

[
efy

(
Y −1
−∞,Ỹ

)]
, (35a)

where ΩY = Y0
−∞. For D∞Y ∥X , we use the KL divergence

chain rule to write

D∞Y ∥X

=DKL

(
PX0

−∞∥Y
−1
−∞

PY 0
−∞∥X0

−∞

∥∥∥PX0
−∞∥Y

−1
−∞

PY −1
−∞∥X

−1
−∞
⊗ PỸ

)
and via the DV theorem obtain

D∞Y ∥X = sup
fxy :ΩX×Y→R

E
[
fxy

(
X0
−∞, Y 0

−∞
)]

− log E
[
ef2

(
X0
−∞,Y −1

−∞,Ỹ
)]

, (35b)

where ΩX×Y = Y0
−∞ ×X 0

−∞.
We now provide a full treatment of (35a). After-

wards, we refer back to (35b) and explain how its
analysis reduces to that of (35a), without repeating the
argument.

Step 2: Estimation. The supremum in (35a) is
achieved by

f⋆
y,∞ := log

(
dPY 0

−∞

d(PY −1
−∞
⊗ PỸ )

)
(a)
= log pY0|Y −1

−∞
− log pỸ ,

(36)

where (a) holds because PY 0
−∞
≪ PY −1

−∞
⊗ PỸ and both

measures have Lebesgue densities. Since Ỹ is uniform, pỸ
is a constant; denote cY := log

(
pỸ (y)

)
, for any y ∈ Y .

We next show that the expectations in (35a) can be estimated
with empirical means. Namely, for any ϵ > 0 and sufficiently

large n, we have P-a.s. that∣∣∣∣∣E[f⋆
y,∞
(
Y 0
−∞
)]
− 1

n

n−1∑
i=0

f⋆
y,i

(
Y 0
−i

)∣∣∣∣∣ < ϵ

8
(37a)∣∣∣∣∣log

(
E
[
ef⋆

y,∞

(
Y −1
−∞,Ỹ

)])
− log

(
1
n

n−1∑
i=0

ef⋆
y,i(Y −1

−i ,Ỹ )
)∣∣∣∣∣ < ϵ

8
,

(37b)

where {f⋆
y,i}i∈N is the sequence of supremum achieving

elements of
{

DKL

(
PY 0

−i

∥∥∥PY −1
−i
⊗ PỸ

)}
i∈N

, with the P-a.s.
limit limi→∞ f⋆

y,i = f⋆
y,∞. To simplify notation we denote the

following empirical means over n samples as

En[f⋆
y (Y 0

−(n−1))] :=
1
n

n−1∑
i=0

f⋆
y,i

(
Y 0
−i

)
(38)

En

[
e
f⋆

y (Ỹ ,Y −1
−(n−1))

]
:=

1
n

n−1∑
i=0

ef⋆
y,i(Y −1

−i ,Ỹ ), (39)

and invoke the generalized form of the asymptotic equiparti-
tion (AEP) theorem [65], as stated next.

Theorem 7 (Generalized AEP): Suppose M is a vth

order Markov measure with a stationary transition kernel
κ( dXv|Xv−1

0 ), and the finite-dimensional marginals of M
are absolutely continuous w.r.t. the corresponding marginals
of a stationary measure P, i.e., if P is ergodic, E is the
expectation w.r.t. P and pX0

−(n−1)
:= dP

dM

∣∣∣
σ
(
X0
−(n−1)

), then

1
n

log
(
pX0

−(n−1)
(X0, . . . , X−(n−1))

)
=

1
n

n−1∑
i=0

log
(
pX0|X−1

−i

(
X0

∣∣X−1
−i

))
−−−−→
n→∞

E
[
log pX0|X−1

∞
(X0|X−1

−∞)
]
, P-a.s. (40)

By Theorem 7, we obtain

lim
n→∞

En[f⋆
y (Y 0

−(n−1))] = E
[
f⋆

y,∞
(
Y 0
−∞
)]

, P-a.s., (41)

where f⋆
y,i := log pY0|Y −1

−i
− cY .

Some additional work is needed to justify (37b). First,
by [87, Proposition 2.6], we have that the sequence(
ef⋆

y,n+cY , σ
(
Y −1
−(n−1), Ỹ

))
=
(
pY0|Y −1

−(n−1)
, σ
(
Y −1
−(n−1), Ỹ

))
is a positive supermartingale converging a.s. to pY0|Y −1

−∞
, which

equals ef⋆
y,∞+cY with f⋆

y,∞ given in (36). We now apply a
generalization of Birkhoff’s ergodic theorem (due to Breiman
[42, Theorem 1]), as stated next.

Theorem 8 (The Generalized Birkhoff Theorem): Let T be
a metrically transitive 1 − 1 measure preserving transfor-
mation6 of the probability space (Ω,F , P) onto itself. Let
g0(ω), gy(ω), . . . be a sequence of measurable functions on Ω
converging a.s. to the function g(ω) such that E[supk |gk|] ≤

6This translates into the condition P(A) = P(T−1(A)) for any A ∈ F .
We consider the time shift transformation.
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∞. Then,

1
n

n∑
k=1

gk(T kω) n→∞−−−−→ E[g], P-a.s. (42)

Applying Theorem 8 together with the continuous
mapping theorem from [88, Corollary 2], we conclude
that P-a.s.

lim
n→∞

log

(
1
n

n−1∑
i=0

ef⋆
y,i

(
Y −1
−i Ỹ0

))
=log

(
E
[
ef⋆

y,∞

(
Y −1
−∞,Ỹ

)])
.

(43)

This, in turn, implies (37b) for a large enough n.
Step 3: Approximation. The last step is to approximate

the functional space with the space of RNNs. namely,
we define

D̂Y (Dn) := sup
gy∈GY

rnn

1
n

n−1∑
i=0

gy(Y 0
−i)−log

(
1
n

n−1∑
i=0

egy(Y −1
−i ,Ỹ0)

)
,

(44)

and we want to show that for a given ϵ > 0, we know that∣∣∣D̂Y (Dn)− D
(∞)
Y

∣∣∣ ≤ ϵ

2
.

By Theorem 1, we have

E
[
f⋆

y,∞(Y 0
−∞)

]
= D

(∞)
Y , E

[
f⋆

y,∞(Y −1
−∞, Ỹ )

]
= 1.

We therefore bound the expression∣∣∣D̂Y (Dn)− E
[
f⋆

y (Y 0
−∞)

]∣∣∣. First, by the identity
log(x) ≤ x− 1 for every x ∈ R≥0 we have∣∣∣D̂Y (Dn)− E

[
f⋆

y (Y 0
−∞)

] ∣∣∣
=

∣∣∣∣∣ sup
gy∈GY

rnn

1
n

n−1∑
i=0

gy(Y 0
−i)− log

(
1
n

n−1∑
i=0

egy(Ỹ ,Y −1
−i )

)

− E
[
f⋆

y (Y 0
−∞)

] ∣∣∣∣∣
≤

∣∣∣∣∣ sup
gy∈GY

rnn

1
n

n−1∑
i=0

gy(Y 0
−i)−

(
1
n

n−1∑
i=0

egy(Ỹ ,Y −1
−i )

)
+ 1

− E
[
f⋆

y (Y 0
−∞)

] ∣∣∣∣∣
≤

∣∣∣∣∣ sup
gy∈GY

rnn

1
n

n−1∑
i=0

gy(Y 0
−i)−

(
1
n

n−1∑
i=0

egy(Ỹ ,Y −1
−i )

)

+ E
[
ef⋆

y,∞(Ỹ ,Y −1
−∞)

]
− E

[
f⋆

y (Y 0
−∞)

] ∣∣∣∣∣. (45)

Due to (37) and the a.s. convergence of {ef⋆
y,n}n∈N, there

exists an integer N ∈ N such that for every n > N∣∣∣En

[
f⋆

y (Y 0
−(n−1))

]
− E

[
f⋆

y,∞(Y 0
−∞)

]∣∣∣ ≤ ϵ

8
,∣∣∣En

[
e
f⋆

y (Ỹ ,Y −1
−(n−1))

]
− E

[
ef⋆

y,∞(Ỹ ,Y −1
−∞)

]∣∣∣ ≤ ϵ

8
(46)

Plugging (46) into (45),we have∣∣∣D̂Y (Dn)− D∞Y

∣∣∣
≤

∣∣∣∣∣En

[
e
f⋆

y (Ỹ ,Y −1
−(n−1))

]
− En

[
f⋆

y (Y 0
−(n−1))

]
− sup

gy∈GY
rnn

{
1
n

n−1∑
i=0

gy(Y 0
−i)−

(
1
n

n−1∑
i=0

egy(Y −1
−i ,Ỹ0)

)}∣∣∣∣∣+ ϵ

4
.

By assumption, {f⋆
y,i}i∈N is a sequence of functions

converging a.s. to a function f⋆
y,∞, uniformly bounded by

some M ∈ R≥0. Since the exponent function is Lipschitz
continuous with Lipschitz constant eM on the interval
(−∞, M ], we obtain

1
n

n∑
i=1

ef⋆
y,i(Ỹ ,Y −1

−i ) − egy(Ỹ ,Y −1
−i )

≤ eM 1
n

n∑
i=1

∣∣∣f⋆
y,i(Ỹ , Y −1

−i )− gy(Ỹ , Y −1
−i )

∣∣∣.
We conclude this stage by applying the universal approxima-
tion theorem for RNNs [60]. To that end, we show that the
sequence of supremum-achieving DV potentials are a dynamic
system.

Definition 5 (Dynamic System): Let di, do, T ∈ N,
Z ⊆ Rdo and U ⊆ Rdi be open sets, Dz ⊆ Z be a compact
set and f : Z × U 7→ Z be a continuous vector-valued
function. Then, the system Z(di,do) := {zt}Tt=1 defined by

zt+1 = f(zt, ut) (47)

for t ∈ {1, . . . , T} with some initial value z0 ∈ Dz is a
dynamic system.

We propose the following lemma, which provides an
approximation of the process Y that adheres to the dynamic
system structure

Lemma 5 (Dynamic System Representation): Let Y be a
stationary and regular stochastic process. Then, for any ϵ > 0,
T ∈ N and yn ∈ Yn there exist a process Ỹ(ϵ, n) over Y∞
such that

sup
t=1,...,T

| log pYt|Y t−1(yt|yt−1)− log pỸt|Ỹ t−1(yt|yt−1)| ≤ ϵ

and the mapping yn → (log pỸt|Ỹ t−1(yt|yt−1))n
t=1 is a

dynamical system.
The proof of Lemma 5 is in Appendix IX-B, and it follows

a Wold-like decomposition of strictly stationary processes,
which is then shown to adhere the desired structure. Let
Ỹ be the approximating process. Thanks to the universal
approximation theorem for RNNs [60, Theorem 2], we can
approximate the corresponding dynamical system by elements
of the class GY

rnn to arbitrary precision.
Theorem 9 (Universal Approximation for RNNs): Let ϵ >

0, T ∈ N, U ⊂ Rdx be an open set and Z(di,do) be a dynamic
system as in Definition 5. There exist k ∈ N and a k-neuron
RNN g ∈ G(di,do,k)

rnn (as in Definition 4), such that for any
sequence of inputs {ut}Tt=1 ∈ UT , we have

max
0≤t≤T

∥Zt − g(ut)∥1 ≤ ϵ, (48)
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where g(ut) denotes the output of the RNN g determined by
the sequence ut.

For given ϵ, M , and T = n, denote by g⋆
y ∈ G

(dy,1,k)
rnn

and the RNN such that the approximation error is uniformly
bounded by e−M ϵ

4 for all t = 1 . . . n. Finally, combining
Theorem 9 and Lemma 5 we have∣∣∣D̂Y (Dn)− D

(∞)
Y

∣∣∣
≤ (1 + eM )

1
n

n∑
i=1

∣∣∣f⋆
y,i(Ỹ , Y −1

−i )− g⋆
y(Ỹ , Y −1

−i )
∣∣∣+ ϵ

4

≤ ϵ

2
. (49)

This concludes the proof of (35a). For (35b), note that

f⋆
xy,∞ = log

(
dPX0

−∞∥Y
−1
−∞
⊗ PY 0

−∞∥X0
−∞

dPX0
−∞∥Y

−1
−∞
⊗ PY −1

−∞∥X
−1
−∞
⊗ PỸ

)
= log pY0|Y −1

−∞X0
−∞
− cY

achieves the supremum. Following similar arguments to those
above, one may verify that∣∣∣D̂Y ∥X(Dn)− D∞Y ∥X

∣∣∣ < ϵ

2
, P-a.s., (50)

where

D̂Y ∥X(Dn) := sup
gxy∈GXY

rnn

1
n

n−1∑
i=0

gxy(Y 0
−i, X

0
−i)

− log

(
1
n

n−1∑
i=0

egxy(Y −1
−i ,X0

−i,Ỹ )

)
.

(51)

Combining (49) and (50) concludes the proof. □

B. Proof of Theorem 5

Let ϵ > 0 and Un ∼ P⊗n
U . Fix the USC {PYi|Y i−1Xi−1}i∈Z

as defined in Section V-B. Recall that Xs includes the
class of stationary Markov processes of finite order and
is therefore non-empty. Thus, there exist some Xϵ ∈ Xs

such that |I(Xϵ → Y)− Cs| ≤ ϵ/3 by its definition as a
supremum over a non-empty set. We denote a corresponding
sample of Xϵ and the channel by Dϵ

n = (Xϵ,n, Y ϵ,n) ∼∏n
i=1 PXϵ

i |Xϵ,i−1PYi|XiY i−1 . We have∣∣∣Cs − Î⋆DI(U
n)
∣∣∣ ≤ ϵ

3
+
∣∣∣I(Xϵ → Y)− ÎDI(Dϵ

n)
∣∣∣

+
∣∣∣̂IDI(Dϵ

n)− Î⋆DI(U
n)
∣∣∣

≤ 2ϵ

3
+
∣∣∣̂IDI(Dϵ

n)− Î⋆DI(U
n)
∣∣∣ (52)

=
2ϵ

3
+ inf

hϕ∈GX
rnn

∣∣∣ ÎDI(Dϵ
n)− ÎDI(Dϕ

n, hϕ)
∣∣∣ ,
(53)

where (52) follows from Theorem 2 for a large enough
n ∈ N, and ÎDI(Dϵ

n) is given in (22). Therefore, our
goal is to bound the remaining term in (53), which
quantifies the DINE error induced by using the approximating
dataset Dϕ

n.

First, we show that the evolution of an RSP can be
reformulated as an open dynamic system. Namely, an open
dynamic system with inputs vn, states sn and outputs xn

taking values in V ⊆ Rdv , S ⊆ Rds , X ⊆ Rdx , respectively,
is given by following set of equations [43, Eqn. 1].

st+1 = f1(st, vt) (54a)
xt = fxy(st), (54b)

where f1 is Borel measurable and f2 ∈ C(S). Traditionally,
an open dynamic system is a system that is driven by an
external input sequence. Therefore, the system in Definition 4
is also an open dynamic system, by adding an external output
signal that is defined via the identity mapping Yt = St. Recall
that the evolution of X ∈ Xs is described by the relation

Si = fs(Xi, Si−1) (55a)
PXi|Xi−1,Si−1 = PXi|Si−1 . (55b)

To show that (55) adheres to the relation presented in (54),
we utilize the following lemma.

Lemma 6 (Functional representation of RSPs): For any
X ∈ XS with state process S and an i.i.d. process W with
W1 ∼ PW ∈ Pac(W) and W ⊆ Rdx , there exists a function
fx : S ×W → X such that

Xi = fx(Si−1, Wi), ∀i ∈ N. (56)

The proof is given in Appendix IX-C. It follows from the
stationarity of X, the FRL and Lemma 3. Lemma 6 provides
us with fx such that

Si = fs(Xϵ
i , Si−1), Xϵ

i = fx(Si−1, Ui).

As a final step towards the relation (54), denote S̃i := (Si, Ui)
and Vi := (Ui, X

ϵ
i ) and define f̃s such that the first ds

components of S̃i are calculated from fs(Si−1, X
ϵ
i−1) and

the rest of its components comprise of replacing Ui−1 with
Ui. We therefore have the following open-dynamical system
representation.

S̃i = f̃s(S̃i−1, Vi)

Xϵ
i = fx(S̃i). (57)

Having an open-dynamical system representation of Xϵ,
we will approximate it with RNNs, due to the following
Theorem [43, Theorem 2].

Theorem 10: Let n ∈ N, ϵ > 0, and let ut ∈ Rdi , st ∈ Rds

and xt ∈ Rdo be the inputs, states and outputs of an open
dynamic system for t = 1, . . . , n. Then, there exists k ∈ N
and hϕ ∈ G(di,do,k)

rnn such that

max
t=1,...,n

∥∥hϕ(ui)− xi

∥∥
1
≤ ϵ. (58)

Therefore, take ϵ′ > 0 and fix sample un ∈ Un drawn
according to P⊗n

U ; there exists k ∈ N and hϕ ∈ GX
rnn such that

max
t=1...n

∥∥∥xϵ
i(u

i)− xϕ
i (ui)

∥∥∥
1
≤ ϵ′. (59)

Our next step is to bound
∥∥yϵ

i − yϕ
i

∥∥
1

in terms of
∥∥xϵ

i −
xϕ

i

∥∥
1

for i = 1, . . . , n. To that end, consider the following
lemma.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on February 08,2024 at 14:32:59 UTC from IEEE Xplore.  Restrictions apply. 



4792 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

Lemma 7: Let T ∈ N and Y be the output of the
USC described in Section V-B.1 with fy and fz satisfying
Assumption 1 with Lipschitz constants My and Mz ,
respectively. Then, for any n ∈ N, every pair of input
sequences (x1,n, x2,n) such that maxt=1,...,n ∥x1

t −x2
t∥1 ≤ η,

we have

max
i=1,...,T

∥y1
t − y2

t ∥1 ≤
My(2−Mz(My + 1))

1−Mz(My + 1)
η.

The proof of Lemma 7 is in Appendix IX-D. We further
denote

α(My, Mz) :=
My(2−Mz(My + 1))

1−Mz(My + 1)
.

Finally, we have∣∣∣ ÎDI(Dϵ
n)− ÎDI(Dϕ

n, hϕ)
∣∣∣

≤ 1
n

n∑
i=1

∣∣∣gy(yϵ
i |yϵ,i−1)− gy(yϕ

i |y
ϕ,i−1)

∣∣∣
+

eM

n

n∑
i=1

∣∣gy(ỹ|yϵ,i−1)− gy(ỹ|yϕ,i−1)
∣∣

+
1
n

n∑
i=1

∣∣∣gxy(yϵ
i |yϵ,i−1, xϵ,i)− gxy(yϕ

i |y
ϕ,i−1, xϕ,i)

∣∣∣
+

eM

n

n∑
i=1

∣∣gxy(ỹ|yϵ,i−1, xϵ,i)− gxy(ỹ|yϕ,i−1, xϕ,i)
∣∣ . (60)

By assumption, gy and gxy are Lipschitz continuous with
Lipschitz constants M1, M2, respectively. Consequently,
we have∣∣∣ ÎDI(Dϵ

n)− ÎDI(Dϕ
n, hϕ)

∣∣∣
≤ (M1 + M2)(1 + eM )

n

n∑
i=1

∥∥yϵ
i − yϕ

i

∥∥
1

+
M2(1 + eM )

n

n∑
i=1

∥∥xϵ
i − xϕ

i

∥∥
1

≤
(
(M1 + M2)(1 + eM )α(My, Mz) + M2(1 + eM )

)
ϵ′.

(61)

Take a large enough k ∈ N such that (61) is bounded by ϵ/3.
As the above steps hold for any realization of Un and Kn,
the inequality (61) holds P-a.s. This concludes the proof. □

Remark 6 (Lipschitz Assumption): Lemma 7 calls for
Assumption 1 due to the recursive nature of the proposed
channel, i.e., Yi and Zi indirectly depend on their past values
and the induced error accumulates over time. By restricting fz

to be a function of only Xi, the resulting Lipschitz constants
Mz , My are no longer bound to My(Mz + 1) < 1.

Remark 7 (Channels With Feedback): To account for the
feedback scenario, we first consider a conditional version of
XS that allows conditioning on past channel outputs. The
state Si is then taken as a function of (Xi, Si−1, Yi−1) and
we require PXi|Xi−1,Y i−1,Si−1 = PXi|Si

. Lemma 6 follows
immediately, as the FRL holds even when conditioning on
additional random variables. The rest of the proof follows by
adding Yi to the ith input of fs.

C. Proof of Theorem 6

Let U ∼ PU and PY |X be a given transition kernel.
Throughout this proof we employ the tools of Gaussian
smoothing developed in [89] (see also [90], [91], [92], [93],
[94]). To this end, we denote the isotropic dx-dimensional
Gaussian distribution with Nσ := N (0, σ2Idx

) with the
corresponding PDF φσ . Let PX⋆ be the MI maximizing input
distribution for PY |X and denote its corresponding smoothed
distribution with PX⋆

σ
:= PX⋆ ∗ Nσ . For any choice of

σ > 0 we have PX⋆
σ
∈ Pac(X ), which implies the existence

of the bijection TX⋆
σ
∈ C1(U ,X ) due to Lemma 3. We utilize

the universal approximation theorem for NNs with arbitrary
finite output dimension [43, Corollary 1].

Lemma 8 (Universal Approximation of NNs): Let C(X ,Y)
be the class continuous functions f : X → Y where X ⊂ Rdi

is compact and Y ⊆ Rdo . Then, the class of NNs G(di,do)
nn is

dense in C(X ,Y), i.e., for every f ∈ C(X ,Y) and ϵ > 0,
there exist g ∈ G(di,do)

nn such that ∥f − g∥∞ ≤ ϵ.
By Lemma 8, we can construct a sequence of functions

{hϕ,k}k∈N ⊂ G(dx,dx)
nn such that ∥hϕ,k−T−1

X⋆
σ
∥∞ → 0. Setting

PXϕk := hϕ,k♯PU , we therefore obtain PXϕk ⇀ PX⋆
σ

, where
⇀ denotes weak convergence of probability measures.7 As a
consequence of the weak convergence, the compactness of U ,
and the continuity of hϕ,k, we have convergence of second
moments, i.e.,

∫
Rdx
∥x∥2 dPXϕk (x) →

∫
Rdx
∥x∥2 dPX⋆

σ
(x).

As weak convergence plus convergence in 2-th moments is
equivalent to convergence under the 2-Wasserstein distance,
we obtain W2(PXϕk , PX⋆

σ
) → 0 as σ → 08 (cf., e.g., [95,

Theorem 7.12]).
Given a non-increasing sequence σi ↘ 0, it is readily

verified that PX⋆
σi

⇀PX⋆ and the second moments converge as
well. Indeed, the former follows because weak convergence is
equivalent to pointwise convergence of characteristic functions
together with the fact that the characteristic function of Nσ

never vanishes; the latter follows from a uniform integrability
argument. We therefore have W2(PX⋆

σi
, PX⋆) i→∞−→ 0.

To bound W2(PX⋆ , PXϕk ) we perform two steps of
approximation; first, we approximate PX⋆ with PX⋆

σi
which

is then approximated with PXϕk . Take large enough i, k ∈ N
such that the corresponding 2-Wasserstein metrics are bounded
by ϵ/2 and apply the triangle inequality to result with

W2(PX⋆ , PXϕk ) ≤W2(PX⋆ , PX⋆
σi

) + W2(PX⋆
σi

, PXϕk ) ≤ ϵ.

(62)

We stress that k is taken w.r.t. the chosen index of σi, but omit
this in our notation for simplification.

All considered input-output pairs are distributed with the
fixed transition kernel PY |X , therefore, they only differ by the
input distribution. To bound the difference (30), we consider
two intermediate steps of approximation. First, we consider
the MI induced by the approximation of X⋆ by an element
from the sequence of its Gaussian smoothed counterpart

7A sequence of measures {µn}n∈N converges weakly to a measure µ if∫
f dµn →

∫
f dµ for any continuous and bounded function f .

8In general, we have convergence of any pth moment for any p < ∞,
therefore, convergence of pth Wasserstein distance.
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for some σi, denoted X⋆
σi

:= X⋆ + Zσi
, where Zσi

∼
N (0, σ2

i Idx). Then, our task is to approximate the MI induced
by X⋆

σi
with the MI induced by Xϕk := hϕ,k(U). To do so,

we apply an additional intermediate step of an approximation
of both elements with a smoothed version of Xϕk , denoted
Xϕk

σℓ
:= hϕ,k(U) + Zσℓ

, where Zσℓ
∼ N (0, σ2

ℓ Idx
) for some

σℓ. The last step consists of approximating the MI induced
by Xϕk and its n-sample MINE approximation calculated
from Dϕk

n = {(hϕ,k(Ui), Yi)}ni=1. By the triangle inequality,
we have∣∣∣C− ÎMI

(
Dϕk

n

)∣∣∣ ≤ ∣∣I(X⋆; Y ⋆)− I(X⋆
σi

; Y ⋆
σi

)
∣∣

+
∣∣I(X⋆

σi
; Y ⋆

σi
)− I(Xϕk

σℓ
; Y ϕk

σℓ
)
∣∣

+
∣∣I(Xϕk

σℓ
; Y ϕk

σℓ
)− I(Xϕk ; Y ϕk)

∣∣
+
∣∣∣I(Xϕk ; Y ϕk)− ÎMI

(
Dϕk

n

)∣∣∣ . (63)

To bound the first term in (63), we utilize the weak lower
semicontinuity of MI [86, Section 3.5.2], i.e, PX⋆

σi
,Y ⋆

σi
⇀

PX⋆,Y ⋆ implies

I(X⋆; Y ⋆) ≤ lim inf
i→∞

I(X⋆
σi

; Y ⋆
σi

). (64)

With some abuse of notation, extract a subsequence
(X⋆

σj
, Y ⋆

σj
)j∈N that achieves the RHS of (64). Recall

that PX⋆
j ,Y ⋆

j
⇀ PX⋆,Y ⋆ . Along with the weak lower

semicontinuity of MI and the fact that X⋆ achieves capacity
for the fixed PY |X , there exist j ∈ N such that

|C− I(X⋆
σj

; Y ⋆
σj

)| ≤ ϵ

3
. (65)

To bound the second term in (63), we consider a non-
increasing sequence σℓ ↘ 0 and denote P

X
ϕk
σℓ

:= PXϕk ∗
Nσl

, where kj ∈ N is taken such that the bound (62) still
holds. The second term in (63) can then be bounded as
follows.∣∣∣I(X⋆

σj
; Y ⋆

σj
)− I(Xϕk

σℓ
; Y ϕk

σℓ
)
∣∣∣

=
∣∣∣DKL(PX⋆

σj
Y ⋆

σj
∥PX⋆

σj
PY ⋆

σj
)−DKL(PX

ϕk
σℓ

Y
ϕk

σℓ

∥P
X

ϕk
σℓ

P
Y

ϕk
σℓ

)
∣∣∣

=

∣∣∣∣∣EPX⋆
σj

Y ⋆
σj

[
log

pX⋆
σj

Y ⋆
σj

p
X

ϕk
σℓ

Y
ϕk

σℓ

]
+EP

X
ϕk
σℓ

Y
ϕk
σℓ

[
log

p
X

ϕk
σℓ

p
Y

ϕk
σℓ

pX⋆
σj

pY ⋆
σj

]∣∣∣∣∣
=

∣∣∣∣∣DKL(PX⋆
σj
∥P

X
ϕk
σℓ

)+EP
X

ϕk
σℓ

Y
ϕk
σℓ

[
log

p
X

ϕk
σℓ

p
Y

ϕk
σℓ

pX⋆
σj

pY ⋆
σj

]∣∣∣∣∣ (66)

where (66) follows from the construction of both joint
distributions with the same transition kernel PY |X . The second
term in (66) can be represented as follows.

EP
X

ϕk
σℓ

Y
ϕk
σℓ

[
log

p
X

ϕk
σℓ

p
Y

ϕk
σℓ

pX⋆
σj

pY ⋆
σj

]

=
∫
X

∫
Y

log
p

X
ϕk
σℓ

(x)p
Y

ϕk
σℓ

(y)

pX⋆
σj

(x)pY ⋆
σj

(y)
p

X
ϕk
σℓ

Y
ϕk

σℓ

(x, y) dx dy

=
∫
X

log
p

X
ϕk
σℓ

(x)

pX⋆
σj

(x)
p

X
ϕk
σℓ

(x) dx +
∫
Y

log
p

Y
ϕk

σℓ

(y)

pY ⋆
σj

(y)
p

Y
ϕk

σℓ

(y) dy

= DKL(PX
ϕk
σℓ

∥PX⋆
σj

) + DKL(PY
ϕk

σℓ

∥PY ⋆
σj

). (67)

Plug (67) into (66) and apply the data-processing inequality
for KL divergences to obtain∣∣∣I(X⋆

σj
; Y ⋆

σj
)− I(Xϕk

σℓ
; Y ϕk

σℓ
)
∣∣∣

≤ 2
(
DKL(PX⋆

σj
∥P

X
ϕk
σℓ

) + DKL(PX
ϕk
σℓ

∥PX⋆
σj

)
)

. (68)

We note that both KL terms are well defined as both PX⋆
σj

and P
X

ϕk
σℓ

are defined and positive over the same space as
Gaussian smoothed distributions. We will now upper bound
the RHS of (68) with W2(PX⋆

σj
, P

X
ϕk
σℓ

), using the following
result [80, Proposition 1], which was recently improved
in [96, Lemma 1].

Theorem 11: Let U and V be random vectors with finite
second moments. If both U and V are (c1, c2)-regular, then

DKL(PU∥PV ) + DKL(PV ∥PU ) ≤ 2∆, (69)

where PU is (c1, c2)-regular if
∥∇ log pU (u)∥2 ≤ c1∥u∥2 + c2, (70)

and

∆ :=
(

c1

2

(√
E [∥V ∥22] +

√
E [∥U∥22]

)
+ c2

)
W2(PU , PV ).

(71)

The (c1, c2) regularity of PX⋆
σj

and P
X

ϕk
σℓ

follows from
the Gaussian smoothing of PX⋆ and PXϕk such that the
regularity parameters depend on σj and σℓ [80, Proposition 2].
Note that PXϕk ∈ P2(X ) follows from the compactness of
hϕ,k(U). Consequently, PX⋆

σj
∈ P2(X ) as E

[
∥X⋆

σj
∥2
]

=
E
[
∥X⋆∥2

]
+
[
∥Zσj∥2

]
, both having finite second moment.

We can therefore bound (68) with W2(PX⋆ , P
X

ϕk
σℓ

), which by
the triangle inequality, amounts to

W2(PX⋆
σj

, P
X

ϕk
σℓ

) ≤W2(PX⋆
σj

, PXϕk ) + W2(PXϕk , P
X

ϕk
σℓ

).

(72)

For given ϵ take k and ℓ large enough and utilize the weak
continuity of W2(PX⋆

σj
, P

X
ϕk
σℓ

) to obtain an ϵ/6 bound on (68).
We now describe the bound of the third term in the RHS

of (63).
First, represent each MI as a combination of differential

entropies to obtain the following bound∣∣I(Xϕk
σℓ

; Y ϕk
σℓ

)− I(Xϕk ; Y ϕk)
∣∣

≤
∣∣h(Xϕk

σl
)− h(Xϕk)

∣∣+ ∣∣h(Y ϕk
σl

)− h(Y ϕk)
∣∣

+
∣∣h(Xϕk

σl
, Y ϕk

σl
)− h(Xϕk , Y ϕk)

∣∣ . (73)

We will utilize the following Theorem [81, Theorem 1].
Theorem 12 (Convergence of differential entropies): Let

(Xi)i∈N be a sequence of continuous random variables with
PDFs (fi)i∈N and X be a continuous random variable with
PDF f such that fi → f pointwise. If

max {∥fi∥∞, ∥f∥∞} ≤ A1 <∞ (74a)

max
{∫
∥x∥κfi(x) dx,

∫
∥x∥κf(x) dx

}
≤ A2 <∞,

(74b)

for some κ > 1 and for all i ∈ N, then h(Xi)→ h(X).

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on February 08,2024 at 14:32:59 UTC from IEEE Xplore.  Restrictions apply. 



4794 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 8, AUGUST 2023

We will now show that the conditions of Theorem 12 hold
in our case, focusing on κ = 2. Note that if such conditions
hold for the input and output distributions, they hold for the
joint distribution as well. To justify the pointwise convergence
of PDFs we introduce the notion of asymptotic equicontinuity
(a.e.c.). A function f is a.e.c. on x ∈ X if for every ϵ > 0 there
exist δ(x, ϵ) and n0(x, ϵ) such that whenever ∥x − y∥1 <
δ(x, ϵ), then |fn(x) − fn(y)| < ϵ for any n > n0. We use
following theorem [97, Theorem 1].

Theorem 13 (Pointwise Convergence of PDF Sequence):
Let (Pn)n∈N ⊂ P(X ) with PDFs (pn)n∈N. The following
statements are equivalent.

1) (pn)n∈N are a.e.c. on X and Pn ⇀ P .
2) pn → p pointwise, where p is the continuous PDF of P .

Recall that both P
X

ϕk
σℓ

and P
Y

ϕk
σℓ

weakly converge to PXϕk

and PY ϕk , respectively. The a.e.c. property of p
x

ϕk
σℓ

follows
from its structure is a convolution with a Gaussian density,
as follows∣∣∣p

X
ϕk
σℓ

(x1)− p
X

ϕk
σℓ

(x2)
∣∣∣

=

∣∣∣∣∣
∫

Rdx

pXϕk (x1 − u)φσℓ
(u) du

−
∫
X

pXϕk (x2 − u)φσℓ
(u) du

∣∣∣∣∣
=
∣∣∣∣∫

Rdx

φσℓ
(u) (pXϕk (x1 − u)− pXϕk (x2 − u)) du

∣∣∣∣
<

∣∣∣∣∫
Rdx

φσℓ
(u)ϵ du

∣∣∣∣ (75)

= ϵ, (76)

where (75) follows from the continuity of p
X

ϕk
σℓ

, taking
appropriate δ > 0. The a.e.c. property of p

Y
ϕk

σℓ

follows
from the same steps and the continuity of pY |X on Y . The
boundedness of pXϕ

k
follows from the extreme value theorem,

as it is a continuous function on hϕk
(U). The PDF p

X
ϕk
σℓ

is
integrable due to Fubini’s theorem. Consequently, the PDFs
p

X
ϕk
σℓ

, pY ϕk and p
Y

ϕk
σℓ

are bounded as they are continuous

integrable PDFs on Rdx . The second moment of Xϕk is
bounded by the compactness of hϕ,k(U) and the second
moment bound of Xϕk

σℓ
follows from

E
[
∥Xϕk

σℓ
∥22
]

= E
[
∥Xϕk∥22

]
+ E

[
∥Zσℓ

|22
]

= E
[
∥Xϕk∥22

]
+ dxσ2

ℓ

<∞,

where Zσℓ
∼ N (0, σℓIdx) is independent of Xϕk . The second

moment bound for Y ϕk and Y ϕk
σℓ

follows from the assumption
on PY |X . We can therefore apply Theorem 12 to bound
the differences of differential entropies in (73). Take ℓ large
enough such that both (73) and (68) are bounded by ϵ/6.

Finally, the fourth term in (63) can be bounded by ϵ/3 for
large enough n ∈ N using the MINE consistency [24,
Theorem 2], which concludes the proof. □

IX. PROOFS OF LEMMAS

A. Proof of Lemma 4

Recall that

Dn
Y ∥X := DKL

(
PY n∥Xn

∥∥PY n−1∥Xn−1 ⊗ PỸ

∣∣PXn∥Y n−1

)
Dn

Y := DKL

(
PY n

∥∥PY n−1 ⊗ PỸ

)
.

We first show that I(X → Y) = limn→∞

(
Dn

Y ∥X −Dn
Y

)
.

Recall that (see Section II-B)

I(Xn → Y n) = h(Y n)− h(Y n∥Xn), (77)

and expand

h(Y n)
= hCE

(
PY n , PY n−1 ⊗ PỸ

)
− DKL

(
PY n

∥∥PY n−1 ⊗ PỸ

)
,

(78a)
h(Y n∥Xn)
= hCE

(
PY n∥Xn , PY n−1∥Xn−1 ⊗ PỸ

∣∣PXn∥Y n−1

)
− DKL

(
PY n∥Xn

∥∥PY n−1∥Xn−1 ⊗ PỸ

∣∣PXn∥Y n−1

)
.

(78b)

Subtraction yields

I(Xn → Y n)

=
(
hCE(PY n , PY n−1 ⊗ PỸ )

− hCE(PY n∥Xn , PY n−1∥Xn−1 ⊗ PỸ |PX0
−(n−1)∥Y

−1
−(n−1)

)
)

+
(
DKL(PY n∥Xn∥PY n−1∥Xn−1 ⊗ PỸ |PX0

−(n−1)∥Y
−1
−(n−1)

)

− DKL(PY n∥PY n−1 ⊗ PỸ )
)
. (79)

Denote the residual cross-entropy terms by hCE,Y and
hCE,Y ∥X , respectively. By stationarity and since Ỹ ⊥⊥ X,
we further obtain

hCE,Y − hCE,Y ∥X

= E
[
− log PY −1

−(n−1)
⊗ PỸ (Ỹ , Y −1

−n )
]

− E
[
− log PY −1

−(n−1)∥X
−1
−(n−1)

⊗ PỸ (Ỹ , Y −1
−n )

]
= E

[
− log PY −1

−(n−1)
(Y −1
−n )

]
− E

[
− log PY −1

−(n−1)∥X
−1
−(n−1)

(Y −1
−n )

]
+ E

[
− log PỸ (Ỹ )

]
− E

[
− log PỸ (Ỹ )

]
= h(Y −1

−(n−1))− h(Y −1
−(n−1)∥X

−1
−(n−1))

= I(Xn−1 → Y n−1).

Plugging this term into (79) implies

Dn
Y ∥X −Dn

Y = I(Xn−1 → Y n)− I(Xn → Y n−1)

= I(X0
−(n−1); Y0|Y −1

−(n−1))

= h(Y0|Y −1
−(n−1))− h(Y0|Y −1

−(n−1)X
0
−(n−1)).

(80)
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We now use the following theorem, restated from [56,
Theorem 4.2.1].

Theorem 14 (Entropy Rate of Stationary Processes): For a
stationary process {Yn}n∈Z, the following limits exist and are
equal:

lim
n→∞

1
n

h(Y 0
−(n−1)) = lim

n→∞
h(Y0|Y 1

−(n−1)). (81)

Together with (80), the lemma implies
lim

n→∞
Dn

Y ∥X −Dn
Y

= lim
n→∞

h(Y0|Y −1
−(n−1))− h(Y0|Y −1

−(n−1)X
0
−(n−1))

= lim
n→∞

1
n

(
h
(
Y 0
−(n−1)

)
− h

(
Y 0
−(n−1)∥X

0
−(n−1)

))
= I(X→ Y).

Our last step is to identify the limiting KL divergence
terms using the monotone convergence theorem (cf., e.g., [86,
Corollary 3.2]).

Theorem 15 (DKL Monotone Convergence): The following
holds:

Dn
Y ↗ DKL

(
PY 0

−∞

∥∥∥PY −1
−∞
⊗ PỸ

)
Dn

Y ∥X ↗ DKL

(
PY 0

−∞∥X0
−∞

∥∥∥PY −1
−∞∥X

−1
−∞
⊗ PỸ

∣∣∣PX0
−∞

)
.

(82)

Recalling the definition of D∞
Y and D∞

Y ∥X , this concludes
the proof. □

B. Proof of Lemma 5

Let Y be a strictly stationary process. We utilize the
following representation theorem [63, Theorem 2].

Theorem 16 (Representation of Stationary Processes): Let
(Yt)t∈Z be a strictly stationary completely non-deterministic
process. Then, there is an i.i.d. process (Vt)t∈Z such that for
any t ∈ Z, Xt is given by

Xt =
∞∑

k=0

akVt−k, (83)

where the series converges in probability.
Theorem 16 is an adaptation of the Wold decomposi-

tion [62] to strictly stationary processes. Let YT ′ be the
process obtained by (83) for a fixed horizon T ′ < ∞.
By Theorem 16 we have YT ′,t → Yt in probability for all
t ∈ Z, and therefore in distribution.

Our goal is to translate this convergence into pointwise
convergence of the underlying PDFs. To do that, we utilize the
notion of asymptotic equicontinuity (a.e.c.), that is introduced
in Section VIII-C. Recall that a function sequence (fn)n∈N
is a.e.c. on x ∈ X if for every ϵ > 0 there exist δ(x, ϵ)
and n0(x, ϵ) such that whenever ∥x − y∥1 < δ(x, ϵ), then
|fn(x) − fn(y)| < ϵ for any n > n0. We will utilize the
following theorem [97, Theorem 1].

Theorem 17 (Theorem 13, Restated): Let (Pn)n∈N ⊂
P(X ) with PDFs (pn)n∈N. The following statements are
equivalent.

1) (pn)n∈N are a.e.c. on X and Pn ⇀ P .
2) pn → p pointwise, where p is the continuous

PDF of P .

The a.e.c. property of (pYT ′,t)T ′∈N follows from the relation
YT ′+1,t = YT ′,t + bT ′+1VT ′+1. By continuity of pYT ′,t ,

∥y1 − y2∥ ≤ δ(T ′, ϵ) =⇒ |pYT ′,t(y1)− pYT ′,t(y2)| ≤ ϵ.

Consequently, we have∣∣∣pYT ′+1,t
(y1)− pYT ′+1,t

(y2)
∣∣∣

=
∣∣∣∣∫
V

pYT ′,t(y1 − v)pV (v) dv −
∫
V

pYT ′,t(y2 − v)pV (v) dv

∣∣∣∣
≤
∫
V

∣∣∣pYT ′,t(y1 − v)− pYT ′,t(y2 − v)
∣∣∣ pV (v) dv

≤
∫
V

ϵpV (v) dv

≤ ϵ.

The a.e.c. property then follows by induction on T ′.
Combining the pointiwse convergence with the continuity of
the logarithm function and Bayes’ Theorem, we have that for
any ϵ > 0, n ∈ N, and sequence yn, there exist T0 ∈ N such
that for any T ′ ≥ T0 and t ∈ Z

| log pY0|Y −1
−t

(yt|yt−1)− log pYT ′,0|Y
−1

T ′,−t

(yt|yt−1)| ≤ ϵ,

implying that

sup
t=1...n

| log pY0|Y −1
−t

(yt|yt−1)−log pYT ′,0|Y
−1

T ′,−t

(yt|yt−1)| ≤ ϵ.

This concludes the first part of the proof.
To avoid heavy notation, denote lt(yt) =

log pYT ′,0|Y
−1

T ′,−t

(yt|yt−1). To show that the mapping

yn 7→ (lt(yt))n
t=1 can be represented as a dynamic system

(Definition 5), we will first show the process (YT ′,t)t∈Z is a
hidden Markov model (HMM)

Definition 6 (Hidden Markov Model): A process Y is an
HMM if there exist a Markov process (St)t∈Z such that
Yt = f(St) for some measurable function f .

Let St := V t
t−T ′ . For any t ∈ Z, Yt is a linear function of

St, which leaves us with showing that (St)t∈Z is a Markov
process. Indeed, by the mutual Independence of (Vt)t∈Z,
we have

PSt|St−1(St|St−1) = PV t
t−T ′ |V

t−1(Vt, . . . , Vt−T ′ |V t−1)

= PV t
t−T ′

(Vt, . . . , Vt−T ′ |V t−1
t−T ′−1)

= PSt|St−1(St|St−1),

therefore the process (St)t∈Z is Markov,. Consequently YT ′

is an HMM as required. Finally, observe the conditional PDF
pYT ′,t|Y

t−1
T ′

:

pYT ′,t|Y
t−1

T ′
(yt|yt−1)

=
∫
S

pYT ′,t|St,Y
t−1

T ′
(yt|st, y

t−1)pSt|Y t−1
T ′

(st|yt−1) dst (84)

=
∫
S

δ(ω1)pSt|Y t−1
T ′

(st|yt−1) dst (85)

=
∫
S

∫
S

δ(ω1)pSt−1|Y t−1
T ′

(st−1|yt−1)

× pSt|St−1,Y t−1
T ′

(st|st−1y
t−1) dst dst−1 (86)
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=
∫
S

∫
S

δ(ω1)pSt−1|Y t−1
T ′

(st−1|yt−1)

× pSt|St−1(st|st−1) dst dst−1 (87)

=
∫
X

∫
S

δ(ω1)pSt−1|YT ′,t−1
(st−1|yt−1)

× pSt|St−1(st|st−1) dst dst−1 (88)

=
∫
S

∫
S

δ(ω1)δ(ω2)pSt|St−1(st|st−1) dst dst−1, (89)

where (84), (86) and (87) follow from the chain rule, (85) and
(89) follow from the functional relation between the elements
of (St)t∈Z and (YT ′,t)t∈Z, with

ω1 := {s ∈ S|yt = f(s)} , ω2 := {s ∈ S|yt−1 = f(s)} ,
(90)

and δ(ω) being the delta functional of the event ω. As δ(ω1)
and δ(ω2) determine (st−1, st) from yt−1 we see that pYt|Y t−1

and its logarithm lt(yt) are, in fact, a function of the tuple
(st, st−1, yt). Consequently, set

zt = (st−1, st, lt(yt)),

we have that zt is determined from (zt−1, yt) via a time
invariant function. This finishes the proof. □

C. Proof of Lemma 6

Let X ∈ XS with corresponding stationary state process
S. By joint stationarity we have PXn|Sn

= PX|S for any
n ∈ Z. To construct the desired relation we utilize the FRL
[45, Theorem 1].

Theorem 18 (Functional representation lemma): For any
pair of random variables (X, Y ) ∼ PXY (over a Polish space
with a Borel probability measure) with I(X; Y ) < ∞, there
exists a random variable Z independent of X such that Y
can be expressed as a function g(X,Z).

By Theorem 18 we know that there exist a random variable
V ∼ PV and a function fx such that

Xn = fx(Vn, Sn). (91)

As PXn|Sn
is independent of n, (91) holds for any n with the

same choice of fx and time-invariant distribution on Vn, i.e.,
define a sequence {Vn}n∈Z

i.i.d∼ PV , we have

Xn = fx(Vn, Sn). (92)

Let U ∼ Unif[0, 1]dx and TV be as defined in V-B.2.
By Lemma 3, V = T−1

V (U) for U ∼ Unif([0, 1]dx). Take
W ∼ PW and let TW be as in V-B.2. Lemma 3 shows
that TW ∼ Unif[0, 1]d. We therefore construct the composite
function f̃v := T−1

V ◦ TW : W 7→ V . By construction,
V = f̃v(W ). Plugging f̃v into (92), we have

Xi = fx(Sn−1, f̃v(Wi)),

which completes the proof. □

D. Proof of Lemma 7

Let η > 0, fix i ∈ {1, 2, . . . , n} and let x1,n, x2,n and kn

be realizations of X1,n, X2,n and Kn, respectively. Let yj,n

and zj,n be generated according to xj,n and kn for j = 1, 2.
Let ∆x,i, ∆z,i and ∆y,i be the L1 distance of the channel
inputs, states and outputs at the ith step, e.g., ∆x,i = ∥x1

i −
x2

i ∥1. By the Lipschitz property of fy and fz and the triangle
inequality, we have

∆y,i ≤My

∥∥(x1
i , z

1
i , ki)− (x2

i , z
2
i , ki)

∥∥
1
≤My

(
∆x,i + ∆z,i

)
(93a)

∆z,i ≤My

∥∥(x1
i , y

1
i , z1

i−1)− (x2
i , y

2
i , z2

i−1)
∥∥

1

≤Mz

(
∆x,i + ∆y,i + ∆z,i−1

)
. (93b)

Combining (93a) and (93b), we obtain

∆z,i ≤ (Mz + MzMy)∆x,i + (Mz + MzMy)∆z,i−1. (94)

Recursively applying (94) yields

∆z,i ≤
i−1∑
j=0

(Mz + MzMy)j∆x,i−j . (95)

Upper bound (95) with the infinite sum and assume
maxi=1,...,n ∆x,i ≤ η. We have

∆z,i ≤ η

∞∑
j=0

(Mz + MzMy)j = η
1

1−Mz(My + 1)
, (96)

where the sum converges due to Assumption 1. Plug (96) into
(93a) to obtain

∆y,i ≤ η

(
My(2−Mz(My + 1))

1−Mz(My + 1)

)
, (97)

which holds for any i ≤ n. The inequality (97) holds for any
realization of P⊗n

K . □
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