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Capacity and Coding for the Ising Channel
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Abstract—The Ising channel, which was introduced in 1990,
is a channel with memory that models intersymbol interference.
In this paper, we consider the Ising channel with feedback
and find the capacity of the channel together with a capacity-
achieving coding scheme. To calculate the channel capacity, an
equivalent dynamic programming (DP) problem is formulated
and solved. Using the DP solution, we establish that the feedback
capacity is the expression C = (2Hp(a)/3+a) ~ 0.575522,
where a is a particular root of a fourth-degree polynomial
and Hp(x) denotes the binary entropy function. Simultaneously,
a = argmaxg<y<1(2Hp(x)/3+x). Finally, an error-free,
capacity-achieving coding scheme is provided together with the
outlining of a strong connection between the DP results and the
coding scheme.

Index Terms— Bellman Equation, dynamic program, feedback
capacity, Ising channel, infinite-horizon, value iteration.

I. INTRODUCTION

HE Ising model originated as a problem in statistical
mechanics. It was invented by Lenz in 1920 [1], who
gave it as a problem to his student, Ernst Ising, after whom it is
named [2]. A few years later the two dimensional Ising model
was analytically defined by Onsager [3]. The Ising channel,
on the other hand, was introduced as an information theory
problem by Berger and Bonomi in 1990 [4]. It has received
this name due to its resemblance to the physical Ising model.
In their work on the Ising channel, Berger and Bonomi
found the zero-error capacity and a numerical approxima-
tion of the capacity of the Ising channel without feedback.
In order to find the numerical approximation, the Blahut-
Arimoto Algorithm [5], [6] was used. The capacity was found
to be bounded by 0.5031 < C < 0.6723 and the zero-error
capacity was found to be 0.5 bit per channel use. Moreover,
their work contains a coding scheme that achieves the zero-
error capacity. This code is the basis for the capacity-achieving
coding scheme in the presence of feedback presented in this
paper.
The Ising channel models a channel with Inter-Symbol
Interference (ISI) and works as follows: at time 7 a certain
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bit, x;, is transmitted through the channel. The channel output
at time ¢ is denoted by y;. If x; = x;—1 then y; = x; with
probability 1. If x; # x, then y; is distributed Bernoulli (7).

In this paper we consider the Ising channel with feed-
back. The objective is to find the channel feedback capacity
explicitly and to provide a capacity-achieving coding scheme.
Finding an explicit expression for the capacity of non-trivial
channels with memory, with or without feedback, is usually a
very hard problem. There are only a few cases in the literature
that have been solved, such as additive Gaussian channels with
memory without feedback (“water filling solution,” [7], [8]),
additive Gaussian channels with feedback where the noise is
ARMA of order 1 [9], channels with memory where the state
is known both to the encoder and the decoder [10], [11], and
the trapdoor channel with feedback [12]. This paper adds one
additional case, the Ising channel.

Towards this goal, we start from the characterization of
the feedback-capacity as the normalized directed information
%I (X" — Y™). The directed information was introduced two
decades ago by Massey [13] (who attributed it to Marko [14])

as
n

[(X" = Y™ = > I(X'; v|yh. (1)

i=1

Massey [13] showed that the normalized maximum directed
information upper bounds the capacity of channels with feed-
back. Subsequently, it was shown that directed information,
as defined by Massey, indeed characterizes the capacity of
channels with feedback [15]-[21].

The capacity of the Ising channel with feedback was
approximated numerically [22] using an extension of Blahut-
Arimoto algorithm for directed information. Here, we present
the explicit expression together with a capacity-achieving
coding scheme. The main difficulty of calculating the feedback
capacity explicitly is that it is given by an optimization of an
infinite-letter expression. In order to overcome this difficulty,
we transform the normalized directed information optimization
problem into an infinite average-reward dynamic programming
problem. The idea of using dynamic programming (DP) for
computing the directed information capacity has been intro-
duced and applied in several recent papers such as [11], [12],
[17], and [23]. The DP used here most resembles the trapdoor
channel model [12]. We use a DP method that is specified for
the Ising channel rather than the trapdoor channel and provide
an analytical solution for the new specific DP.

It turns out that the DP not only helps in computing the
feedback capacity but also provides important information
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Fig. 1. Unifilar finite state channel with feedback of unit delay.
regarding a coding scheme that achieves the capacity. Through st—1=1 $t-1 =0
the DP formulation and through its solution we are able to Ty 1 Yt Ty 05 Yt
derive a concrete coding scheme that achieves the feedback ! ! ! !
capacity. The states and the actions of the DP turn out to
. . . 0.5 0.5
include exact instructions for what the encoder and the decoder
0 0 0 0

do to achieve the feedback-capacity.

The remainder of the paper is organized as follows: in
Section II we present some notations, which are used through-
out the paper, basic definitions, and the channel model. In
Section III we present the main results. In Section IV we
present the outline of the method used to calculate the
channel capacity. This section also contains a short reminder
about DP and about the Bellman Equation, which is used in
order to find the capacity. In Section V we formulate the
DP problem according to the Ising channel with feedback.
In Section VI an analytical solution to the Bellman Equation
is found. Section VII contains the connection between the
DP results and the coding scheme. From this connection we
can derive the coding scheme explicitly. In Section VIII we
prove that the suggested coding scheme indeed achieves the
capacity. Section IX contains conclusions and a discussion of
the results.

II. NOTATION, DEFINITIONS AND CHANNEL MODEL
A. Notation

Calligraphic letters, X', denote alphabets, upper-case letters,
X, denote random variables and lower-case letters, x, denote
sample values. Superscript, x’, denotes the vector (xi, ..., x;).
The probability distribution of a random variable, X, is
denoted by px. We omit the subscript of the random variable
when the arguments have the same letter as the random

variable, e.g. p(x|y) = px|y (x|y).

B. Definitions

Here we present some basic definitions beginning with a
definition of a finite state channel (FSC).

Definition 1 (FSC [24, Ch. 4]): An FSC is a channel that
has a finite number of possible states and has the property:

PO selxt, sy = pyr, selxe, si—1).

0.5 1

Fig. 2. The Ising channel model. On the left we have the Z topology; and
on the right we have the S topology.

Definition 2 (Unifilar FSC [25]): An FSC is called a unifi-
lar FSC if there exists a time-invariant function f(-) such that
st = f(St—1, X1, Yr).

Definition 3 (Connected FSC [24, Ch. 4]): An
called a connected FSC if Vs, s’ € &3T;

{p(xt|st_1)}[T;1 such that

FSC is
e N and

Ts
> psis(sls) > 0.
=1

In other words, for any given states s, s” there exists an integer
T; and an input distribution { p(x,lst_l)}tT;l, such that the
probability of the channel reaching the state s from the state
s’ is positive.

C. Channel Model

In this part, the Ising channel model is introduced. The
channel is a unifilar FSC with feedback, as depicted in Fig. 1.
As mentioned before, the sets X,),S denote the input,
output, and state alphabet, respectively. In the Ising channel
model: ¥ =Y =8 ={0, 1}.

The Ising channel consists of two different topologies,
as described in Fig. 2. The channel topologies depend on
the channel state and are denoted by Z and S. These
Z and S notations are compatible with the well-known Z and
S channels. The channel topology at time ¢ is determined by
si—1 € {0, 1}.

As shown in Fig. 2, if s;,—; = 1, the channel is in the
Z topology; if 5,1 = 0, the channel is in the S topology. The
channel state at time ¢ is defined as the input to the channel
at time ¢, meaning §; = X;.
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TABLE I
THE CHANNEL STATES, TOPOLOGIES, AND INPUTS, TOGETHER
WITH THE PROBABILITY THAT THE OUTPUT AT TIME #,
vt, IS EQUAL TO THE INPUT AT TIME 7, x;

[st—1(= z1—1) [ Topology [ @ [ p(yt = xefwe, se—1) ||

0 S 0 1
0 S 1 0.5
1 Z 0 0.5
1 Z 1 1

The channel input, x;, and state, s;_1, have a crucial effect
on the output, y;. If the input is identical to the previous state,
i.e. x; = s;_1, then the output is equal to the input, y, = x;,
with probability 1; if x; # s,—; then y; can be either O or 1,
each with probability 0.5. This effect is summarized in Table I.

We assume a communication setting that includes feedback
with unit delay. Hence, the transmitter (encoder) knows at time
t the message m and the feedback samples y’~!. Therefore,
the input to the channel, x;, is a function of both the message
and the feedback, as shown in Fig. 1.

Lemma 1: The Ising channel is a connected unifilar FSC.

Proof: Lemma 1 is proved in three steps. At each step
we show a different property of the channel.

(a) The channel is an FSC since it has two states, 0 and 1. It
is clear that p(y;, silx’, s'=1, y'=1) = p(ye, s¢lxe, s0-1)
since s; = x; and y; depends only on x; and s;_1.

(b) The channel is a unifilar FSC since (a) it is an FSC and
(b) s; = x;. Obviously, s; = f(s;—1, X1, Y1) = x; is a
time-invariant function.

(c¢) The channel is a connected FSC since s; = x;. Thus,
one can take Ty = 1 and px, s/(s|s’) = 1, resulting in
Pr(S; =5|So=s)=1> 0.

| |

III. MAIN RESULTS

Theorem 1: (a) The capacity of the Ising channel with
feedback is C; = (2454) ~ 05755 where a ~ 0.4503

is a root of the fourth-degree polynomial x* — 5x3 +
6x2 —dx + 1.
(b) The capacity, Cy, is also equal to

(2H (z))
max
0=z=1\ 3+z2

(2H(z)

where

a = arg max
0=<z=<1

34z

Theorem 1 is proved by solving an infinite horizon average
reward DP problem. This DP problem provides us with a
specific coding scheme, which is given in the next theorem.

Theorem 2: There is a capacity-achieving coding scheme,
which follows these rules:

) ~ 0.4503.

(1) Assume the message is a stream of » bits distributed i.i.d.
with probability 0.5.

(i1) Transform the message bit stream into a stream of bits,
M, with alternation probability of a ~ 0.4503.
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(iii) We denote the tth bit of M as m; where it corresponds
to the #'th encoder’s entry:

(1) Encoder: At time t’, the encoder knows sy_; =
xy_1, and we send the bit m; (xp = m;):
(1.1) If y,» # sy then move to the next bit, m; 4.
This means that we send m; once.
(1.2) If yy = sp_1 then xp = xp41 = my, which
means that the encoder sends m, twice (at time
t" and ¢’ + 1), and then move to the next bit.

(2) Decoder: At time t’, assume the state s, _; is known
at the decoder, and we are to decode the bit m;:
(2.1) If y; # sy then m; =y, and sy = yr.
(2.2) If yp = sp_; then wait for y,yq. m; = yprig

and s = yyq1.

IV. METHOD OUTLINE, DYNAMIC PROGRAMMING,
AND THE BELLMAN EQUATION

In order to formulate an equivalent dynamic program we
use the following theorem.

Theorem 3 ([12], Th. 1): The feedback capacity, Crp, of a
connected unifilar FSC when initial state so is known at the
encoder and the decoder, can be expressed as

N

1
liminf — > I(X;, S—1: Y Y™, ()

su
P : N—oo N

{P(X1|St—l,y’_l)]rz t=1

where {p(x;|s;—1, y’_l)}t21 denotes the set of all distribu-
tions such that p(x,|y’~", x~1, s~ = p(x/|s;—1, y'~1) for
t=1,2,...

Using Theorem 3 we can formulate the feedback-capacity
problem as an infinite-horizon average-reward DP. Then, using
value iteration algorithm and the Bellman Equation we find the
optimal average reward, which gives us the channel capacity.

We denote by Z, U, WV the state space, the action space, and
the disturbance space of the DP. The system evolves according
to z; = F(zs—1, us, wy), t € N and u; maps histories, i; to
actions. The disturbance, w;, should depend only on the state
z;—1 and the action u, !

The objective is to maximize the average reward. Given a
bounded reward function, g : Z xU — R, the average reward
is defined by

N—1
o
pr = liminf —E, ;;g(Zf,ﬂm(hm)) , 0

where the subscript 7 indicates that actions are generated by
the policy # = (u1, &2, ...). The optimal average reward is
defined by p* = sup, pr.

The Bellman Equation, also known as the average cost
optimality equation (ACOE), is given in (4). It verifies that

IThe DP model presented in this paper is identical to the model defined
in [26, Sec. 1.2 and 1.3] and is slightly different from the formulation that
appears in [27, Sec. 2]. However, they are equivalent. In our formulation,
the disturbance, w;, may depend on the action and state, i.e. p(wr|zs, ur),
but not on values of prior disturbances, while in the formulation presented
in [27, Sec. 2] the disturbance is a sequence of i.i.d. RVs. To see that
the models are equivalent, one should look at [27, Example 2.1] taking
P(Dlx,a) := fW I{F(x,a,w) € D}Py(dw|x, a) instead of P(D|x,a) :=
fW I{F(x,a,w) € D}Py(dw), where D is a Borel set and I is the indicator
function.
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TABLE II
THE ISING CHANNEL MODEL NOTATIONS VS. DYNAMIC PROGRAMMING NOTATIONS

[ Ising channel notations

[

Dynamic Programming notations |

p(st = 0]y?), probability of the channel
state to be O given the output

zt, the DP state

y¢, the channel output

wy, the DP disturbance

p(x¢|s¢—1), channel input probability
given the channel state at time ¢t — 1

u¢, the DP action

Eq. (7)

2zt = F(zt—1,ut—1,w¢—1), the DP state
evolves according to a function F’

I(X¢, Se—1; Yely™ )

g(zt—1,ut), the DP reward function

a given average reward and a given policy are optimal.

Theorem 4 follows from [27, Th. 6.1].
Theorem 4 ([27], Th. 6.1%): If p € R and a bounded func-
tion h : Z — R satisfy

p+h(z) = sup (g(z, u) + /Pw(dwlz, w)h(F(z,u, w))) 4)
ueld
for every z € Z, then p = p*. Furthermore, if there is a
function x4 : Z +— U such that u(z) attains the supremum for
each z and satisfies (4), then p, = p* for # = (uo, t1,.-.)
with g (h;) = u(z¢—1) for each t.
We define a DP operator 7' by

(Th)(z) = sup (g(z, u) + /Pw(dwlz, wh(F(z,u, w))) %)
ueld

for all functions /. Thus, the Bellman Equation can be written

as pl +h = Th. We also denote as T, h the DP operator

restricted to the policy, u.

V. DYNAMIC PROGRAMMING FORMULATION
FOR THE ISING CHANNEL

In this section we associate the DP problem, which was
discussed in the previous section, with the Ising channel. Using
the notations previously defined, the DP state, z;, is the vector
of channel state probabilities [p(s; = O|y"), p(s; = 1]y")].
In order to simplify notations, we consider the state z; to be
the first component; that is, z; := p(s; = 0|y"). This comes
with no loss of generality, since p(s;—1 = 0|y’ + p(s;—1 =
1]y'~") = 1. Hence, the second component can be derived
from the first, since the pair sums to one. The action, u;, is a
2 x 2 stochastic matrix

] )

. [p(x, = 0ls—1 =0)

pxy =0ls;—1 =1)
The disturbance, wy, is the channel output, y;. The DP-Ising
channel association is presented in Table II.
Note that since the Ising channel is connected and unifilar,
given a policy © = (u1, u2,...), p(s¢|y") is given in (7) that

p(xi = lis;—1 = 0)
plx =1ls—1=1)

appears on the bottom of the page (as shown in [12, eq. (35)]),
where 1(-) is the indicator function. The conditional distribu-
tion of the disturbance, wy, satisfies p(w;|z'~', w'~!, u") =
p(w¢|zi—1,us). The latter equality holds since the channel
output is determined by the channel state and input. This
equality is shown in [12, eq. (36)].

The following lemma describes the Ising channel in an
explicit DP formulation that is solvable.

Lemma 2: The capacity optimization problem of the Ising
channel given in (2) can be formulated as follows. The DP
state at time ¢ evolves according to

.

7ei= (1= z—D)us(2,2)
O = Zt—lut(la 1).

O —2-1

I+ 14+6—p:°
I—z—1—yt
I4+y—0; >

if w, =0

if wy = 1,

where

(10
Furthermore, the DP operator is given by

1 -
H;,(—+—y)+5+y

B )

Mh (] +
1—0+y
Proof: The according to z;

2
h(l—z—y).
2 1+y -0
state evolves

F(z;—1, uy, wy). Using relations from (7) we obtain F explic-
itly as shown in (11). The expressions in (11) can be simplified
by defining y; and J; as in (9). Since u,(1,1) = 1 —
u(1,2),u,(2,2) = 1 — u;(2, 1), we see that z; evolves as
in (8)

Note that y;,d, are functions of z;_;. As shown in (9),
given z;_1, the action u; defines the pair (y;,d;) and vice
versa. From here on, we represent the actions in terms of

(Th)(z) =

sup
0—2

—1 -
T o+1—y

+ (11)

Zx,,s,_, p(si—1 |yt_1)ut(st—1» x)pOlsi—1, x0)1(sy = f(s—1, %¢, ¥r))

p(sily’) =

s

: , (7N
thst»st—] PGty =Dur (se—1, x0) pOrelse—1, x)1(se = f(se—1, X1, ¥1))
ze—1u (1,1)4+0.5(1—z4—)u; (2,1) . _
z,,lu,(1,’1)+6.5z,blg,51,2)+’0.5(1'—z,,1)u,(2,1)’ if wy =0 ®)
. —Z—1)U 5 3 —
0.5z,7|u,(l,2)+0.5(1—thi)u,(2t,1)+0.5(l—thl)u,(Z,Z)’ if w=1.
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TABLE III
THE CONDITIONAL DISTRIBUTION p(x7, 5,1, yr|y' ™ 1)

IR yt =0 [ yr =1 |
0 0 p(si—1 = O0Jys—1)ue(1,1) 0
0 1 0.5p(st—1 = ye—1)ue(2,1) | 0.5p(se—1 = Lye—1)ut(2,1)
1 0 0.5p(st—1 = Olys—1)ut(1,2) | 0.5p(ss—1 = Olys—1)us(1,2)
1 1 0 p(si—1 = 1ys—1)ue(2,2)

y; and &;. Since u; is a stochastic matrix, we have the
constraints 0 <, <z;and 0 <y, <1 —z.

We now consider the reward to be g(zi—1,u;) =
I1(X;, Si—1; Y;|y'~1). Note that

p(xta St—1, Yt |yt_1)
= pGi—1ly ™D pCalsi—1, Y HpGilar, si-1) - (12)
and recall that p(ys|x;, s;—1) is given by the channel model.
Thus, the reward is dependent only on p(s;—i|y'~!) and
p(elsi—1,y'™") = uy. Since p(s;—1]y'~") is given by z;_1,
we have that the reward is a function of u; and z;_;. Now we

find the reward function, g(z;—1, u;), explicitly for the Ising
channel:

I(Xy, Si—1; Yt|yt_1)
= Hy (Yaly'™") = Hy (Vi1 X, Si-1,v'")

a Zr—1ug (1,2 Zr—qug (2,1
(=)Hb (Zt—lut(lel)“‘ ! lé( )+ ! 1;( ))

— (@—u(1,2) - 1+ (1 —z—Du (2, 1) - 1)

b 16— X
(:)H;,(E—i— tzyt)—f—ét—kyt—l.

13)

Where Hp(-) denotes the binary entropy function. Equation
(a) follows from Table III where the conditional distribution
p(xe, Si—1, y,|yt_1) is calculated using (12) and (b) follows
from the definition of J and y given in (9) and since u; is a sto-
chastic matrix. Therefore, we can write the DP operator, given
in (5) explicitly, substituting g (z, u) with I(X;, S;_1; Y;|y'~1)
as found in (13):

(Th)(z) = sup (g(z,u)+/Pw(dwlz,u)h(F(z,u,w)))
ueld
1 6 —
= (0 (5 e

+/Pw(dwlz,u)h(F(z,u,w)))

1 o-—
sup Hb(5+Ty)+5+y

@

1+6—y 0—1z2
-1+ —h({ 1+ —
+ 2 (+5+1—y)

1—0+y l—z—y
+ 2 h (1 v 5) (14)
where (a) follows from the fact that in the Ising
channel, [ P,(dw|z,u)h(F(z,u,w)) takes the form

2 w=01 P(Wlz, u)h(F(z,u, w)) and F(z,u,w) is given
in (8). [ |

We have formulated an equivalent DP problem for find-
ing the capacity of the Ising channel and found the DP
operator explicitly. The objective is to maximize the average
reward, p,, over all policies, 7. According to Theorem 4, if
we identify a scalar p and bounded function 4 that satisfy the
Bellman Equation, p 4+ Th(z) = h(z), then p is the optimal
average reward and, therefore, the channel capacity.

VI. SOLVING THE DP

In order to facilitate the search for the analytical solution,
we first solve the problem numerically using a value iteration
algorithm. The aim of the numerical solution is to obtain some
basic knowledge of the bounded function, 4, which satisfies
the Bellman Equation.

A. Numerical Solution

We present the function /i(z) as found numerically using
the value iteration algorithm. The value iteration algorithm
generates a sequence of iterations according to Jiy+1 = T (J),
where T is the DP operator, as in (10), and Jo = 0.

For each k and z, Ji(z) is the maximal expected reward over
k periods given that the system starts in state z. Since rewards
are positive, Jx(z) grows with k for each z. For each k, we
define a differential reward function, iz (z) £ Ji(z) — Jx(0).

For the numerical analysis, the interval [0, 1] was repre-
sented with a 1000 points grid. The numerical solution after
20 value iterations is shown in Fig. 3. This figure shows
the Joo(z) function and the corresponding policies, y*(z)
and 0*(z). The policies are chosen numerically such that the
equation T« s+h(z) > T, sh(z) holds for all y,J on the grid,
where T, s represents the DP operator restricted to the policy
given by y,d. Moreover, Fig. 3 shows the histogram of z,
which represents the relative number of times each point has
been occupied by a state z. These values of z have been
calculated using (11).

B. Analytical Solution via Numerical Results Analysis

Here, the numerical results are examined and an analytical
solution is provided. We denote by Ts ,h(z) the expression
Th(z) without the supremum, restricted to the policy (J, y).
The optimal policy is denoted by y *(z), 0*(z) and the function
h(z), which satisfies the Bellman Equation, is denoted by
h*(z). As seen from the histogram presented in Fig. 3,
the states, z, alternate between four major points which are
denoted by zo, z1,22,23. The variables y* and J* can be
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Fig. 3. Results from 20 value iterations. On the top-left, the value function Jyq is illustrated. On the top-right, the approximate relative state frequencies are
shown. At the bottom, the optimal action policies, 6* and y*, are presented as obtained after the 207" value iteration.

approximated by straight lines.

. _|a +az, if z e [ZOa Zl]

7 (@) = [ 1—2, if z € [z1, 23] (1
o= if z € [z, 22]

0"(2) = [a(z —2), ifzelz, 3], (10

where a = y *(0). Note that y *(z) = *(1 — z).

Using (8), y*, and §*, one can obtain (z;) i =0,1,2,3,
as presented in Table IV. Note that the states, z;, alternate
between the points z;. Moreover, if a scalar, p, and a function,
h, solve the Bellman Equation, so do p and h + c1 for any
scalar c1. Hence, with no loss of generality, we can assume
h*(3) = 1.

We now write the function 2*(z) explicitly.

Lemma 3: Let y*(z) and 0*(z) be as in (17), (18), then

Hp(2),

h*(z) = (ﬁ) H (2a+(é—a)z) S az—4a—zp*

XT-a)
2a+(1—a)z 2 :
+55m= H(a(2—§)+z . ifz €z, 23]

if z € [z1, 22]

an

satisfies Tg+ ,+h*(z) = h* + p* Vz € [z20,z3] where p*
is a constant satisfying p* = h(0) = h(1). We take h*(z)
symmetric around %
Proof: Lemma 3 follows from direct calculation of 7*(z)
when substituting y, J in (16) for 0%, y* as in (17), (18). W
In Fig. 4, the results using the numerical analysis are pre-
sented. The left-upper sub-figure presents the function 4*(z).
Notice the similarity between the function A*(z) as given
in (19) and the function J»¢ as found using the value iteration
algorithm and presented in Fig. 3.

TABLE IV
THE VARIABLES z;, y;*, 67 CALCULATED USING (8)

20 ::10 % ::2a o5 ::10
— ——a * . 4@ * . 1—a
21 = Lia M= Lta 21 Lia
_ 2a_ * ._ 1—a * . _2a_
2= 140 | %5 = 154 | 9% T 11a
z3:=1 73 =0 03 :=a

We now verify that the function 4*(z), as in (19), together
with p* = 2311(;'), satisfy the Bellman Equation, Th*(z) =
h*(z) + p*. Furthermore, we show that the selection of 6*, y *,
given in (17), (18), maximizes Th*(z). Namely, we prove
Theorem 1.

We begin by proving the following lemma:

Lemma 4: The policies p*,0* which are defined in

(17) and (18) maximize Th*(z), ie. Ts,«h*(z) =
Th*(z)Vz € [zo0, z3], where a = 0.4503 is a root of the fourth-
degree polynomial x* — 5x3 + 6x2 —4x + 1.
The proof of Lemma 4 is found in the appendix. We now prove
Theorem 1. In the proof we show that Th*(z) = h*(z) + p*,
pr = ZH”EZZ), d,7y that maximize the operator 7 are 5%,y ™,
and h*(z), as in (17)—(19). This implies that h*(z) solves
the Bellman Equation. Therefore, p* is the optimal average
reward, which is equal to the channel capacity.

Proof of Theorem 1(a): We would like to prove that the
capacity of the the Ising channel with feedback is Cy =

(M) ~ 0.5755 where a ~ 0.4503 is a specific root of the

3+a
fourth-degree polynomial x* — 5x3 +6x2 —4x + 1. According
to Theorem 4, if we identify a scalar p and a bounded function
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_ The function h*(2)
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Fig. 4. The results using the numerical analysis. On the top-left, the value function 4*(z) is shown. On the top-right, the assumed relative state frequencies
are shown (the figure presents only the states). At the bottom, the optimal action policies 0* and y * are illustrated. As can be seen, these results are similar

to the results obtained numerically after the 20'" value iteration.

h(z) such that
1 d6—y
p+h(z)= sup Hy|z+——)+d+y
0<d<z,0<y<l—z 2 2

1+0—y 60—z
—1 hil
+ 2 (+5+1—y)

+1—5+yh(1—z—y)
2 l+y -0
then p = p*. Using Lemma 4 we obtain that 6* and y*, as
defined in (17), (18), maximize Th*(z) when a ~ 0.4503 is
a specific root of the fourth-degree polynomial x* — 5x3 +
6x2 — 4x + 1. In addition, we show that h*(z), which is
defined in (19), satisfies the Bellman Equation, Th*(z) =
h*(z) 4+ p*, where p* = %l This follows from Lemma 3.
Therefore, we have identified a bounded function, 2*(z), and a
constant, p*, together with a policy, y *, 5%, which satisfy the
Bellman Equation. Thus, the capacity of the Ising channel with
feedback is p* = h*(0) = h*(1) = %(;’) ~ 0.575522. ]

Now we prove Theorem 1(b). The proof is based on
algebraic manipulations.

Proof of Theorem 1(b): We define g(z) = %H#Jr(;) and we

calculate g'(z) = W. 8log,(1—z)—61log,(z) =
0 iff (1 —z)® — z° = 0. The polynomial (1 — z)3 — 20 =
0 is reducible, hence we can write (1 —z)8 — 20 = (1 —
4z 4 6z — 323 + 2H(1 — 4z 4 622 — 5z + z*). Therefore,
g'(a) = 0 since a ~ 0.4503 is the root of the polynomial
x* —5x34+6x% —4x + 1. It is easy to verify that g'(a —€) > 0
and g’(a + €) < 0. Together with the fact that a is the only
real number in [0, 1] that sets g’(z) to zero, we conclude that
a is a maximum point of g(z), for 0 <z < 1. |

(18)

VII. INTERRELATION OF THE DP RESULTS
AND THE CODING SCHEME

In this section we analyze the DP results and derive the
coding scheme from these results. First, recall that in the
histogram, which is presented in Fig. 3, z; alternates between
four points, two of which are 0 and 1. In order to keep in
mind that these points stand for probability we denote them
as po, p1, P2, p3, where po = 0 and p3 = 1. Using (8) and the
definition of y *, 6* we can derive Table V. The table presents
Zs+1 as a function of z; and y,41. It also presents the optimal
action parameters, u, (1, 1), u;(2, 2), for each state. The action
parameters are calculated from the parameters o*, y *.

Assume that at time ¢ — 1 the state is z;—1 = po = 0.

1) Decoder: Using the definition of z;_1 we deduce that
p(s;—1 = 0]y'™") = 0 and hence x;,_1 = 1 with
probability 1. Thus, the decoder decodes 1.

2) Encoder: The optimal actions are J;7(0) = 0 and
7.5(0) = a. Using the definition of y* we conclude that
Pr(x; = 1|s;—1 = 1) = a. Thus, Pr(x; = 0|s;—1 = 1) =
1 — a, which means that, given that s, = x;—1 = 1,
the probability to send 1 again is a. This result gives us
the alternation probability from 1 to 0, which is 1 — a.

Since s;—1 = x;—1 = 1 with probability 1, the action
parameter 0* is irrelevant because it concerns the case in
which s;,_; = 0. Indeed, using the definition of J*, we

can see that 5;(0) = 0.

We now use Table V in order to find the next state.
We have two options; if the output is 0 we move to state
p3 = L. For this state the analysis is similar to the state py,
switching between 0 and 1. Note that since the next state is
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TABLE V
THE DP STATES AT TIME f + 1 AS A FUNCTION OF THE PREVIOUS STATE AND THE OUTPUT CALCULATED
USING (8). THE TABLE PRESENTS THE OPTIMAL ACTIONS FOR EACH STATE

[ [ z=po | z=p1 | zz=p2 | z=p3 |
ye =0 Zt+1 =P3 | Zt41 =P3 | Zt4+1 =P3 | Zt41 = P2
ye=1 Zt41 =P1 | Zt41 =P0 | Zt+1 =P0 | Zt4+1 =Po
ut4+1(2,2) a 1 irrelevant
ur41(1,1) irrelevant 1 a
DP state pg Ya1 =1 DP state p3
De: p(z; = O[y") =0 p De:p(z; =0Jy") =1
En: Pr(ziy1 =) = a Yey1 =0 En: Pr(zir1 =) = a

Yep1 =1 DP states p1, p2 Yiy1 =0
De: Waits
Yer1 =1 En: 441 = 3y Yer1 =0

Fig. 5.

The coding graph for the capacity-achieving coding scheme at time 7. The states, p;

i =0,1,2,3 are the DP states where pg = 0, p3 = 1.

The labels on the arcs represents the output of the channel at time 7 4 1. The decoder and the encoder rules, which are written in vertices of the graph, yield

the coding scheme presented in Theorem 2.

p3 = 1 the decoder decodes the bit which was sent. If, on
the other hand, the output is 1 we move to the state z; = pj.
Assuming z; = p; we now have the following:

1) Decoder: Using the definition of z;, we deduce that
p(s; = 0|y") = p; and hence x; = 1 with probability p;.
Thus, the decoder does not decode and waits for the
next bit.

2) Encoder: The optimal actions are d7,(p1) = pi and
7/1(p1) = 1 — p1. Using the definition of y* we
conclude that Pr(x;4+1 = 1|s; = 1) = 1 and using the def-
inition of 0* we conclude that Pr(x;+; = Ols; = 0) = 1.
This means that x;41 = s; = x; with probability 1.

The analysis for state p; is done in a similar way.

We can now create a coding graph for the capacity-
achieving coding scheme. Decoding only when the states
are po or p3 results in a zero-error decoding. The coding
graph is presented in Fig. 5. In the figure we have three
vertices, which correspond to the DP states. At each vertex
we mention the corresponding state or states, the decoder
action, and the encoder action. The edge labels are the output
of the channel. The edges from vertices po to p3 and vice
versa corresponds to case (1.1) in Theorem 2 in the encoder
scheme and to case (1.1) in Theorem 2 in the decoder scheme.
The edges between vertices po and pp, p» and between p3
and pi, p» correspond to case (1.2) in Theorem 2 in the
encoder scheme and to case (1.2) in Theorem 2 in the decoder
scheme.

Encoder
F— - ——= 1
m I Data dy Channel I Tt
Encoder Encoder I
Fig. 6. The channel encoder block that consists of two sub-encoders. One

block encodes data and the other performs the channel encoding.

VIII. CAPACITY-ACHIEVING CODING SCHEME ANALYSIS

In this section we prove that the coding scheme presented
in Theorem 2, which was obtained from the solution of the
DP, indeed achieves the capacity. In the proof, we calculate
the expected length of strings in the channel input and divide
it by the expected length of strings in the channel output.

Proof of Theorem 2: Let us consider an encoder that con-
tains two blocks, as in Fig. 6. The first block is a data encoder.
The data encoder receives a message M" (M = {0, 1}) of
length n distributed i.i.d. Bernoulli (4) and transfers it to
a string of data, M"R (M = {0,1}), with probability of
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alternation from 1 and O and vice versa of g. This means
that if some bit is O (alternatively 1), the next bit is 1
(alternatively 0) with probability g. In order to create a one-to-
one correspondence between the messages and the data strings
we need the data strings to be longer than n. We notice that
p(x:|x'" = p(x/|x;_1). Thus, the entropy rate is

H X}'l
lim ( )(i)

n—00 n

lim
n—od

1 n
— > H (Xi|Xi-1)
n i=l

®)

= H (X;|Xi-1) = H(q), (19)

where (a) is due to the chain rule and since p(x;|x'™1) =
p(x¢|x;—1), and () follows since the probability of alternation
is g. Therefore, given a message of length n, the data encoder
transfers it into a data string of length #(q). This can be done
using the method of types for the binary sequence. Given a
probability g and a binary sequences of length n, the size of
the typical set is approximately 2% Hence, we can map
the set of Bernoulli (%) sequences of length n (of size 2")

to the set of sequences of length —2— with alternation

Hy(q)
probability ¢ (of size 2@ @) _ 2™). One can also use

the mapping presented in [28]. This mapping gives a way
to enumerate the indexes of Markov sequences of length
and of the binary sequences of length n, which are

o)
distributed Bernoulli (%). One can enumerate these sequences
and establish a mapping from the Bernoulli sequences to the
Markov sequences simply by matching their indexes.

The second block is the channel encoder. This encoder
receives a data string in which the probability of alternation
from O to 1 and vice versa is ¢g. This sequence passes through
the encoder, which sends some bits once and some bits twice
according to the scheme mentioned in Theorem 2. Due to that
property, the transmitted bit at time ¢ is not necessarily the
data bit at the rth location. This is why the encoder scheme
uses two time indexes, ¢+ and ¢/, which denote the data bit
location and the current transmission time, respectively. The
encoder works as mentioned in Theorem 2:

Now we calculate the expected length of the channel
encoder output string. First, the message is of length n and
distributed Bernoulli ( %). Thus, the length of the string which
has alternation probability of g is #q). Hence, we send one
bit with probability % and two bits with probability Z%q‘
Therefore, the exzpected length of the channel encoder output

ing is =2 (2224 4 4y = =4 _n_ g ‘
string is g 25t +3) =3 AR Since the message is

of length n, the rate is 454’;"( : = 24HT(Z). Setting g =1 —a
bl
. 2Hy(1—a) __ 2H(a)
we achieve the rate =%— o = ra

This holds for any a € [0, 1]; in particular it holds for the
unique positive root in [0, 1] of the polynomial x* — 5x3 +
6x2 —4x + 1. Using Theorem 1, the expression ZZ_(Z) is equal
to the capacity of the Ising channel with feedback. This means
that the scheme achieves the capacity. ]

An interesting point is that in order to achieve the capacity
using this coding scheme, we do not need to use the feedback
continuously. It is enough to use the feedback only when there
is an alternation from O to 1 (or vice versa) in the bits we send.
When there is no alternation, the feedback is not needed since
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the bit is sent twice regardless of the channel output. Several
cases of partial feedback use are studied in [29].

IX. CONCLUSIONS

We have derived the capacity of the Ising channel, analyzed
it and presented a capacity-achieving coding scheme. As an
immediate result of this work we can tighten the upper bound
for the capacity of the one-dimensional Ising Channel to be
0.575522, since the capacity of a channel without feedback
cannot exceed the capacity of the same channel with feedback.
It may seem that the method presented in [12] and in this paper
could be used to easily find the capacity of any unifilar FSC.
But, from our experience, it is not an immediate result. This
motivated us to try and characterize families of channels that
could be solved analytically using this method.

In this paper, we also established a connection between
the DP results and the capacity-achieving coding scheme.
An interesting question that arises is whether there exists
a general method for finding the capacity for a two-states
channel with feedback, where the states are a function of
the previous state, the input, and the previous output. It may
transpire that the solution of the DP for such a channel has a
fixed pattern. Recently, a new coding scheme was provided in
[30] for unifilar finite state channels that is based on posterior
matching.

APPENDIX
A. Proof of Lemma 4

In order to prove Lemma 4 we need several lemmas and
corollaries. The first lemma regards the concatenation of
continuous, concave functions.

Lemma 5: Let f : [o,f] > R, g : [B,7] = R be two
continuous, concave functions where f(f) = g(8), f.(f) =
8. (B), where f’(f) denotes the left derivative of f(x) at
p and g’ (B) denotes the right derivative of g(x) at f. The
function obtained by concatenating f(x) and g(x) defined by

f(x), if x €[a, f]
gx), ifxelB,yl

is continuous and concave.

Sketch of Proof: Let us extend the function f(x) on [£, y]
by continuing it with a straight line with incline f’ (8). We
denote the extended function as fj(x). Similarly, we extend
the function g(x) on [a, ] with a straight line with incline
g, (p) and denote it by g1 (x). The functions fi(x), g1(x) are
concave since all the tangents are above the functions. We
can define the function #(x) = min{fj(x), f2(x)} and since
f1(x) and g (x) are concave then 7(x) is concave as shown in
[31, p. 72]. The sketch is shown in Fig. 7. [ |

We now conclude that the function 2*(z) is concave in z.

Corollary 5: The function h*(z) as given in (19) is contin-
uous and concave for all z € [0, 1].

Proof: 1t is well known that the binary entropy func-
tion, Hp(z), is concave in z. Thus, the function h*(z) for
z € [z1,22] is concave. In order to show that h*(z) for
z € [z0,z1] and for z € [z2, z3] 1S concave we first observe
that (;£)H (M) is concave since it is a composition

nx) = [ (20)



ELISHCO AND PERMUTER: CAPACITY AND CODING FOR THE ISING CHANNEL WITH FEEDBACK

,,,,, 9(@)
\ —
el B B 0l

(a)

Fig. 7.

of the binary entropy function and a linear, non-decreasing
function of z. Second, the expression —z + %5 14”a)zp is also
concave in z since it is linear in z, and thlrd the expres-

2“2%1 a‘)l)ZH ( a(22—) —= ) is concave using the perspective
property of concave functions [31, p. 89]. Hence, the sum
of the three expression is also concave, which implies that
h*(z) is concave in z for z € [zo,z1], z € [z1,z2], and for
Z € [z2,23]. It is easy to verify that the function h*(z) is a
concatenation of three functions that satisfy the conditions in
Lemma 5. Thus, we conclude that 2*(z) is continuous and
concave for all z € [0, 1]. [ |
Using the previous corollary we obtain the following.
Lemma 6: Let h(z) be a concave function. The expression
given in (21) that appears on the bottom of the page is concave
in (9, 7).
Proof: The blnary entropy is a concave function. Hence,
the expression H (3 + _J') +0+7y —1is concave in (6, 7).
We now examine the expression 1+‘;_V h(l + ajzl_fy ) Let us

—H(Z—y" ,i = 1,2. For every a € [0, 1] we obtain
anl

5 _
———————-h(1+1 Z)
an + (1 —o)m m
1— —
(1 —a)m h(1+52 z)
am + (1 —a)n m
(lf)h(1+aél +(1—0ﬂ)(52—z)
an + (1 —a)n

where (i) follows since %(z) is concave. This result implies

that
1—z 0 —z
anih + (0 —a)yph {1+
1 n

adi + (1 —a)dh —z
f(a”l+(1_a)n2)h(1+ anl+(]_a);12 )

sion

denote #; =
that

Hence, 9= Vh(1+aJrl y) is concave
is completely analogous to show
1—0+y l—z—y :

) h<1+l—(5+y) 1s

in (4,y). It
that the expression
@, 7).

also concave in
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concatenation point

Example for concatenation of two continuous, concave functions. It is easy to see from the figures the intuition behind the proof of Lemma (5).

Thus, we derive that the expression given in (21) is concave
in (6, 7). ]
We now state the main lemma we need to obtain Lemma 4.
Lemma 7: The function Ts,h*(z) is concave in (d, ).
Furthermore, from the KKT conditions the following optimal-
ity conditions hold:

@If z e [{£&.1] M”gg @sepe = 0, and
()T‘j‘g—}f’(z')| y+y+ > 0 then 6%, y* are optlmal,
oTs,, h*(z
®If z e [172 2, "*g—a”w < > 0, and
Mb* « > 0 then J*, y* are optimal,

where y *, 5* are given in (17), (18).

Proof: Corollary 5 states that 2*(z) is a concave function;
using Lemma 6 and the definition of Tj, h*(z) we conclude
that T, h*(z) is concave in (d, y).

In order to prove the optimality conditions of Lemma 7 we
first state the KKT conditions adjusted to our problem. The
KKT conditions are stated in [31, p. 243]. Let Tj,h*(z) be
the objective function. We consider the following optimization
problem:

max T, h*(z)
d,y

y—14z<0, —y <0, 6—z<0, —0=<0.

The Lagrangian of Ts,h*(z) is L(d,y,4) = Ts5,h*(z) —
Ay =1+2)+ Aoy —23(0 —2) + A40. Since T, h*(z) is a
concave function, then the following conditions are sufficient
and necessary for optimality:

oTs ., h
(1) D@ = 3 — 24
oTs , h*
@ P e = 21— Do
3y > 0 0>0.

4 y—-142<0,0-2z<0.

(5) A1, 42,43, 24 > 0.

©) 211y —14+2)=22y =43(0 —2) = 446 =0.

The optimality conditions are derived from the KKT con-
ditions and from the concavity of T, h*(2).

16— 146—7y
H — )+ ——'h
(2+ > )+ +y -1+ —

0—2 1—0+y l—z—y
h 21
+5+1—y)+ 2 (1+y—5) @
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First, we consider case (a) in which z € [IZT”, 1]: if we take
la=2A3=4=0 1 = MI&
KKT conditions hold since ll > 0.

Second, we consider case (b) in which z € [1 +Z, s a] if we

«y%, and y* =1 —z, the

take/12=/14=0,/11—an}h(z)| % r—LW,y .
0* = z,and y * = 1 —z, the KKT conditions hold since 1| > 0
and A3 > 0. [ |

We are now ready to prove Lemma 4.

Proof of Lemma 4: From Lemma 7 we have that T5 , h*(z) is
concave in (J, y ). We now show that the optimality conditions
in Lemma 7 holds. First, we assume that z € [1 > 1]. We
note that the expression 1+~ + o 5 is in [1 = 1] Furthermore

replacing y, 0 with y *, 6* respectively, we ﬁnd (5 to be 0.
We differentiate T, h*(z) with respect to & and evaludte it in
(6%, y*) to obtain OT‘”h (Z)| = %. Note that if
we set z = 1 in h*(z) and take p* = h*(1) we obtain that
p*= zaH—Jr(g) Since h*(z) is symmetric around % we have that
h*(1) = = h*(0). Using basic algebra and substituting
p with 2H+(§) we find that the expression W = 0 iff

—4a + 1 = 0. Thus, setting a ~ 0.4503 to

— 543 + 642
be the unique real root in the interval [0, 1] of the Polynomlal

—5x3 +6x2 — 4x + 1 we establish that Lﬁ;()b*,y* =
213 tlogy(a) _ =0.
a—1

Now, we differentiate Tgyh*(z) with respect to y when

~ 0.4503. We find that M| ¢%,y* > 0. Note that the
derlvatlve is positive when a < 0.9. This can be seen since
oTs,y h*(2)
oy
which for a < 0.9, is equal to zero for z < T Since
we have found a to be approximately 0.4503 we have that

”%—flmb ,y* > 0. Using Lemma 7(a) we conclude that

&*, y* are optimal. The analysis for z € [0, +

|6%,y* is a monotonically increasing function of a,

: 1 o 21 1is completely
analogous to the analysis made for z € [1 a? 1].
Now, we assume z € [}jra, i +a] In this case, we have that

h*(z) = Hp(z). Using basic algebra we obtain that
0Ts.,h*(2)
yil(;*,y* >0

(22)

Using Lemma 7 case (b) we conclude that 6*, y * are optimal.
Thus, for all z € [0, 1] we have that §*, y * are optimal. W
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