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Abstract— We propose a new method to compute the feedback
capacity of unifilar finite state channels (FSCs) with memory
using reinforcement learning (RL). The feedback capacity was
previously estimated using its formulation as a Markov decision
process (MDP) with dynamic programming (DP) algorithms.
However, their computational complexity grows exponentially
with the channel alphabet size. Therefore, we use RL, and
specifically, its ability to parameterize value functions and policies
with neural networks, to evaluate numerically the feedback
capacity of channels with a large alphabet size. The outcome
of the RL algorithm is a numerical lower bound on the feedback
capacity, which is used to reveal the structure of the optimal
solution. The structure is modeled by a graph-based auxiliary
random variable that is utilized to derive an analytic upper bound
on the feedback capacity with the duality bound. The capacity
computation is concluded by verifying the tightness of the upper
bound by testing whether it is Bahl-Cocke-Jelinek-Raviv (BCJR)
invariant. We demonstrate this method on the Ising channel with
an arbitrary alphabet size. For an alphabet size smaller than or
equal to 8, we derive the analytic solution of the capacity. Next,
the structure of the numerical solution is used to deduce a simple
coding scheme that achieves the feedback capacity and serves as
a lower bound for larger alphabets. For an alphabet size greater
than 8, we present an upper bound on the feedback capacity. For
an asymptotically large alphabet size, we present an asymptotic
optimal coding scheme.

Index Terms— Feedback capacity, reinforcement learning (RL),
Ising channels, Markov decision process (MDP), channel capacity.

I. INTRODUCTION

COMPUTING the capacity of finite state channels (FSCs)
is a difficult task that has been vigorously researched
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over the last few decades [2]–[4]. The capacity of FSCs is
characterized by the directed information [5]–[8]. Despite the
fact that the directed information is a multi-letter expression,
it was shown that it can be computed using its formulation as
an infinite horizon average reward Markov decision process
(MDP) [6], [8]. The MDP formulation of the feedback capacity
was introduced in [6], where they also presented a recursive
formula for the computation of the MDP’s state. However,
the recursive formula can be computationally intractable,
and consequently, the feedback capacity is difficult to
solve.

Nevertheless, there are numerous channel settings in which
the recursive formula of the MDP’s state can be simplified.
This fact motivated subsequent studies to explore more com-
munication settings and channel models in which the feedback
capacity can be computed numerically. In [9], the feedback
capacity of FSCs with common state information (CSI) at the
encoder and the decoder was computed by a recursive formula
for the maximum directed information (the feedback capacity).
In [10], a family of FSCs with intersymbol interference (ISI)
was considered, and the authors applied the value iteration
algorithm [11] to compute the feedback capacity of the dicode
channel and the run-length-limited (RLL) input over binary
symmetric channels. Another scenario, in which the encoder
has a feedback link of both past outputs and channel states,
was considered in [12]. In this case, the authors formulated
the feedback capacity as a dynamic program and derived a
single letter expression for the feedback capacity.

A large family of FSCs for which the recursive formula
of the MDP’s state simplifies is the family of unifilar FSCs.
In this case, the MDP formulation of the feedback capacity
can be computed using known dynamic programming (DP)
algorithms, such as the value iteration algorithm [11]. Beyond
the computation of the feedback capacity, this approach was
used to produce analytic results of channels with binary alpha-
bets (of the channel input, output and state) [8], [13]–[20].
However, a principal drawback of these algorithms originates
in the continuous cardinality of the state and action spaces
of the underlying MDP. Previous solutions used a binning
technique to quantize these spaces; however, this is tractable
only for channels with small input and state alphabets, since
the number of bins grows exponentially with the alphabet size.

Another method to compute tractable bounds on the feed-
back capacity has been proposed in [21], [22]. Here, the
authors introduced an auxiliary RV that is modeled by a
directed graph called a Q-graph. For any fixed Q-graph,
single-letter upper and lower bounds on the feedback capacity
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are given by finite-dimensional optimization problems, where
the upper bound is a convex optimization problem [23]. The
authors demonstrated their method on binary channels by
computing the upper and lower bounds for all possible graphs
with up to four nodes. They showed that in all of these
cases, the capacity-achieving Q-graph is small (maximum four
nodes); however, this is not necessarily the case in general, and
the number of all possible graphs grows exponentially with the
graph size. Hence, it is of great interest to develop methods
that can “reveal” the Q-graph that describes the optimal
outputs process. Moreover, to obtain an analytic expression of
the capacity, the method in [21] involves solving the Karush-
Kuhn-Tucker (KKT) conditions; this can be quite complicated
when the Q-graph size is large. Therefore, these algorithms’
applicability is limited for the cases where the alphabet size
is large.

To address the cardinality constraint of DP algorithms,
we propose to use tools from the field of machine learn-
ing (ML). ML has been proven to be a strong numerical
methodology, and has had a great impact in many research
fields. One example in communications is [24], wherein a
learning-based algorithm was applied to design a reliable code
for the additive white Gaussian noise channel with feedback.
Another example is [25], where a reinforcement learning (RL)
algorithm was used to measure the information leakage when
releasing time-series data in an online manner. The present
work introduces a new role for ML in communications: an
efficient computation of multi-letter capacity expressions using
RL algorithms.

The main advantage of RL is the concept function approxi-
mation, which is the key to avoiding quantization of the action
and state spaces. Instead, function approximation enables the
optimization of policies without visiting the entire state and
action spaces. This is the main bypass to the cardinality
constraint described above, which makes the evaluation of
channels with an alphabet size of ∼ 100 tractable. The
numerical evaluation provides a numerical lower bound on
the feedback capacity. Moreover, for the purpose of deriving
the capacity, the numerical results form the basis for conjec-
turing the structure (by a Q-graph) of the analytic solution.

The structure of the numerical solution is expressed using
a directed graph, that is called a Q-graph [21]. The Q-graph
nodes and its edges represent a finite subset of the MDP states
and their transitions, respectively. This finite subset of states
forms an auxiliary RV that is used to obtain an analytic upper
bound, specifically, the duality bound for unifilar FSC with
feedback [26]. The main advantage of the duality upper bound
for unifialr FSCs is that for a fixed Q-graph it can be formu-
lated as an MDP with finite state and action spaces. This allows
its computation efficiently using DP algorithms; more impor-
tantly, converting the numerical results into analytic results is
achieved by verifying the optimality of the Bellman equation.
The upper bound is tight in the case where the Q-graph is
Bahl-Cocke-Jelinek-Raviv (BCJR) invariant [21, Section III-
A]. That is, there exists an input distribution that induce the
Markov relation Yt −Qt−1 − Y t−1 with the same rate as the
upper bound. Thus, the feedback capacity solution is derived.

In our work, the proposed methodology enabled us to
compute the feedback capacity of the Ising channel with
an alphabet size smaller than or equal to 8. Additionally,
in this region, the conjectured structure enabled us to derive
a capacity-achieving coding scheme. For an alphabet size
greater than 8, we provide an upper bound on the capacity.
To analyze the behaviour of the channel for an asymptotic
alphabet size, we derive lower and upper bounds that are tight
for an asymptotic alphabet size.

The remainder of the paper is organized as follows.
Section II includes the necessary preliminaries, and contains
notation and the problem definition. In Section III, we present
our main results. In Section IV, we demonstrate the usage of
RL on the Ising channel. Section V provides the RL algorithms
applied in this work, their improvements for the feedback
capacity formulation and their implementation. Section VI
contains conclusions and a discussion of future work.

II. PRELIMINARIES

This section includes the necessary preliminaries. First,
we provide notations. Second, we present the problem def-
inition, which includes the definition of unifilar FSCs, their
feedback capacity, and their formulation as an MDP. Third,
we present the Q-graph and the Ising channel, on which we
demonstrate our methodology.

A. Notation
Calligraphic letters, X , denote alphabet sets, upper-case

letters, X , denote random variables, and lower-case letters,
x, denote realizations. A superscript, xt, denotes the vector
(x1, . . . , xt). The probability distribution of a random variable,
X , is denoted by pX . We omit the subscript of the random
variable when its argument has the same letter, e.g. p(x|y) =
pX|Y (x|y). The binary entropy is denoted by H2(·) and log(·)
refers to the logarithm with base 2.

B. Unifilar Finite State Channels
A FSC is defined by the triplet (X ×S, p(s′, y|x, s),S×Y),

where X is the channel input, Y is the channel output, S is
the channel state at the beginning of the transmission, and S′

is the channel state at the end of the transmission. Also, the
cardinalities X ,Y,S are assumed to be finite. At each time t,
the channel has the memory-less property, that is,

p(st, yt|xt, st−1, yt−1) = p(st|xt, st−1, yt)p(yt|xt, st−1).
(1)

A FSC is called unifilar if the new channel state, st, is a
time-invariant function st = f(xt, st−1, yt).

C. Ising Channel
The Ising channel model was introduced as an information

theory problem by Berger and Bonomi in 1990 [27], 70 years
after Lenz and Ising first introduced a related Markov model in
statistical physics that is now called the 1D Ising model [28].

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on July 11,2023 at 11:47:27 UTC from IEEE Xplore.  Restrictions apply. 



AHARONI et al.: FEEDBACK CAPACITY OF ISING CHANNELS WITH LARGE ALPHABET VIA REINFORCEMENT LEARNING 5639

TABLE I

MDP FORMULATION OF THE FEEDBACK CAPACITY

The Ising channel is a unifilar FSC and is defined by

Y =

{
X , w.p. 0.5
S , w.p. 0.5

, (2)

S′ = X. (3)

Hence, if X = S then Y = X = S w.p. 1. Otherwise,
Y will be one of the last two channel inputs with equal
probability. We denote the channel cardinality with |X | since,
by definition, |X | = |Y| = |S|. The feedback capacity of the
binary Ising channel with a symmetric transition probability
was derived previously in [13] along with a capacity-achieving
coding scheme. In [16], the authors studied the generalized
binary Ising channel, in which the channel output equals the
input with probability p. The feedback capacity of this family
of channels was derived for p ∈ [0, 0.39] along with upper and
lower bounds on the capacity without feedback.

D. Feedback Capacity of Unifilar Finite State Channels

The feedback capacity of a unifilar FSC is presented in the
following theorem.

Theorem 1: [8, Theorem 1] The feedback capacity of a
connected unifilar FSC1, where the initial state s0 is available
to both the encoder and the decoder, can be expressed by

CFB = lim
N→∞

max
{p(xt|st−1,yt−1)}N

t=1

1
N

N∑
i=1

I(Xi, Si−1; Yi|Y i−1).

(4)
Note that the objective of Theorem 1 is a multi-letter expres-

sion and, therefore, its computation is not straightforward;
however, it can be computed via an MDP formulation that
is given next.

E. Feedback Capacity of Unifilar Finite State Channel as a
Markov Decision Process

According to [8] the feedback capacity, as given in
Theorem 1, can be formulated as an MDP. The state is
the probability vector zt−1 = pSt−1|Y t−1(·|yt−1), the action
is the transition matrix ut = pXt|St−1,Y t−1(·|·, yt−1), and
the reward is rt = I(Xt, St−1; Yt|Y t−1 = yt−1). The
next state vector at coordinate st is given in Equation (5),
shown at the bottom of the next page, where 1 denotes
the indicator function, zt−1(st−1) = p(st−1|yt−1) and
ut(xt, st−1) = p(xt|st−1, y

t−1). The MDP formulation is
summarized in Table I.

1A connected unifilar FSC [8, Definition 2] satisfies the condition that for
any s ∈ S there exists a positive integer T (s) ∈ N and an input distribution
{p(xi|si−1)}T (s)

i=1 such that there is a positive probability of reaching all
other states with T (s) time steps.

F. Q-Graph

The Q-graph [21] is defined as a directed graph with
edges that are labelled with symbols from the channel outputs
alphabet Y . By restricting the outgoing edge labels from each
node to be distinct, the Q-graph can be used as a mapping of
(any-length) output sequences onto the graph nodes by walking
along the labelled edges. For a fixed graph, we denote the
induced mapping with φ : Q×Y → Q, where Q denotes the
set of graph nodes. Given a sequence of channel outputs we
denote Qi = Φi(Y i), where Φi = φ ◦ φ ◦ · · · ◦ φ denotes the
composition of φ, i times. The reader may refer to Figure 4
for an illustration of a Q-graph with 6 nodes. For instance,
an initial node Q0 = (1, 0) and a sequence of output symbols
Y1 = 0, Y2 = 2, Y3 = 2, Y4 = 1 yields the final node
Q4 = (1, 1).

III. MAIN RESULTS

In this section, we present RL as a numerical tool used
to estimate the feedback capacity. Thereafter, we present the
application of RL on the Ising channel with a large alphabet to
obtain the capacity, and a capacity-achieving coding scheme
for |X | ≤ 8. We also show an analytic upper bound on the
capacity for |X | > 8, and an additional coding scheme and
upper bound in order to examine the channel behavior for very
large alphabet sizes.

A. Feedback Capacity Estimation Using
Reinforcement Learning

We present RL as a numerical tool to solve the feedback
capacity of unifilar FSCs using their MDP formulation. Unlike
DP algorithms, deep RL uses neural networks (NNs) to
parameterize value functions and policies, which makes it a
tractable numerical tool for channels with large alphabets2.
A known issue with RL algorithms is their convergence prop-
erties. However, a main advantage of the feedback capacity
formulation is that the underlying MDP is fully known. Off-
the-shelf RL algorithms were developed under the setting
in which the underlying MDP is not known, but here we
embed this knowledge into existing algorithms. In Section V,
we elaborate on how the knowledge of the underlying MDP
is embedded in the RL algorithms used in this work.

The feedback capacity and the optimal input distribution of
a unifilar FSC can be computed numerically using two RL
algorithms3:

1) Deep deterministic policy gradient (DDPG).
2) Policy optimization by unfolding (POU).

The DDPG algorithm [29] is an RL algorithm for MDPs
with continuous state and action spaces and deterministic
actions. The POU algorithm is a variant of model-based RL
algorithms [30], [31] that we developed for the purpose of

2The authors emphasizes that other numerical tools could be applied to
solve the feedback capacity, such as approximate DP (ADP).

3To the best of our knowledge, there are no RL algorithms for deterministic
actions and continuous action and state spaces except the DDPG algorithm.
Since the dimension of the action and state spaces of the MDP considered
here is large, quantization of these spaces is not tractable, and therefore, most
of the existing RL algorithms cannot be applied here.
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Fig. 1. Illustration of the application of RL on binary unifilar FSCs whose
feedback capacity was derived in the past [8], [13], [14]. The achievable rate
was computed using a Monte-Carlo simulation, as described in Section V.
The black asterisk shows the true capacity and the box plot demonstrates the
achievable rates obtained by 10 different seeds. The red central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th

percentiles, respectively. The whiskers extend to the most extreme achievable
rates.

this work. In the DDPG algorithm both the value function and
the policy are parameterized by NNs, while in POU only the
policy is parameterized by a NN. Empirically, DDPG yielded
higher numerical lower-bounds for |X | ≤ 15 and POU yielded
higher numerical lower bounds for 15 < |X | ≤ 150, and
therefore both are presented. In Section V, we present both
algorithms. We emphasize that RL is a numerical tool that
can be used for any unifilar FSC. Its application on the binary
channels investigated in [8], [13], [14] is illustrated in Figure 1.

The RL numerical results reveal bold insights into the
structure of the optimal solution of the capacity problem.
Specifically, examination of the learned input distribution
showed that the visited MDP states are concentrated within
a finite subset of states, and therefore can be represented by a
Q-graph. The Q-graph is used subsequently to obtain analytic
bounds on the feedback capacity, as we present next.

B. Ising Channel

In this section, we present the analytical results for the Ising
channel that were deduced from RL numerical simulations,
as summarized in Figure 2. The following theorem presents
an application of RL to obtain the analytic feedback capacity
of the Ising channel for |X | ≤ 8.

Theorem 2 (Feedback Capacity): The feedback capacity of
the Ising channel with |X | ≤ 8 is given by

CFB(X ) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X |−1)

p + 3
. (6)

Equivalently, the feedback capacity can be also expressed as

CFB(X ) =
1
2

log
1
p
, (7)

where p is the unique solution of x4 − ((|X |−1)4 + 4)x3 +
6x2 − 4x + 1 = 0 on [0, 1].

Fig. 2. Summary of the analytic bounds and the numerical results obtained
by the RL simulations for varying alphabet sizes. The rates/bounds are
normalized by log |X |. The RL curve was computed by a Monte-Carlo
evaluation of the estimated policy. The experiment was run 10 times and
the lowest achievable rate was plotted.

The proof of Theorem 2 involves computing the duality
upper bound for unifilar FSCs [26] and verifying its tight-
ness; it is given in Section IV-B.1. Algorithm 1 describes a
simple coding scheme that achieves the feedback capacity in
Theorem 2. Algorithm 1 is applicable for any alphabet size;
however, it is optimal only for |X | ≤ 8 as stated in the
following theorem.

Theorem 3 (Optimal coding scheme): The coding scheme
in Algorithm 1 achieves the capacity in Theorem 2 for
|X | ≤ 8.

In Section IV-B.3, we prove that the coding scheme in
Algorithm 1 yields a zero-error code and that its maximum rate
over the parameter p equals the feedback capacity as given in
Theorem 2. The enumerative source encoding [32] procedure
is described after the proof of Theorem 3 in Section IV-B.3.

For |X |> 8, the structure of the analytic solution changes.
Unlike the solution for |X | ≤ 8, the Q-graph induced by the
numerical results cannot be described with a finite set of nodes.
Nevertheless, the numerical results dictate a sub-optimal struc-
ture that induces an upper bound for |X | > 8. The upper bound
for |X | > 8 is shown in the following theorem.

Theorem 4 (Upper Bound for |X | > 8): The feedback
capacity of the Ising channel with |X | > 8 satisfies

CFB (X ) ≤ 1
2

log
|X |
p

, (8)

where p is the unique root of x2 −
(
2 + (|X |−1)2

16|X |
)

x + 1 =
0 in [0, 1].

For any alphabet size, an upper bound on the capacity and
a coding scheme are presented in the following theorem.

Theorem 5 (Upper Bound for |X |> 2): For any alphabet
size |X |> 2, the feedback capacity of the Ising channel

zt(st) =

∑
xt,st−1

zt−1 (st−1)ut (xt, st−1) p(yt|xt, st−1)1[st = f(xt, st−1, yt)]∑
xt,st−1,s′

t
zt−1 (st−1)ut (xt, st−1) p(yt|xt, st−1)1[s′t = f(xt, st−1, yt)]

. (5)
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Fig. 3. State histogram of the policy as learnt by RL. The histogram is generated by a Monte-Carlo evaluation of the policy: (a) histogram of the policy
after 1000 training iterations; (b) histogram of the policy after convergence.

satisfies

CFB(X ) ≤ 3
4

log|X |. (9)

Also, for any alphabet size |X |> 2, there is a simple coding
scheme with the following rate:

R(X ) =
3
4

log
|X |
2

. (10)

Therefore, 3
4 log |X |

2 ≤ CFB(X ) ≤ 3
4 log|X |.

The proof of Theorem 5 is given in Section IV-B.4.
The analytical results and the numerical results of the RL
algorithms are summarized in Figure 2. The RL simulation
is the yellow curve. We simulated the RL algorithms up to
a size of 150 due to a computational memory constraint.
The bold-black curve illustrates the analytical capacity that
appears in Theorem 2 for |X | ≤ 8. One can see that the
capacity-achieving coding scheme (in purple) coincides with
the RL simulation for |X | ≤ 8. However, it converges to
2
3 log |X | for large alphabets, while RL continues to improve.
To back up this observation, our improved lower and upper
bounds for the asymptotic case (green and orange curves,
respectively) are shown. For large |X |, both converge to
3
4 log |X | with a constant difference of 3

4 . We also present the
upper bound from Theorem 4, which outperforms the others
for 8 < |X | ≤ 200.

IV. THE ISING CHANNEL

This section demonstrates the usage of RL to obtain
analytic results on the Ising channel. First, we describe a
methodology to convert the numerical results into analytic
results. Then, we demonstrate the implementation on the Ising
channel.

A. Converting the Numerical Results Into Analytic Bounds

In this section, we describe the conversion of numerical
results into analytic results; specifically, we demonstrate this
method on the Ising channel with |X | = 3. First, we describe
how to extract the structure of the numerical solution. After-
wards, we present how to use the structure to obtain an
analytic upper bound and how to verify whether this bound is
tight.

Algorithm 1 Capacity-Achieving Coding Scheme for |X | ≤ 8
Code construction and initialization:

- Transform the n uniform bits of the message into a stream
of symbols (from X ) with the following statistics:

νi =

{
νi−1 , w.p. p

Unif[X\{νi−1}] , w.p. 1− p,
(11)

with ν0 = 0. The mapping can be done using enumerative
source encoding [32]

- Transmit a symbol twice to set the initial state of the
channel s0

Encoder:
Transmit νt and observe yt

if yt = st−1 then
Re-transmit νt

end if

Decoder:
Receive yt

if yt �= yt−1 then
Store yt as an information symbol

else
Ignore yt and store yt+1 as a new information symbol

end if

1) Extracting the Structure of the Optimal Solution: The
output of the RL algorithm contains the actor, a parametric
model of the input distribution of the channel. This network
is used to obtain the structure of the solution by the following
procedure. First, it is used for a Monte-Carlo evaluation of
length n of the communication rate. During this evaluation,
the MDP states and the channel outputs are recorded. These
states are then clustered using common techniques, such as
the k-means algorithm [33]. For instance, in Figure 3 the
MDP state histogram of the Ising channel with |X | = 3 is
shown, and it is clear that the estimated solution has only six
discrete states. Therefore, the sequence of MDP states {Zi}ni=1

is converted into a sequence of auxiliary RVs {Qi}ni=1 with
a discrete alphabet Q, where each value in Q forms a node
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Fig. 4. Q-graph showing the transitions between states as a function of
the channel’s output. Red, blue and green lines correspond to Y = 0, 1, 2,
respectively. States with solid lines and dashed lines indicate whether the
channel state is known or unknown to the decoder, respectively.

of the Q-graph. The transitions between nodes are determined
uniquely4 by the channel outputs, and the corresponding test
distribution PYi|Qi−1 = TY |Q is estimated by counting the
channel output frequency at every Q-graph node. The Q-graph
for |X | = 3 is shown in Figure 4. This completes the
generation of the induced Q-graph and TY |Q.

2) Upper Bound Using the Extracted Structure: The upper
bound is derived by using the Q-graph and TY |Q in the duality
bound for the unifilar FSC with feedback, as presented in [26].
The duality bound is given in the following theorem.

Theorem 6 [26, Theorem 4]: For any choice of Q-graph
and test distribution TY |Q, the feedback capacity of a con-
nected unifilar FSC is bounded by

CFB ≤ lim
n→∞ max

f(xn‖yn)
max
s0,q0

1
n

n∑
i=1

E
[
DKL

(
PY |X,S (·|xi, Si−1) ‖TY |Q (·|Qi−1)

)]
.

(12)

The notation f(xn‖yn) =
∏

i 1
[
xi = fi

(
xi−1, yi−1

)]
stands

for the causal conditioning of deterministic functions.
The Q-graph transition function is denoted by φ : Q×Y →
Q, where φ(q, y) is the node followed by a transition from
node Q = q when the channel output is Y = y.

The upper bound defines an infinite horizon average reward
MDP, as described in Table II, whose average reward is the
upper bound on the feedback capacity in Theorem 6. Unlike
the MDP of the feedback capacity of Theroem 1, this MDP
has finite state and action spaces. Therefore, its evaluation is
tractable with DP algorithms, such as the value iteration algo-
rithm. For this purpose, the corresponding Bellman equation is

ρ + V (s, q) = max
x∈X

DKL

(
PY |X=x,S=s‖TY |Q=q

)
+∑

y∈Y
p(y|x, s)V (x, φ(q, y)) , (13)

4The disturbance is the only randomness of the transition between RL states.

TABLE II

MDP FORMULATION OF THE DUALITY UPPER BOUND

where the term V (s, q) is the value function and ρ is the
average reward.

Since the state and action spaces are finite, the Bellman
equation defines a finite set of non-linear equations. Removing
the non-linearity is achieved by solving the Bellman equation
numerically using the value iteration algorithm. The solution
includes an estimate of the value function and the average
reward, but more importantly, it provides a conjectured optimal
policy

x(s, q) = argmax
x∈X

DKL

(
PY |X=x,S=s‖TY |Q=q

)
+∑

y∈Y
p(y|x, s)V ∗ (x, φ(q, y)) , (14)

where V ∗ is the estimated optimal value function. Substituting
x(s, q) in the Bellman equation converts it to a set of linear
equations that are simple to solve and one obtains a conjecture
of the optimal value function and average reward. Finally, the
conjectured value function and average reward are verified as
the optimal (fixed point) solution using the Bellman equation
to complete the bound.

The bound is tested to be tight by verifying that the structure
satisfies two conditions. The first is the Markov Y i−1−Qi−1−
Yi, which means that there exists an input distribution that
visits only the MDP states that formed the Q-graph and yields
an output distribution that satisfies PYi|Y i−1 = TY |Q. The
second condition is that the rate of this distribution equals
the upper bound. In that case, the bound is tight, which
completes the proof. In the next section, we demonstrate this
methodology on the Ising channel with alphabet |X | ≤ 8,
and |X | > 8.

B. Bounds on the Ising Channel
In this section we present our results on the Ising channel.

First, we derive the feedback capacity of the Ising channel
with |X | ≤ 8 by providing a tight upper bound. In this case,
we also present a capacity-achieving coding scheme. Next,
we provide an upper bound for |X | > 8. Finally, we provide
an additional coding scheme and prove it is optimal for an
asymptotic alphabet size.

1) Capacity for |X | ≤ 8: After applying the RL algorithm,
we obtain a model of the input distribution. We use this model
to conduct a Monte-Carlo evaluation of the communication
rate using the MDP formulation. Then, the visited states
are clustered using the k-means algorithm. Each cluster is a
distinct value of Q that corresponds to an MDP state. Let us
denote each node in the graph by the tuple (qd, qs),

qd =

{
1, decoder knows the channel state

0, decoder does not know the channel state

qs = last known channel state, (15)
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where the decoder knows the channel state if PSt|Y t (·|yt)
contains a symbol w.p. 1. The Q-graph is defined by

(
q′d, q

′
s

)
=

{
(1, y) qd = 0 or qd = 1, y �= qs

(0, y) qd = 1, y = qs

, (16)

as given in Figure 4. Finally, TY |Q is estimated by counting
channel outputs at each node, and according to the transitions
between nodes, edges are filled in the Q-graph. A parameter-
ized version of TY |Q is given in (53).

The Q-graph and TY |Q are plugged into the duality bound
as described in the previous section. Then, the value iteration
algorithm is applied on the upper bound to obtain x(s, q).
This allows the conversion of the Bellman equation into a
set of linear equations. Consequently, we conjecture the value
function and average reward, that are proven as optimal,
as given in Lemma 1.

Lemma 1: For a fixed Q-graph and TY |Q the function

V (s, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ , qd = 1, qs = s

1 + 1.5ρ , qd = 1, qs �= s

2ρ− 1 + log(1 + p) , qd = 0, qs = s

1.5ρ + log(1 + p) , qd = 0, qs �= s

(17)

and the constant ρ = 1
2 log 1

p satisfy the Bellman equation in
Equation (13). The variable p is the only root of x4− ((|X |−
1)4 +4)x3 +6x2−4x+1 = 0 that lies in [0, 1]. Equivalently,
the optimal average reward can be rewritten as

ρ = max
p∈[0,1]

2
H2(p) + (1− p) log (|X |−1)

p + 3
.

Lemma 1 provides an upper bound on the feedback capacity,
as given in Theorem 6; its proof is given in Appendix A.

The upper bound is verified to be tight by testing if TY |Q
is BCJR invariant. That is, there exists an input distribution
whose corresponding output distribution satisfies PYi|Y i−1 =
TY |Q, with the same rate as the upper bound. For this purpose,
we conjecture the input distribution by averaging the actions
at every Q-graph node. This yields in the following input
distribution:

p(xt|st−1, qd, qs) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p , qd =1, qs =st−1, xt =st−1
1−p

|X |−1 , qd =1, qs =st−1, xt �= st−1

arbitrary , qd =1, qs �= st−1

1 , qd =0, xt =st−1

0 , qd =0, xt �= st−1,

(18)

which is a parameterized version of the numerical results.
In words, when the decoder knows the channel state, the
symbol repeats with probability p; otherwise, another symbol
is chosen uniformly over all other symbols. When the decoder
does not know the channel state, the state is transmitted
again. With the input distribution, the tightness of the bound
is verified; this is stated in the following lemma, which
completes the derivation of the feedback capacity and the proof
of Theorem 2.

Fig. 5. Q-graph of the Ising channel with |X |= 9. The node Q =
1 represents a state where the decoder knows the channel state. At other
nodes the channel state is not known exactly to the decoder.

Lemma 2: The input distribution in (18) is BCJR-invariant
and its achievable rate is

I(X, S; Y |Q) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X |−1)

p + 3
. (19)

Therefore, it serves as a tight lower bound as CFB ≥ ρ.
The proof of this lemma is given in Appendix A. The

combination of Lemma 1 and Lemma 2 concludes the proof
of Theorem 2.

2) Upper Bound for |X | > 8: The Q-graph that was optimal
for |X | ≤ 8 is not optimal for |X | > 8 since the upper bound
in this region is not tight. Therefore, we conducted an RL
simulation on the Ising channel with an alphabet |X | = 9 to
obtain a new Q-graph. In this case, the structure of the solution
has a complex histogram, and hence the structure cannot be
fully recovered. Instead, we extract a subset of states where
most of the transitions occur. This results in a graph with
12 nodes.

We generalize the structure for a general alphabet |X | > 2,
as depicted in Figure 5. For simplicity of the graph, all the
nodes where the decoder knows the state of the channel are
merged into node 2 ≤ Q ≤ |X | + 1. Next, we define the
Q-graph with |X |+ 3 nodes. Every node where Q �= 1 has a
channel state with which it is associated. Therefore, all nodes
except Q = 1 are denoted by a tuple (q, qs); for 2 ≤ q ≤
|X |+ 1, qs = q− 2, for q = |X |+ 2, |X |+ 3 we set qs = 0, 1
(arbitrary choice), respectively. Transitions between nodes as
a function of the channel output are depicted in Figure 5.
The test distribution TY |Q is estimated subsequently and its
parameterized version is given in (104).

Using the same methodology as in Section IV-A, we use
the Q-graph and TY |Q in the upper bound to obtain an upper
bound whose Bellman solution is presented in the following
lemma.

Lemma 3: For a fixed Q-graph and TY |Q the function

V (s, q) =

⎧⎪⎨
⎪⎩

ρ , q = 1
2ρ− log |X | , q �= 1, qs = s

2ρ + 2− log |X | , q �= 1, qs �= s

(20)
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and the constant ρ = 1
2 log |X |

p satisfy the Bellman equation.

The variable p is the root of x2− (2+ (|X |−1)2

16|X | )x+1 = 0 that
lies in [0, 1].

In Appendix B the proof of Lemma 3 is given, which
completes the proof of the upper bound for |X | > 8 as given
in Theorem 4.

3) Coding Scheme for |X | ≤ 8: The insights from the
numerical results led us to derive a capacity-achieving coding
scheme for |X | ≤ 8, as stated in Theorem 3. This code is a
generalization of the optimal coding scheme for |X | = 2 that
was presented in [13].

Proof of Theorem 3: The achievable rate is computed by
dividing the entropy rate of input symbols by the expected
channel uses per one symbol. The entropy rate is computed
by the source statistics,

H(νi|νi−1) = H2(p) + (1− p) log (|X |−1) . (21)

The expected channel uses per one symbol νi is

E [L] = p · 2 + (1 − p) · 1.5. (22)

That is since when νi = νi−1, the symbol is sent twice, and
when νi �= νi−1, the symbol is sent once or twice with equal
probability. The proof is completed by dividing (21) by (22)
and taking a maximum over p. �

In Algorithm 1, it is assumed that the message bits are
distributed as a first order Markov source. Since generally
the message is uniformly distributed, one can use existing
encoding and decoding mappings to convert the message
into a sequence with first order Markov statistics. One such
mapping is known as enumerative source encoding, which is
described in [32, Section III]. Enumerative source encoding
involves designing a function that counts all the sequences
with an empirical distribution that matches the source statistics
(first order Markov chain). This function is used to encode
and decode the message into a stream of bits in a recursive
calculation.

4) Asymptotic Coding Scheme: We present the proof of
Theorem 5. First, we show the upper bound CFB(X ) ≤
3
4 log(|X |). Then, we show a simple coding scheme with rate
R(X ) = 3

4 log |X |
2 to complete the proof.

Proof of upper bound in Theorem 5: Let Wn be a sequence
of RVs that is defined by

Wi =

{
1 , Yi = Xi

0 , Yi = Xi−1

. (23)

Equivalently, Wi indicates whether the output of the channel
is the current input or the previous one. By the channel
definition Wn is an i.i.d. sequence of RVs, independent of
the message M , where Wi ∼ Ber(0.5). Now, consider a
series of achievable codes (n, 2nR) with rate R, an encoder
Xi = fi(M, Y i−1) and a decoder M̂i = gi(Y i) with P(M �=
M̂n) n→∞−→ 0. A converse for the feedback capacity is then
obtained by the following steps:

nR = H(M) (24)
(a)
= H(M |Wn) (25)

= H(M |Wn)−H(M |Y n, Wn) + H(M |Y n, Wn)
(26)

= I(M ; Y n|Wn) + εn (27)
(b)

≤ H(Y n|Wn) + εn (28)

=
n∑

i=1

H(Yi|Y i−1, Wn) + εn (29)

(c)

≤
n∑

i=1

H(Yi|Yi−1, Wi, Wi−1) + εn (30)

(d)

≤ n
3
4

log |X |+ εn, (31)

where (a) follows from the independence of M, Wn, (b) fol-
lows from the non-negativity of entropy, (c) follows from the
fact that conditioning reduces entropy, and (d) is due to

H(Yi|Yi−1, Wi, Wi−1)

=
∑

w0,w1∈{0,1}2

p(w0, w1)H(Yi|Yi−1,Wi = w1, Wi−1 = w0)

=
1
4

∑
w0,w1∈{0,1}2

H(Yi|Yi−1, Wi = w1, Wi−1 = w0). (32)

By the channel definition, when Wi = 0, Wi−1 = 1 it
follows that Yi = Yi−1 and therefore H(Yi|Yi−1, Wi =
0, Wi−1 = 1) = 0. For w0, w1 ∈ {0, 1}2 \ {0, 1},
we bound H(Yi|Yi−1, Wi = w1, Wi−1 = w0) ≤ log |Y| =
log |X |. Combining the results we obtain Cfb ≤ 3

4 log |X | +
εn

n . According to Fano’s inequality, limn→∞ εn

n = 0. Thus,
by taking the limit we derive the desired upper bound. �

We show next a simple coding scheme that is asymptoti-
cally better than the capacity-achieving coding scheme from
Theorem 3. The following proof describes the coding scheme
and computes its rate.

Proof of Coding Scheme in Theorem 5: The coding scheme
partitions the alphabet into two distinct sets that are assigned
uniquely as the sources for odd and even transmission steps.
Thus, the encoder sends interchangeably from both sets, which
enables the decoder to distinguish whether the channel output
was the input or the state of the channel.

a) Code analysis: The rate, R (X ), of the code is com-
puted by dividing the entropy rate of the source by the
expected channel uses per one symbol. The entropy rate is
H(X ) = log |X |

2 . Let L denote the number of channel uses
per one symbol. We compute E[L] by conditioning on W0, W1,
RVs that indicate if the output of the channel is the input or the
state, as defined in Section IV-B.4. Consequently, it follows
that

E [L] =
∑

w0,w1∈{0,1}2

p(w0, w1)E [L|W0 = w0, W1 = w1]

(34)

= 0.5 · 1︸ ︷︷ ︸
w0=1

+ 0.25 · 1︸ ︷︷ ︸
w0=0,w1=0

+ 0.25E [L|W0 = 0, W1 = 1]︸ ︷︷ ︸
symbol is transmitted again

(35)

= 0.75 + 0.25(1 + E [L]). (36)
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Algorithm 2 Coding Scheme for Asymptotic |X |
Code construction and initialization:

- Partition X into two equal-sized disjoint sets Xa,Xb (up
to one symbol)

- Transform a message of n bits into a stream of symbols
from X , denoted by ν1ν2 . . . with the following statistics:

νi =

{
Unif[Xb] , i even

Unif[Xa] , i odd
(33)

In words, symbols are drawn uniformly and interchange-
ably from Xa,Xb. Denote the source buffers for symbols
from Xa,Xb as Xa, Xb, respectively

- Generate two output buffers at the decoder Ya, Yb

- Transmit a symbol twice to set the initial state of the
channel s0

Encoder:
Transmit νt and observe yt

if yt = νt and yt−1 = νt−2 then
return νt−1 to the top of its source buffer

end if

Decoder:
Receive yt

if yt �= yt−1 then
if yt ∈ Xa then

store yt in Ya

else
store yt in Yb

end if
end if

By rearranging we obtain E [L] = 4
3 . Finally, by dividing the

entropy rate by the expected channel uses per one symbol, the
rate is obtained as R (X ) = 3

4 log |X |
2 . �

V. COMPUTING THE FEEDBACK CAPACITY VIA

REINFORCEMENT LEARNING

In this section, we give a brief background on RL, based
on [34]. Then, we formulate the feedback capacity of a unifilar
FSC as an RL problem and provide the algorithms to compute
the capacity. An important benefit of the formulation is that
the RL environment is completely known, unlike the general
assumption in classic RL. Therefore, we leverage the full
knowledge of the channel equations and use two algorithms.
The first is the DDPG algorithm with improvements; these
are based on the knowledge of the environment, and on a
prior assumption that the optimal solution has a structure.
The second algorithm is POU, a variant of model-based RL
algorithms [30], [31], that uses the complete knowledge of
the environment to optimize the feedback capacity directly.
The DDPG algorithm estimates both the value function and the
policy, and therefore its results are easier to interpret. However,
it yielded better lower bounds (compared with POU) only
for |X | ≤ 15, and did not converge for alphabets beyond
|X | = 15. The POU algorithm, which only estimates the

Fig. 6. A description of (a) the general RL setting and (b) the feedback
capacity problem formulated in the RL setting.

policy, performed better for |X | > 15 empirically, but was
less accurate for |X | ≤ 15.

A. RL Setting

The RL setting comprises an agent that interacts with a
state-dependent environment whose input is an action, and
the output is a state and a reward. Formally, at time t, the
environment state is zt−1, and an action ut ∈ U is chosen by
the agent. Then, a reward rt ∈ R and a new state zt ∈ Z are
generated by the environment, and are made available to the
agent (Figure 6). The environment is assumed to satisfy the
Markov property

p
(
rt, zt|zt−1, ut, rt−1

)
= p (rt, zt|zt−1, ut) , (37)

and hence, it can be characterized by the time-invariant dis-
tribution p (rt, zt|zt−1, ut) only. The agent’s policy is defined
as the sequence of actions π = {u1, u2, . . . }.

The objective of the agent is to choose a policy that yields
maximal accumulated rewards across a predetermined horizon
h ∈ N. Here, we consider an infinite-horizon average-reward
setting, where the agent-environment interaction lasts forever,
and the goal of the agent is to maximize the average reward
gained during the interaction. The average reward of the agent
is defined by

ρ(π) = lim
h→∞

1
h

h∑
t=1

Eπ [Rt], (38)

where the rewards depend on the actions taken according the
policy π.

The differential return of the agent is defined by

Gt = Rt − ρ(π) + Rt+1 − ρ(π) + Rt+2 − ρ(π) + · · · . (39)

Accordingly, the state-action value function Qπ(z, u) is
defined as

Qπ(z, u) = Eπ [Gt|Zt−1 = z, Ut = u] , (40)

that is, the expected rewards for taking action u at state z
and thereafter following policy π. Using the Markov property
(37) of the environment, one can write (40) as the sum of the
immediate and future rewards, i.e.,

Qπ(z, u) =E [Rt|Zt−1 = z, Ut = u]− ρ(π) +
Eπ [Qπ(Zt, Ut+1)|Zt−1 = z, Ut = u] , (41)

that is the Bellman equation [34, Chapter 4], which is essential
for estimating the function Qπ. Given an estimation of the
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Fig. 7. Depiction of actor and critic networks. The actor network comprises
a NN that maps the state z to an action Aµ(z). The critic NN maps the tuple
(z, u) to an estimate of expected future cumulative rewards.

state-action value, it forms the basis for the improvement of a
given policy. That is, for each state z ∈ Z , the current action
π(z) can be improved to the action π′(z) by choosing

π′(z) = argmax
u

Qπ(z, u). (42)

The function approximators in RL are parameterized models
for Qπ(z, u), π(z). The actor is defined by Aμ(z), a para-
metric model of π(z), whose parameters are μ. The critic is
defined by Qω(z, u), a parametric model with parameters ω of
the state-action value function that corresponds to the policy
Aμ(z). Generally, in deep RL, the actor and critic are modeled
by NNs, as shown in Fig 7.

B. Formulation of the Capacity as an RL

The MDP formulation [8] of the feedback capacity is used
to convert the multi-letter capacity formula in Theorem 1
into an RL setting. The formulation is depicted in Figure 6.
Under this formulation the state zt−1 = pSt−1|Y t−1(·|yt−1) is
the probability vector of the channel state given the channel
outputs feedback. The action ut = pXt|St−1,Zt−1=zt−1 is the
conditional probability of the channel input conditioned on the
channel state. The reward is rt = I(Xt, St−1; Yt|zt−1, ut) and
the next state is given by the evolution of zt and is described
in (5). An equivalent notation denotes rt = g(zt−1, ut), zt =
f(zt−1, ut, wt), where g, f are the reward and next state
function, respectively. The disturbance, wt ∼ p(wt|zt−1, ut),
is chosen as the channel output yt, i.e. wt = yt.

C. Deep Deterministic Policy Gradient (DDPG) Algorithm

In this section we elaborate on the implementation of
the DDPG [29], including the necessary adjustments to the
feedback capacity formulation.

1) Algorithm: The DDPG algorithm [29] is a deep RL
algorithm for deterministic policies and continuous state and
action spaces, as needed by the feedback capacity underlying
MDP. The DDPG is an extension of the family of deterministic
policy gradient algorithms [35] for deep RL. In [35], the
gradient theorem has been derived for MDPs with discounted
rewards, and here we extend this result for average reward
MDPs as well, as given in the following theorem.

Theorem 7: Suppose an ergodic MDP with determinis-
tic actions under the average reward formulation satisfies
Assumption 1 in Appendix C. Then,

∂ρ(π)
∂μ

=
∫

z

dπ(z)
∂Aμ(z)

∂μ

∂

∂u
Qπ(z, u)

∣∣∣∣∣
u=Aµ(z)

, (43)

where dπ(z) = limt→∞ Pπ(Zt = z|Z0 = z0). The subscript
π indicates the dependency of the stationary distribution on
the policy.

The only modification of the policy gradient in
Equation (43) from the policy gradient for discounted
rewards in [35, Theorem 1] is the definition of Qπ(z, u);
in the average reward formulation Qπ(z, u) is defined with
the differential returns in Equation (39), while in [35] the
authors used accumulated discounted rewards. The proof of
Theorem 7 is given in Appendix C.

The feedback capacity is formulated as an infinite horizon
average reward MDP; however, in order to explore the MDP’s
initial state, the training is divided artificially into episodes.
The training procedure comprises M episodes. Each episode
starts with a random initial state of the environment, and
contains T sequential steps5. A single step of the algorithm
comprises two parallel operations: (1) collecting experience
from the environment, and (2) improving the actor and critic
networks’ performance by training them using the accumu-
lated data.

In the first operation, the agent collects experience from the
environment. Given the current state zt−1, the agent chooses
an action ut according to an exploration policy. Here, the
action is a probability distribution, and therefore exploration
is applied by adding noise to the actor network’s last hidden
layer, and not by adding noise to the network output as was
done in [29]. We denote a noisy action at state zt−1 by
Aμ(zt−1; Nt), where {Nt} is an i.i.d. Gaussian process with
Nt ∼ N (0, σ2). After taking the action Aμ(zt−1; Nt), the
agent observes the incurred reward rt and the next state zt.
Subsequently, the transition tuple

τ = (zt−1, ut, rt, zt)

is stored in a replay buffer, a bank of experience, that is used to
improve the actor and critic networks in the second operation.

The second operation entails training the actor and critic
networks. First, N transitions {τi}Ni=1 are drawn uniformly
from the replay buffer. Second, for each transition, the target
bi is computed based on the right-hand-side of (41):

bi = ri − ρMC + Q′
ω

(
zi, A

′
μ(zi)

)
, i = 1, . . . , N. (44)

The target is the sampled estimate of future rewards; for
numerical reasons elaborated in [29], it is computed using
a moving average of Qω, Aμ, which are the target net-
works, Q′

ω, A′
μ. The term ρMC is the estimate of the

average reward, which is updated at the beginning of every
episode by a Monte-Carlo evaluation of TMC steps by

1
TMC

∑TMC−1
t=0 rt+1. Then, we minimize the following objec-

tive with respect to the parameters of the critic network ω as
given by

L (ω) =
1
N

N∑
i=1

[Qω (zi−1, Aμ(zi−1))− bi]
2 . (45)

5The episode length T was chosen to be long enough (T = 500) to resemble
an infinite horizon, but not too long in order to make it possible to explore
the MDP’s initial state.
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Algorithm 3 DDPG Algorithm for Feedback Capacity of
Unifilar FSC

Initialize the critic Qω and actor Aμ networks with random
weights ω and μ, respectively
Initialize target networks Q′

ω and A′
μ with weights ω′ ← ω,

μ′ ← μ
Initialize an empty replay buffer R
Initialize moving average parameter α
for episode = 1:M do

Initialize a random process {Nt} for action exploration
Set ρMC = 1

TMC

∑TMC−1
t=0 rt+1 by a Monte-Carlo evalu-

ation of the average reward of Aμ

Randomize initial state z0 from the |X |-simplex
for step = 1:T do

Select noisy action ut = Aμ(zt−1; Nt)
Execute action ut and observe (rt, zt)
Store transition (zt−1, ut, rt, zt) in R
Sample a random batch of N transitions
{(zi−1, ui, ri, zi)}Ni=1 from R
Set bi = ri − ρMC + Q′

ω

(
zi, A

′
μ(zi)

)
Update critic by minimizing the loss: L (ω) =
1
N

∑N
i=1 [Qω (zi−1, Aμ(zi−1))− bi]

2

Update the actor policy using the sampled policy
gradient:

1
N

N∑
i=1

∇aQω (zi−1, a) |a=Aµ(zi−1)∇μAμ (zi−1)

Update the target networks:

ω′ ← αω + (1− α)ω′

μ′ ← αμ + (1− α)μ′

end for
end for
return ρMC = 1

TMC

∑TMC−1
t=0 rt+1

The aim of this update is to train the critic to comply with
the Bellman equation (41). Afterwards, we train the actor to
maximize the critic’s estimation of future cumulative rewards.
That is, we train the actor to choose actions that result in high
cumulative rewards according to the critic’s estimation. The
formula for the actor update is given by

1
N

N∑
i=1

∇aQω (zi−1, a) |a=Aµ(zi−1)∇μAμ (zi−1) . (46)

Finally, the agent updates its current state to be zt and moves
to the next time step.

To conclude, the algorithm alternates between improving the
critic’s estimation of future cumulative rewards and training
the actor to choose actions that maximize the critic’s estima-
tion. The algorithm is given in Algorithm 3 and its workflow
is depicted in Figure 8.

2) Improvements: We propose two improvements for the
DDPG algorithm. The first improvement uses the knowledge
of the environment to reduce the variance of the estimation
of Qπ by replacing samples with expectations. Instead of

Fig. 8. Depiction of the work flow of the DDPG algorithm. At each time
step t, the agent samples a transition from the environment using an ε-greedy
policy and stores the transition in the replay buffer. Simultaneously, N past
transitions {τi}N

i=1 are drawn from the replay buffer and used to update the
critic and actor NN according to (45) and (46), respectively.

calculating the right-hand-side of (42), as done in (44),
we compute the expectation explicitly over all possible next
states, rather than using an unbiased estimate of it as was done
in the original DDPG algorithm. The modified calculation is
given by:

bi = ri − ρMC +
∑
w∈Y

p(w|zi−1, ui)Q′
ω

(
zi, A

′
μ(zi)

)
. (45)

The DDPG algorithm has no theoretical convergence guar-
antees since it is applied on continuous action and state
spaces with non-linear function approximation [29, Section 2].
However, empirically, this method works well due to advances
presented in [36]. Since in the DDPG algorithm the Q-function
and the policy are learnt using a stochastic approximation
procedure, we emphasize that the modification in (45) does
not change the expected gradient of the DDPG algorithm.
Instead of sampling the disturbance to evaluate the expected
gradient, its distribution is used to compute the expectation
explicitly according to the law of total expectation. Therefore,
the convergence analysis presented in [29] still holds.

The second improvement is a variant of importance sam-
pling [37]. This is essential since there are states that are
visited rarely, and in the current technique are rarely used
to improve the policy. For this purpose, we modify the
replay buffer to store transitions as clusters. Each time a
new transition arrives at the buffer, its max-norm distance
with all cluster centers is calculated. The distance from
the closest cluster is compared with a threshold (typically
∼ 0.1). In the case where the distance is smaller than the
threshold, the transition is stored in the corresponding cluster;
else, a new cluster is added with the new transition. For
sampling, instead of drawing transitions uniformly over the
entire buffer, we first sample uniformly from the clusters,

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on July 11,2023 at 11:47:27 UTC from IEEE Xplore.  Restrictions apply. 



5648 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 9, SEPTEMBER 2022

and then sample uniformly from within the sampled cluster.
The aim of this modification is to draw transitions uniformly
over the state space, a (|X | − 1)-simplex, and not over the
replay buffer6. This corresponds to [29, Section 3], where
the authors explain that having a large replay buffer increases
the probability that uncorrelated examples are drawn from
it. The sampling method proposed here encourages uniform
sampling by construction.

3) Implementation: We model Qω(z, u), Aμ(z) with two
NNs, each of which is composed of three fully connected
hidden layers of 300 units separated by a batch normalization
layer. The actor network input is the state z and its output is
a matrix Aμ(z) ∈ R

|S|×|X | such that Aμ(z)1 = 1. The critic
network input is the tuple (z, Aμ(z)) and its output is a scalar,
which is the estimate for the cumulative future rewards. In our
experiments, we trained the networks for M = 104 episodes.
Each episode length is T = 500 steps. The Monte-Carlo
evaluation length of average reward is TMC = 108. For the
exploration, we added Gaussian noise with zero mean and
variance σ2 = 0.05 to the last layer of the actor network. The
implementation details are published in Github7.

D. Policy Optimization by Unfolding (POU) Algorithm

The POU algorithm utilizes the knowledge of the RL
environment to optimize the policy without estimating the
value function. That is, we optimize the expected average
of consecutive rewards directly. This is done by using the
reward function g, the next state function f and the disturbance
distribution PW |Z,U to compute gradient of the expected
average of n rewards.

1) Algorithm: Let us denote the policy-dependent reward
function by

Rμ(z) = g
(
z, μ(z)

)
, (48)

which is determined exclusively by z since the policy μ is
a deterministic policy. Consequently, we define the expected
average reward over n consecutive time steps for an initial
MDP state z0 by

Rn
μ(z0) =

1
n

n∑
t=1

E
[
Rμ(Zt−1)

]

=
1
n

[
Rμ(z0) +

n∑
t=2

E
[
Rμ(Zt−1)

]]
, (49)

where Zt = f(Zt−1, μ(Zt−1), Wt) and hence, the expec-
tation is implicitly taken with respect to PWt|Zt−1,μ(Zt−1).
That is since the disturbance Wt is conditionally independent
of the past given the previous MDP state and the action(
Zt−1, μ(Zt−1)

)
.

The choice of the interaction length parameter n affects
directly the performance of the optimized policy. Specifically,

6The reader might raise the possibility of considering the idea of priority
replay according to the Bellman error [38]. However, since the optimal policy
visits only in a finite amount of states, prioritized replay led to drawing the
same transition multiple times from the buffer, and thus did not make any
positive contribution to the numerical evaluation.

7https://github.com/zivaharoni/capacity-rl

Fig. 9. A single step of the environment. The input of the block is the
current RL state zt−1 and the outputs are the immediate reward rt and the
next sampled state zt. Initially, the block uses the actor to construct the tuple
(zt−1, ut). Afterwards, it samples the disturbance from wt ∼ p(·|zt−1, ut),
and finally, uses g and f to compute the reward and the next state, respectively.

as n increases the policy is optimized over more rewards
in future steps rather than immediate rewards. For instance,
choosing n = 1 translates to optimizing the immediate
reward, which consequently yields a greedy policy. As shown
in Figure 2, an interaction over relatively small n, e.g.,
n ∼ 20, is sufficient to achieve policies with long-term high
performance. However, the number of possible MDP states
over an interaction of n steps grows exponentially as |Y|n
(recall the disturbance in our case is the channel output Y ).

To resolve this practical issue, the POU algorithm proposes
a simple, yet efficient, method to unfold the interaction with
the environment. Given a policy μ and an initial state z0,
we sample n MDP states and rewards consecutively according
the following law:

rt = Rμ(zt−1),
Wt ∼ PW |Z,U (·|Z = zt−1, U = μ(zt−1)),
zt = f(zt−1, μ(zt−1), wt), (51)

where the disturbance Wt is sampled conditioned on the
previous MDP state and the action μ(Zt−1). Note that this law
is dictated by the RL environment and the chosen policy and
is not subject to the planning horizon n. For a single t, the law
in (51) describes a single step where the agent interacts with
the environment, as shown in Figure 9. The interaction with
the environment for n consecutive steps is shown in Figure 10.

Upon differentiating Equation (49), it is evident that Rn
μ(z0)

depends on the policy parameters through a deterministic
mapping from the policy parameters μ to the realized average
reward; and through the dependency of PW |Z,U (w|z, μ(z))
on the policy parameters. To take into account these depen-
dencies, we compute an estimated gradient using stochastic
computation graphs, as presented in [39]. Figure 11 illustrates
the computation graph that it is resulted from our MDP
formulation. Circle nodes represent stochastic nodes, i.e. nodes
whose output is distributed conditionally on its inputs. Square
nodes indicate nodes whose output is a deterministic mapping
of its inputs. Equation (50), shown at the bottom of the next
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Fig. 10. The interaction with the channel unfolded across subsequent time steps. The weights of the actor network are shared across time steps.

Fig. 11. Illustration of the stochastic computation graph of our MDP
formulation for the estimation of the gradient of the POU algorithm. Square
nodes indicate deterministic mappings and circle nodes are stochastic. Thick
solid lines indicate nodes that depend on the parameters μ.

page, is an application of [39, Theorem 1] and it provides
the policy gradient of the POU algorithm, where c ∈ R is
a constant that is used as a baseline. The policy gradient
is composed of two terms. The first term stems from all
deterministic trajectories from {ri}ni=1 to μ, i.e. trajectories
that go through deterministic nodes only. The second term is
obtained from stochastic nodes, e.g. w1, . . . , w4 in Figure 11,
whose distribution depends on the policy parameters. It aims to
increase the likelihood of trajectories with high reward-to-go,
i.e. sum of rewards obtained after visiting a stochastic node.

In order to reduce the variance of the algorithm, we subtract
a baseline independent of the policy parameters from the

Algorithm 4 POU Algorithm for Feedback Capacity of
Unifilar FSC

Initialize actor Aμ with random weights μ
Initialize learning rate η.
for episode = 1:M do

Evaluate ρMC = 1
TMC

∑TMC−1
t=0 rt+1

Sample z0 uniformly from (|X | − 1)-simplex
for t = 1 : T do

Conditioned on z0 and Aμ, sample (w1, . . . , wn−1)
according to (51)
Update the actor parameters using gradient ascent

μ = μ + η∇μ

[
1
n

n∑
t=1

E [Rμ(Zt−1)− ρMC ]

]

Update the initial state z0 = zn

end for
end for
return ρMC = 1

TMC

∑TMC−1
t=0 rt+1

realized rewards. As commonly used in RL algorithms [34],
[40], we choose the baseline to be a Monte-Carlo evaluation
of the average reward that is performed at the beginning of
every episode. The update rule of the algorithm is given by
using a single trajectory to compute an unbiased estimate of
the policy gradient, and it is given by

μ = μ + η∇μ

[
1
n

n∑
t=1

E [Rμ(Zt−1)− ρMC ]

]
, (52)

∇μ

[
1
n

n∑
t=1

E [Rμ(Zt−1)− c]

]
=

1
n

n∑
t=1

E

[
∂

∂μ
Rμ(Zt−1)

]
+

1
n

n∑
t=2

E

[
∂

∂μ
log

(
PW |Z,U (Wt|Zt−1, μ(Zt−1))

) [ n∑
s=t

Rμ(Zs)− c

]]
, (50)
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where η is the step size and the gradient is computed according
to Equation (50). This procedure is repeated using the last state
zn as the initial state of the next consecutive n steps. This is
shown in Algorithm 4.

2) Implementation: The actor network is implemented
exactly as described in Section V-C.3. For training, we trained
the actor network for M = 103 episodes, each containing
T = 102 consecutive n-blocks. Each block was chosen to have
length n = 20. The Monte-Carlo evaluation length of average
reward is TMC = 108. For exploration, we used dropout [41]
on the actor network throughout training. The implementation
details are published in Github8.

VI. DISCUSSION AND CONCLUSION

We proposed a new methodology to compute the feedback
capacity of unifilar FSCs. RL is proposed instead of classic DP
algorithms due its ability to evaluate MDPs with continuous
state and action spaces. Two RL algorithms are proposed to
evaluate numerically the feedback capacity. The numerical
results form the basis for conjecturing the structure of the
optimal solution via a Q-graph and a corresponding TY |Q.
The structure is used in the duality bound to obtain an analytic
expression of the upper bound, which is tested to be tight by
verifying that TY |Q is BCJR invariant.

We applied this methodology to obtain analytic results over
the Ising channel with a general alphabet. For |X | ≤ 8,
we found the analytic solution of the feedback capacity and
derived a capacity-achieving coding scheme. For |X | > 8, the
structure in the numerical results enabled us to obtain an upper
bound, but we did not manage to verify whether it is tight or
not.

An interesting observation is the change of the structure
of the solution as the alphabet size increases. Mathematically,
the capacity-achieving coding scheme for |X | ≤ 8 is optimal
for X : R (X ) ≤ 2, as shown in Appendix A. This implies
that the transmission policy might differ for the same channel
with increasing alphabet size. We visualize this observation
in Figure 2, where the efficiency of the coding scheme in
Theorem 3, the numerical lower bound from the RL simula-
tion, and the analytic upper bound in Theorem 4 are compared.
It is apparent that the solution for |X | ≤ 8 saturates at 2

3 , while
the numeric lower bound keeps improving when the alphabet
increases. This phenomenon is observed when increasing the
alphabet size, which emphasizes the importance of developing
effective tools for channels with large alphabet sizes.

APPENDIX A
UPPER BOUND ON THE FEEDBACK CAPACITY FOR |X |≤ 8

Proof: [Proof of Lemma 1] The conditional distribution
T (y|q) that corresponds to the Q-graph extracted from the
numerical results is given by

T (y|q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+p
2 , qd = 1, qs = y
1−p

2(|X |−1) , qd = 1, qs �= y
2p

1+p , qd = 0, qs = y
1−p

(|X |−1)(1+p) , qd = 0, qs �= y.

(53)

8https://github.com/zivaharoni/capacity-rl-po

Next, we verify that the Bellman equation holds for
every (s, q)

ρ + V (s, q) = max
x

DKL

(
PY |X=x,S=s‖TY |Q=q

)
+∑

y∈Y
p(y|x, s)V (x, φ(q, y)) . (54)

We will start by computing the Bellman equation operator for
qd = 1, qs = s. For x = s,

V (s, q) = −ρ +∑
y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)
+ V (x, φ(q, y))

]
(55)

= −ρ + 1

[
log

(
1

1+p
2

)
+ V (s, (1, s))

]
(56)

= −ρ + 1− log(1 + p) + 2ρ− 1 + log(1 + p) (57)

= ρ. (58)

Further, if x �= s

V (s, q) = −ρ +∑
y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)
+ V (x, φ(q, y))

]
(59)

= −ρ +
1
2

[
log

(
1
2

1+p
2

)
+ V (x, (0, s))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2

1−p
2(|X |−1)

)
+ V (x, (0, x))

]
︸ ︷︷ ︸

y=x

(60)

= −ρ +
1
2

[
− log(1 + p) + 1.5ρ + log(1 + p)

− log
(

1− p

(|X | − 1)

)
+ ρ

]
(61)

= −ρ +
1
2

[
− log(1 + p) + 1.5ρ + log(1 + p)

+ 1.5ρ + ρ
]

(62)

= ρ. (63)

Since, for all x the operator is equal, the Bellman equation is
satisfied.

For qd = 1, qs �= s
x = s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(64)

= −ρ + 1

[
log

(
1

1−p
2(|X |−1)

)
+ V (s, (1, s))

]
(65)

= −ρ + 1− log
(

1− p

(|X | − 1)

)
+ ρ = 1 + 1.5ρ. (66)
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x �= s, qs = x

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(67)

= −ρ +
1
2

[
log

(
1
2

1−p
2(|X |−1)

)
+ V (x, (1, s))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2

1+p
2

)
+ V (x, (0, x))

]
︸ ︷︷ ︸

y=x

(68)

= −ρ +
1
2

[
− log

(
1− p

(|X | − 1)

)
+ 1 + 1.5ρ)

]
+

1
2

[− log (1 + p) + 2ρ− 1 + log(1 + p)] (69)

= −ρ +
1
2

[1.5ρ + 1 + 1.5ρ)] +
1
2

[2ρ− 1] = 1.5ρ.

(70)

x �= s, qs �= x

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(71)

= −ρ +
1
2

[
log

(
1
2

1−p
2(|X |−1)

)
+ V (x, (1, s))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2

1−p
2(|X |−1)

)
+ V (x, (0, x))

]
︸ ︷︷ ︸

y=x

(72)

= −ρ +
1
2

[
− log

(
1− p

(|X | − 1)

)
+ 1 + 1.5ρ)

]

+
1
2

[
− log

(
1− p

(|X | − 1)

)
+ ρ

]
(73)

= −ρ +
1
2

[1.5ρ + 1 + 1.5ρ)] +
1
2

[1.5ρ + ρ]

= 1.75ρ + 0.5. (74)

Hence, for any cardinality that satisfies ρ < 2 the Bellman
equation holds (1.5ρ + 1 > 1.75ρ + 0.5).
qd = 0, qs = s
x = s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(75)

= −ρ + 1

[
log

(
1
2p

1+p

)
+ V (s, (1, s))

]
(76)

= −ρ + log(1 + p)− 1− log(p) + ρ

= 2ρ− 1 + log(1 + p). (77)

x �= s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(78)

= −ρ +
1
2

[
log

(
1
2
2p

1+p

)
+ V (x, (1, s))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2

1−p
(|X |−1)(1+p)

)
+ V (x, (1, x))

]
︸ ︷︷ ︸

y=x

(79)

= −ρ +
1
2

[log(1 + p)− 2− log(p) + 1 + 1.5ρ]

+
1
2

[
log(1 + p)− 1− log

(
1− p

(|X | − 1)

)
+ ρ

]
(80)

= −ρ + log(1 + p) +
1
2

[−2 + 2ρ + 1 + 1.5ρ]

+
1
2

[−1 + 1.5ρ + ρ]

= 2ρ− 1 + log(1 + p). (81)

In that case the Bellman equation is satisfied.
qd = 0, qs �= s
x = s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(82)

= −ρ + 1

[
log

(
1

1−p
(|X |−1)(1+p)

)
+ V (s, (1, s))

]

(83)

= −ρ + log(1 + p)− log
(

1− p

(|X | − 1)

)
+ ρ

= 1.5ρ + log(1 + p). (84)

x �= s, qs = x

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(85)

= −ρ +
1
2

[
log

(
1
2

1−p
(|X |−1)(1+p)

)
+ V (x, (1, s))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2
2p

1+p

)
+ V (x, (1, x))

]
︸ ︷︷ ︸

y=x

(86)

= −ρ +
1
2

[
log(1 + p)− 1− log

(
1− p

(|X | − 1)

)

+ 1 + 1.5ρ
]

+
1
2

[log(1 + p)− 2− log(p) + ρ] (87)
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= −ρ + log(1 + p) +
1
2

[−1 + 1.5ρ + 1 + 1.5ρ] +

1
2

[−2 + 2ρ + ρ]

= 2ρ− 1 + log(1 + p). (88)

x �= s, qs �= x

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(89)

= −ρ +
1
2

[
log

(
1
2

1−p
(|X |−1)(1+p)

)
+ V (x, (1, s))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2

1−p
(|X |−1)(1+p)

)
+ V (x, (1, x))

]
︸ ︷︷ ︸

y=x

(90)

= −ρ +
1
2

[
log(1 + p)− 1− log

(
1− p

(|X | − 1)

)
+ 1

+ 1.5ρ
]
+

1
2

[
log(1 + p)− 1− log

(
1− p

(|X | − 1)

)
+ ρ

]
(91)

= −ρ + log(1 + p)− 1 + 1.5ρ + 0.5 +
5
4
ρ

=
7
4
ρ− 0.5 + log(1 + p). (92)

Here, too, the Bellman equation is satisfied for ρ < 2.
�

Proof: [Proof of Lemma 2] We show that the Markov
Y i−1 − Qi−1 − Yi holds, and since Qi = Φ(Y i−1) it is
enough to show that TY |Q = PYi|Y i−1 . Using the MDP
state for every node of the Q-graph we obtain the following
relation:

zi−1 =

{
[0, . . . , 1, . . . , 0] , qd = 1
[ 1−p
(1+p)(|X |−1) , . . . ,

2p
1+p , . . . , 1−p

(1+p)(|X |−1) ] , qd = 0,

(93)

where the unique index corresponds to index qs. Now we
plug the input distribution into (18) to get the following
representation:

p(yi|yi−1) =
∑

xi,si−1

zi−1uip(yi|xi, si−1), (94)

to verify the desired relation.
For qd = 1, qs = y∑

x,s

zi−1(s)ui(x, s)p(y|x, s) =
∑

x

ui(x, y)p(y|x, y) (95)

= p︸︷︷︸
x=y

+ (|X | − 1)
1− p

|X | − 1
1
2︸ ︷︷ ︸

x �=y

=
1 + p

2
. (96)

For qd = 1, qs �= y∑
x,s

zi−1(s)ui(x, s)p(y|x, s) =
∑

x

ui(x, y)p(y|x, y) (97)

=
1− p

|X | − 1
1
2︸ ︷︷ ︸

x=y

. (98)

For qd = 0, qs = y∑
x,s

zi−1(s)ui(x, s)p(y|x, s)

=
2p

1 + p

∑
x

ui(x, y)p(y|x, y)

︸ ︷︷ ︸
=1

+
1− p

(1 + p)(|X | − 1)

∑
x,s�=y

ui(x, s)p(y|x, s)

︸ ︷︷ ︸
=0

(99)

=
2p

1 + p
. (100)

For qd = 0, qs �= y∑
x,s

zi−1(s)ui(x, s)p(y|x, s)

=
2p

1 + p

∑
x

ui(x, y)p(y|x, y)

︸ ︷︷ ︸
=0

+
1− p

(1 + p)(|X | − 1)

∑
x,s�=y

ui(x, s)p(y|x, s)

︸ ︷︷ ︸
=1

(101)

=
1− p

(1 + p)(|X | − 1)
. (102)

Since the Markov Y i−1−Qi−1−Yi holds, the feedback capac-
ity is converted into a single-letter expression I(X, S; Y |Q)
as shown in [21]. First, we use p(x|s, q), p(y|x, s)1(s′ =
x)1(q′ = φ(q, s)) to compute the transition matrix of the
Markov S0, Q0 − S1, Q1 − . . . and compute its stationary
distribution. It is given by

π(s, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
|X |(p+3) , qd = 1, qs = s

0 , qd = 1, qs �= s
2p

|X |(p+3) , qd = 0, qs = s
1−p

|X |(|X |−1)(p+3) , qd = 0, qs �= s

. (103)

Next, we compute the rate

H(Y |Q)

=
∑

q=(qd,qs)

π(q)H(Y |Q = q)

=
∑

q=(1,qs)

π(q)H(Y |Q = q)

+
∑

q=(0,qs)

π(q)H(Y |Q = q)

=
2

p + 3
H(Y |Q=(1, qs))+

p + 1
p + 3

H(Y |Q=(0, qs))

=
2

p + 3
(H2(p) + (1 − p) log(|X | − 1)) + 2

1− p

p + 3
,
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H(Y |X, S)

= −
∑

x,s,y,q

π(s, q)p(x|s, q)p(y|x, s) log p(y|x, s)

= − |X |
∑

q=(1,qs),x,s,y

π(s, q)p(x|s, q)p(y|x, s) log p(y|x, s)+

− |X |
∑

q=(0,qs),x,s,y

π(s, q)p(x|s, q)p(y|x, s) log p(y|x, s)

= − 2
p + 3

∑
q=(1,qs),x,y

p(x|qs, q)p(y|x, qs) log p(y|x, qs)−

|X |
[ ∑

q=(0,qs),x,y

π(qs, q)p(x|qs, q)p(y|x, qs) log p(y|x, qs)+

∑
q=(0,qs),x,y,s

π(s, q)p(x|s, q)p(y|x, s) log p(y|x, s)
]

= − 2
p + 3

∑
q=(1,qs),x �=qs,y

p(x|qs, q)p(y|x, qs) log p(y|x, qs)−

2p

p + 3

[ ∑
q=(0,qs),x,y

1[x = qs]p(y|x, qs) log p(y|x, qs)+

1− p

(|X | − 1)(p + 3)

∑
q=(0,qs),x,y,s

1[x = s]p(y|x, s) log p(y|x, s)
]

= − 2
p + 3

∑
q=(1,qs),x �=qs,y

p(x|qs, q)p(y|x, qs) log p(y|x, qs)−

2p

p + 3

[∑
y

p(y|qs, qs) log p(y|qs, qs)+

1− p

(|X | − 1)(p + 3)

∑
x,y

p(y|x, x) log p(y|x, x)
]

= − 2
p + 3

∑
x �=qs,y

1− p

|X | − 1
p(y|x, qs) log p(y|x, qs)

=
2(1− p)
p + 3

1
|X | − 1

∑
x �=qs

1

=
2(1− p)
p + 3

.

Thus, there exists an input distribution with PYi|Y i−1 = TY |Q
and the same rate as the upper bound in Lemma 1. This
concludes the proof. �

APPENDIX B
UPPER BOUND ON THE FEEDBACK CAPACITY FOR |X |> 8

Proof: [Proof of Theorem 4] The Q-graph obtained from
the numerical results of the RL algorithm applied on the Ising
channel with |X | = 9 has 12 nodes, where node Q = 1 denotes
that the decoder does not know the channel states. Nodes
Q = 2, . . . , 10 correspond to complete knowledge of the
channel state and nodes Q = 11, 12 correspond to partial
knowledge of the channel state. We denote each node by
the tuple (q, qs) where q indicates the node number and qs

indicates the channel state that this node contains information
about. The corresponding conditional distribution T (y|q) of

the Q-graph is given by

T (y|q) =

⎧⎪⎪⎨
⎪⎪⎩

1
|X | , q = 1

p , q �= 1, qs = y

1−p
(|X |−1) , q �= 1, qs �= y

. (104)

Next, we verify that the Bellman equation holds for every
(s, q). That is, we verify that the right-hand-side maximum of
(13) equals V (s, q). For this purpose, we use the following
identity:

ρ =
1
3

log
( |X |(|X | − 1)

4p(1− p)

)
. (105)

For q = 1, s �= 6
x = s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(106)

= −ρ + 1

[
log

(
1
1

|X |

)
+ V (s, (1, s)))

]
(107)

= −ρ + log(|X |) + 2ρ− log(|X |) = ρ. (108)

x �= s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(109)

= −ρ +
1
2

[
log

(
1
2
1

|X |

)
+ V (x, (1, s)))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2
1

|X |

)
+ V (x, (1, x)))

]
︸ ︷︷ ︸

y=x

(110)

= −ρ +
1
2

[
2 log(

|X |
2

) + 2ρ

+ 2− log(|X |) + 2ρ− log(|X |)
]

= ρ. (111)

For q = 1, s = 6
x = s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(112)

= −ρ + 1

[
log

(
1
1

|X |

)
+ V (6, (1, 6)))

]
(113)

= −ρ + log(|X |) + 2ρ− log(|X |) = ρ. (114)
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x �= s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(115)

= −ρ +
1
2

[
log

(
1
2
1

|X |

)
+ V (x, (1, 6)))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2
1

|X |

)
+ V (x, (1, x)))

]
︸ ︷︷ ︸

y=x

(116)

= −ρ +
1
2

[
2 log(

|X |
2

) + 2ρ

− log(|X |) + 2ρ + 2− log(|X |)
]

= ρ. (117)

In that case the Bellman equation is satisfied.
For q �= 1, qs = s:
x = s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)
+ V (x, φ(q, y))

]
(118)

= −ρ + 1
[
log

(
1
p

)
+ V (s, (1, s)))

]
(119)

= −ρ + log(
1
p
) + ρ (120)

= −ρ + log(
|X |
p

)︸ ︷︷ ︸
2ρ

− log(|X |) + ρ = 2ρ− log(|X |).

(121)

x �= s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)
+ V (x, φ(q, y))

]
(122)

= −ρ +
1
2

[
log

( 1
2

p

)
+ V (x, (q, s)))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2

1−p
|X |−1

)
+ V (x, (q, x)))

]
︸ ︷︷ ︸

y=x

(123)

= −ρ +
1
2

[
log

(
(|X | − 1)
4p(1− p)

)
2ρ

− log(|X |) + ρ
]

(124)

= −ρ +
1
2

[
log

( |X |(|X | − 1)
4p(1− p)

)
︸ ︷︷ ︸

3ρ

+ 2ρ− 2 log(|X |) + ρ
]

= 2ρ− log(|X |). (125)

In that case the Bellman equation is satisfied.
For q �= 1, qs �= s
x = s

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(126)

= −ρ + 1
[
log

(
1
p

)
+ V (s, (q, s)))

]
(127)

= −ρ + log(
1
p
)︸ ︷︷ ︸

2ρ−log(|X |)

+ρ = 2ρ− log(|X |). (128)

x �= s, x = qs

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(129)

= −ρ +
1
2

[
log

( 1
2

p

)
+ V (x, (q, s)))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2

1−p
|X |−1

)
+ V (x, (q, x)))

]
︸ ︷︷ ︸

y=x

(130)

= −ρ +
1
2

[
log

(
(|X | − 1)
4p(1− p)

)
︸ ︷︷ ︸

3ρ−log(|X |)

+ 2ρ + 2− log(|X |) + ρ
]

= 2ρ− log(|X |) + 1. (131)

x �= s, x �= qs

V (s, q) = −ρ +
∑

y=x,s

p(y|x, s)
[
log

(
p(y|x, s)
T (y|q)

)

+ V (x, φ(q, y))
]

(132)

= −ρ +
1
2

[
log

(
1
2

1−p
|X |−1

)
+ V (x, (q, s)))

]
︸ ︷︷ ︸

y=s

+
1
2

[
log

(
1
2

1−p
|X |−1

)
+ V (x, (q, x)))

]
︸ ︷︷ ︸

y=x

(133)

= −ρ +
1
2

[
2 log

(
(|X | − 1)
1− p)

)
︸ ︷︷ ︸

ρ+1

+ 2ρ + 2− log(|X |) + 2ρ− log(|X |)
]

= 2ρ− log(|X |) + 2. (134)

Here, also, the Bellman equation is satisfied. This concludes
the proof. �
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APPENDIX C
DETERMINISTIC POLICY GRADIENT FOR THE INFINITE

HORIZON AVERAGE REWARD MDPS

We begin with two definition on the setting and
ergodic MDPs.

Definition 1: An MDP is defined by M =(Z,U ,W , f, g, PW |Z,U , P0

)
, where Z is the state space,

U is the action space, W is the disturbance space,
f : Z × U × W → Z is the next state function,
g : Z × U × W → R is the reward function, PW |Z,U

is the disturbance distribution given previous state and action,
and P0 is the distribution of the initial state.

The following definition restricts the result in Theorem 7
of average reward MDPs to ergodic MDPs, similarly to [34,
Chapter 10, Section 3].

Definition 2: An MDP M =
(Z,U ,W , f, g, PW |Z,U , P0

)
is said to be ergodic if for any policy π the induced Markov
process is ergodic. This implies that for any z0, z ∈ Z the
steady state distribution exists and is independent of the initial
state, i.e. dπ(z) = limn→∞ Pπ(Zn = z|Z0 = z0).

The following assumption, as given in [35, Supplementary
Material], is technically to ensure that the limits, integrations
and derivatives may be interchanged in the subsequent proof.

Assumption 1: An MDP M =
(Z,U ,W , f, g, PW |Z,U ,

P0

)
satisfies:

• Z,U are compact sets.
• f, g are measureable and bounded functions.
• f, g, PW |Z,U , P0 are continuous with continuous

derivatives.
The proof of Theorem 7 is given next.

Proof: [Proof of Theorem 7] The value function Vμ

depends on the policy parameters μ through all actions π =
{ui}i∈N, where ui = Aμ(zi−1). Hence, the derivative w.r.t. μ

is given by ∂
∂μ =

∑
i∈N

∂
∂ui

∂ui

∂μ according to the chain rule
of derivatives. For fixed z0 ∈ Z ,

∂

∂μ
Vμ(z0)

=
∂

∂μ
Qμ(z0, Aμ(z0))

=
∂

∂μ

[
g(z0, Aμ(z0))− ρ(π)

+
∫
Z

dPZ′|Z,U (z1|z0, Aμ(z0))Vμ(z1)
]

(a)
= −∂ρ(π)

∂μ
+

∂Aμ(z0)
∂μ

∂

∂u1

[
g(z0, u1)

+
∫
Z

dPZ′|Z,U (z1|z0, u1)Vμ(z1)
]∣∣∣∣∣

u1=Aµ(z0)

+
∫
Z

dPZ′|Z,U (z1|z0, Aμ(z0))
∂

∂μ
Vμ(z1)

(b)
= −∂ρ(π)

∂μ
+

∂Aμ(z0)
∂μ

∂

∂u1

[
g(z0, u1)− ρ(π)

+
∫
Z

dPZ′|Z,U (z1|z0, u1)Vμ(z1)
]∣∣∣∣∣

u1=Aµ(z0)

+
∫
Z

dPZ′|Z,U (z1|z0, Aμ(z0))
∂

∂μ
Vμ(z1)

= −∂ρ(π)
∂μ

+
∂Aμ(z0)

∂μ

∂

∂u1
Qμ(z0, u1)

∣∣∣∣∣
u1=Aµ(z0)

+
∫
Z

dPZ′|Z,U (z1|z0, Aμ(z0))
∂

∂μ
Vμ(z1),

where (a) follows from the chain rule, and (b) follows from
the assumption on the ergodicity of the MDP. In partiular, the
average reward of an ergodic MDP is independent from the
initial state z0 and the first action u1. Now, rearranging and
integrating w.r.t. the stationary distribution∫

Z
dπ(z0)

∂ρ(π)
∂μ

=
∫
Z

dπ(z0)
∂Aμ(z0)

∂μ

∂

∂u1
Qμ(z0, u1)

∣∣∣∣∣
u1=Aµ(z0)

+
∫
Z

dπ(z0)
∫
Z

dPZ′|Z,U (z1|z0, Aμ(z0))
∂

∂μ
Vμ(z1)

−
∫
Z

dπ(z0)
∂

∂μ
Vμ(z0)

Using the fact that the stationary distribution satisfies∫
Z dπ(z0) dPZ′|Z,U (z1|z0, Aμ(z0)) = dπ(z1)

∂ρ(π)
∂μ

=
∫
Z

dπ(z0)
∂Aμ(z0)

∂μ

∂

∂u1
Qμ(z0, u1)

∣∣∣∣∣
u1=Aµ(z0)

+
∫
Z

dπ(z1)
∂

∂μ
Vμ(z1)−

∫
Z

dπ(z0)
∂

∂μ
Vμ(z0)

=
∫
Z

dπ(z0)
∂Aμ(z0)

∂μ

∂

∂u1
Qμ(z0, u1)

∣∣∣∣∣
u1=Aµ(z0)

.
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