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Abstract— We consider the use of the well-known dual capacity
bounding technique for deriving upper bounds on the capacity of
indecomposable finite-state channels (FSCs) with finite input and
output alphabets. In this technique, capacity upper bounds are
obtained by choosing suitable test distributions on the sequence
of channel outputs. We propose test distributions that arise from
certain graphical structures called Q-graphs. As we show in this
paper, the advantage of this choice of test distribution is that,
for the important sub-classes of unifilar and input-driven FSCs,
the resulting upper bounds can be formulated as a dynamic
programming (DP) problem, which makes the bounds tractable.
We illustrate this for several examples of FSCs, where we are able
to solve the associated DP problems explicitly to obtain capacity
upper bounds that either match or beat the best previously
reported bounds. For instance, for the classical trapdoor channel,
we improve the best known upper bound of 0.661 (due to
Lutz (2014)) to 0.584, shrinking the gap to the best known
lower bound of 0.572, all bounds being in units of bits per
channel use.

Index Terms— Channel capacity, dual capacity bound, dynamic
programming (DP), finite state channels (FSCs).
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I. INTRODUCTION

AFINITE-STATE channel (FSC) is a mathematical model
for a discrete-time channel in which the channel output

depends statistically on both the channel input and an under-
lying channel state, the latter taking values in a finite set. This
model can represent a channel with memory since it allows
the channel output to depend on past inputs and outputs via
the channel state. In this paper, we investigate two important
classes of FSCs, unifilar and input-driven FSCs.

Finding a computable characterization of the capacity of
these fundamental channels is a long-standing open problem
in information theory. The investigation of FSCs dates back
to classical works from the 1950s [2]–[4]. Besides their the-
oretical importance, these channels appear in many practical
applications of wireless communication [5], [6], and magnetic
recording [7]. Except for a few special cases where a closed-
form single-letter capacity formula can be obtained, for general
FSCs, only a multi-letter capacity formula exists [4], [8].

This paper advances the research on FSCs by providing
a new technique to derive simple, analytical upper bounds
on their capacity. For instance, consider the trapdoor channel
(Fig. 1) that was introduced by David Blackwell in 1961 [9].
While its zero-error capacity [10], [11] and its feedback
capacity [12] are known exactly, its channel capacity (without
feedback and allowing a vanishingly small error probability)
is still unknown. The best lower and upper bounds known are
from [13] and [14], respectively:

0.572 ≤ C ≤ 0.661,

where the capacity is measured in bits per channel use. In this
work, we will show a novel upper bound, C ≤ log2

�
3
2

�
(≈0.5849), that improves significantly upon the previous best
upper bound. We will establish a general technique by which
such specific bounds are relatively easy to obtain.

Our upper bounds are based on a known technique
called the dual capacity bounding technique, attributed to
Topsøe [15] — see [16, p. 147, Problem 1]. This technique
was used in [17]–[22] to obtain upper bounds for channel
capacity in various contexts. In this technique, an upper bound
on capacity is obtained by specifying a test distribution on
the channel output process. The resulting bound is tight if
the chosen test distribution is equal to the output distribution
induced by the capacity-achieving input distribution. For an
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Fig. 1. The trapdoor channel. The channel starts with a ball st−1 already
in it, while a new ball xt is inserted. The channel output yt is st−1 or xt

with equal probability, and the new channel state is the remaining ball.

FSC, this output distribution is, in general, not i.i.d.. As a
result, it is important to develop a systematic means of
specifying a test distribution that has memory but which gives
rise to a computable upper bound.

A standard choice of test distribution for channels with
memory are Markov distributions of some finite order
[19], [20], [22]. However, we will use test distributions that
belong to a more general class of finite-state processes. The
distributions we consider are defined by a (strongly) con-
nected1 directed graph on finitely many nodes, in which each
edge is labeled by a symbol from the channel output alphabet
in such a way that the outgoing edges from any given node
get distinct labels. For each node of the graph, we specify a
probability distribution on the set of its outgoing edges. Then,
walks on the graph starting from some distinguished initial
node form a random process over the channel output alphabet.
Following [23], we call the underlying labeled directed graph a
Q-graph.2 Note that the random process defined in this manner
is a finite-state process, but it need not be Markov of any fixed
order. On the other hand, it is easy to see that any Markov
process of fixed order, say m, over a finite alphabet A can
be defined on a certain Q-graph with |A|m nodes, the set
of nodes being in one-to-one correspondence with the set of
strings of length m over A. As we will demonstrate, there is
utility in going from the class of Markov test distributions
to the more general class of test distributions defined on
Q-graphs. For the specific case of the dicode erasure channel,
we will show that a Q-graph on 3 nodes yields an output
distribution that outperforms all Markov distributions of order
up to 2.

For an FSC, the dual capacity upper bound obtained
from a given test distribution is, in general, a multi-letter
expression. One of the main theoretical contributions of our
paper is showing that, for any test distribution defined on
a Q-graph, the evaluation of this multi-letter expression can
be formulated as an infinite-horizon average-reward dynamic
programming (DP) problem. This formulation immediately
gives us numerical as well as analytical tools to compute the
multi-letter expression, thus yielding an explicit upper bound
on capacity. Indeed, a well-known approach to handling DP

1Here, by “(strongly) connected”, we mean that between any pair of nodes
u, v, there is a directed path from u to v, and vice versa.

2In [23], [24], Q-graphs were used to specify mappings from channel
output sequences into a finite set using directed graphs. The letter ‘Q’ stands
for ‘Quantized’, as the set of nodes of the graph may be viewed as a
quantization or binning of finite-length strings over the edge-label alphabet,
i.e., over the output alphabet of the channel.

optimization problems is by solving the associated Bellman
equation — see e.g., [25]. Computer-based simulations of the
dynamic program provide important insights into the solution
of this equation.

In this paper, we use Q-graph based test distributions to
bound from above the capacity of several well-known FSCs,
namely, the trapdoor [9], Ising [26], Previous Output is STate
(POST) [27], and dicode erasure [28] channels. For each of
these channels, we use the insights gained from numerical
methods to arrive at an explicit analytical solution to the
corresponding average-reward DP problem. In this manner,
we obtain upper bounds on the capacities of these channels.

The relationship between channel capacity and DP was first
observed in Tatikonda’s thesis [29], where it was shown that
the feedback capacity of a class of FSCs can be formulated
as a DP problem. This approach was further developed in
[12], [30], [31], and yielded several new feedback capacity
results for FSCs [12], [32]–[36]. However, in the case of
capacity without feedback, except for the POST channel [27],
exact results are known only for certain FSCs with strict
symmetry conditions, all with an i.i.d. capacity-achieving input
distribution [37]–[39].

The remainder of this paper is organized as follows.
Section II introduces our notation and defines the model.
Section III introduces the dual capacity upper bound, gives
some background on Q-graphs, and states our main result.
Section IV gives a brief review of infinite-horizon DP and
introduces the DP formulation of the dual capacity upper
bound for FSCs. Section V presents our bounds on capacity
for several specific FSCs. Finally, our conclusion appears in
Section VI. To preserve the flow of the presentation, most of
the proofs are given in the appendices.

II. NOTATION AND MODEL DEFINITION

In this section, we introduce our notation and define our
FSC model.

A. Notation

Throughout this paper, we use the following notations. The
set of natural numbers (which does not include 0) is denoted
by N, while R denotes the set of real numbers. Random vari-
ables will be denoted by capital letters and their realizations
will be denoted by lower-case letters, e.g., X and x, respec-
tively. Calligraphic letters denote sets, e.g., X . We use the
notation Xn to denote the random vector (X1, X2, . . . , Xn)
and xn to denote the realization of such a random vector.
For a real number α ∈ [0, 1], we define ᾱ = 1 − α. The
binary entropy function is denoted by H2(α) = −α log2(α)−
ᾱ log2(ᾱ), where α ∈ [0, 1]. The probability mass function
(pmf) of X is denoted by PX , the conditional probability of
X given Y is denoted by PX|Y , and the joint distribution of
X and Y is denoted by PX,Y . The probability Pr[X = x] is
denoted by PX(x). When the random variable is clear from the
context, we write it in shorthand as P (x). For a conditional
pmf PY |X , PY |X � 0 denotes that PY |X(y|x) > 0 for all
x ∈ X and y ∈ Y .
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Fig. 2. A finite-state channel (FSC) setting.

Let PY and RY be two discrete probability measures on
the same probability space. Then, PY � RY denotes that
PY is absolutely continuous with respect to RY . The relative
entropy between PY and RY is denoted by D (PY �RY ). The
conditional relative entropy is defined as D(PY |X�RY |PX) =
EX

�
D(PY |X�RY )

�
, where EX{·} denotes the expectation

operator over X .

B. FSCs

We consider the standard finite-state channel, described
in Fig. 2. The channel is defined with finite input and output
alphabets X and Y , respectively, and a finite set of states S.
The input, output and state at time t are denoted by xt, yt and
st, respectively. The defining property of an FSC is that, given
xt and st−1, the pair (st, yt) is conditionally independent of all
previous inputs, outputs and states, as well as of the message
m to be transmitted. To be precise,

P (st, yt|xt, st−1, yt−1, m) = PS+,Y |X,S(st, yt|xt, st−1),
(1)

where S denotes the channel state at the beginning of the
transmission and S+ represents the channel state at the end
of the transmission. In particular, the transition probability
kernel PS+,Y |X,S is time-invariant, i.e., it does not depend
on t. Furthermore, if there is no feedback, the conditional
probability PSt,Y t|Xt,S0 decomposes as

PSt,Y t|Xt,S0(s
t, yt|xt, s0) =

t�
i=1

PS+,Y |X,S(si, yi|xi, si−1).

The following definition presents the indecomposability
property of FSCs.

Definition 1 ([8], Ch. 4.6): An FSC is indecomposable if
for any � > 0, there exists an N such that, for all n ≥ N ,

|P (sn|xn, s0) − P (sn|xn, s′0)| ≤ � (2)

for any channel states sn, s0, s′0, and any input sequence xn.
Loosely speaking, for an indecomposable FSC, the effect

of the initial channel state becomes negligible as time
evolves. An alternative characterization of indecomposability
[8, Theorem 4.6.3] is that for some n and each input sequence
xn ∈ Xn, there is a choice of state sn at time n (sn may
depend on xn) such that P (sn|xn, s0) > 0 for all initial
states s0.

The capacity of an indecomposable channel is presented in
the following theorem.

Theorem 1 ([8], Ch. 4.6): The capacity of an indecompos-
able FSC is

C = lim
n→∞ max

P (xn)

1
n

I (Xn; Y n|S0 = s0) ,

for any s0 ∈ S.

Throughout this paper, the capacity (and bounds on it) are
measured in bits per channel use. We investigate the following
two important classes of FSCs:

1) Unifilar FSCs: For these channels, the state evolution
is given by a deterministic function. Specifically, (1) is
simplified to:

PS+,Y |X,S(st, yt|xt, st−1)
= �{st = f(xt, yt, st−1)}PY |X,S(yt|xt, st−1), (3)

where f : X ×Y ×S → S. Since the channel state can
be computed recursively, we may use st = f t(xt, yt, s0)
to denote t applications of f(·).

2) Input-driven FSCs: For these channels, the channel
state does not depend on past outputs. Specifically,

PS+,Y |X,S(st, yt|xt, st−1)
= PS+|X,S(st|xt, st−1)PY |X,S(yt|xt, st−1). (4)

Note that this definition generalizes that of FSCs with
input-dependent states [40], in which the next state is
a deterministic function of the input and the previous
state.

III. MAIN RESULT VIA DUAL CAPACITY FORMULA

In this section, we present the dual capacity upper bound,
Q-graphs and our main result.

A. Dual Capacity Upper Bound

The dual capacity upper bound [15], [16] is a simple upper
bound on channel capacity that has been utilized in many
works [17]–[22]. For any memoryless channel, PY |X , and test
distribution RY , the dual capacity upper bound is given by

C ≤ max
x∈X

D
�
PY |X=x

��RY

�
. (5)

The proof follows from the following steps:

I(X ; Y ) = D
�
PY |X

��RY

��PX

�− D (PY �RY )
≤ D

�
PY |X

��RY

��PX

�
≤ max

x∈X
D
�
PY |X=x

��RY

�
. (6)

The bound is tight if RY is equal to the output distribution,
P ∗

Y , induced by an optimal (i.e., capacity-achieving) input
distribution.

For FSCs, where the aim is to maximize the n-letter mutual
information I(Xn; Y n), one may replace the test distribution
in (6) with RY n and obtain

I(Xn; Y n) ≤ max
xn∈Xn

D
�
PY n|Xn=xn

��RY n

�
. (7)

Again, this bound is tight when RY n = P ∗
Y n , the output

distribution induced by an input distribution that maximizes
I(Xn; Y n). Naturally, the choice of the test distribution will
affect the tightness of the bound, and we would like to choose
test distributions that are close, in some sense, to P ∗

Y n . The
output distribution P ∗

Y n is, in general, not i.i.d.. A common
choice of a test distribution is a Markov distribution of some
finite order [19], [20], [22], but here we use an extension of
this notion. The mathematical structure needed to define this
extension is called a Q-graph, which is presented in the next
section.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on September 08,2021 at 13:56:06 UTC from IEEE Xplore.  Restrictions apply. 



HULEIHEL et al.: COMPUTABLE UPPER BOUNDS ON CAPACITY OF FINITE-STATE CHANNELS 5677

Fig. 3. A 1st-order Markov Q-graph for channel output alphabet Y = {0, 1}.

B. The Q-Graph

A Q-graph, introduced in [23], is a directed and (strongly)
connected graph on a finite set of nodes Q, in which each
node has |Y| outgoing edges with distinct labels. Due to the
distinct labeling, the graph defines a mapping φ : Q×Y → Q,
where φ(q, y) is the unique node pointed to by the edge from
q labeled with y. Further, given a distinguished initial node
q0 ∈ Q, we also have a well-defined mapping Φq0 : Y∗ → Q,
where Y∗ is the set of all finite-length sequences over Y .
Indeed, Φq0(yt) is the node reached by walking along the
unique directed path of length t starting from q0 and labeled
by yt = (y1, y2, . . . , yt). We will often drop the subscript
from Φq0 for notational convenience, whenever there is no
ambiguity in doing so.

Fix a Q-graph on the set of nodes Q, with a distinguished
initial node q0. A graph-based test distribution, RY |Q, is a
collection of probability distributions RY |Q=q on Y , defined
for each q ∈ Q. This defines a test distribution on channel
output sequences as follows:

RY n|q0(y
n) =

n�
t=1

RY |Q(yt|qt−1), (8)

where qt−1 = Φ(yt−1) for t > 1. It can be noted from (8) that,
since |Q| < ∞, the induced process is a finite-state process.

A special case of a Q-graph is a kth-order Markov Q-graph,
which is defined on the set of nodes Q = Yk, and for each
node q = (y1, y2, . . . , yk), the outgoing edge labeled y ∈ Y
goes to the node (y2, . . . , yk, y). For instance, Fig. 3 shows a
Markov Q-graph with Y = {0, 1} and k = 1. Note that test
distributions RY |Q on a kth-order Markov Q-graph correspond
to kth-order stationary Markov processes.

Q-graph-based test distributions grant us an added layer of
generality over Markov distributions of finite order. There is
value to this added generality, as we will see in Section V-C.
Moreover, the dual capacity upper bound obtained from any
such test distribution is actually computable (at least numer-
ically) for certain classes of FSCs. Indeed, our main result
is that, for unifilar and input-driven FSCs, the dual capacity
upper bound obtained from any Q-graph based test distribution
can be formulated as a DP problem, and hence, is computable.

C. Summary of Main Results

In this section we summarize our main contributions for
unifilar and input-driven FSCs.
Specifically, our main contributions are as follows:

• In Section IV, we derive the duality upper bounds for
unifilar FSCs and input-driven FSCs in Theorem 3 and
Theorem 5, respectively. The duality bounds hold for any
choice of a graph-based test distribution and are given by

multi-letter expressions, i.e., they depend on a limiting
blocklength.

• In Section IV, we show the computability of the bounds
by formulating them as a DP. Specifically, when the FSC
is unifilar, we show that the dual capacity upper bound
in Theorem 3 can be formulated as a dynamic program
with P(S × Q) being the state space and X being the
action space.

• Similarly, if the channel is an input-driven FSC, then
the dual capacity upper bound in Theorem 5 can be
formulated as a dynamic program with P(S) × P(Q)
being the state space and X being the action space.

• In Section V, we apply the developed framework to
several examples and derive novel upper bounds on the
capacity of the well-known trapdoor and Ising chan-
nels that outperform previously reported upper bounds.
Further, we provide an alternative converse proof for the
capacity of the POST channel.

• Lastly, in Section V, we demonstrate the superiority
of the graph-based test distribution compared to simple
Markovian test distributions by comparing the duality
upper bound for the DEC.

In the next section, we introduce the DP framework and
formally define the DP formulations stated above. The DP for-
mulations are useful as we can then use known DP algorithms
to numerically compute upper bounds on capacity. Moreover,
the numerical results can sometimes be converted to explicit
analytical upper bounds, as we do for the examples presented
in Section V.

The dual capacity bounding technique has been utilized in
several works, e.g., for amplitude-constrained additive white
Gaussian noise channels [20], [41]. In [42], [43], the authors
derive bounds on the capacity of channels with memory and
provide numerical methods to approximate the bounds. Our
work is closest in spirit to that in [19] and [21], in which the
dual capacity bounding technique is applied to binary-input
memoryless channels with a runlength constrained input and
to single-tap binary-input Gaussian channels with intersym-
bol interference. Using Markov test distributions, the authors
of [19] and [21] are able to derive, in some specific cases,
explicit expressions for the resulting upper bounds on channel
capacity.

The main novelty in our work is the DP formulation of the
dual capacity upper bound and the use of graph-based test
distributions. On the one hand, our formulation is restricted
to channels with finite input, output, and state alphabets, but
on the other hand, it allows us to use the powerful machinery
of DP to at least numerically evaluate the bounds for a large
class of FSCs. In some cases, as we will see in Section V,
we are even able to convert the numerically evaluated bounds
to analytical expressions.

IV. UPPER BOUNDS VIA DP

In this section, we first introduce DP and the Bellman equa-
tion. Then, for a fixed graph-based test distribution, we present
a DP formulation of the dual capacity upper bound for unifilar
and input-driven FSCs. Additionally, we present a simplified
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DP formulation for the case of unifilar input-driven FSCs,
where the state evolves according to st = f(xt, st−1).

A. DP and the Bellman Equation

Here we introduce a formulation for a deterministic3

average-reward dynamic program. Each DP problem is defined
by a quintuple (Z,U , F, PZ , g). Each action, ut, takes a value
in a compact subset U of a Borel space. We consider a discrete-
time dynamical system that evolves according to

zt = F (zt−1, ut), t = 1, 2, 3, . . . ,

where each DP state, zt, takes values in a Borel space Z .
The initial state z0 is drawn according to the distribution PZ .
The action ut is selected by a deterministic function μt that
maps the initial DP state, z0, into actions. Specifically, given
a policy π = {μ1, μ2, . . .}, actions are generated according to
ut = μt(z0). Accordingly, in this setup, the only randomness
is in z0.

Given a bounded reward function, g : Z × U → R,
we aim to maximize the average reward. The average reward
for a policy π is defined by ρπ = lim infn→∞ 1

nEπ	
n−1
t=0 g (Zt, μt+1(z0))

�
, where the subscript π indicates that

actions are generated by the policy π = (μ1, μ2, . . .). The
optimal average reward is given by ρ∗ = supπ ρπ.

The following theorem, an immediate consequence of
Theorem 6.1 in [25], encapsulates the Bellman equation,
which provides a sufficient condition for the optimality of an
average reward and a policy.

Theorem 2 (Bellman Equation): Given a DP problem as
above, if a scalar ρ ∈ R and a bounded function h : Z → R

satisfy

ρ + h(z) = sup
u∈U

(g (z, u) + h (F (z, u))) , ∀z ∈ Z

then ρ = ρ∗.
Numerical methods for solving the DP problem, such as

policy iteration and value iteration, provide very important
insights into the solution of the Bellman equation. One may
use the approximate solution obtained by these algorithms
to generate a conjecture for the exact solution, and use the
Bellman equation to verify its optimality.

B. A DP Formulation for Unifilar FSCs

In this section we introduce a DP formulation of the dual
upper bound on the capacity of unifilar FSCs. First, let us
present a definition that extends the idea of channel indecom-
posability (see Definition 1 and its subsequent paragraph) to
the notion of a channel and a graph-based test distribution
being jointly indecomposable.

Definition 2 (Joint Indecomposability): Fix an FSC and
a graph-based test distribution on channel output sequences.
If for some n ∈ N and each input sequence xn, there exists a
choice of sn and qn such that

P (sn, qn|xn, s0, q0) > 0, for all s0, q0, (9)

3The DP formulation we consider is deterministic, in the sense that we do
not introduce a (random) disturbance in the formulation.

TABLE I

DP FORMULATION FOR UNIFILAR FSCS

then the FSC and test distribution are jointly indecomposable.
Note that sn and qn above are allowed to depend on xn.

The following theorem presents an upper bound on the
capacity of unifilar FSCs, which is a simplification of the dual
capacity upper bound for FSCs when choosing graph-based
test distributions on channel outputs.

Theorem 3: For any unifilar FSC and a graph-based test
distribution RY |Q � 0 that are jointly indecomposable,
the channel capacity is bounded as

C ≤ lim
n→∞ max

xn∈Xn

1
n

n�
t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|xt, s)

��RY |Q(·|q)� , (10)

for any (s0, q0), where

zt−1(q, s) � PQt−1,St−1|Xt−1,S0,Q0(q, s|xt−1, s0, q0).

Remark 1: In the statement of Theorem 3, the condition
that RY |Q be strictly positive is imposed to simplify the
presentation of the result. Indeed, without this restriction,
the bound may be infinite, which is still a valid upper bound.
However, more importantly, RY |Q � 0 ensures that the
condition PYt|Y t−1=yt−1,Xt=xt � RYt|Qt−1=qt−1 holds for
any q0, xt and yt−1, where qt−1 = Φq0(yt−1). The latter
condition ensures that the upper bound does not depend on
the choice of the initial state. This point will be addressed
precisely in the proof of Theorem 3 — see Appendix A-B.

The proof of Theorem 3 is given in Appendix A. We now
present the DP formulation of the upper bound in Theorem 3.

Throughout the derivations, a Q-graph and a test distribu-
tion, RY |Q, are fixed. At each time t, let the action be the
current channel input ut � xt, which takes values in X . The
DP state, zt−1, is defined as appears in Theorem 3. The reward
function is defined by

g(zt−1, ut) �
�
q,s

zt−1(q, s)D
�
PY |X,S(·|ut, s)

��RY |Q(·|q)� .

(11)

The above formulation is summarized in Table I. We show
in Appendix C-A, as part of the proof of Theorem 4, that this
constitutes a valid DP. The infinite-horizon average reward of
this DP is given by

ρ∗ = sup
{xi}∞

i=1

lim inf
n→∞

1
n

n�
t=0

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|xt, s)

��RY |Q(·|q)� . (12)
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The following theorem summarizes the relation between the
upper bound in Theorem 3 and ρ∗.

Theorem 4 (DP Formulation of the Upper Bound): The
upper bound in Theorem 3 is equal to the optimal average
reward in (12). That is, the capacity is upper bounded by ρ∗,
the optimal average reward of the DP defined above.

The proof of Theorem 4 is given in Appendix C-A.
Special Case: We consider here a special case of the upper

bound in Theorem 3 for which the DP formulation simplifies
significantly. That is, it will be shown that both the DP state
and action are discrete. Assume that the channel state is
evaluated according to st = f(xt, st−1). This time we use
a kth-order Markov Q-graph. For this case, for any s0 ∈ S,
the upper bound in Theorem 3 is simplified to

C ≤ lim
n→∞ max

xn

1
n

n�
t=1

�
yt−1

t−k


t−1�

i=t−k

PY |X,S(yi|xi, si−1)

�

× D
�
PY |X,S(·|xt, st−1)

��RY |Q
�·|yt−1

t−k

��
,

where RY |Q
�·|yt−1

t−k

�
denotes a kth-order Markov distribution.

Note that the simplification follows directly by considering
q = yt−1

t−k (corresponding to a Markov Q-graph of kth-order)
in Theorem 3, and observing that zt−1(q, s) can be written as
the product term within the parentheses.

For this special case, the DP formulation is the same
as that for the unifilar FSC, but the DP state simplifies to
zt−1 � (xt−1

t−k, st−k−1) ∈ X k × S since the reward at time t
simplifies to

g(zt−1, ut) �
�
yt−1

t−k


t−1�

i=t−k

PY |X,S(yi|xi, si−1)

�

× D
�
PY |X,S(·|ut, st−1)

��RY |Q
�·|yt−1

t−k

��
. (13)

Specifically, from (13) and the assumption that st =
f(xt, st−1), it follows that the reward is a function of
(xt

t−k, st−k−1). Thus, it is a function of the previous DP state
zt−1 and the action xt.

Note that in this formulation the DP state and the action take
values from a finite set. Consequently, the numerical evaluation
and the subsequent analytical derivation of the solution to the
Bellman equation become more tractable.

C. A DP Formulation for Input-Driven FSCs

The following theorem presents an upper bound on the
capacity of an input-driven FSC, which is a simplification of
the dual upper bound for FSCs when choosing graph-based
test distributions.

Theorem 5: For an input-driven FSC and a graph-based
test distribution RY |Q � 0 that are jointly indecomposable,
the channel capacity is bounded as

C ≤ lim
n→∞ max

xn∈Xn

1
n

n�
t=1

�
q∈Q

βt−1(q)

× D

�
st−1

γt−1(st−1) · PY |X,S(·|xt, st−1)

�����RY |Q(·|q)
�

,

TABLE II

DP FORMULATION FOR INPUT-DRIVEN FSCS

for any (s0, q0), where

βt−1(q) = PQt−1|Xt−1,S0,Q0(q|xt−1, s0, q0), (14)

γt−1(st−1) = PSt−1|Xt−1,S0(st−1|xt−1, s0). (15)

The proof of Theorem 5 is given in Appendix B. Remark 1
applies also to Theorem 5. We now present the DP formulation
of the upper bound in Theorem 5, and it will be shown that
this formulation satisfies the DP properties.

Throughout the derivations, a Q-graph and a test distribu-
tion, RY |Q, are fixed. At each time t, let the action be the
current channel input ut � xt. The DP state is defined as
zt−1 � (βt−1, γt−1), where βt−1 and γt−1 are defined in
(14), (15). The reward function is defined by

g(zt−1, ut) �
�
q∈Q

βt−1(q)

× D

�
st−1

γt−1(st−1) · PY |X,S(·|ut, st−1)

����� RY |Q(·|q)
�

.

(16)

The above formulation is summarized in Table II. Assuming
that it is a valid DP, this DP formulation implies that the
infinite-horizon average reward is:

ρ∗ = sup
{xi}∞

i=1

lim inf
n→∞

1
n

n�
t=0

�
q∈Q

βt−1(q)

× D

�
st−1

γt−1(st−1) · PY |X,S(·|xt, st−1)

����� RY |Q(·|q)
�

.

(17)

The following theorem provides the relation between the
upper bound in Theorem 5 and ρ∗.

Theorem 6 (DP Formulation of the Upper Bound): The
upper bound in Theorem 5 is equal to the optimal average
reward in (17). That is, the capacity is upper bounded by ρ∗,
the average reward of the defined DP.

The proof of Theorem 6 is given in Appendix C-B.

V. EXAMPLES

In this section, we study four examples of FSCs. For all
examples, the input and the state take values from the binary
alphabet, i.e., S = X = {0, 1}.

In Section IV we presented several DP formulations in
which the action space is discrete, while the DP state space
might be either discrete or continuous, depending on the
channel state evolution and the choice of the test distribution.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on September 08,2021 at 13:56:06 UTC from IEEE Xplore.  Restrictions apply. 



5680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 9, SEPTEMBER 2021

In the case where both the DP state space and the action space
are discrete, numerical methods (such as policy iteration and
value iteration) always yield sufficient insights to solve the
Bellman equation and extract the function h and the optimal
reward ρ analytically. Accordingly, in this case, analytic upper
bounds can be easily derived. In general, however, there is no
systematic way of analytically determining a h and a ρ that
satisfy the Bellman equation. Nevertheless, in this section we
present single-letter upper bounds on the capacity of several
channels that were derived by solving a DP problem with a
continuous DP state space while using the insights gained from
the numerical methods.

In addition, one of the main challenges here is to choose
Q-graphs that will result in tight bounds. To this end, fol-
lowing [44], we create a pool of all valid Q-graphs up to a
fixed size of nodes and choose the Q-graphs that result in the
best upper bounds. A particular choice of a Q-graph is the
kth-order Markov Q-graph which, as will be shown, in some
cases, provides very good upper bounds.

A. The Trapdoor Channel

The trapdoor channel was introduced by David Blackwell
in 1961 [9]. Its operation proceeds as follows: at each time t,
the channel input, xt, is transmitted through the channel and
the channel state is st−1. The channel output, yt, is equal to
st−1 or to xt with the same probability. The new channel state
is evaluated according to st = xt⊕yt⊕st−1, where ⊕ denotes
the XOR operation. Accordingly, the trapdoor channel is a
unifilar FSC. An illustration of the trapdoor channel appears
in Fig. 1.

The zero-error capacity of the trapdoor channel was found
by Ahlswede et al. [10], [11] and is equal to 0.5 bits per chan-
nel use. Furthermore, the feedback capacity of this channel
was found in [12] to be CFB = log2 φ, where φ is the golden
ratio, 1+

√
5

2 . However, the trapdoor channel was originally
introduced as a channel without feedback, and the capacity
of this channel in the absence of feedback is still open. The
best known lower and upper bounds obtained so far in the
literature imply that

0.572 ≤ Ctrapdoor ≤ 0.6610, (18)

where the lower bound is derived in [13], and the upper bound
is derived in [14]. In the following theorem, we introduce a
novel upper bound on the capacity of the trapdoor channel
that significantly improves the upper bound in (18).

Theorem 7: The capacity of the trapdoor channel is
upper-bounded by

Ctrapdoor ≤ log2

�
3
2

�
.

The value of log2

�
3
2

�
is approximately 0.5849, which

concludes our new upper bound,

0.572 ≤ Ctrapdoor ≤ 0.5849.

The proof of Theorem 7 is presented in Appendix D.
It involves analytically solving the Bellman equation
(Theorem 2) corresponding to the DP formulation of the bound

in Theorem 3 obtained from a graph-based test distribution
defined on the Q-graph in Fig. 3. The chosen test distribution,
the function h, and the optimal average reward ρ∗ that are
used to solve the Bellman equation are given in the appendix.

B. The Ising Channel

The Ising channel was introduced as an information-
theoretic channel by Berger and Bonomi in 1990 [26].
Resembling the well-known physical Ising model, it models a
channel with intersymbol interference. The channel operates
as follows. At each time t, the channel input, xt, is transmitted
through the channel while the channel state is st−1. The chan-
nel output, yt, is equal to st−1 or to xt with probability 0.5.
The new channel state is st = xt, and therefore, the channel
is both unifilar and input-driven.

The feedback capacity of the Ising channel was shown
in [32] to be approximately 0.5755. In the absence of feedback,
the capacity is still unknown, and the best known lower and
upper bounds were recently derived in [45] and are given by

0.5451 ≤ CIsing ≤ 0.551. (19)

In the following theorem, we introduce a novel upper bound
on the capacity of the Ising channel that improves upon the
upper bound in (19).

Theorem 8: The capacity of the Ising channel is upper-
bounded by

CIsing ≤ min
1
4

log2

�
1

2acd(1 − a)

�
,

where the minimum is over all (a, b, c, d) ∈ (0, 1)4 that satisfy:

0 ≤ 2dc̄ − a2

0 ≤ a3 − 2ācd

0 ≤ 4bc̄2d̄ − a2āc

0 ≤ 32b2b̄c̄2d̄2 − ac2d2ā2. (20)

Evaluation of the bound shows that it is equal to approxi-
mately 0.5482. Thus, the lower bound in [45] is almost tight:

0.5451 ≤ CIsing ≤ 0.5482.

The proof of Theorem 8 is presented in Appendix E,
and follows from analytically solving the Bellman equation
(Theorem 2) while using a graph-based test distribution that is
structured on a Markov Q-graph with k = 3. The upper bound
in Theorem 3 can also be evaluated for Markov graphs of
higher order. However, given the elegant expression obtained
by using Markov graphs of order k = 3 and the minor
improvement seen when k is increased, we present only the
case of k = 3.

C. The Dicode Erasure Channel

The main objective of this example is to demonstrate that the
notion of Q-graphs can indeed be useful in a search for good
bounds. We will show that for a simple channel known as the
dicode erasure channel (DEC), a small Q-graph outperforms
all Markov test distributions up to order 2.
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Fig. 4. A Q-graph for the DEC. This Q-graph has a nice interpretation: the
nodes Q = 1 and Q = 2 correspond to perfect knowledge of the channel
state at the decoder, while Q = 3 is associated with the decoder not knowing
the channel state.

The DEC has been investigated in [23], [28], [46] and stands
as a simplified version of the well-known dicode channel with
white additive Gaussian noise (AWGN) used as a model in
magnetic recording [7]. Specifically, in response to the input
sequence (xt), the DEC with parameter � ∈ [0, 1] produces as
output the sequence (yt), where

yt =

�
xt − xt−1 with probability 1 − �

? with probability �.

The channel state is the previous input, i.e., st−1 = xt−1,
so that the channel is both unifilar and input-driven.

The feedback capacity of the DEC channel was derived
in [23]. However, in the absence of feedback, the problem
of determining the capacity is still open. In the following
theorem, we present an upper bound on the DEC capacity.

Theorem 9: The capacity of the DEC with erasure proba-
bility � ∈ [0, 1] is upper-bounded by

CDEC(�) ≤ 1 + � log2

�
1 − p

p

�
, (21)

where p ∈ (0, 1) solves pε = 2p̄.
The proof of Theorem 9 is given in Appendix F. The

bound is obtained by analytically solving the Bellman equation
(Theorem 2) corresponding to the DP formulation of the bound
in Theorem 3 obtained from a graph-based test distribution
defined on the Q-graph in Fig. 4. Surprisingly, although
the feedback capacity optimization problem is very different
(the optimization is done over input distributions that are
conditioned on past outputs), our upper bound coincides with
the DEC feedback capacity. Of course, the feedback capacity
is always an upper bound on the capacity without feedback,
so the dual capacity method does not yield a better upper
bound for this channel.

Nonetheless, our approach serves to illustrate another point.
Fig. 5 compares the upper bound in Theorem 9 with those
obtained by optimizing over first- and second-order Markov
test distributions. Since the output alphabet of the DEC is of
size 4 (Y = {−1, 0, 1, ?}), the Markov Q-graphs of order

Fig. 5. A comparison between upper and lower bounds on the DEC capacity.
The red triangles and the black line represent the upper and the lower bounds
from Theorems 9 and 10, respectively. They almost coincide: the maximum
difference between them is ∼ 10−3.

k = 1 and k = 2 have 4 and 16 nodes, respectively. Thus,
the dual capacity bound obtained using the Q-graph on 3 nodes
(depicted in Fig. 4) outperforms that obtained from Markov
Q-graphs of larger size. Of course, it is possible that higher-
order Markov test distributions may yield bounds that improve
upon that in Theorem 9, but the problem of optimizing over
such test distributions is considerably more complex than that
of optimizing over test distributions defined on the Q-graph
in Fig. 4. Indeed, exploiting the symmetry between the states
Q = 1 and Q = 2 in the latter Q-graph, the optimization
problem over test distributions RY |Q defined on this graph
only involves two free parameters.

For the purpose of comparison, we present below a lower
bound on the DEC capacity that is obtained by considering
first-order Markov input processes.

Theorem 10 ([28], Ch. 4): The capacity of the DEC
with erasure probability � ∈ [0, 1] is lower-bounded by the
maximum mutual information rate obtained from first-order
Markov input processes, which is given by

max
a∈[0,1]

�̄H2(a)+
ā2�̄2

�

∞�
q=0

�
�

1 − a�̄

�q+1

H2

�
1 − (2a − 1)q

2

�
.

The lower bound above is not explicitly stated in
[28, Ch. 4], but it can be inferred from the derivations there.
For completeness, an alternative proof of this result appears
in Appendix G.

D. The POST Channel

The POST channel was introduced in [27] as an example
of a channel whose previous output serves as the next channel
state. The channel inputs and outputs are related as follows.
At each time t, if xt = yt−1, then yt = xt, otherwise,
yt = xt ⊕ zt, where zt is distributed according to Bern(p).
Accordingly, as illustrated in Fig. 6, when yt−1 = 0, the chan-
nel behaves as a Z channel with parameter p ∈ [0, 1], and
when yt−1 = 1, it behaves as an S channel with the same
parameter p. Here, the new channel state is the channel output,
i.e., st = yt and therefore, the POST channel is a unifilar FSC.
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Fig. 6. POST channel: if yt−1 = 0 then the channel behaves as a Z channel
with parameter p, and if yt−1 = 1 it behaves as an S channel with the same
parameter p.

The capacity of the POST channel was found in [27]. Here
we give an alternative proof of the converse, i.e., an upper
bound matching the capacity expression given in [27].

Theorem 11: The capacity of the POST channel is
upper-bounded by

CPOST ≤ log2

�
1 + p̄pp/p̄

�
,

for all values of the channel parameter p ∈ [0, 1].
The bound is proved by solving the DP formulation of the

upper bound in Theorem 3 obtained from a graph-based test
distribution defined on the Markov Q-graph depicted in Fig. 3.
The proof is given in Appendix H.

VI. CONCLUSION

In this paper, upper bounds on the capacity of FSCs are
derived. First we used the dual capacity bounding technique
with graph-based test distributions to derive a multi-letter
upper bound expression on the capacity. Then it was shown
that the derived upper bound can be formulated as a DP
problem, and therefore, the bound is computable. For several
channels, we were able to solve explicitly the DP problem, and
we presented several results, including novel upper bounds
on the capacity of the trapdoor and Ising channels. Further,
our results for the DEC demonstrate the value of introducing
Q-graphs and the accompanying graph-based distributions as
a generalization of Markov distributions. An interesting future
research direction is to address the complexity of finding
a good Q-graph using efficient reinforcement learning tools
to evaluate the dynamic program [47]. Such an integrated
approach to computing upper bounds is not limited to the
channels studied in this paper, and should work for any
channel that admits a duality bound, e.g., for channels with
feedback [48] and channels with constrained inputs [19].

APPENDIX A
DERIVATION OF THE UPPER BOUND — PROOF

OF THEOREM 3

We provide here a complete proof of the upper bound in
Theorem 3. We start with the relative entropy term in the
bound on I(Xn; Y n) in (7): For any initial pair (s0, q0),
consider

D
�
PY n|Xn=xn,s0

��RY n|Q0=q0

�
=
�
yn

P (yn|xn, s0) log2

�
P (yn|xn, s0)

R(yn|q0)

�

=
�
yn

P (yn|xn, s0)
n�

j=1

log2

�
P (yj |xn, yj−1, s0)

R(yj|yj−1, q0)

�

(a)
=

n�
j=1

�
yj−1

P (yj−1|xj−1, s0)
�
yj

P (yj|xj , yj−1, s0)

× log2

�
P (yj|xj , yj−1, s0)

R(yj|yj−1, q0)

�
(b)
=

n�
j=1

�
yj−1

P (yj−1|xj−1, s0)

× D
�
PYj |Xj,Y j−1,S0(·|xj , yj−1, s0)

�� R(Yj |yj−1, q0)
�

(c)
=

n�
j=1

�
qj−1,sj−1

�
yj−1

P (qj−1, sj−1, y
j−1|xj−1, s0, q0)

× D
�
PYj |Xj,Y j−1,S0(·|xj , yj−1, s0)

�� R(Yj |yj−1, q0)
�

(d)
=

n�
j=1

�
qj−1,sj−1

�
yj−1

P (qj−1, sj−1, y
j−1|xj−1, s0, q0)

× D
�
PY |X,S(·|xj , sj−1)

�� RY |Q(·|qj−1)
�

(e)
=

n�
j=1

�
q,s

zj−1(q, s) · D
�
PY |X,S(·|xj , s)

�� RY |Q(·|q)�,
(22)

where (a) follows by exchanging the order of summation and
computing the marginal distributions, (b) follows by identify-
ing the relative entropy, (c) follows from the fact that the pair
(qj−1, sj−1) is a deterministic function of (xj−1, yj−1, s0, q0),
(d) follows from the unifilar property and the fact that qj−1 is
a deterministic function of (yj−1, q0) and, finally, (e) follows
since the divergence does not depend on yj−1.

By taking the maximum over xn and dividing the term in
(22) by n, we obtain, by way of (7),

C ≤ lim
n→∞max

xn

1
n

n�
j=1

�
q,s

zj−1(q, s)

× D
�
PY |X,S(·|xj , s)

�� RY |Q(·|q)�, (23)

where the existence of the limit, for any (s0, q0), is shown
next.

Let us define the quantity

c(xn, s0, q0)

� 1
n

n�
j=1

�
q,s

zj−1(q, s)D
�
PY |X,S(·|xj , s)

�� RY |Q(·|q)�.
(24)

We will argue that lim
n→∞max

xn
c(xn, s0, q0) exists for any

(s0, q0), and, in fact, the limit does not depend on the
particular choice of (s0, q0). To this end, define Cn and Cn

to be maxxn mins0,q0 c(xn, s0, q0) and maxxn maxs0,q0

c(xn, s0, q0), respectively, i.e.,

Cn � 1
n

max
xn∈Xn

min
s0,q0

n�
j=1

�
q,s

zj−1(q, s)

× D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�, (25)

Cn � 1
n

max
xn∈Xn

max
s0,q0

n�
j=1

�
q,s

zj−1(q, s)

× D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�. (26)
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For any fixed choice of (s0, q0), we clearly have Cn ≤
maxxn c(xn, s0, q0) ≤ Cn. In Appendix A-A, we show that
lim

n→∞Cn exists, and in Appendix A-B, we show that this limit

in fact equals lim
n→∞Cn. The desired conclusion follows by a

sandwich argument.

A. Existence of limn Cn

We want to show that lim
n→∞Cn exists. The basic idea of

the proof is to show that the sequence nCn is super-additive.
A sequence is super-additive if, for any two positive integers
m, k, it satisfies the inequality am+k ≥ am + ak. By Fekete’s
lemma [49], for such a sequence, the limit lim

n→∞
an

n exists, and

is equal to supn
an

n .

Let m and k be two positive integers such that m + k = n.
Let x̂m and x̂k be the input sequences that achieve the
maximum for Cm and Ck, respectively. Now, let x̂n be the
concatenation of x̂m and x̂k, and consider xn = x̂n. Since,
in general, xn is not necessarily the input sequence that
achieves nCn, we have

nCn

≥ min
s0,q0

n�
t=1

�
q,s

zt−1(q, s)D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�
(a)

≥ min
s0,q0

m�
t=1

�
q,s

zt−1(q, s)D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�

+ min
s0,q0

n�
t=m+1

�
q,s

zt−1(q, s)D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�
= mCm

+ min
s0,q0

m+k�
t=m+1

�
q,s

zt−1(q, s)D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�,
(27)

where (a) follows from mint [f(t) + g(t)] ≥ mint f(t) +
mint g(t). We will now show that the second term in (27)
is at least kCk. That is,

m+k�
t=m+1

�
q,s

zt−1(q, s)D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�

=
m+k�

t=m+1

�
qt−1,st−1

P (qt−1, st−1|xt−1, s0, q0)

× D
�
PY |X,S(·|xt, st−1)

�� RY |Q(·|qt−1)
�

=
m+k�

t=m+1

�
qt−1,st−1

�
qm,sm

P (qm, sm, qt−1, st−1|xt−1, s0, q0)

× D
�
PY |X,S(·|xt, st−1)

�� RY |Q(·|qt−1)
�

(a)
=

m+k�
t=m+1

�
qt−1,st−1

�
qm,sm

P (qm, sm|xt−1, s0, q0)

× P (qt−1, st−1|xt−1
m+1, qm, sm)

× D
�
PY |X,S(·|xt, st−1)

�� RY |Q(·|qt−1)
�

(b)
=

m+k�
t=m+1

�
qt−1,st−1

�
qm,sm

P (qm, sm|xm, s0, q0)

× P (qt−1, st−1|xt−1
m+1, qm, sm)

× D
�
PY |X,S(·|xt, st−1)

�� RY |Q(·|qt−1)
�

=
�

qm,sm

P (qm, sm|xm, s0, q0)

×
m+k�

t=m+1

�
qt−1,st−1

P (qt−1, st−1|xt−1
m+1, qm, sm)

× D
�
PY |X,S(·|xt, st−1)

�� RY |Q(·|qt−1)
�

≥ min
qm,sm

m+k�
t=m+1

�
qt−1,st−1

P (qt−1, st−1|xt−1
m+1, qm, sm)

× D
�
PY |X,S(·|xt, st−1)

�� RY |Q(·|qt−1)
�

= kCk,

where (a) follows from the Markov chain (Qt−1, St−1) −
(Xt−1

m+1, Qm, Sm) − (Xm, S0, Q0) (see Lemma 4 in Appen-
dix A-C), and (b) follows from the Markov chain (Qm, Sm)−
(Xm, S0, Q0) − Xt−1

m+1 (see Lemma 4 in Appendix A-C).
Furthermore, since the minimum over s0 and q0 in (27) does
not affect the inequality, we conclude that

nCn ≥ mCm + kCk.

Therefore, nCn is indeed a super-additive sequence, which
implies that the limit limn Cn exists.

B. Equality of Limits

The following lemma is the main result of this section.
Lemma 1: If an FSC and a graph-based test distribution,

RY |Q � 0, are jointly indecomposable, then lim
n→∞Cn =

lim
n→∞Cn.

Before providing the proof of Lemma 1, we present a
technical result.

Lemma 2: Let Y ∈ Y and Z ∈ Z be two arbitrary random
variables such that, for any z ∈ Z , PY |Z=z � RY . Then,��D �PY |Z�RY |PZ

�− D (PY �RY )
�� ≤ log2(|Z|). (28)

Proof of Lemma 2: We bound the difference as follows:��D �PY |Z�RY |PZ

�− D (PY �RY )
��

=

�����
�
y,z

P (y, z) log2

�
P (y|z)
R(y)

�
−
�

y

P (y) log2

�
P (y)
R(y)

������
= |−H(Y |Z) + H(Y )|
= I(Y ; Z)
≤ log2 (|Z|) . (29)

Proof of Lemma 1: This proof follows the main idea of
Gallager’s proof in [8, Theorem 4.6.4].

From (22), (25) and (26), we note that for any n,

Cn = max
xn∈Xn

max
s0,q0

1
n

D
�
PY n|Xn=xn,s0

�� RY n|q0

�
,

Cn = max
xn∈Xn

min
s0,q0

1
n

D
�
PY n|Xn=xn,s0

�� RY n|q0

�
.
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Let xn and (s0, q0) be the input sequence, the initial
state, and the initial node that maximize D

�
PY n|Xn=xn,s0��RY n|q0D

�
. Let (s̃0, q̃0) denote the initial state and the initial

node that minimize it for the input sequence xn. Therefore,
by the definition of Cn and Cn it follows that

Cn =
1
n

D
�
PY n|Xn=xn,s0

�� RY n|q0

�
,

Cn ≥ 1
n

D
�
PY n|Xn=xn,s̃0

�� RY n|q̃0

�
.

Let m and k be two positive integers such that m + k = n.
By using the chain rule for relative entropy we have

Cn =
1
n

�
D
�
PY k|xn,s0

�� RY k|q0

�
+ D

�
PY n

k+1|Y k,xn,s0

�� RY n
k+1|Y k,q0

��PY k|xn,s0,q0

��
. (30)

Now, the condition RY |Q � 0 assumed in the state-
ment of the lemma ensures that PYi|Y i−1=yi−1,Xi=xi �
RYi|Qi−1=qi−1 for any xi, yi−1, where qi−1 = Φ(yi−1). There
is thus a constant M1 such that

D
�
PYi|Y i−1,xn,s0

�� RYi|Y i−1,q0

��PY i−1|xn,s0,q0

� ≤ M1

for any 1 ≤ i ≤ n. As a consequence, the first relative entropy
term in (30) is bounded by kM1:

D
�
PY k|xn,s0

�� RY k|s0,q0

�
=

k�
i=1

D
�
PYi|Y i−1,xn,s0

�� RYi|Y i−1,q0

��PY i−1|xn,s0,q0

�
≤ kM1. (31)

Furthermore, by Lemma 2, the second relative entropy term
in (30) is changed by at most log2(|S|) when conditioning
on Sk. Therefore,

Cn ≤ 1
n

�
kM1 + log2(|S|)

+ D
�
PY n

k+1|Y k,Sk,xn,s0

��� RY n
k+1|Y k,q0

���PY k,Sk|xn,s0,q0

��
.

In a similar manner, Cn can be written as in (30), where
this time we consider (s̃0, q̃0) instead of (s0, q0). The first
term is lower bounded by 0, and here too, by Lemma 2,
we have

Cn ≥ 1
n

�
− log2(|S|)

+ D
�
PY n

k+1|Y k,Sk,xn,s̃0

��� RY n
k+1|Y k,q̃0

���PY k,Sk|xn,s̃0,q̃0

��
.

Therefore,

Cn − Cn

≤ 1
n

�
kM1 + 2 log2(|S|)

+ D
�
PY n

k+1|Y k,Sk,xn,s0

��� RY n
k+1|Y k,q0

���PY k,Sk|xn,s0,q0

�
− D

�
PY n

k+1|Y k,Sk,xn,s̃0

��� RY n
k+1|Y k,q̃0

���PY k,Sk|xn,s̃0,q̃0

��

(a)
=

1
n

�
kM1 + 2 log2(|S|)

+ D
�
PY n

k+1|Y k,Sk,xn,s0

���RY n
k+1|Y k,Qk,q0

���PY k,Sk,Qk|xn,s0,q0

�
− D

�
PY n

k+1|Y k,Sk,xn,s̃0

���RY n
k+1|Y k,Qk,q̃0

���PY k,Sk,Qk|xn,s̃0,q̃0

��
(b)
=

1
n

�
kM1 + 2 log2(|S|)

+ D
�
PY n

k+1|Sk,xn,s0

��� RY n
k+1|Qk,q0

���PSk,Qk|xn,s0,q0

�
− D

�
PY n

k+1|Sk,xn,s̃0

��� RY n
k+1|Qk,q̃0

���PSk,Qk|xn,s̃0,q̃0

��

=
1
n

�
kM1 + 2 log2(|S|)

+
�
sk,qk

�
P (sk, qk|xk, s0, q0) − P (sk, qk|xk, s̃0, q̃0)

�

× D
�
PY n

k+1|sk,xn

��� RY n
k+1|qk

��
, (32)

where (a) follows since Qk = Φ(Y k) and (b) follows by
observing that the conditioning on Y k can be dropped due
to the channel definition, and since R(yn

k+1|yk, qk, q0) =
R(yn

k+1|qk, q0).
Here, too, there exists a finite integer M2 such that

D
�
PY n

k+1|sk,xn

��� RY n
k+1|qk

�
≤ (n − k)M2.

Now, let us denote

dk � max
xk

�
sk,qk

��P (sk, qk|xk, s0, q0) − P (sk, qk|xk, s̃0, q̃0)
��.

Therefore,

Cn − Cn ≤ 1
n

�
kM1 + 2 log2(|S|) + dk(n − k)M2

�
.

To further upper bound this, we will use Lemma 3 which
implies that dk tends to zero as k grows. Accordingly,
by Lemma 3, for any � > 0, we can choose k so that dk ≤ �.
Therefore, for such a k,

lim
n→∞Cn − Cn ≤ �M2.

Since � > 0 is arbitrary and Cn ≥ Cn, the proof is
completed.

Lemma 3: Consider an FSC and a graph-based test distri-
bution that are jointly indecomposable. Then, for any � > 0,
there exists an N , such that for n ≥ N��P (sn, qn|xn, s0, q0) − P (sn, qn|xn, s̃0, q̃0)

�� ≤ � (33)

for all sn, qn, xn, s̃0, q̃0, s0, and q0.
Proof of Lemma 3: Since the FSC and the graph-

based test distribution are jointly indecomposable, then,
by Definition 2, for some fixed n and each input sequence
xn, there exists a choice of sn and qn, such that

P (sn, qn|xn, s0, q0) > 0, for all s0, q0. (34)

In [8, Theorem 4.6.3], Gallager provides a sufficient con-
dition for verifying that an FSC is indecomposable, that is,
a sufficient condition for verifying that property (2) holds.
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Following his proof with an appropriate modification we
obtain that condition (34) is sufficient for verifying that
condition (33) holds. In particular, the modification is done
by replacing the state sn by the pair (sn, qn), and the initial
state s0 by the pair (s0, q0).

C. Proof of the Markov Chains

We now show the Markov chains that were required in the
proof.

Lemma 4: For any FSC, the following Markov chains hold:

P (st, qt|xt, qm, sm, s0, q0) = P (st, qt|xt
m+1, qm, sm),

P (sm, qm|xt−1, s0, q0) = P (sm, qm|xm, s0, q0),

for t ≥ m + 1.
Proof of Lemma 4: For the first Markov chain, consider

P (st, qt|xt, qm, sm, s0, q0)

=
�

yt
m+1

�
st−1

m+1

P (yt
m+1, s

t
m+1, qt|xt, qm, sm, s0, q0)

(a)
=
�

yt
m+1

�
st−1

m+1

P (yt
m+1, s

t
m+1|xt, qm, sm, s0, q0)

× P (qt|qm, yt
m+1), (35)

where (a) follows since qt is determined by a deterministic
function of qm and the output sequence yt

m+1. Further,

P (yt
m+1, s

t
m+1|xt, qm, sm, s0, q0)

(a)
=

t�
i=m+1

P (yi, si|yi−1
m+1, s

i−1
m+1, x

t, qm, sm, s0, q0)

(b)
=

t�
i=m+1

P (yi, si|xi, si−1), (36)

where (a) follows by the chain rule, and (b) follows by the def-
inition of an FSC. From (36), we observe that P (yt

m+1, s
t
m+1|

xt, qm, sm, s0, q0) does not depend on xm, s0, q0, and there-
fore, from (35), so does P (st, qt|xt, qm, sm, s0, q0).

For the second Markov chain, consider

P (sm, qm|xt−1, s0, q0)

=
�
ym

�
sm−1

P (ym, sm, qm|xt−1, s0, q0)

=
�
ym

�
sm−1

P (ym, sm|xt−1, s0, q0)�{Φq0(y
m) = qm}. (37)

Further,

P (ym, sm|xt−1, s0, q0)
(a)
=

m�
i=1

P (yi, si|yi−1, si−1, xt−1, s0, q0)

(b)
=

m�
i=1

P (yi, si|xi, si−1), (38)

where (a) follows by the chain rule, and (b) follows by
the definition of an FSC. From (38), we observe that
P (ym, sm|xt−1, s0, q0) does not depend on xt−1

m+1, and there-
fore, from (37), so does P (ym, sm|xt−1, s0, q0).

APPENDIX B
UPPER BOUND FOR THE INPUT-DRIVEN FSC (THEOREM 5)

Proof: The proof is based on the same main steps we used
in the proof of Theorem 3, but here we consider input-driven
FSCs. Let us find an expression equivalent to the conditioned
version of the relative entropy term in (7). For any initial pair
(s0, q0) we have,

D
�
PY n|Xn=xn,s0

��RY n|q0

�
=
�
yn

PY n|Xn,S0(y
n|xn, s0) log2

�
PY n|Xn,S0(y

n|xn, s0)
RY n|Q0(yn|q0)

�

(a)
=

n�
j=1

�
yj−1

P (yj−1|xj−1, s0)

× D
�
PYj |Y j−1,Xj ,S0(·|yj−1, xj , s0)

�� R(Yj |yj−1, q0)
�

(b)
=

n�
j=1

�
qj−1

�
yj−1

P (qj−1, y
j−1|xj−1, s0, q0)

× D
�
PYj |Y j−1,Xj ,S0(·|yj−1, xj , s0)

�� R(Yj |yj−1, q0)
�

(c)
=

n�
j=1

�
qj−1

�
yj−1

P (qj−1, y
j−1|xj−1, s0, q0)

× D

�
sj−1

P (sj−1|xj−1, s0)PY |X,S(·|xj , sj−1)

�����R(Y |qj−1)

�

(d)
=

n�
j=1

�
q∈Q

βj−1(q)

× D

�
sj−1

γj−1(sj−1) · PY |X,S(·|xj , sj−1)

����� RY |Q(·|q)
�

,

(39)

where step (a) follows by computing the marginal distribu-
tions, exchanging the order of the summations and identifying
the relative entropy, step (b) follows from the fact that qj−1

is a deterministic function of (yj−1, q0), step (c) follows by
the input-driven FSC law, i.e.,

P (yj |yj−1, xj , s0)

=
�
sj−1

P (sj−1|xj−1, s0)PY |X,S(yj |xj , sj−1),

and step (d) follows since the divergence does not depend on
yj−1.

Therefore, for any (s0, q0), we conclude that

C
(a)

≤ lim
n→∞max

xn

1
n

n�
j=1

�
q∈Q

zj−1(q)

× D

�
sj−1

γj−1(sj−1) · PY |X,S(·|xj , sj−1)

����� RY |Q(·|q)
�

,

where (a) follows from the dual upper bound for FSCs and
(39), and zj−1, γj−1 are defined as

zj−1(q) � PQj−1|Xj−1,S0,Q0(q|xj−1, s0, q0),

γj−1(sj−1) � PSj−1|Xj−1,S0(sj−1|xj−1, s0).
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The proofs of the limit’s existence and of the initial state
independence are omitted as they follow from the same steps
taken for the unifilar FSC in Appendix A.

APPENDIX C
DP FORMULATION OF THE UPPER BOUNDS

A. DP Formulation for Unifilar FSCs (Theorem 4)

In this section, we prove Theorem 4 on the formulation of
the upper bound in Theorem 3 as a dynamic program. The
proof has three technical parts: the first two parts are there to
verify that the DP is well-defined, and the last part is there
is order to relate the average reward of the DP and the upper
bound in Theorem 3. These are summarized in the following
lemma.

Lemma 5:

1) The reward is a time-invariant function of the DP state
and action.

2) The DP state is a deterministic function of the previous
DP state and action.

3) The limit and the maximization in the upper bound in
Theorem 3 can be exchanged. Specifically,

lim
n→∞ max

xn∈Xn
min
s0,q0

c(xn, s0, q0)

= sup
{xi}∞

i=1

lim inf
n→∞ min

s0,q0
c(xn, s0, q0),

where c(xn, s0, q0) is defined in (24).

Since we showed that the upper bound is independent of the
initial state, we can conclude from the third item that C ≤ ρ∗.

Proof of Lemma 5:

1) Recall that the reward function is defined as

g(zt−1, ut)

�
�
q,s

zt−1(q, s)D
�
PY |X,S(·|ut, s)

�� RY |Q(·|q)�.
Therefore, for a fixed FSC and test distribution, it can be
easily noted that the reward is a function of the previous
DP state zt−1 and the action ut � xt.

2) Let us first derive a recursive relation between zt at the
coordinates (qt, st) and the previous DP state zt−1:

zt(qt, st)
= P (qt, st|xt, s0, q0)
(a)
=

�
qt−1,st−1

P (qt−1, st−1|xt−1, s0, q0)

× P (qt, st|qt−1, st−1, x
t, s0, q0)

(b)
=

�
qt−1,st−1

zt−1(qt−1, st−1)
�
yt

P (yt|xt, st−1)

× �{st = f(xt, yt, st−1)}�{qt = φ(qt−1, yt)},
(40)

where (a) follows from the Markov chain
(Qt−1, St−1) − (Xt−1, S0, Q0) − Xt that is proven in
Appendix A-C, and (b) follows from the channel and
the Q-graph definitions. From (40), it is clear that zt is
a function of zt−1 and the action xt.

3) The main idea is to show the equality by showing the
corresponding two inequalities. The first inequality can
be shown as follows:

lim
n→∞ max

xn∈Xn
min
s0,q0

1
n

n�
t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�
(a)
= sup

n
max

xn∈Xn
min
s0,q0

1
n

n�
t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�
= sup

{xi}∞
i=1

sup
n

min
s0,q0

1
n

n�
t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�
≥ sup

{xi}∞
i=1

lim inf
n→∞ min

s0,q0

1
n

n�
t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�, (41)

where (a) follows by Fekete’s lemma (see
Appendix A-A where it is shown that the sequence
nCn is supper additive).
We now show the reverse inequality. Using the notation
and the main result from Appendix A-A, the existence
of lim

n→∞ Cn implies that, for any � > 0, there exists an

N(�) such that for all k > N(�)

Ck ≥ lim
n→∞ Cn − �. (42)

Fix k > N(�), and let x̂k be the input sequence that
achieves the maximum. Define x̃∞ = {x̃t}∞t=1 as an
infinite sequence composed of identical concatenations
of the sequence x̂k . Consider the following chain of
inequalities

sup
{xi}∞

i=1

lim inf
n→∞ min

s0,q0

1
n

n�
t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|xt, s)

�� RY |Q(·|q)�
(a)

≥ lim inf
n→∞ min

s0,q0

1
n

n�
t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|x̃t, s)

�� RY |Q(·|q)�
(b)
= lim inf

n→∞ min
s0,q0

1
n

k�n
k 	�

t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|x̃t, s)

�� RY |Q(·|q)�
(c)

≥ lim inf
n→∞

k

n

�n

k

� �1
k
· min

s0,q0

k�
t=1

�
q,s

zt−1(q, s)

× D
�
PY |X,S(·|x̃t, s)

�� RY |Q(·|q)��
(d)

≥ lim
n→∞Cn − �, (43)

where (a) follows by considering the sequence x̃∞,
which is not necessarily the input sequence that achieves
the maximum, (b) follows from the fact that k is fixed
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and the divergence is bounded, and therefore, when
rounding n to kn/k� the residual goes to zero, (c)
follows from taking the minimum at the beginning of
each kth block, i.e., mint



i fi(t) ≥



i mint fi(t) and,

the fact that x̃∞ is a repetition of the same sequence x̂k,
and, finally, (d) follows from (42). �

B. DP Formulation for Input-Driven FSCs (Theorem 6)

In this section, we prove Theorem 6 on the formulation
of the upper bound in Theorem 5 as a dynamic program.
Similarly to Lemma 5, the proof consists of three technical
parts that are summarized in the following lemma.

Lemma 6:

1) The reward is a time-invariant function of the DP state
and action.

2) The DP state is a deterministic function of the previous
DP state and action.

3) The limit and the maximization in the upper bound can
be exchanged. Specifically,

lim
n→∞ max

xn∈Xn

1
n

n�
t=1

�
q∈Q

βt−1(q)

× D

�
st−1

γt−1(st−1)PY |X,S(·|xt, st−1)

�����RY |Q(·|q)
�

= sup
{xi}∞

i=1

lim inf
n→∞

1
n

n�
t=0

�
q∈Q

βt−1(q)

× D

�
st−1

γt−1(st−1)PY |X,S(·|xt, st−1)

�����RY |Q(·|q)
�

.

Here, also, the upper bound is independent of the initial state.
Therefore, we can conclude from the third item that C ≤ ρ∗.

Proof of Lemma 6:

1) The reward function in Eq. (16) is defined as

g(zt−1, ut) �
�

q

βt−1(q)

× D

�
s

γt−1(s) · PY |X,S(·|ut, s)

����� RY |Q(·|q)
�

.

Accordingly, since zt−1 = (βt−1, γt−1), this item is
deduced directly from the definition above.

2) Let us first derive a recursive relation between zt =
(βt, γt) and the previous DP state zt−1. In particular, βt

is computed as

βt(qt)

� P (qt|xt, s0, q0)
(a)
=

�
qt−1,st−1

P (qt−1, st−1|xt−1, s0, q0)

× P (qt|qt−1, st−1, x
t, s0, q0)

(b)
=
�
qt−1

P (qt−1|xt−1, s0, q0)
�
st−1

P (st−1|xt−1, s0)

× P (qt|qt−1, st−1, x
t, s0, q0)

(c)
=
�
qt−1

βt−1(qt−1)
�
st−1

γt−1(st−1)

×
�
yt

PY |X,S(yt|xt, st−1)�{qt = φ(qt−1, yt)},

(44)

where (a) follows from the Markov chain
(Qt−1, St−1) − (Xt−1, S0, Q0) − Xt that is proven
in Appendix A-C, (b) follows from the Markov chain
St−1 − (Xt−1, S0) − (Qt−1, Q0), and (c) follows from
the channel characteristics and the Q-graph definition.
Furthermore, γt is computed as

γt(st) = P (st|xt, s0)
(a)
=
�
st−1

γt−1(st−1) P (st|xt, st−1), (45)

where (a) follows from the Markov chain St−1 −
(Xt−1, S0) − Xt and the input-driven FSC definition
in (4). From (44) and (45), it is clear that βt and γt

are a function of the previous DP state zt−1 and the
action xt.

3) The proof of this item is omitted as it follows
from the same steps taken for unifilar FSCs in
Appendix C-A. �

APPENDIX D
TRAPDOOR CHANNEL — PROOF OF THEOREM 7

Proof: The proof is based on the Markov Q-graph from
Fig. 3 and on the following optimized graph-based test distri-
bution:

RY |Q(0|0) = RY |Q(1|1) =
2
3
.

Since the trapdoor channel is a unifilar FSC, we define z as a
pmf on Q×S that corresponds to the DP state in Section IV-B.
In particular, z consist of four elements that are indexed as zq,s

where zq,s = P (q, s). To simplify notation, we will consider in
the calculation below the relation z1,1 = 1−z0,0−z0,1−z1,0.

Recall that to solve the Bellman equation (Theorem 2), one
should identify a scalar ρ and a function h : Z → R such that

ρ + h(z) = max
u

(g(z, u) + h (F (z, u))) . (46)

In the following, we show that ρ∗ = log2

�
3
2

�
and the

function

h∗(z) =
�

z1,0, z0,1 ≤ z1,0,
z0,1, z0,1 > z1,0.

solves (46).
The reward function can be computed as

g(z, u) =

�
log2

�
3
2

�
+ 1

2 (z0,0 + 3z1,0 − 1) , u = 0,

log2

�
3
2

�
+ 1

2 (z1,1 + 3z0,1 − 1) , u = 1.

The next DP state, defined in Eq. (40), is given by

F (z, u)

=

��
z0,0 + z1,0,

1
2 (z0,1 + z1,1), 1

2 (z0,1 + z1,1)
�
, u = 0,�

0, 1
2 (z0,0 + z1,0), 1

2 (z0,0 + z1,0)
�
, u = 1.
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Let us assume that the optimal policy u∗(z) is given by

u∗(z) =

�
0, z0,1 ≤ z1,0,

1, z0,1 > z1,0.
(47)

Assuming (47), then for z0,1 ≤ z1,0, the left-hand side of
the Bellman equation is equal to

ρ∗ + h∗(z) = log2

�
3
2

�
+ z1,0,

while the right-hand side of the Bellman equation is

g(z, u = 0) + h∗ (F (z, u = 0)) = log2

�
3
2

�
+ z1,0.

Hence, assuming (47), we showed that the Bellman equation
is satisfied for z0,1 ≤ z1,0. It can also be verified that the
Bellman equation is satisfied when z0,1 > z1,0.

We will now verify that the assumption we made in (47)
holds. That is,�

g(z, u = 0) +
1
2
(z0,1 + z1,1)

�

−
�

g(z, u = 1) +
1
2
(z0,0 + z1,0)

�
= z1,0 − z0,1,

which is nonnegative for all z1,0 ≥ z0,1, and therefore, in this
region, u = 0 is indeed the optimal action. Similarly, it can
also be verified that, for all z1,0 < z0,1, u = 1 is the optimal
action.

Therefore, we conclude that, ρ∗ = log2

�
3
2

�
is indeed the

optimal average reward.

APPENDIX E
ISING CHANNEL — PROOF OF THEOREM 8

Proof: The proof is based on a Markov Q-graph with
k = 3. Recall that for the Ising channel the state is evaluated
according to st = xt. Therefore, we can use the simplified DP
formulation that is presented in Section IV-B. The proof of the
bound is based on the following graph-based test distribution:

RY |Q(0|0, 0, 0) = 1 − RY |Q(0|1, 1, 1) = a

RY |Q(0|0, 1, 0) = 1 − RY |Q(0|1, 0, 1) = b

RY |Q(0|1, 0, 0) = 1 − RY |Q(0|0, 1, 1) = c

RY |Q(0|1, 1, 0) = 1 − RY |Q(0|0, 0, 1) = d,

where [a, b, c, d] ∈ (0, 1)4. Let z = [z0, z1, z2, z3] denote the
DP state vector, where {zi}3

i=0 ∈ {0, 1}. According to the
DP formulation, the next DP state is computed as F (z, u) =
[z1, z2, z3, u], and the reward function is defined as

g(z, u) =
�
y3
1


3�

i=1

PY |X,S(yi|zi, zi−1)

�

× D
�
PY |X,S(·|u, z3)

�� RY |Q(·|y3
1)
�
.

According to Theorem 2, if we identify a scalar ρ and a
bounded function h(z) such that

ρ + h(z) = max
u

[g(z, u) + h (F (z, u))] , ∀z ∈ Z, (48)

then ρ = ρ∗. In the following, we show that

ρ∗ =
1
4

log2

�
1

2acd(1 − a)

�
(49)

and the function h∗(z) defined below solves (48).

h∗(0, 0, 0, 0) = h∗(1, 1, 1, 1) =
1
2

log2

�
1

4aā

�

h∗(0, 0, 0, 1) = h∗(1, 1, 1, 0) =
1
4

log2

�
1

2acdā

�

h∗(0, 0, 1, 0) = h∗(1, 1, 0, 1) =
1
8

log2

�
ā3cd

64ab5b̄c̄5d̄3

�

h∗(0, 0, 1, 1) = h∗(1, 1, 0, 0) =
1
2

log2

�
1

2ac

�

h∗(0, 1, 0, 0) = h∗(1, 0, 1, 1) =
1
8

log2

�
ād

256ab3cb̄c̄3d̄

�

h∗(0, 1, 0, 1) = h∗(1, 0, 1, 0) =
1
4

log2

�
ād

8b2b̄c̄2d̄

�

h∗(0, 1, 1, 0) = h∗(1, 0, 0, 1) =
1
4

log2

�
1

2abcc̄

�

h∗(0, 1, 1, 1) = h∗(1, 0, 0, 0) =
1
4

log2

�
d

8a3cā

�
. (50)

Let us assume that the optimal policy, under the constraints
given in (20), is given by

u∗(z) = z̄0z̄2 + z3 · (z0 ⊕ z2), (51)

where ⊕ denotes the XOR operation. The policy in (51)
is obtained by optimizing the DP program and extracting
the relation between the optimal policy and the DP state.
Assuming (51), it can now be verified that (48) is satisfied
with the above choice of ρ∗ and the function h∗(z). Here,
we will verify that it holds only for z = [0, 0, 0, 0], and the
verification for the other states can be done similarly. The left-
hand side of the Bellman equation is

ρ∗ + h∗(0, 0, 0, 0) =
1
4

log2

�
1

32a3cd(1 − a)3

�
,

while the right-hand side of the Bellman equation is

max
u

[g(0, 0, 0, 0, u) + h(0, 0, 0, u)]

(a)
= g(0, 0, 0, 0, 1) + h(0, 0, 0, 1)

=
1
2

log2

�
1

4a(1 − a)

�
+

1
4

log2

�
1

2acd(1 − a)

�

=
1
4

log2

�
1

32a3cd(1 − a)3

�
,

where (a) follows from (51), and therefore the Bellman
equation holds for z = [0, 0, 0, 0]. It is now left to verify
that the suggested policy in (51) is indeed optimal under the
constraints given in (20). Here, too, we will verify it only for
z = [0, 0, 0, 0] and the verification for the other states can be
done similarly.

[g(0, 0, 0, 0, 1) + h(0, 0, 0, 1)]− [g(0, 0, 0, 0, 0)+h(0, 0, 0, 0)]

=
1
4

log2

�
1

32a3cd(1 − a)3

�
− 1

4
log2

�
1

16a6ā2

�

=
1
4

log2

�
a3

2cdā

�
, (52)
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where we note that (52) is nonnegative when 0 ≤ a3 − 2ācd.
Therefore, under the constraints in (20), u = 1 is indeed the
optimal action when z = [0, 0, 0, 0].

APPENDIX F
DEC — PROOF OF THEOREM 9

Proof: The proof is based on the Q-graph depicted
in Fig. 4 and on the following graph-based test distribution:

RY |Q =

⎡
⎣ 0 0.5�̄ 0.5�̄ �

0.5�̄ 0.5�̄ 0 �
0.5p�̄ p̄�̄ 0.5p�̄ �

⎤
⎦ ,

where p ∈ [0, 1], the rows correspond to Q = 1, 2, 3 and the
columns correspond to Y = −1, 0, 1, ? in that order.

Now, note that some of the test distribution entries are equal
to zero, and therefore, the condition RY |Q � 0 in Theorem 3
does not hold. However, it can be easily verified that the
condition in Remark 1 holds. This is mainly due to the fact
that when Q = 1 the previous state must be equal to 0, and
when Q = 2 the previous state must be equal to 1. We omit
the details of this verification.

Using the above choice of a test distribution, one can
show that the Bellman equation holds. However, since the
upper bound is exactly equal to the feedback capacity, and
C ≤ CFB (where CFB denotes the feedback capacity), we will
not provide here the proof that the Bellman equation holds.
It will only be shown that the resultant upper bound expression
in Theorem 9 is equal to the feedback capacity [23].

The feedback capacity of the DEC is given by

CFB = max
p∈[0,1]

(1 − �)
p + �H2(p)
� + (1 − �)p

.

Denote

G(p, �) = (1 − �)
p + �H2(p)
� + (1 − �)p

.

Straightforward calculations show that the derivative of
G(p, �) (with respect to p) is equal to zero iff

G(p, �) = 1 + � log2

�
1 − p

p

�
. (53)

Therefore, CFB = G(p∗, �) where p∗ = arg maxp∈[0,1]

G(p, �). Using simple algebra, it can be further verified that
(53) holds iff 2p̄ = pε. Hence, p∗ is the solution p of the
equation 2p̄ = pε.

APPENDIX G
DEC — PROOF OF THEOREM 10

Proof: The basic idea of the lower bound proof is to
consider input sequences that are restricted to a first-order
Markov process, i.e.,

PXn(xn) =
n�

i=1

PX|X−(xi|xi−1). (54)

In the following we denote by Pmarkov the set of all
distributions satisfying (54). The capacity of the DEC is then
lower bounded by

CDEC ≥ lim
n→∞ max

P (xn)∈Pmarkov

1
n

I(Xn; Y n|S0 = s0) (55)

for any s0 ∈ S. Based on the channel symmetry, we consider
the following input distribution:

PX|X−(0|0) = PX|X−(1|1) = a,

where a ∈ [0, 1]. In the following, we will find the mutual
information in (55) explicitly:

I(Xn; Y n|S0 = s0)
= H(Y n|S0 = s0) − H(Y n|Xn, S0 = s0)

=
n�

i=1

�
H(Yi|Y i−1, S0 = s0) − H(Yi|Y i−1, Xn, S0 = s0)

�
(a)
=

n�
i=1

H(Yi|Y i−1, S0 = s0) − nH2(�), (56)

where (a) follows by the Markov chain Yi − (Xi, Xi−1) −
(X i−2, Xn

i+1, Y
i−1) and the channel law. To find H(Yi|Y i−1,

S0 = s0), we will calculate the probabilities P (yi|yi−1, s0).
First, let us find the distribution P (xi = 0|yi, s0) for any
possible output sequence yi. We will show that this distrib-
ution induces the graph depicted in Fig. 7. For any output
sequence yi−1,

P (xi = 0|yi = −1, yi−1, s0) = 1, (57)

P (xi = 0|yi = 1, yi−1, s0) = 0, (58)

where (57) follows since the channel output is yi = −1 iff
xi = 0, and (58) follows since the channel output is yi = 1
iff xi = 1. Further,

P (xi = 0|yi = 0, yi−1, s0)

=



xi−1

P (xi−1|yi−1, s0)P (xi = 0|xi−1)PY |X,S(0|0, xi−1)

xi

i−1
P (xi−1|yi−1, s0)P (xi|xi−1)PY |X,S(0|xi, xi−1)

=
a�̄P (xi−1 = 0|yi−1, s0)

a�̄P (xi−1 = 0|yi−1, s0) + a�̄P (xi−1 = 1|yi−1, s0)
= P (xi−1 = 0|yi−1, s0), (59)

and

P (xi = 0|yi =?, yi−1, s0)

=



xi−1

P (xi−1, xi = 0, yi =?|yi−1, s0)

xi

i−1
P (xi−1, xi, yi =?|yi−1, s0)

=
�
xi−1

P (xi−1|yi−1, s0)P (xi = 0|xi−1)

= aP (xi−1 = 0|yi−1, s0) + āP (xi−1 = 1|yi−1, s0). (60)

Based on (57)–(60) we now show that the probability
P (xi = 0|yi, s0) induces the graph depicted in Fig 7.
Equations (57) and (58) imply that, for any possible output
sequence yi−1, if yi = 1 or yi = −1, then P (xi = 0|yi)
is equal to 0 or 1, respectively. Therefore, each node on the
graph in Fig 7 has an outgoing edge labeled with y = −1 to
Q = A0 and an outgoing edge labeled with y = 1 to Q = B0.
Equation (59) implies that each possible node on the graph
has a self-loop labeled with y = 0. Finally, (60) implies that,
if the current output is yi =?, then there is an outgoing edge
labeled with y =? to the next node on the graph, as depicted
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Fig. 7. A Q-graph with Y = {−1, 0, 1, ?}. Each node on the graph has an
outgoing edge labeled with y = −1 to the node Q = A0 and an outgoing
edge labeled with y = 1 to the node Q = B0. Further, each node has a
self-loop labeled with y = 0.

in Fig. 7. Note that the induced graph contains an infinite
number of nodes.

To conclude, given an initial node q0, there exists a unique
mapping Φq0 : Yi → Q from an output sequence yi to a
unique node on the induced graph. Therefore, the equality
P (xi = 0|yi, s0) = P (xi = 0|qi, s0) holds where qi = Φ(yi).
Accordingly, using (57)–(60), it follows that for q ∈ N ∪ {0}

P (xi = 0|yi, s0)

=

�
1 −
k≤q, k odd

�
q
k

� · (1 − a)kaq−k, if Φ(yi) = Aq

k≤q, k odd

�
q
k

� · (1 − a)kaq−k, if Φ(yi) = Bq

�
�

αq, if Φ(yi) = Aq,

1 − αq, if Φ(yi) = Bq,
(61)

where αq = 1+(2a−1)q

2 .
We now calculate P (yi|yi−1, s0) for any possible output

sequence yi:

P (yi = 0|yi−1, s0) =
�
xi

i−1

P (xi−1|yi−1, s0)P (xi|xi−1)

× P (yi = 0|xi, xi−1)

= �̄
�
PX|X−(0|0)P (xi−1 = 0|yi−1, s0)

+ PX|X−(1|1)P (xi−1 = 1|yi−1, s0)
�

= a�̄, (62)

P (yi =?|yi−1, s0) = �, (63)

P (yi = 1|yi−1, s0) = ā�̄P (xi−1 = 0|yi−1, s0)

=

�
ā�̄αq, if Φ(yi−1) = Aq,

ā�̄(1 − αq), if Φ(yi−1) = Bq.

(64)

To find the stationary distribution induced by the
graph, we first calculate the transition probability PQ|Q−

as follows:

PQ|Q−(qt|qt−1) =
�

xt
t−1,yt

P (xt−1, xt, yt, qt|qt−1)

=
�

xt
t−1,yt

P (xt−1|qt−1)

× P (xt|xt−1)P (yt|xt, xt−1)P (qt|qt−1, yt).

Based on the graph symmetry and by using simple algebra,
it follows that the stationary distribution that is induced by the
transition probability PQ|Q− is

PQ(Aq) = PQ(Bq) = k

�
�

1 − a�̄

�q

, (65)

where q ∈ N ∪ {0} and k is a constant in [0, 1]. Recall that
the entries of the stationary distribution must sum to 1:

�
q∈Q

PQ(q) =
∞�

i=0

2k

�
�

1 − a�̄

�i

(a)
=

2k(1 − a�̄)
ā�̄

,

where (a) follows by using the formula of a geometric series
with a common ratio ε

1−aε̄ . Hence,

k =
ā�̄

2(1 − a�̄)
. (66)

We can now find explicitly the lower bound in (55):

CDEC ≥ lim
n→∞ max

P (xn)∈Pmarkov

1
n

I(Xn; Y n|S0 = s0)

= max
a∈[0,1]

�
q∈Q

PQ(q)H(Yi|Q = q, S0 = s0) − H2(�)

(a)
= max

a∈[0,1]

∞�
q=0

(PQ(Aq) + PQ(Bq))

× H4 (�, a�̄, ā�̄αq, ā�̄ᾱq) − H2(�)

= max
a∈[0,1]

∞�
q=0

ā�̄ (PQ(Aq) + PQ(Bq))H2 (αq) + �̄H2(a)

= max
a∈[0,1]

�̄H2(a) +
ā2�̄2

�

∞�
q=0

�
�

1 − a�̄

�q+1

× H2

�
1 − (2a − 1)q

2

�
, (67)

where H4(a1, a2, a3, a4) = −
4
i=1 ai log2(ai) and (a) fol-

lows from (62)–(64).

APPENDIX H
POST CHANNEL — PROOF OF THEOREM 11

Proof: The proof is based on the Markov Q-graph
depicted in Fig. 3 and the following optimized graph-based
test distribution:

RY |Q(0|0) = RY |Q(1|1) = (1 + p̄p
p
p̄ )−1.

Define z as the pmf on Q that corresponds to the DP
state. To simplify the notation, we denote K � (1 + p̄p

p
p̄ )−1.

Further, since the vector z consists of only two components
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that sum to one, we then consider the DP state to be only the
first component and denote it by z.

According to the DP formulation, the next DP state is
computed as

F (z, u) =

�
z + p̄ · (1 − z) , u = 0,

p · z, u = 1.

We now calculate the reward function explicitly. When
u = 0 the reward is

g(z, u = 0)

= z log2

�
1
K

�
+ z̄ ·

�
p̄ log2

�
p̄

1 − K

�
+ p log2

� p

K

��
,

and when u = 1 the reward is

g(z, u = 1)

= z ·
�
p log2

� p

K

�
+ p̄ log2

�
p̄

1 − K

��
+ z̄ log2

�
1
K

�
.

Recall that to solve the Bellman equation, one should
identify a scalar ρ ∈ R and a function h : Z → R such
that

ρ + h(z)
= max

u
g(z, u) + h(F (z, u)),

= max
u

�
g(z, u = 0) + h(z + p̄z̄), u = 0,

g(z, u = 1) + h(pz), u = 1,
(68)

for all z ∈ Z and p ∈ [0, 1]. In the following, we show that
ρ∗ = log2

�
1
K

�
and the function

h∗(z) = z log2

�
pK̄

p̄K

�
+

(1 − z) log2(p)
1 − p

,

solves (68).
Let us assume that the optimal policy is given by u∗ = 0

for all z ∈ Z . Accordingly, by using simple algebra, it follows
that the right-hand side of (68) is

g(z, 0) + h(F (z, 0))

= log2

�
1
K

�
+ z log2

�
pK̄

p̄K

�
+

z̄

p̄
log2(p). (69)

Further, for any z ∈ Z , we note that (69) is exactly
equal to the left-hand side of the Bellman equation. Therefore,
assuming u∗ = 0, the Bellman equation is satisfied. We will
now verify that u∗ = 0. Again, by using simple algebra, we get

g(z, 1) + h(F (z, 1))

= log2

�
1
K

�
+

z̄

p̄
log2(p) + 2zp log2

�
pK̄

p̄K

�

+ z log2

�
pp̄K

K̄

�
,

and therefore,

[g(z, 0) + h(F (z, 0))] − [g(z, 1) + h(F (z, 1))]

= z log2

�
pK̄

p̄K

�
− 2zp log2

�
pK̄

p̄K

�
− z log2

�
pp̄K

K̄

�
= 0.

This implies that, for any choice of the action, the right-
hand side of (68) is the same. Therefore, the assumption that
u∗ = 0 holds.
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