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A Communication Channel With Random
Battery Recharges

Dor Shaviv, Student, IEEE, Ayfer Özgür, Member, IEEE, and Haim H. Permuter, Senior Member, IEEE

Abstract— Motivated by the recent emergence of energy
harvesting and wirelessly powered transceivers, we study com-
munication over a memoryless channel with a transmitter, whose
battery is recharged at random or deterministic times known
to the receiver. We characterize the capacity of this channel
as the limit of an n-letter maximum mutual information rate
under various assumptions: causal and noncausal transmitter
knowledge of the battery recharges, with or without feedback
from the receiver to the transmitter. While the resultant n-letter
capacity expressions are not computable in the general case,
we demonstrate their usefulness by focusing on two important
special cases, namely, the binary erasure channel (BEC) and
the additive white Gaussian noise (AWGN) channel, where they
lead to some interesting, and somewhat surprising, insights.
By focusing on the BEC, we show that output feedback can
strictly increase the capacity of this channel, even though the
channel is memoryless and the battery recharging process is
independent over time. Interestingly, this provides a counter
example to an old claim by Shannon stated without proof in
his 1956 paper. On the other hand, by focusing on the AWGN
channel, we are able to show that the capacity with noncausal
knowledge of the battery recharging times at the transmitter is
strictly larger than that with causal knowledge, even though the
battery recharging process is independent over time and known
to the receiver. The n-letter expressions can also be used to
derive explicit upper and lower bounds on capacity. In particular,
we derive simple upper and lower bounds on the capacity of
the AWGN channel with random battery recharges, which are
within 1.05 b/s/Hz of each other for all parameter values.

Index Terms— Energy harvesting, feedback capacity, channel
with state, causal and noncausal side information, capacity
bounds.

I. INTRODUCTION

THERE has been significant recent progress in building
wireless radios that possess no conventional batteries but

are powered by either energy harvesting or wireless energy
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Fig. 1. Model of an energy harvesting communication system. The transmitter
is equipped with a battery of size B̄, and is communicating to a receiver over
a discrete memoryless channel. The transmitter’s battery is recharged by an
external process Et . We consider the cases when the transmitter may or may
not observe feedback of the channel output, indicated by the dashed line.

transfer, with latest developments reporting smaller device
sizes, better harvesting efficiencies and increased communica-
tion ranges and data rates [3], [4]. For example, the ant-sized
radios of [3] use the energy provided through the downlink
channel in order to transmit over the uplink channel. We model
communication with such externally powered transmitters by
using a simple model. See Fig. 1. Here a transmitter equipped
with a battery (storage unit) of size B̄ is communicating to
a receiver over a discrete memoryless channel (DMC). The
transmitter’s battery is recharged either periodically or at ran-
dom times; in the random case we assume that the recharging
process Et is i.i.d. Bernoulli with recharging probability p,
i.e.,

Et =
{

B̄ w.p. p

0 w.p. 1 − p.
(1)

At each time, the energy φ(Xt ) of the symbol Xt transmitted
by the transmitter is limited by the amount of energy Bt

available in the battery at time t , which in turn depends on
the energy utilized in the previous time-slots as well as the
recharging process. This leads to the following constraint on
the input:

φ(Xt ) ≤ Bt ,

Bt = min{Bt−1 − φ(Xt−1) + Et , B̄}. (2)

This dynamic energy constraint is most relevant in the regime
where the energy capacity of the battery is comparable to the
energy required for transmission of a codeword. This is well
motivated by the trend to shrink down the size of wireless
devices, which limits the amount of energy they can harvest
at any given time as well as the capacity of the battery that
can be accommodated on the device. We assume that the
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recharging times (or equivalently the process Et ) are known
either causally or noncausally both at the transmitter and the
receiver.

This setup is a special case of the energy harvesting com-
munication channel, where more generally one can assume
Et to be any arbitrary process. Such channels have been
of significant interest in the recent literature [5]–[11]. The
difficulty in characterizing their capacity lies in the fact that
although the channel between the transmitter and the receiver
is memoryless, the energy constraints (2) on the transmitter
lead to a random state Bt for the system which has memory
and is input-dependent. In general, even deriving an n-letter
expression for the capacity of such channels with state is
known to be a difficult problem.

In this paper, we make progress on this problem by focusing
on the special case where Et represents periodic or Bernoulli
battery recharges as given in (1); we call this the ran-
dom battery recharges (RBR) channel. This special case is
motivated by applications such as [3] and [4], where the
transmitter is powered by a targeted energy transfer process.
In this case, it is natural to assume that the battery is fully
charged whenever there is an energy transfer. In a network
setting, a single charger is often responsible for powering
multiple transmitters and therefore energy transfers to a given
transmitter are typically intermittent since the charger has to
time-share beamforming to different transmitters according
to a deterministic or random pattern. In the most common
scenario, when the charger is the actual receiver, it is natural
to assume that the receiver is aware of the battery recharging
times at the transmitter. This setting can also be used to model
a transmitter harvesting energy from the natural resources in
its environment, for example from ambient RF signals, in the
small battery regime. When the battery is small, each non-zero
energy harvest can be approximately modeled as fully charging
the battery. The receiver can be aware of the battery recharging
times if it is itself harvesting energy from a correlated physical
process.

We provide a characterization of the capacity of this
channel as an n-letter mutual information rate under var-
ious assumptions: periodic or random battery recharges;
causal or noncausal knowledge of the battery recharging
times; with or without output feedback from the receiver to
the transmitter. While in most of the cases we investigate,
the resultant n-letter capacity expressions are not computable,
we demonstrate their usefulness by focusing on two important
special cases, namely the BEC and the AWGN channel, where
they lead to some interesting and surprising insights.

First by focusing on a BEC with periodic recharges,
we show that output feedback can strictly increase capacity.
The fact that feedback increases the capacity of this channel,
and more generally the capacity of energy harvesting channels,
is indeed surprising. In a classical wireless channel, it is
clear that feedback can increase the capacity by allowing the
transmitter to learn the state of the channel which is typically
available at the receiver. However, in an energy harvesting
channel the state of the system (captured by the available
energy in the battery) is readily known at the transmitter (but
only partially known at the receiver) and communication

occurs over a memoryless channel. It is tempting to believe
that, since all information regarding the state of the channel
is already available at the transmitter, feedback from the
receiver will not provide the transmitter with any additional
information and therefore will not increase the capacity of
this channel. Indeed, this is also what Shannon claims in his
1956 paper [12]. Theorem 6 therein proves that feedback does
not increase the capacity of a discrete memoryless point-to-
point channel. The proof is accompanied by the following
interesting comment:

“It is interesting that the first sentence of Theorem 6 can
be generalized readily to channels with memory provided they
are of such a nature that the internal state of the channel can
be calculated at the transmitting point from the initial state
and the sequence of letters that have been transmitted.”1

We show that the BEC with periodic battery recharges
indeed corresponds to a time-invariant finite state channel
where the state is computable at the transmitter from the
initial state and the transmitted symbol sequence. As such,
it provides a counter-example to Shannon’s claim.2 The
gain from feedback, at least in this example, comes from
the fact that even though the transmitter knows the state
of the system, the receiver does not, and feedback allows
the transmitter to learn the receiver’s belief regarding the
state of the system, which it uses to communicate at higher
rates.

For the AWGN channel, we use the n-letter capacity expres-
sions to show that noncausal transmitter knowledge of the i.i.d.
Bernoulli battery recharging times strictly increases capacity
over causal knowledge, even though the receiver also knows
the battery recharging times. This result can be surprising
given that for channels with i.i.d. states known both at the
transmitter and the receiver, noncausal and causal knowledge
of the states lead to the same capacity. The difference here
comes from the fact that even though the receiver knows the
battery recharging times, it cannot necessarily track the state
of the battery. We show this result by explicitly identifying
the maximizing input distribution for the n-letter capacity
expression when the battery recharging times are known
noncausally at the transmitter, and build on properties of
this distribution. We then proceed to derive upper and lower
bounds on the capacity of this channel, which leads to an
approximation of the capacity within 1.05 bits/channel use for
all parameter values. An interesting intermediate step for this
approximation result is to connect the information-theoretic
capacity of this channel to its long-term average throughput
and explicitly characterize the optimal online power control
strategy maximizing this throughput, a problem that has been
of significant interest in the recent literature [14]–[25].

1The first sentence of Theorem 6 reads “In a memoryless discrete channel
with feedback, the forward capacity is equal to the ordinary capacity C
(without feed-back).”

2In an independent work [13], it was shown that feedback may increase the
capacity of a BEC with no consecutive ones (RLL(1,∞) input constraint),
in the asymptotic regime where the erasure probability goes to zero. Note that
both for this channel and for the energy harvesting channel, the state represents
memory embedded in the input constraint, while the physical channel itself
is memoryless.
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A. Relation to Prior Work

The setup we consider in this paper corresponds to a
special case of the energy-harvesting communication channel,
the capacity of which has been of significant recent inter-
est [5], [7]–[10], [26], [27]. In particular, [7] considers a
noiseless binary channel with a unit-sized battery where the
battery recharges are known causally only at the transmit-
ter. Our model resembles theirs in the fact that the energy
arrival process is i.i.d. Bernoulli and each energy arrival fully
recharges the battery. However, our model is more general in
the fact that we consider noisy channels and allow the size of
the battery and the input alphabet to be arbitrary and not neces-
sarily binary. With a binary channel and unit battery, informa-
tion can be only encoded in the timing of the unit-energy pulse
which makes the setup of [7] equivalent to a timing channel.
In the general case, for example when the battery size and
the inputs to the channel are real numbers, information can
be encoded through real valued codewords. The most closely
related references to our work are [9] and [10] which derive
an approximation for the capacity of an AWGN channel with
i.i.d. Bernoulli energy harvests without explicitly providing
an n-letter characterization for the capacity. The capacity
approximation we develop for the AWGN channel in this paper
improves upon the approximation provided in [9] and [10]
(roughly improving the gap from 1.58 bits/channel use to
1.05 bits/channel use). The n-letter characterizations for the
capacity obtained in the current paper for the AWGN channel
with i.i.d. Bernoulli battery recharges have been extended to
general i.i.d. energy harvesting processes in [11], though with
a different proof technique. The corresponding approximation
results also extend to general i.i.d. energy harvests though with
a larger approximation gap (3.85 bits/channel use in [11] in
comparison to 1.05 bits/channel use for the Bernoulli case).

The rest of the paper is organized as follows: Section II
defines the energy harvesting channel model and specifies
the various cases under consideration. Section III states the
main results of the paper, namely the capacity expressions.
In Section IV we study the BEC, and show that feedback can
increase the capacity of the energy harvesting channel. Finally,
Section V considers the Gaussian channel and its capacity
approximations.

II. SYSTEM MODEL AND PRELIMINARIES

A. Notation

We begin by introducing the notation used throughout
the paper. Let uppercase, lowercase, and calligraphic letters
denote random variables (RVs), specific realizations of random
variables, and alphabets, respectively. For two jointly distrib-
uted RVs (X, Y ), let p(x), p(x, y), and p(y|x), respectively
denote the marginal of X , the joint distribution of (X, Y ),
and the conditional distribution of Y given X . Let E[·] denote
expectation. For m ≤ n, Xn

m = (Xm , Xm+1, . . . , Xn−1, Xn),
and Xn = Xn

1 . When the length is clear from the context,
we sometimes denote vectors by boldface letters, e.g. x ∈ X n .
All logarithms are to base 2 (ln will denote log to base e).

B. System Model

We consider a transmitter powered by RF energy transfer
which communicates to a receiver over a DMC. The channel
consists of a finite input alphabet X , a finite output alphabet Y ,
and a transition probability matrix p(y|x). We assume that
the transmitter has a battery with finite capacity B̄ which
is recharged with probability p at each channel use, i.e. the
energy arrivals Et are i.i.d. Bernoulli RVs:

Et =
{

B̄ w.p. p

0 w.p. 1 − p.

The effort to shrink down the size of wireless sensors and
actuators limits the amount of energy that can be harvested
at any given time, as well as the capacity of the storage unit
that can be accommodated by the device. This necessitates the
recharging process to operate at a scale comparable to the sym-
bol duration [3]. The randomness in the energy transfer process
can be due to fluctuations in the alignment of antennas and the
position of nodes, as well as randomness in the energy transfer
times. We assume that the recharging times are known causally
to both the transmitter and the receiver. The knowledge of the
energy arrivals at the receiver is motivated by the fact that often
it is the receiver that powers the transmitter, and the transmitter
can acknowledge its battery exceeding a certain threshold by
sending a short pulse to simplify operation. In such cases,
it is also natural to consider feedback from the receiver to
the transmitter, and assess its advantage (if any). We also
consider the case of noncausal energy arrival information at the
transmitter, with and without feedback, mainly for comparison
with the causal case. Additionally, we will also treat the case of
deterministic energy arrivals, which are known ahead of time
at both the transmitter and the receiver. This models a scenario
in which the transmitter is being recharged by an exogenous
charging device, which operates according to a predetermined
sequence of charging times.

The channel has an associated cost function φ : X → R+,
denoting the amount of energy used for transmission by each
symbol. We assume that there is at least one symbol x ∈ X
such that φ(x) = 0. We call this symbol the zero symbol and
denote it by x = 0 (if there is more than one such symbol, it is
immaterial which one of them is so labeled). This assumption
is necessary in order to ensure the model is well-defined; in
our model, the transmitter is forced to transmit a zero symbol
when the battery is empty. The energy of the channel input
symbol at each time slot is limited by the available energy in
the battery. Let Bt represent the available energy in the battery
at time t . The system energy constraints can be described as

φ(Xt ) ≤ Bt , (3)

Bt = min{Bt−1 − φ(Xt−1) + Et , B̄}. (4)

This implies that at time t , either Bt = B̄ w.p. p, or Bt =
Bt−1 − φ(Xt−1) w.p. 1 − p. We assume without loss of
generality that B0 = B̄ , which implies that we can also assume
E1 = B̄ w.p. 1.

Our baseline case will be the DMC with causal energy
arrival observations and without feedback. An (M, n) code for
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this channel is a set of encoding functions ft and a decoding
function g:

ft : M × E t → X , t = 1, . . . , n, (5)

g : Yn × En → M, (6)

where E = {0, B̄} and M = {1, . . . , M}. To transmit message
w ∈ M, at time t = 1, . . . , n the transmitter sets Xt =
ft (w, Et ). The battery state Bt is a deterministic function of
(Xt−1, Et ), therefore also of (w, Et ). The functions ft must
satisfy the energy constraint (3): φ( ft (w, Et )) ≤ Bt(w, Et ).
The receiver sets Ŵ = g(Y n, En). The probability of error is

Pe = 1

M

M∑
w=1

Pr(Ŵ �= w | w was transmitted).

The rate of an (M, n) code is R = log M
n . A rate R is

achievable if for every ε > 0 there exists a sequence of (M, n)
codes that satisfy log M

n ≥ R − ε and Pe → 0 as n → ∞. The
capacity C is the supremum of all achievable rates.

When noncausal energy arrival information is available at
the transmitter, the symbol transmitted at time t can depend on
the entire realization of the energy arrival process En . In this
case, equation (5) becomes

ft : M × En → X , t = 1, . . . , n, (7)

with remaining definitions unchanged. The capacity in this
case is denoted by Cnc.

When the energy arrivals are deterministic, the encoding
and decoding functions become

f : M → X n, (8)

g : Yn → M, (9)

just like the classical DMC, where the dependence on the
energy arrival sequence en is implicit. To keep things sim-
ple, we will focus in this work on periodic energy arrival
sequences, i.e.

et =
{

B̄, t = 1 mod k

0, otherwise
(10)

for a given k ∈ N. We will denote the capacity in this case by
Cper(k). This special case is of interest due to its analytical
simplicity, and, as will be seen later, due to its connection to
Cnc.

When there is feedback from the receiver to the transmit-
ter, the encoding functions in all three cases are modified
accordingly. Specifically, when the energy arrivals sequence
is observed causally, (5) is changed to

ft : M × E t × Y t−1 → X , (11)

when the energy arrival sequence is observed noncausally,
(7) is changed to

ft : M × En × Y t−1 → X , (12)

and when the energy arrival sequence is deterministic, (8) is
changed to

ft : M × Y t−1 → X . (13)

The feedback capacities in the causal, noncausal, and
periodic(k) cases are denoted by Cfb, Cnc

fb , and Cper
fb (k),

respectively.

C. Directed Information and Causal Conditioning

When characterizing capacity of channels with feedback,
mutual information is no longer the right quantity. Directed
information was introduced my Massey [28] in 1990, and has
since been employed extensively to characterize the capacity
of channels with feedback [29]–[34]. The directed information
from X N to Y N is defined as

I (X N → Y N ) �
N∑

t=1

I (Xt ; Yt |Y t−1). (14)

It can be shown that in the absence of feedback, directed
information is equivalent to mutual information I (X N ; Y N ).

Generally, in channels with feedback the input at time t can
depend on the past inputs Xt−1 as well as past output Y t−1.
This is captured by the causal conditioning notation, intro-
duced by Kramer [29]:

p(x N ‖y N−1) �
N∏

t=1

p(xt |xt−1, yt−1). (15)

III. MAIN RESULTS

We state the main results of the paper, which are general
capacity expressions for each of the cases mentioned in the
previous section. The capacity expressions are of n-letter form,
therefore not computable in general. However, by focusing
on specific channels – the BEC and AWGN channels in
Sections IV and V respectively – we show that they can be
used to deduce interesting insights regarding the capacity of
such systems, as well as simple upper and lower bounds that
are within a constant gap.

Theorem 1: The capacity of the RBR channel with causal
energy arrival observations and without feedback is given by

C = lim
N→∞ max

p(x N ):∑N
i=1 φ(Xi )≤B̄

N∑
k=1

p2(1 − p)k−1 I (Xk ; Y k), (16)

and the capacity with feedback is given by

Cfb = lim
N→∞ max

p(x N ‖yN−1):∑N
i=1 φ(Xi )≤B̄

N∑
k=1

p2(1 − p)k−1 I (Xk → Y k).

(17)
The capacity expressions have an intuitive interpretation:

The battery recharge times divide transmission into epochs
– the periods between two consecutive energy arrivals. Each
battery recharge effectively erases the memory in the channel,
hence these epochs are essentially independent. The length of
an epoch is a Geometric(p) RV, so the average rate should be
given by

∑∞
k=1 p(1 − p)k Rk , where Rk is the rate achieved

for epoch length k. This is further normalized by the average
epoch length 1/p (as is done in renewal theory). When there is
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no feedback, the rate Rk is given by I (Xk ; Y k) as usual. Since
the transmitter has causal observations of the energy arrivals,
it does not know the epoch lengths in advance. Therefore it
must have one sufficiently long code to accommodate all epoch
lengths. Hence we should optimize over an input probability
distribution p(x N ), where N is large enough, such that the
total energy does not exceed the battery capacity, which is the
available energy for one epoch. A similar discussion applies
when feedback is present, along with the observation that each
energy arrival erases the memory in the channel, hence there
is no benefit from using feedback across epochs.

The proof of Theorem 1 is provided in Appendix A. The
conference version of this work [1] derived capacity expres-
sions using an equivalence to the clipping channel, which
is a conceptually simpler memoryless channel. The clipping
channel admits real vectors as inputs, and outputs a clipped
version of the input vector corrupted by noise, where the
clipping length is random and corresponds to the length of
each epoch, i.e. the time period between consecutive battery
recharges. This equivalence enabled a simple derivation of
n-letter capacity expressions for the RBR channel. In this
extended version, however, we can no longer depend on this
equivalence, since in the presence of feedback the transmitter
can choose the input based on its past observations of the
output. Therefore, the capacity expressions in this paper are
derived directly, in a way which is more involved than [1] but
accommodates feedback as well.

With noncausal observations of the energy arrivals,
the capacity expressions take the following form.

Theorem 2: The capacity of the RBR channel with non-
causal energy arrival observations and without feedback is
given by

Cnc =
∞∑

k=1

p2(1 − p)k−1 max
p(xk):∑k

i=1 φ(Xi )≤B̄

I (Xk ; Y k), (18)

and the capacity with feedback is given by

Cnc
fb =

∞∑
k=1

p2(1 − p)k−1 max
p(xk‖yk−1):∑k
i=1 φ(Xi )≤B̄

I (Xk → Y k). (19)

See Appendix B for the proof. Note that the difference
between these expressions and the expressions in Theorem 1
is that the max is moved inside the summation (which is
in fact expectation over the epoch length), and a different
input distribution is assigned to each epoch length. Here,
since the transmitter knows the epoch lengths ahead of time,
it can choose an appropriate code designed specifically for the
current epoch.

Finally, we bring the capacity expressions for the case of
deterministic periodic energy arrivals.

Theorem 3: The capacity of the RBR channel with periodic
energy arrivals, arriving every k time slots, without feedback,
is given by

Cper(k) = 1

k
max
p(xk):∑k

i=1 φ(Xi )≤B̄

I (Xk ; Y k), (20)

Fig. 2. Binary erasure channel.

and the capacity with feedback is given by

Cper
fb (k) = 1

k
max

p(xk‖yk−1):∑k
i=1 φ(Xi )≤B̄

I (Xk → Y k). (21)

Without feedback, by considering blocks of size k, the chan-
nel and the input constraint are both memoryless and (20)
follows trivially. With feedback, the same observation applies
with some modifications, which are very similar to the tech-
niques utilized in the proofs of Theorem 1 and 2. Therefore,
it will not be repeated here, and the reader is referred to [34]
for more details.

The following corollary is an immediate result of
Theorems 2 and 3:

Corollary 1: The noncausal capacity is given in terms of
the periodic(k) capacity:

Cnc =
∞∑

k=1

p2(1 − p)k−1kCper(k), (22)

Cnc
fb =

∞∑
k=1

p2(1 − p)k−1kCper
fb (k). (23)

This corollary brings an interesting decomposition of the
noncausal capacity into periodic capacities. We will use
this result later in Section IV to show that properties that
apply to the periodic capacity carry over to the noncausal
capacity – specifically the fact that feedback can increase
capacity.

IV. BINARY ERASURE CHANNEL

The binary erasure channel with random battery
recharges (BEC-RBR) has input alphabet X = {0, 1},
output alphabet Y = {0, 1, e}, and erasure probability α. The
channel transition probabilities are given in Fig. 2. The battery
has capacity B̄ = 1, and the cost function is φ(x) = x , i.e.
transmitting x = 1 costs 1 unit of energy, and transmitting
x = 0 does not use up energy. Hence, the available energy
in the battery is either Bt = 1, in which case the transmitter
can send either x = 0 or x = 1, or Bt = 0, in which case
the transmitter is constrained to send x = 0. Tutuncuoglu
et al. [7] considered similar binary channels with a unit sized
battery, with a noiseless channel and a binary symmetric
channel instead of the BEC, however they did not assume
knowledge of battery recharge times at the receiver.

In what follows, we will study the capacity of this channel
under periodic energy arrivals with period k = 2, with
and without feedback. As will be seen shortly, the feedback
capacity is strictly larger than the no-feedback capacity, which
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is in direct contradiction with the claim made by Shannon [12],
which was mentioned in Section I. Next, we use this result
along with Corollary 1 to show that the same applies even
when the energy arrivals are random and known noncausally
at the transmitter.

A. Periodic Recharges

We focus on a simple case of deterministic periodic energy
arrivals, with period k = 2. That is,

Et =
{

1, t odd

0, t even

Therefore, Bt can be written as

Bt =
{

1, t odd

1 − Xt−1, t even
(24)

It is interesting to note that this channel, with or without
feedback, is equivalent to a finite state time-invariant channel
where the transmitter can compute the state from the initial
state of the channel and the transmitted symbol sequence,
satisfying the conditions of Shannon’s claim discussed in
Section I. Let St = (Pt , Bt ) where Bt , Pt ∈ {0, 1} and

Bt+1 =
{

1, Pt = 0

1 − Xt , Pt = 1
(25)

Pt+1 = 1 − Pt . (26)

Here the state variable Bt corresponds to the battery level
in the energy harvesting channel and Pt ∈ {0, 1} is a state
variable indicating whether the time t is odd or even (P stands
for “parity”). The state diagram is shown in Fig. 4. Consider
a binary channel with no input constraints, but instead assume
that when Bt = 1, the channel behaves as a standard BEC
and when Bt = 0, the channel behaves as a BEC with
X = 0 at its input, regardless of the actual input Xt . This
channel is illustrated in Fig. 3. Assume the initial state is
s1 = (p1, b1) = (1, 1), and it is known beforehand both
at the transmitter and the receiver. Note that at odd times,
the state always reverts to s = (1, 1). At even times, the state
is a deterministic function of the past input, therefore it is
computable at the transmitter, but unknown at the receiver. It
is easy to see that this time-invariant finite state channel with
no input constraints is equivalent to our original BEC with
periodic recharges, as codes designed for one channel can be
easily translated to the other with the same probability of error.

1) Capacity Without Feedback: We denote capacity without
feedback by CBEC(α). This is given by Theorem 3:

CBEC(α) = Cper(2) = 1

2
max

X1+X2≤1
I (X2; Y 2)

= 1

2
max

X2 �=(1,1)
I (X2; Y 2)

= 1

2
max

X2 �=(1,1)
{H (Y 2) − H (Y 2|X2)}

= 1

2
max

X2 �=(1,1)
H (Y 2) − h2(α), (27)

Fig. 3. Finite state binary erasure channel with periodic recharges.

Fig. 4. State diagram of the binary erasure channel with periodic recharges.

where h2(·) is the binary entropy function, i.e. h2(α) =
−α log2 α − (1 − α) log2(1 − α).

To find the optimal input distribution, we first observe that
since the channel is memoryless, then by the symmetry and
the concavity of the mutual information, the inputs (0, 1) and
(1, 0) must have the same probability, denoted π < 0.5. Then
p(x2 = (0, 0)) = 1 − 2π . The entropy of the output can be
readily computed, yielding

I (X2; Y 2) = (1 − α)2[h2(2π) + 2π]+2α(1−α)h2(π). (28)

This is a concave function of π . To find the maximum, we take
derivative w.r.t. π and equate to 0:

(1 − α)2
[

2 log
1 − 2π

2π
+ 2

]
+ 2α(1 − α) log

1 − π

π
= 0

(
2π

1 − 2π

)
·
(

π

1 − π

) α
1−α = 2.

Denoting ζ = π
1−π , we get

ζ 1/(1−α) + ζ − 1 = 0. (29)

This can be solved numerically for any value of 0 < α < 1.
Specifically, for α = 0.5 we can solve analytically to obtain
π = (3 − √

5)/2 ≈ 0.382. Substituting in the expression for
capacity, we have

CBEC(0.5) = 1

8
[h2(3 − √

5) + 2h2((3 − √
5)/2) + 3 − √

5]
= 0.4339. (30)

2) Capacity With Feedback: Capacity of the BEC-RBR with
feedback is denoted by CBEC

fb (α). By Theorem 3:

CBEC
fb (α) = Cper

fb (2) = 1

2
max

p(x2‖y1):
X1+X2≤1

I (X2 → Y 2). (31)
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The input constraint X1 + X2 ≤ 1 can be equivalently written
as

p(x2 = 1|x1 = 1, y1) = 0 ∀y1 ∈ Y.

Let

p(x1 = 1) = p1,

p(x2 = 1|x1 = 0, y1 = 0) = p20,

p(x2 = 1|x1 = 0, y1 = e) = p2e,

where 0 ≤ p1, p20, p2e ≤ 1. Then the directed information
in (31) can be written as

I (X2 → Y 2) = I (X1; Y1) + I (X2; Y2|Y1)

= H (Y1) + H (Y2|Y1) − 2h2(α), (32)

where

H (Y1) = h2(α) + (1 − α)h2(p1),

H (Y2|Y1) = (1 − p1)(1 − α)H (Y2|Y1 = 0)

+ p1(1 − α)H (Y2|Y1 = 1) + αH (Y2|Y1 = e).

Clearly, Y1 = 1 implies X1 = 1, which in turn implies X2 = 0.
Therefore H (Y2|Y1 = 1) = h2(α). When Y1 = 0, the input
is necessarily X1 = 0, then the input X2 is Bernoulli(p20),
which yields

H (Y2|Y1 = 0) = h2(α) + (1 − α)h2(p20). (33)

Finally, when Y1 = e, we have X2 = 1 w.p. p2e only
if X1 = 0, and X2 = 0 otherwise. Therefore X2 ∼
Bernoulli

(
p2e(1 − p1)

)
, giving

H (Y2|Y1 = e) = h2(α) + (1 − α)h2
(

p2e(1 − p1)
)
. (34)

Summing up all terms, we get

I (X2 → Y 2) = (1 − α)
[
h2(p1) + (1 − α)(1 − p1)h2(p20)

+ αh2
(

p2e(1 − p1)
)]

. (35)

This can be maximized by choosing p20 = 0.5 and p2e =
min{ 1

2(1−p1)
, 1}. We are then left with maximizing the expres-

sion

I (X2 → Y 2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − α)[h2(p1) − (1 − α)p1 + 1],
0 ≤ p1 ≤ 0.5

(1 − α2)h2(p1) + (1 − α)2(1 − p1),

5 < p1 ≤ 1

over p1 ∈ [0, 1]. Taking derivative over the region
p1 ∈ [0, 0.5] gives

log
1 − p1

p1
− (1 − α) = 0.

Observe that this value of p1 is in [0, 0.5] for any value of
0 ≤ α ≤ 1, and since the function is concave in p1, this is the
absolute maximum. We finally get

CBEC
fb (α) = 1 − α

2

[
log(1 + 21−α) + α

]
. (36)

For α = 0.5, we get

CBEC
fb (0.5) = 0.4429 > 0.4339 = CBEC(0.5). (37)

For all other values of 0 ≤ α ≤ 1, the capacities with and
without feedback are plotted in Fig. 5.

Fig. 5. Capacity of the BEC-RBR with periodical recharges, with and without
feedback.

Fig. 6. Equivalent channel with i.i.d. states.

3) Equivalent State-Dependent Model: In this section,
we will try to illustrate the intuition behind the usefulness of
feedback in this scenario. Recall that the state of the battery
is

Bt =
{

1, t odd

1 − Xt−1, t even

We focus on even times: the transmitter knows the state, and
the receiver observes a noisy version of it (Yt−1 is the output
of a BEC with 1 − Bt at its input).

To understand how feedback increases capacity in this case,
consider the following channel with two i.i.d. state processes:
the channel transition probabilities depend on St as in Fig. 6
(note that this is exactly the same as Fig. 3, with Bt replaced
by St ). The state St = 1 w.p. p. The second state process
is S̃t , given as the output of a BEC(α) with St at its input.
This channel is of course different than the BEC-RBR and
will have different capacity, however it is instructive to study
this channel in order to better understand how feedback helps
in our original BEC-RBR with periodic recharges.

The transmitter observes St causally, and the receiver
observes S̃t . This is the counterpart of the BEC-RBR
without feedback. The capacity is obtained by using
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Fig. 7. Equivalent channel models. The dashed line corresponds to the
channel equivalent to the case with feedback.

Shannon strategies [35], [36, Sec. 7.5]:

C = max
p(u)

I (U ; Y, S̃) = max
p(u)

I (U ; Y |S̃), (38)

where U : S → X . When there is feedback in the BEC-RBR,
this corresponds to the transmitter observing S̃t as well. The
capacity is

Cfb = max
p(u|s̃)

I (U ; Y |S̃). (39)

The two types of channels can be seen Fig 7.
The increase in capacity follows from allowing U to depend

on S̃. Explicit expressions are given by:

C = (1 − α) max
0≤r≤1

[
p(1 − α)h2(r) + α(h2(pr) − rh2(p))

]
,

(40)

Cfb = (1 − α) max
0≤r≤1

[
p(1 − α) + α(h2(pr) − rh2(p))

]
. (41)

We can see that Cfb ≥ C with equality iff r = 1/2, which is
true only when p = 0 or p = 1, or when α = 0 or α = 1.

This shows, at least intuitively, how feedback increases
the capacity of the BEC-RBR with periodic recharges: the
transmitter can increase the rate by observing the noisy version
of the channel state which is observed by the receiver, simply
by matching his own codeword to the noisy state.

B. Random Noncausal Energy Arrivals

We showed that feedback can increase capacity when the
energy arrivals are deterministic with period 2. However,
the model usually studied in the literature involves i.i.d. energy
arrivals (see e.g. [7]). We will show that feedback can help in
this case as well, at least when noncausal observations of the
energy arrivals are available at the transmitter and the receiver.

Proposition 1: Feedback strictly increases the capacity of
the BEC-RBR with noncausal energy arrival observations.
That is, Cnc

fb > Cnc.
Proof: By Corollary 1, and by memorylessness and

symmetry of the BEC, we have:

Cnc(α) =
∞∑

k=1

p2(1 − p)k−1 max
p(xk):∑k
i=1 Xi ≤1

H (Y k) − h2(α), (42)

Cnc
fb (α) =

∞∑
k=1

p2(1 − p)k−1 max
p(xk‖yk−1):∑k

i=1 Xi ≤1

H (Y k) − h2(α). (43)

Observe that for every k we have

max
p(xk‖yk−1):∑k

i=1 Xi≤1

H (Y k) ≥ max
p(xk):∑k
i=1 Xi ≤1

H (Y k), (44)

and the results of Sections IV-A.1 and IV-A.2 imply that the
inequality is strict for k = 2 and α = 0.5, that is

max
p(x2‖y1):
X1+X2≤1

H (Y 2) > max
p(x2):

X1+X2≤1

H (Y 2). (45)

Therefore, we conclude that feedback can strictly increase
capacity for i.i.d. energy arrivals. �

The question of whether feedback can increase capacity
with causal observations of the energy arrivals remains open.
Moreover, even though in this work we assumed the receiver
observes the energy arrivals, it is yet unclear if feedback
can help when the receiver does not (which is perhaps
the more natural assumption for most energy harvesting
channels).

V. GAUSSIAN CHANNEL

Although the results in Section III were derived for
the DMC, they can be extended to channels with arbi-
trary input and output alphabets, and specifically the addi-
tive white Gaussian noise channel with random battery
recharges (AWGN-RBR). This can be done as in [37, Ch. 7]
by restricting the input X to a finite set of input symbols,
quantizing the output Y according to some finite partition
of the real line, and then applying the achievable scheme
in Appendix A for the resulting DMC. By taking arbitrarily
large input sets and successively refining the partition of the
output, the achievable rates will converge to the expressions
in Section III. See Appendix C for a detailed derivation.

Alternatively, in this section we will be interested in capac-
ity without feedback, which can also be derived from first
principles as done in [1] and [38] (using the equivalent
“clipping channel”; see discussion following Theorem 1).

For the AWGN-RBR, X = Y = R and Yt = Xt + Zt ,
where Zt ∼ N (0, 1) independent of the input. The energy
cost function is quadratic, i.e. φ(x) = x2. The capacity without
feedback is given by analogs of Theorems 1 and 2:

C = lim
N→∞ max

p(x N ):
‖X N ‖2≤B̄

N∑
k=1

p2(1 − p)k−1 I (Xk ; Y k), (46)

Cnc =
∞∑

k=1

p2(1 − p)k−1 max
p(xk):

‖Xk‖2≤B̄

I (Xk ; Y k), (47)

where ‖Xk‖2 �
∑k

i=1 X2
i .

We will first use these expressions in Section V-A to show
that noncausal observations of the energy arrivals strictly
increase capacity, as compared to causal observations. Next,
in Section V-B, we will find computable upper and lower
bounds to both capacity expressions which are separated by a
constant gap, independent of problem parameters.
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A. Noncausal Side Information Strictly Increases Capacity

It is possible to explicitly identify the maximizing input
distribution in (47) by using the results of [39]–[41], which
characterize the capacity of amplitude-constrained channels.
In particular, [41] shows that the maximizing Xk in (47) is
distributed over a finite set of k-dimensional spheres with
uniform phase, where the number of spheres is determined
by the value of B̄ (ex. when B̄ is very small, Xk is uniformly
distributed over a single sphere of radius

√
B̄). Using this

result, we suggest the following proposition.
Proposition 2: Noncausal observations of the energy

arrival process strictly increase capacity of the AWGN-RBR.
That is, Cnc > C.

This result may be surprising given that for a memoryless
channel with i.i.d. state S, the capacity with side information
at both the transmitter and the receiver is given by I (X; Y |S),
whether the side information is available causally or non-
causally. The difference here is that even though the battery
recharges Et are i.i.d. and known to both the transmitter and
the receiver, the state of the system is captured by Bt rather
than Et , which has memory and which is unknown to the
receiver due to its input-dependence. The fact that noncausal
knowledge of the energy arrivals strictly increases capacity can
also be observed by using the upper and lower bounds on the
causal and noncausal capacities developed in the next section.

Proof of Proposition 2: We would like to show that C <
Cnc, where C and Cnc are given by (46) and (47) respectively.

Let gn(xn) and fk(xk) be the maximizing distributions
in (46) and (47) respectively, that is:

gn(xn) = argmax
p(xn): ‖Xn‖2≤B̄

{
n∑

k=1

(1 − p)k−1 I (Xk ; Y k)

}
, (48)

fk(xk) = argmax
p(xk): ‖Xk‖2≤B̄

I (Xk ; Y k). (49)

The maximizing distributions fk(xk) are unique and are found
explicitly in [39]–[41]. For any 1 ≤ l ≤ k, let fk(xl) denote
the marginal distribution of fk(xk), that is

fk(xl) =
∫

fk(xk)dxk
l+1,

and similarly for gn(xl). Denote I (p(Xk)) as the mutual infor-
mation I (Xk ; Y k) computed with input distribution p(xk).

Using this notation, we rewrite (46) and (47) as follows:

C = lim
n→∞

n∑
k=1

p2(1 − p)k−1 I (gn(Xk)), (50)

Cnc = lim
n→∞

n∑
k=1

p2(1 − p)k−1 I ( fk (Xk)). (51)

Obviously C ≤ Cnc. Suppose that also C = Cnc. This will
imply

lim
n→∞

n∑
k=1

(1 − p)k−1[I ( fk(Xk)) − I (gn(Xk))] = 0. (52)

Since each term in the sum is non-negative, we get in particular
that the sum of the first two elements must vanish, or

lim
n→∞{I (gn(X1)) + (1 − p)I (gn(X2))}

= I ( f1(X1)) + (1 − p)I ( f2(X2)).

Next, consider g2(x2) as defined in (48). Since ‖Xn‖2 ≤ B̄
implies ‖X2‖2 ≤ B̄ , we get for every n ≥ 2:

I (gn(X1)) + (1 − p)I (gn(X2))

≤ max
p(x2): ‖X2‖2≤B̄

{
I (X1; Y1) + (1 − p)I (X2; Y 2)

}
= I (g2(X1)) + (1 − p)I (g2(X2)),

which implies

I ( f1(X1)) + (1 − p)I ( f2(X2))

≤ I (g2(X1)) + (1 − p)I (g2(X2)). (53)

Next, since ‖X2‖2 ≤ B̄ implies |X1|2 ≤ B̄ , we get
that I (g2(X1)) ≤ I ( f1(X1)). Substituting in (53), we get
I ( f2(X2)) ≤ I (g2(X2)). Since f2(x2) is the unique maxi-
mizer of I (X2; Y 2), this implies f2(x2) = g2(x2). Substituting
this back in (53), we get I ( f1(X1)) ≤ I (g2(X1)). Again, from
uniqueness, this implies f1(x) = g2(x). Together, we see that

f1(x1) = g2(x1) =
∫

g2(x1, x2)dx2 =
∫

f2(x1, x2)dx2, (54)

which is a contradiction, since f1(x1) is discrete [39], whereas
f2(x1, x2) has discrete amplitude and uniform phase [40].
Therefore we must have C < Cnc. �

B. Capacity Bounds

Despite being relatively simpler than previous results,3

(46) and (47) are difficult to compute explicitly. In particular,
(46) is a multi-letter expression that involves optimization
over an infinite dimensional space. Therefore, we wish to
find suitable approximations. More specifically, we provide
an upper and a lower bound, separated by a constant gap of
approximately 1.05 bits:

Proposition 3 (Capacity Bounds): The capacity of the
AWGN-RBR channel with causal energy arrival observations
is bounded by:

C̄ − 1

2
log
(πe

2

)
≤ C ≤ C̄, (55)

where

C̄ � lim
N→∞ max

{Ei }N
i=1 :

Ei≥0 ,i=1,...,N∑N
i=1 Ei ≤B̄

N∑
i=1

p(1 − p)i−1 1

2
log(1 + Ei ). (56)

The proof is provided at the end of this section.

3For example, [11] characterizes the capacity of the energy harvesting
AWGN channel with general i.i.d. energy arrival distribution, in the form

C = lim
n→∞

1

n
sup I (Xn ; Y n |En),

where the domain of the optimization problem is suitably defined. Note that
the capacity expressions in (46) and (47) are much more explicit, and in
particular, it is this explicit form that allows us to identify the maximizing
input distribution in (47).
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It can be shown that the upper bound C̄ in (56) corresponds
to the online power control problem, extensively studied in
the literature in the general framework of energy-harvesting
channels [14]–[16], [42]. Here, one assumes that there is an
underlying transmission scheme operating at a finer time-
scale, such that allocating power P to this scheme yields
an information rate r(P) = 1

2 log(1 + P), and focuses on
the optimal power allocation policy satisfying the energy
constraints on the transmitter. For the specific channel of
interest here, this online power control problem can be explic-
itly solved [42], [43]. In particular, we can apply the KKT
conditions to the optimization problem in (56), to obtain the
optimal values of Ei (see Appendix D):

Ei =

⎧⎪⎨
⎪⎩

(Ñ + B̄)
p(1 − p)i−1

1 − (1 − p)Ñ
− 1, i = 1, . . . , Ñ

0, i > Ñ
(57)

where Ñ is the smallest positive integer satisfying

1 > (1 − p)Ñ [1 + p(B̄ + Ñ)].
This gives the following expression for C̄:

C̄ = 1 − (1 − p)Ñ

2
log

(
p(B̄ + Ñ )

1 − (1 − p)Ñ

)
(58)

+1 − p − (1 − p)Ñ (1 − p + Ñ p)

2 p
log(1 − p). (59)

Combined with (55), this is the capacity of the AWGN-RBR
channel within 1.05 bits/channel use.

It was shown in [5] that the capacity of an AWGN energy
harvesting channel with infinite battery size is 1

2 log(1 +
E[Et ]). Clearly, this is an upper bound to the capacity of our
channel, and this can be readily obtained from the result of
Proposition 3. Using concavity of the log function in (56):

C̄ ≤ lim
N→∞ max

{Ei }N
i=1 :

Ei ≥0 ,i=1,...,N∑N
i=1 Ei ≤B̄

1

2
log

(
1 +

N∑
i=1

p(1 − p)i−1Ei

)

= 1

2
log(1 + pB̄), (60)

where the last step follows because the optimal values for
the first line are E1 = B̄ and Ei = 0 for i ≥ 2. Dong and
Özgür [9] used this upper bound corresponding to infinite
battery size to bound the capacity of the energy harvesting
channel with Bernoulli energy arrivals. Fig. 8 illustrates that
the upper bound we provide here is strictly smaller than the
infinite battery upper bound. Similarly, our lower bound here is
based on the optimal power allocation strategy we characterize
in (57), while the lower bound in [9] is based on a suboptimal
power allocation policy.

Similar bounds can be obtained for (47), which we state in
the following proposition.

Proposition 4: The capacity of the AWGN-RBR channel
with noncausal energy arrival observations is bounded by:

C̄nc − 1

2
log
(πe

2

)
≤ Cnc ≤ C̄nc, (61)

Fig. 8. Upper and lower bounds for p = 0.1. The shaded region indicates
where the capacity of the energy harvesting channel can lie.

Fig. 9. Noncausal lower bound and causal upper bound for p = 0.01.
Noncausal capacity is strictly greater than causal capacity for some values
of B̄.

where

C̄nc =
∞∑

k=1

p2(1 − p)k−1 k

2
log(1 + B̄/k). (62)

The proof can be found in Appendix E, where we also
consider another lower bound for the capacity with noncausal
energy arrival information at the transmitter, which is tighter
than the one in (61), and plot it in Fig. 9 together with
the upper bound in (55) on the capacity with causal energy
arrival information. It is clear from the graph that for some
values of B̄, the noncausal capacity is strictly greater than the
causal capacity, further illustrating the observation we state in
Proposition 2.

Proof of Proposition 3:
1) Upper Bound: We can relax the energy constraint in (46)

to be only in expectation, thus giving an upper bound:

C ≤ lim
N→∞ max

p(x N ):
E‖X N ‖2≤B̄

N∑
k=1

p2(1 − p)k−1 I (Xk ; Y k)
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(i)≤ lim
N→∞ max

p(x N ):
E‖X N ‖2≤B̄

N∑
k=1

p2(1 − p)k−1
k∑

i=1

I (Xi ; Yi )

(ii)= lim
N→∞ max

p(x N ):
E‖X N ‖2≤B̄

N∑
i=1

N∑
k=i

p2(1 − p)k−1 I (Xi ; Yi )

= lim
N→∞ max

p(x N ):
E‖X N ‖2≤B̄

N∑
i=1

p(1 − p)i−1[1 − (1 − p)N−i+1]I (Xi ; Yi )

≤ lim
N→∞ max

p(x N ):
E‖X N ‖2≤B̄

N∑
i=1

p(1 − p)i−1 I (Xi ; Yi )

(iii)= lim
N→∞ max

{Ei }N
i=1 :

Ei≥0 ,i=1,...,N∑N
i=1 Ei ≤B̄

N∑
i=1

p(1 − p)i−1 1

2
log(1 + Ei ),

where (i) is because the channel is memoryless; (ii) is by
changing order of summation; and (iii) is obtained by choosing
Xi ∼ N (0, Ei ) independent of each other. Note that the limit
exists in each step because the sequences are non-decreasing
and bounded above. This gives the RHS in (55).

2) Lower Bound: To lower bound (46), we can choose a
suboptimal distribution for which the Xi ’s are independent, i.e.
p(x N ) = ∏N

i=1 p(xi), and each of them satisfies |Xi |2 ≤ Ei

a.s. for some Ei ≥ 0. To satisfy the total energy constraint we
must have

∑N
i=1 Ei ≤ B̄. Under this input distribution, we have

for every i : I (Xi ; Yi ) ≤ 1
2 log(1 + Ei ) ≤ 1

2 log(1 + B̄), and
thus for every N :

N∑
k=1

p2(1 − p)k−1 I (Xk ; Y k)

=
N∑

k=1

p2(1 − p)k−1
k∑

i=1

I (Xi ; Yi )

=
N∑

i=1

N∑
k=i

p2(1 − p)k−1 I (Xi ; Yi )

=
N∑

i=1

p(1 − p)i−1[1 − (1 − p)N−i+1]I (Xi ; Yi )

≥
N∑

i=1

p(1 − p)i−1 I (Xi ; Yi ) − N p(1 − p)N 1

2
log(1 + B̄).

Taking N → ∞, the second term vanishes, and we are left
with the following lower bound:

C ≥ lim
N→∞ max

{Ei }N
i=1:

Ei ≥0 ,i=1,...,N∑N
i=1 Ei≤B̄

N∑
i=1

p(1 − p)i−1 I (Xi ; Yi ).

Again, the sequence is non-decreasing and bounded above,
so the limit exists. Since p(xi ) was arbitrary, we can choose

it to maximize I (Xi ; Yi ). We obtain

C ≥ lim
N→∞ max

{Ei }N
i=1 :

Ei ≥0 ,i=1,...,N∑N
i=1 Ei ≤B̄

N∑
i=1

p(1 − p)i−1CSmith(Ei ), (63)

where

CSmith(E) � max
p(x): X2≤E

I (X; Y ) (64)

is the capacity of the amplitude constrained scalar AWGN
channel studied in [39], where the optimal value for this
mutual information maximization problem is found. Unfor-
tunately, it does not have a closed-form expression, however
it can be lower bounded using the following lemma.

Lemma 1: The capacity of the amplitude constrained scalar
AWGN channel with noise variance 1 can be lower bounded
as follows:

CSmith(E) ≥ 1

2
log(1 + E) − 1

2
log
(πe

2

)
. (65)

Proof: Let X be uniform on the interval [−√
S,

√
S].

Then, using the entropy power inequality:

I (X; X + N) = h(X + N) − h(N)

≥ 1

2
log
(
22h(X) + 22h(N)

)− h(N)

= 1

2
log(4S + 2πe) − 1

2
log(2πe)

= 1

2
log

(
1 + 2S

πe

)

≥ 1

2
log(1 + S) − 1

2
log
(πe

2

)
.

�
Plugging (65) into (63) gives the LHS of (55). �

VI. CONCLUSION

In this paper, motivated by recent developments in energy
harvesting and remotely powered wireless radios, we studied
the capacity of a communication channel with periodic and
random i.i.d. battery recharges. We derived n-letter expressions
for the capacity and used them to show that feedback can
strictly increase the capacity of an energy harvesting channel,
providing a counter example to an old claim by Shannon, and
that noncausal knowledge of the battery recharges can strictly
increase capacity over causal knowledge. An interesting exten-
sion of our setting is provided in [44], where the charger, and
its corresponding charging strategy, and the transmitter are
jointly optimized for maximum capacity. When the charger
is the receiver itself, this more general framework allows to
embed feedback information in the charging strategy.

APPENDIX A
CAPACITY WITH CAUSAL ENERGY ARRIVAL

OBSERVATIONS: PROOF OF THEOREM 1

First, we will show that the limits in (16) and (17) exist.
To this end, observe that (16) is a limit of a non-decreasing
sequence: Let p�(x N ) be the maximizing distribution in (16)
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for a fixed N , and let X N+1 = 0 w.p. 1 (recall we assumed the
existence of the symbol x = 0 in Section II-B). The resulting
distribution p(x N+1) satisfies

∑N+1
k=1 φ(Xk) ≤ B̄, and we have

N∑
k=1

p2(1 − p)k−1 I (Xk ; Y k)

≤
N+1∑
k=1

p2(1 − p)k−1 I (Xk ; Y k)

≤ max
p(x N+1):∑N+1

k=1 φ(Xk)≤B̄

N+1∑
k=1

p2(1 − p)k−1 I (Xk ; Y k),

which is the desired result. Similarly, the sequence
in (17) is non-decreasing. Next, observe that both
sequences in (16) and (17) are upper bounded by
maxp(x): φ(X)≤B̄ I (X; Y ) for every N . Therefore, the limits
exist and are given by:

C = sup
N≥1

max
p(x N ):∑N

k=1 φ(Xk)≤B̄

N∑
k=1

p2(1 − p)k−1 I (Xk ; Y k), (66)

Cfb = sup
N≥1

max
p(x N ‖yN−1):∑N

k=1 φ(Xk)≤B̄

N∑
k=1

p2(1 − p)k−1 I (Xk → Y k). (67)

We prove Theorem 1 for the feedback case first.

A. Achievability

Transmission takes place during n time slots. Communica-
tion is divided into epochs, where an epoch refers to the time
between two consecutive energy arrivals. Each energy arrival
fully recharges the battery. Therefore, the memory, which is
embedded in the state of the battery, is essentially erased.
Hence, we think of each epoch as a super-symbol, and the
epoch length can be thought of as a random state of the
channel, which determines the size of the super-symbol. This
state is available only at the receiver, since the transmitter does
not know in advance what the epoch length will be.

Next, for each epoch length, or state, we use the technique
in [36, Sec. 17.6.3] and [32]. The epochs are divided into inter-
leaved blocks, so that the first block consists of all the symbols
that appear first in each epoch, the second block consists of
all the symbols that appear second in those epochs which
are of length at least 2, and so forth. Note that each block
has a different length, and this length is a random quantity.
In each block, the channel input and output sequences from
previous blocks are treated as causal side information available
at both the transmitter and the receiver. This technique can be
implemented online, i.e. the transmitter does not need to know
the length of the current epoch in order to code correctly.

Rate Splitting: Fix N . Divide the message w into N
independent messages (w1, . . . , wN ), one for each of the
N states of the super-channel. In practice the epoch length
can be larger than N ; in that case, we will treat it as N .
Let Si = (Xi−1, Y i−1). Divide each message wi into the
messages (wi (si ) : si ∈ Si = X i−1 × Y i−1). Thus, R =∑N

i=1
∑

si ∈Si
Ri (si ).

Codebook Generation: Fix a causally conditioned
pmf p(x N ‖y N−1) = ∏N

i=1 p(xi |xi−1, yi−1) satisfying∑N
i=1 φ(Xi ) ≤ B̄ w.p. 1. For every i ∈ {1, . . . , N}

and si ∈ Si , randomly and independently generate
2nRi (si ) codewords xn(wi (si ), si ), each i.i.d. according
to p(xi |xi−1, yi−1).

Encoding: At time t , the transmitter observes the energy
arrivals et , the past input symbols xt−1, and the past output
symbols yt−1. Define jt = jt(et ) as the time since the last
energy arrival (including the current time slot):

jt = {min 1 ≤ τ ≤ t : et−τ+1 = B̄},
If jt > N , the zero symbol is transmitted: xt = 0. Otherwise,
the transmitter treats the sequences

(xt−1
t− jt+1, yt−1

t− jt+1) ∈ S jt

as causal state information, available at both the transmitter
and the receiver. As in [36, Sec. 7.4.1], the codewords are
stored in a FIFO buffer, and at time t , the first untransmitted
symbol corresponding to the current state is transmitted. Note
that this guarantees the energy constraint (3) is satisfied.

Decoding Step 1 (Demultiplexing): The decoder observes
(yn, en). The sequence en can be mapped in a sequence of
epoch lengths 	m = (	1, . . . , 	m), where m = m(en) is the
total number of energy arrivals, m(en) = ∑n

t=1 1{et = B̄}.
Denote by τ1 < τ2 < . . . < τm the energy arrival times, that
is

Et =
{

B̄, t ∈ {τ1, . . . , τm}
0, otherwise

Recall that by assumption, e1 = B̄, hence τ1 = 1. The epoch
length 	i = 	i (en) is the time between the i -th and (i + 1)-th
energy arrivals: 	i = τi+1 −τi for i = 1, . . . , m−1, and we let
	m = n + 1 − τm . The decoder demultiplexes the sequence yn

into subsequences of various super-symbols in the following
way: For 1 ≤ k < N , the sequence yk = ((yk)1, . . . , (yk)mk )
consists of all the tuples yk that form epochs of length k.
For k = N , the sequence yN consists of all the tuples y N that
form the first N symbols of epochs of length N or greater. We
denote the length of the sequence yk by mk , which is exactly
the number of epochs of length k for k < N , and mN is the
number of epochs of length ≥ N . Hence m = ∑N

k=1 mk . The
empirical distribution of the epoch lengths is given by

π(k|	m) = mk

m
= 1

m

m∑
i=1

1{	i ∧ N = k}, k = 1, . . . , N,

where 1{·} is the indicator function and a ∧ b � min(a, b).
Let q(k) be the pmf of L ∧ N , where L ∼ Geometric(p):

q(k) =
{

p(1 − p)k−1, k = 1, . . . , N − 1

(1 − p)N−1, k = N
(68)

Since there is a one-to-one mapping between the sequence en

and the sequence 	m , we define the following typical set in
En with a slight abuse of notation:

T (n)
ε (L) = {en : |m/n − p| ≤ εp and

|π(k|	m) − q(k)| ≤ εq(k),∀1 ≤ k ≤ N},
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Fig. 10. Illustration of the demultiplexing and decoding performed at the
receiver. The top part shows the signals Xt and Yt , both of length 10, along
with the energy arrivals at times 1, 4, 6, and 8. The receiver demultiplexes the
signal Y n to obtain the bottom part of the figure. The bottom part illustrates
decoding of block 2: In this specific example, the receiver decides on a
codeword xn(ŵ2) using the state information S2. For the purpose of this
illustration, suppose the state S2 is the same for all symbols of block 2, i.e.
x1 = x4 = x6 = x8 and y1 = y4 = y6 = y8. Then, the receiver will look for
a codeword x̂4 for which the pair (x̂1, x̂4) is jointly typical with (y3

2 , y10
9 ),

while simultaneously the pair (x̂2, x̂3) is jointly typical with (y5, y7).

which is the set of all typical en sequences for which
	m = 	m(en) is also typical. The receiver declares an error
if en �∈ T (n)

ε (L). Otherwise, it continues to the next decoding
step.

Decoding Step 2 (Successive Decoding): The decoder recov-
ers w1, . . . , wN successively. We start with block 1, which
consists of the first symbol in each epoch. Note that there
are m = ∑N

k=1 mk such symbols. Assuming en ∈ T (n)
ε (L),

we have

mk ≥ m(1 − ε)q(k) ≥ n(1 − ε)2 pq(k), ∀k ∈ {1, . . . , N}.
The decoder finds ŵ1 such that the codeword subsequences
xn(1−ε)2 pq(k), consisting of the first symbol of each epoch
of length k, are jointly typical with (yk)n(1−ε)2 pq(k), simul-
taneously for all k = 1, . . . , N . Note that for successful
decoding to occur, there has to be one such ŵ1 for which
all the appropriate subsequences of xn(ŵ1) are jointly typical
with the output subsequences as described above. Next, for
block j , 1 < j ≤ N , which consists of the j -th symbol in
each epoch of length ≥ j , the decoder forms the state sequence
estimate ŝ j = (x̂ j−1, y j−1) from the codeword estimates and
output sequences from the previous blocks. It then further
demultiplexes each of the output subsequences into |S j | sub-
subsequences accordingly, and finds a unique index ŵ j (s j ) for
each s j , according to joint typicality across all subsequences
for k = j, . . . , N as was done for the first block. Note that
subsequences 1, . . . , j −1 are not included since block j does
not contain symbols from epochs of length less than j . The
demultiplexing and decoding steps are illustrated in Fig. 10.

Analysis of the Probability of Error: By the strong law of
large numbers m(en)/n → p a.s., hence m → ∞, which
implies π(k|	m) → q(k) a.s. Therefore En ∈ T (n)

ε with high
probability. Next, by the i.i.d. nature of the encoding and the

memorylessness of the channel, the probability of error for
decoding w1 is

2nR1 · 2−n(1−ε)2 pq(1)I (X1;Y1)

×2−n(1−ε)2 pq(2)I (X1;Y 2) · · · 2−n(1−ε)2 pq(N)I (X1;Y N ),

which goes to zero if R1 <
∑N

k=1 pq(k)I (X1; Y k). Similarly,
for block j , 1 < j ≤ N , we get vanishing probability of error
if

R j <

N∑
k= j

pq(k)I (X j ; Y k
j |Sj )

=
N∑

k= j

pq(k)I (X j ; Y k
j |X j−1, Y j−1)

=
N∑

k= j

pq(k)

k∑
i= j

I (X j ; Yi |X j−1, Y i−1).

The total rate must satisfy

R <

N∑
j=1

N∑
k= j

pq(k)

k∑
i= j

I (X j ; Yi |X j−1, Y i−1)

=
N∑

k=1

pq(k)

k∑
j=1

k∑
i= j

I (X j ; Yi |X j−1, Y i−1)

=
N∑

k=1

pq(k)

k∑
i=1

i∑
j=1

I (X j ; Yi |X j−1, Y i−1)

=
N∑

k=1

pq(k)

k∑
i=1

I (Xi ; Yi |Y i−1)

=
N∑

k=1

pq(k)I (Xk → Y k).

By (68), q(k) ≥ p(1 − p)k−1 for all 1 ≤ k ≤ N , hence

Cfb ≥ max
p(x N ‖yN−1):∑N

k=1 φ(Xk)≤B̄

N∑
k=1

p2(1 − p)k−1 I (Xk → Y k) (69)

for every N ≥ 1, which implies the achievability part of (67).

B. Converse
By Fano’s inequality:

n R ≤ I (W ; Y n, En) + nεn

= I (W ; Y n |En) + nεn

=
n∑

t=1

I (W ; Yt |Y t−1, En) + nεn

(i)=
n∑

t=1

I (Xt ; Yt |Y t−1, En) + nεn

(ii)≤
n∑

t=1

I (Xt ; Yt |Y t−1, Et ) + nεn (70)

where (i) and (ii) are because Xt = ft (W, Et , Y t−1) and
because the channel is memoryless. The final term in (70)
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can be written as:

I (Xn; Yn |Y n−1, En)

= pI (Xn; Yn |Y n−1, En−1, en = B̄)

+ (1 − p)I (Xn; Yn|Y n−1, En−1, en = 0). (71)

We upper bound the first term as follows:

pI (Xn; Yn |Y n−1, En−1, en = B̄)
(i)≤ p[H (Yn) − H (Yn|Xn)]
(ii)≤ max

p(x): φ(X)≤B̄
pI (X; Y )

� a1, (72)

where (i) is because the channel is memoryless and (ii) is
because en = B̄ implies Bn = B̄ . Next, we can write
the second term in (71) as follows:

(1 − p)I (Xn; Yn |Y n−1, En−1, en = 0)

= p(1 − p)I (Xn; Yn |Y n−1, En−2, en
n−1 = [B̄ 0])

+ (1 − p)2 I (Xn; Yn|Y n−1, En−2, en
n−1 = [0 0]). (73)

Similarly, the t = n − 1 term in (70) can be written as:

I (Xn−1; Yn−1|Y n−2, En−1)

= pI (Xn−1; Yn−1|Y n−2, En−2, en−1 = B̄)

+ (1 − p)I (Xn−1; Yn−1|Y n−2, En−2, en−1 = 0). (74)

The first term in (73) and the first term in (74) can be
upper bounded in a similar manner to (72), which is done in
equations (75)–(77) at the bottom of the page. The input pmf
p(x2‖y1) = p(x1)p(x2|x1, y1) in (76) is due to the encoder
function (11).

Combining (71)–(74) and (77), we obtain the following
upper bound on the last two terms of (70):

n∑
t=n−1

I (Xt ; Yt |Y t−1, Et )

≤ a1 + a2

+ (1 − p)I (Xn−1; Yn−1|Y n−2, En−2, en−1 = 0)

+ (1 − p)2 I (Xn; Yn|Y n−1, En−2, en
n−1 = [0 0]).

Continuing in this fashion, we obtain:
n∑

t=2

I (Xt ; Yt |Y t−1, Et )

≤
n−1∑
k=1

ak +
n∑

t=2

(1 − p)t−1 I (Xt ; Yt |Y t−1, E1, et
2 = 0t−1),

(78)

where 0t−1 is a vector of t − 1 zeros, and

ak � max
p(xk‖yk−1):∑k
t=1 φ(Xt )≤B̄

{
k∑

t=1

p(1 − p)t−1 I (Xt ; Yt |Y t−1)

}

for k = 1, . . . , n. By assumption, E1 = B̄ w.p. 1, hence
the second term in (78) along with I (X1; Y1|E1) is upper
bounded by an/p, giving:

n R ≤
n∑

t=1

I (Xt ; Yt |Y t−1, Et ) + nεn

≤
n−1∑
k=1

ak + an/p + nεn . (79)

Since (79) is true for any n ≥ 1 and any R, we can take the
limit n → ∞ and sup over all rates to obtain:

Cfb ≤ lim inf
n→∞

1

n

[
n∑

k=1

ak + 1−p
p an

]

(i)= lim
n→∞ an

= lim
n→∞ max

p(xn‖yn−1):∑n
t=1 φ(Xt )≤B̄

n∑
t=1

p(1− p)t−1I (Xt ; Yt |Y t−1), (80)

where (i) is because the sequence {an}∞n=1 converges. This
follows by the same reasoning as in the beginning of this
proof (see discussion leading to (66) and (67)), i.e. the
sequence ak is non-decreasing and bounded above, hence it
has a limit. Continuing to upper bound (80), we have for every
n and every p(xn‖yn−1) for which

∑n
t=1 φ(Xt ) ≤ B̄ w.p. 1:

n∑
t=1

p(1 − p)t−1 I (Xt ; Yt |Y t−1)

(i)=
n∑

t=1

p(1 − p)t−1 I (Xt ; Yt |Y t−1)

(ii)≤
n∑

t=1

p[(1 − p)t−1 − (1 − p)n]I (Xt ; Yt |Y t−1)

+ np(1 − p)n max
p(x): φ(X)≤B̄

I (X; Y )

(iii)=
n∑

t=1

n∑
k=t

p2(1 − p)k−1 I (Xt ; Yt |Y t−1) + εn

=
n∑

k=1

k∑
t=1

p2(1 − p)k−1 I (Xt ; Yt |Y t−1) + εn (81)

p(1 − p)I (Xn; Yn|Y n−1, En−2, en
n−1 = [B̄ 0]) + pI (Xn−1; Yn−1|Y n−2, En−2, en−1 = B̄)

≤ pI (Xn−1; Yn−1|en−1 = B̄) + p(1 − p)I (Xn; Yn |Yn−1, en
n−1 = [B̄ 0]) (75)

≤ max
p(x2‖y1):

φ(X1)+φ(X2)≤B̄

{pI (X1; Y1) + p(1 − p)I (X2; Y2|Y1)} (76)

� a2 (77)
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=
n∑

k=1

p2(1 − p)k−1 I (Xk → Y k) + εn, (82)

where (i) is because the channel is memoryless, implying the
Markov chain Xt−1−Xt −Yt ; (ii) is because I (Xt ; Yt |Y t−1) ≤
maxp(x): φ(X)≤B̄ I (X; Y ); and (iii) follows from the geometric
series

∑n
k=t p(1 − p)k−1 = (1 − p)t−1 − (1 − p)n and

denoting εn = np(1 − p)n maxp(x): φ(X)≤B̄ I (X; Y ). Note that
limn→∞ εn = 0. Substituting (82) in (80) yields the converse
part of (17).

C. No-Feedback Case

The proof for the no-feedback case is very similar, and
follows with some minor modifications. In the achievability
proof, the state variable is Si = Xi−1, since the transmitter
does not observe Y i−1. Accordingly, the input pmf is p(x N ) =∏N

i=1 p(xi |xi−1). Hence rate R j is upper bounded by

R j <

N∑
k= j

pq(k)I (X j ; Y k |X j−1)

and the total rate is

R <

N∑
j=1

N∑
k= j

pq(k)I (X j ; Y k |X j−1)

=
N∑

k=1

k∑
j=1

pq(k)I (X j ; Y k |X j−1)

=
N∑

k=1

pq(k)I (Xk; Y k).

Similarly to (69), the achievability part of (66) follows.
For the converse part, we repeat the steps leading to (82)

where the input pmf is now of the form p(x N ) =∏N
i=1 p(xi |xi−1). In this case, we have the Markov chain

Y i−1 − Xi−1 − Xi , and thus for any t ≤ k:

I (Xk ; Yt |Y t−1) = I (Xt ; Yt |Y t−1) + I (Xk
t+1; Yt |Xt , Y t−1)

= I (Xt ; Yt |Y t−1)+
k∑

i=t+1

I (Xi ; Yt |Xi−1, Y t−1)

= I (Xt ; Yt |Y t−1).

Substituting in (81) yields

n∑
k=1

k∑
t=1

p2(1 − p)k−1 I (Xt ; Yt |Y t−1)

=
n∑

k=1

k∑
t=1

p2(1 − p)k−1 I (Xk ; Yt |Y t−1)

=
n∑

k=1

p2(1 − p)k−1 I (Xk ; Y k),

which is the converse part of (16).

APPENDIX B
CAPACITY WITH NONCAUSAL ENERGY ARRIVAL

OBSERVATIONS: PROOF OF THEOREM 2

As before, it is not hard to see that (18) and (19) are limits
of non-decreasing sequences bounded above, so convergence
is guaranteed, and the limits are given by the supremum over
N ≥ 1. Again, we start with the feedback case; the proof
without feedback will follow exactly the same lines.

A. Achievability

Fix N and maximizing distributions {p(xk‖yk−1)}N
k=1

in (19). Divide the message w into N messages w1, . . . , wN ,
such that R = ∑N

k=1 Rk . Upon observing en , the transmitter
and receiver divide the transmission into epochs. Each epoch
can be considered as a super-symbol and the epoch length can
be thought of as the random state of the channel determining
the size of the inputted super-symbol. We communicate a
codeword of rate Rk over each state k (Since the epoch length
can take any value between 1 and n, we treat all epochs
longer than or equal to N as the state k = N). For each
state k, we generate a codeword where each super-symbol xk

is generated according to the pmf p(xk‖yk−1). Note that this
guarantees the energy constraint (3) is satisfied. For decoding
the codeword corresponding to state k, we use the technique
in [32] and [36, Sec. 17.6.3] as before. The subcodeword
formed by the j -th symbol inside the super-symbol xk is
decoded separately for 1 ≤ j ≤ k by treating the earlier
decoded subcodewords and the corresponding channel outputs
as side information. In this case, however, we use only symbols
belonging to the same state, or epoch length, since symbols
in epochs of different lengths will be distributed according to
different pmf’s.

Recall mk and q(k), k = 1, . . . , N , from Appendix A-A on
page 49. Assuming en is typical as defined in Appendix A-A,
there are mk ≥ n(1 − ε)2 pq(k) epochs of length k. The
probability of error for decoding wk is

2nRk · 2−mk I (X1;Y k)

×2−mk I (X2;Y k
2 |X1,Y1) · · · 2−mk I (Xk ;Yk |Xk−1,Y k−1).

The achievable rate for state k is then given by

Rk = pq(k)

k∑
j=1

I (X j ; Y k
j |X j−1, Y j−1)

= pq(k)

k∑
j=1

k∑
i= j

I (X j ; Yi |X j−1, Y i−1)

= pq(k)

k∑
i=1

I (Xi ; Yi |Y i−1)

= pq(k)I (Xk → Y k)

and the total rate is

R =
N∑

k=1

pq(k)I (Xk → Y k)

≥
N∑

k=1

p2(1 − p)k−1 I (Xk → Y k).
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This is a lower bound to capacity for every N ≥ 1, therefore
we can take the supremum to obtain

Cnc
fb ≥ sup

N≥1

N∑
k=1

p2(1 − p)k−1 I (Xk → Y k),

which is the achievability part of (19).

B. Converse

By Fano’s inequality:

n R ≤ I (W ; Y n |En) + nεn

=
n∑

t=1

I (W ; Yt |Y t−1, En) + nεn

=
n∑

t=1

I (Xt ; Yt |Y t−1, En) + nεn

=
∑
en

p(en)

n∑
t=1

I (Xt ; Yt |Y t−1, En = en) + nεn . (83)

Recall the definition of m = m(en), 	m , and τm in Appen-
dix A-A, and let τm+1 = n + 1. For a fixed en , we can further
bound the expression in (83) as

n∑
t=1

I (Xt ; Yt |Y t−1, En = en)

(i)≤
m∑

i=1

τi+1−1∑
t=τi

I (Xt ; Yt |Y t−1
τi

, En = en)

(ii)=
m∑

i=1

τi+1−1∑
t=τi

I (Xt
τi
; Yt |Y t−1

τi
, En = en)

=
m∑

i=1

I (X τi+1−1
τi → Y τi+1−1

τi |En = en)

(iii)≤
m∑

i=1

	i C
per
fb (	i ),

where (i) and (ii) are because the channel is memoryless,
and (iii) is due to (21). Taking n → ∞, we get

Cnc
fb ≤ lim inf

n→∞
1

n
E

⎡
⎣m(En)∑

i=1

	i (En) · Cper
fb

(
	i (En)

)⎤⎦ , (84)

where the expectation is over the RV En . By the strong
law of large numbers for regenerative processes [45, Ch. VI,
Thm. 31]:

1

n

m(En)∑
i=1

	i (En) · Cper
fb

(
	i (En)

) → p · E[L · Cper
fb (L)] a.s.,

where L is a geometric RV with parameter p. Moreover, since
Cper

fb (k) ≤ maxp(x): φ(X)≤B̄ I (X; Y ) and n = ∑m(en )
i=1 	i (en) for

any en:

1

n

m(En )∑
i=1

	i (En) · Cper
fb

(
	i (En)

) ≤ max
p(x):

φ(X)≤B̄

I (X; Y ) w.p. 1,

Therefore, by dominated convergence [46, Thm. 1.5.6],
the lim inf in (84) is a lim and it is given by

Cnc
fb ≤ p · E[L · Cper

fb (L)]

= p
∞∑

k=1

p(1 − p)k−1kCper
fb (k)

=
∞∑

k=1

p2(1 − p)k−1 max
p(xk‖yk−1):∑k
i=1 φ(Xi )≤B̄

I (Xk → Y k),

which completes the proof of the converse part for (19).
The proof for the channel without feedback follows by

repeating the above steps and applying the modifications
appearing in Appendix A-C.

APPENDIX C
CAPACITY FORMULAS FOR ARBITRARY ALPHABETS

In this section, we will show the capacity expressions
(16)–(21) are valid also when the input and output alphabets
are arbitrary sets, such as the AWGN channel. First, observe
that the converse parts follow without change, since the finite-
alphabet assumption was not used in the proofs. It therefore
remains to show the achievability parts; we will focus on
the capacity expression for periodic energy arrivals (21) for
simplicity, however the derivation applies to all capacity results
in Section III.

We follow the technique in [37, Ch. 7]. Fix a finite set
of input symbols X̄ ⊆ X , |X̄ | < ∞, and denote by X̄ an
RV taking values in this set. Next, fix a partition P of the
output space Y into a finite number of disjoint sets, and denote
by [Y ]P the RV indicating the partition to which the output
Y belongs. This defines a DMC with transition probability
Pr([Y ]P = B | X̄ = a) = ∫

B p(dy|a), where p(y|x) is the
transition probability of the original channel.

We can apply our achievability scheme for this DMC, and
obtain the following achievable rate for the original channel,
for any finite set X̄ and any partition P of the output space Y:

R = max
p(x̄ k‖[y]k−1

P ):∑k
i=1 φ(X̄i )≤B̄

1

k
I (X̄ k → [Y ]k

P ).

Taking the supremum over all finite sets X̄ , and taking the
limit of finer and finer partitions of Y , we have the following
lower bound on capacity:

Cper
fb (k) ≥ sup

X̄
lim
finerP

max
p(x̄ k‖[y]k−1

P ):∑k
i=1 φ(X̄i )≤B̄

1

k
I (X̄ k → [Y ]k

P). (85)

The above limit of finer and finer partitions should be
understood as a sequence of partitions, where each partition
“approximates” the output space Y better than its predecessor.
For example, one can take the limit as n → ∞ of Pn =
{−n�,−(n − 1)�, . . . ,−�, 0,�, . . . , n�} with � = 1/

√
n

as in [36, Sec. 3.4.1], where the quantization [Y ]Pn is the
closest point to Y .

To show (85) reduces to (21), we start with the following
lemma.
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Lemma 2: For a fixed set of input symbols X̄ ⊆ X ,
|X̄ | < ∞, the following holds:

lim
finer
P

max
p(x̄ k‖[y]k−1

P ):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → [Y ]k
P )

= max
p(x̄ k‖yk−1):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → Y k). (86)

Applying Lemma 2 to (85) yields

Cper
fb (k) ≥ sup

X̄
max

p(x̄ k‖yk−1):∑k
i=1 φ(X̄i )≤B̄

1

k
I (X̄ k → Y k)

= max
p(xk‖yk−1):∑k
i=1 φ(Xi )≤B̄

1

k
I (Xk → Y k),

where the optimal input distribution p(xk‖yk−1) can be
approached arbitrarily closely by an input distribution on a
large enough set of discrete input symbols. Along with the
converse part, this concludes the proof of (21) for general
input and output alphabets. It remains to prove Lemma 2.

Proof of Lemma 2: We show inequalities in both direc-
tions. Fix a partition P , and fix an input distribution
p(x̄ k‖[y]k−1

P ) for which
∑k

i=1 φ(X̄i ) ≤ B̄ almost surely.
One can construct an input distribution p(x̄ k‖yk−1) causally
conditioned on the original (unpartitioned) output space Y ,
by setting p(x̄ k‖yk−1) = p(x̄ k‖[y]k−1

P ) for all yk−1 ∈ [y]k−1
P .

Similarly, for any partition P ′ which is a subpartition of P
(that is, every set in P is a union of sets in P ′), we construct
an input distribution p(x̄ k‖[y]k−1

P ′ ) in the same way. Denote
the directed information evaluated under this input distribution
by I (X̄ k → [Y ]k

P ′)
∣∣

p(x̄ k‖[y]k
P )

. We have, for any partition P ′
which is a subpartition of P :

max
p(x̄ k‖[y]k−1

P ′ ):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → [Y ]k
P ′) ≥ I (X̄ k → [Y ]k

P ′)
∣∣∣

p(x̄ k‖[y]k−1
P )

.

Note that for any partition P ′ which is finer than P , if it is
not a subpartition of P , one can find an even finer partition
which is a subpartition of P . Hence, taking the limit of finer
and finer partitions:

lim inf
finer
P ′

max
p(x̄ k‖[y]k−1

P ′ ):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → [Y ]k
P ′)

≥ lim inf
finer
P ′

I (X̄ k → [Y ]k
P ′)
∣∣∣

p(x̄ k‖[y]k−1
P )

= I (X̄ k → Y k)
∣∣∣

p(x̄ k‖[y]k−1
P )

.

Since the LHS does not depend on P and the distribution
p(x̄ k‖[y]k−1

P ), we can take P to be arbitrarily fine and maxi-
mize over all input distributions to obtain:

lim inf
finer
P ′

max
p(x̄ k‖[y]k−1

P ′ ):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → [Y ]k
P ′)

≥ max
p(x̄ k‖yk−1):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → Y k).

For the other direction, again fix a partition P and an input
distribution p(x̄ k‖[y]k−1

P ). As before, construct a distribution
p(x̄ k‖yk−1) such that p(x̄ k‖yk−1) = p(x̄ k‖[y]k−1

P ) for all
yk−1 ∈ [y]k−1

P . Observe that this induces the Markov chains

X̄t − (X̄ t−1, [Y ]t−1
P ) − Y t−1, t = 1, . . . , k. (87)

The directed information under this distribution can be lower
bounded as follows:

I (X̄ k → Y k)

=
k∑

t=1

I (X̄ t ; Yt |Y t−1)

(i)=
k∑

i=1

I (X̄i ; Y k
i |X̄ i−1, Y i−1)

(ii)=
k∑

i=1

[
H (X̄i |X̄ i−1, Y i−1, [Y ]i−1

P )

− H (X̄i |X̄ i−1, Y k, [Y ]k
P )
]

(iii)≥
k∑

i=1

[
H (X̄i |X̄ i−1, [Y ]i−1

P ) − H (X̄i |X̄ i−1, [Y ]k
P)
]

= I (X̄ k → [Y ]k
P),

where (i) is by using the chain rule and changing the order
of summation; (ii) is because [Y ]P is a function of Y ; and
(iii) is due to the Markov chain (87) and because conditioning
reduces entropy.

We get

I (X̄ k → [Y ]k
P)
∣∣∣

p(x̄ k‖[y]k−1
P )

≤ I (X̄ k → Y k)
∣∣∣

p(x̄ k‖[y]k−1
P )

≤ max
p(x̄ k‖yk−1):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → Y k).

Since the RHS does not depend on the distribution
p(x̄ k‖[y]k−1

P ), we maximize to obtain:

max
p(x̄ k‖[y]k−1

P ):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → [Y ]k
P) ≤ max

p(x̄ k‖yk−1):∑k
i=1 φ(X̄i )≤B̄

I (X̄ k → Y k).

Taking the limit of finer and finer partitions, we obtain the
other direction of (86). �

APPENDIX D
OPTIMAL ONLINE POWER CONTROL

We solve the maximization problem in (56). Writing the
problem in standard form and using KKT conditions, we have
for i = 1, . . . , N :

−p(1 − p)i−1 1

2

1

1 + Ei
− λi + λ̃ = 0,

with λi , λ̃ ≥ 0 and the complementary slackness conditions:
λiEi = 0 and λ̃(

∑N
i=1 Ei − B) = 0.

To obtain the non-zero values of Ei , we set λi = 0:

Ei = p(1 − p)i−1

2λ̃
− 1. (88)
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Since Ei ≥ 0, this implies λ̃ ≤ p(1−p)i−1

2 for all i for which
Ei > 0. This is a decreasing function of i , therefore there
exists an integer Ñ such that Ei > 0 for i = 1, . . . , Ñ and
Ei = 0 for i > Ñ . Therefore Ñ is the largest integer satisfying
Ñ ≤ N and

λ̃ ≤ 1

2
p(1 − p)Ñ−1. (89)

Next, consider the total energy constraint
∑N

i=1 Ei ≤ B̄.
Since increasing Ei for any i will only increase the objective,
this constraint must hold with equality:

B̄ =
N∑

i=1

Ei

=
Ñ∑

i=1

(
p(1 − p)i−1

2λ̃
− 1

)

= 1 − (1 − p)Ñ

2λ̃
− Ñ .

This yields:

λ̃ = 1 − (1 − p)Ñ

2(B̄ + Ñ )
. (90)

Along with (89), we deduce that Ñ is the largest integer
satisfying Ñ ≤ N and

1 − (1 − p)Ñ

2(B̄ + Ñ )
≤ p(1 − p)Ñ

2
,

or equivalently

1 ≤ (1 − p)Ñ [1 + p(B̄ + Ñ )].
Observe that for N large enough, the optimal Ñ does not
depend on N , and will simply be the smallest positive integer
satisfying 1 > (1− p)Ñ [1+ p(B̄ + Ñ)]. The optimal sequence
{Ei }∞i=1 in (57) is obtained by substituting (90) in (88) for
i = 1, . . . , Ñ , and Ei = 0 for i > Ñ . Substituting the optimal
Ei in the optimization objective yields (59). �

APPENDIX E
NONCAUSAL CAPACITY BOUNDS: PROOF OF

PROPOSITION 4

We prove Proposition 4 following the same steps as in the
previous sections. For the upper bound, we can similarly relax
the energy constraint in (47) to be only in expectation, thus
giving an upper bound:

Cnc ≤
∞∑

k=1

p2(1 − p)k−1 max
p(xk):

E‖Xk‖2≤B̄

I (Xk ; Y k)

=
∞∑

k=1

p2(1 − p)k−1 k

2
log(1 + B̄/k),

where the last line is a known result for vector Gaussian
channels.

We derive a lower bound for (47) by considering a subopti-
mal input distribution. Let p(xk) = ∏k

i=1 pk(xi ), where pk(x)

is some distribution for which X2 ≤ B̄/k a.s. We then have
the following lower bound:

Cnc ≥
∞∑

k=1

p2(1 − p)k−1kCSmith(B̄/k), (91)

where CSmith(E) is defined in (64). The expression has been
evaluated numerically using the algorithm suggested in [39]
and plotted in Figure 9.

Next, using Lemma 1, we can further lower bound (91) to
obtain (61).
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