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Abstract—In this paper, a general binary-input binary-output
(BIBO) channel is investigated in the presence of feedback and
input constraints. The feedback capacity and the optimal input
distribution of this setting are calculated for the case of an(1,∞)-
RLL input constraint, that is, the input sequence contains no
consecutive ones. These results are obtained via explicit solution
of an equivalent dynamic programming optimization problem.
A simple coding scheme is designed based on the principle
of posterior matching, which was introduced by Shayevitz and
Feder for memoryless channels. The posterior matching scheme
for our input-constrained setting is shown to achieve capacity
using two new ideas:history bits, which captures the memory
embedded in our setting, andmessage-interval splitting, which
eases the analysis of the scheme. Additionally, in the special case
of an S-channel, we give a very simple zero-error coding scheme
that is shown to achieve capacity. For the input-constrained BSC,
we show using our capacity formula that feedback increases
capacity when the cross-over probability is small.

Index Terms—Binary channels, dynamic programming, feed-
back capacity, posterior matching scheme, runlength-limited
(RLL) constraints.

I. I NTRODUCTION

Consider the binary symmetric channel (BSC), described in
Fig. 1 with α = β, in the presence of output feedback. This
setting is well understood in terms of capacity,C = 1−H2(α),
but also in terms of efficient and capacity-achieving coding
schemes such as the Horstein scheme [1] and the posterior
matching scheme (PMS) [2]. However, imposing constraints
on the input sequence, even in the simplest cases, makes the
capacity calculation challenging, since this setting is equivalent
to a finite-state channel. A special case of the setting studied
here is the BSC with feedback and a no-consecutive-ones
input constraint (Fig. 2), that is, the channel input sequence
cannot contain adjacent ones. We will show for instance, that
its feedback capacity still has a simple expression:

C = max
p

H2(p) + pH2

(
α(1−α)

p

)

1 + p
−H2(α), (1)

and that there exists an efficient coding scheme that achieves
this feedback capacity. It is also interesting to understand
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Fig. 1. BIBO channel with transition probabilities(α, β). Special cases are
the Z and S channels, which correspond toα = 0 andβ = 0, respectively,
and the BSC whenα = β.

the role of feedback on capacity when input constraints are
present, and it will be proven that in contrast to the uncon-
strained BSC,feedback does increase capacityfor the input-
constrained BSC.

The capacity of input-constrained memoryless channels has
been extensively investigated in the literature, but still there are
no computable expressions for the capacity without feedback
[3]–[7]. On the other hand, in [8], it was shown that if there
is a noiseless feedback link to the encoder (Fig. 2), then the
feedback capacity can be formulated as a dynamic program-
ming (DP) problem, for which there exist efficient numerical
algorithms for capacity computation [9]–[16]. However, as
indicated by the authors of [8], analytic expressions for the
feedback capacity and the optimal input distributions are still
hard to obtain and remain an open problem. In this paper,
both feedback capacity and the optimal input distribution of
the binary-input binary-output (BIBO) channel (Fig. 1) with
a no-consecutive-ones input constraint are derived by solving
the corresponding DP problem. The BIBO channel includes
as special cases the BSC (α = β), which was studied in [8],
theZ-channel (α = 0) and theS-channel (β = 0).

Shannon proved that feedback does not increase the capacity
of a memoryless channel [17]; following the proof of his
theorem, he also claimed that “feedback does not increase
the capacity for channels with memory if the internal channel
state can be calculated at the encoder”. The input-constrained
setting studied here can be cast as a state-dependent channel,
so it fits Shannon’s description of such a channel. Therefore,
we investigate the role of feedback for the special case of
input-constrained BSC. In the regimeα → 0, the feed-
back capacity from (1) is compared with a corresponding
expression obtained for the capacity without feedback [18].
This comparison reveals that feedback increases capacity, at
least for small enough values ofα for the input-constrained
BSC in contrast to Shannon’s claim. However, this is not
the first counterexample to Shannon’s claim; two other such
counterexamples can be found in [19], [20].
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Fig. 2. System model for an input-constrained memoryless channel with
noiseless feedback.

In past works on channels with memory, such as [11]–
[14], the optimal input distribution provided insights into
the construction of simple coding schemes with zero error
probability. This methodology also works for theS-channel,
for which we are able to give a simple zero-error coding
scheme. The coding scheme is similar to the ”repeat each bit
until it gets through” policy that is optimal for a binary erasure
channel with feedback. In our case, each bit is repeated with its
complement untilY = 0 is received, so the formed sequence is
of alternating bits and satisfies the input constraint. However,
a coding scheme for the general BIBO channel is challenging
since p(y|x) > 0, for all (x, y), and therefore, there is no
particular pattern of outputs for which a bit can be decoded
with certainty. Nonetheless, we are able to use the structure of
the optimal input distribution to give a simple coding scheme,
based on the principle of posterior matching as is elaborated
below.

Two fundamental schemes on sequential coding for mem-
oryless channels with feedback date back to the work of
Horstein [1] for the BSC, and that of Schalkwijk and Kailath
[21] for the additive white Gaussian noise (AWGN) channel.
In [2], Shayevitz and Feder established the strong connection
between these coding schemes by introducing a generic coding
scheme, termed theposterior matching scheme(PMS), for all
memoryless channels. This work provided a rigorous proof
for the optimality of such sequential schemes, a fact that may
be intuitively correct but difficult to prove. Subsequent works
proved the coding optimality using different approaches [22],
[23], including an original idea by Li and El Gamal in [24] to
introduce a randomizer that is available both to the encoder and
the decoder. This assumption markedly simplifies the coding
analysis, and it was adopted thereafter by [25] to simplify
their original analysis in [2]. In our coding scheme, it is also
assumed that there is a common randomizer available to all
parties as a key step to the derivations of an optimal PMS for
the BIBO channel.

The encoder principle in the PMS is to determine the chan-
nel inputs such that the optimal input distribution is simulated.
For a memoryless channel, the optimal input distribution is
i.i.d. so the encoder simulates the same experiment at all times.
In the input-constrained setting, the input distribution is given
by p(xi|xi−1, y

i−1) (inputs are constrained with probability
1), so the conditioning injects new information on which the
encoder should depend. The first element in the conditioning,
yi−1, can be viewed as a time-sharing (not i.i.d.) since both
the encoder and the decoder know this tuple. Indeed, it is

shown that they do not need to track the entire tupleyi−1, but
a recursive quantization of it on a directed graph. The second
element,xi−1, is a new element in the PMS since it is only
available to the encoder, and it is handled by introducing a
new idea called thehistory bit for each message. The analysis
of the scheme is simplified usingmessage-interval splitting,
which results in a homogenous Markov chain instead of a
time-dependent random process. These two ideas constitute
the core of the PMS for the input-constrained setting, and it
is shown that the coding scheme achieves the capacity of the
general input-constrained BIBO channel.

The remainder of the paper is organized as follows. Sec-
tion II presents our notation and a description of the problem
we consider. Sections III and IV contain statements of the
main technical results of the paper. In Section V, we provide
the PMS for our input-constrained setting, while the optimality
of this scheme is proved in Section VI. The DP formulation
of feedback capacity together with its solution is presented in
Section VII. Section VIII contains some concluding remarks.
Some of the more technically involved proofs are given in
appendices to preserve the flow of the presentation.

II. N OTATION AND PROBLEM DEFINITION

Random variables will be denoted by upper-case letters,
such asX , while realizations or specific values will be denoted
by lower-case letters, e.g.,x. Calligraphic letters, e.g.,X , will
denote the alphabets of the random variables. LetXn denote
the n-tuple (X1, . . . , Xn) and let xn denote the realization
vectors ofn elements, i.e.,xn = (x1, x2, . . . , xn). For any
scalar α ∈ [0, 1], ᾱ stands for ᾱ = 1 − α. Let H2(α)
denote the binary entropy for the scalarα ∈ [0, 1], i.e.,
H2(α) = −α log2 α− ᾱ log2 ᾱ.

The probability mass function (pmf) of a random variable
X is denoted bypX(x), and conditional and joint pmfs are
denoted bypY |X(y|x) and pX,Y (x, y), respectively; when
the random variables are clear from the context we use the
shorthand notationp(x), p(y|x) andp(x, y). The conditional
distribution pY |X is specified by a stochastic matrixPY |X ,
the rows of which are indexed byX , the columns byY, and
the (x, y)th entry is the conditional probabilitypY |X(y|x) for
x ∈ X andy ∈ Y.

The communication setting (Fig. 2) consists of a message
M that is drawn uniformly from the set{1, . . . , 2nR} and
made available to the encoder. At timei, the encoder produces
a binary output,xi ∈ {0, 1}, as a function ofm, and
the output samplesyi−1. The sequence of encoder outputs,
x1x2x3 . . ., must satisfy the(1,∞)-RLL input constraint, i.e.,
no consecutive ones are allowed. The transmission is over the
BIBO channel (Fig. 1) that is characterized by two transition
probabilities,pY |X(1|0) = α and pY |X(0|1) = β, whereα
andβ are scalars from[0, 1]. The channel is memoryless, i.e.,
p(yi|xi, yi−1) = pY |X(yi|xi) for all i.

Definition 1. A (n, 2nR, (1,∞)) codefor an input-constrained
channel with feedback is defined by a set of encoding func-
tions:

fi : {1, . . . , 2nR} × Yi−1 → X , i = 1, . . . , n,
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satisfyingfi(m, yi−1) = 0 if fi−1(m, y
i−2) = 1 (the mapping

f1(·) is not constrained), for all(m, yi−1), and by a decoding
functionΨ : Yn → {1, . . . , 2nR}.

The average probability of errorfor a code is defined as
P

(n)
e = Pr[M 6= Ψ(Y n)]. A rate R is said to be(1,∞)-

achievableif there exists a sequence of(n, 2nR, (1,∞)) codes
such that limn→∞ P

(n)
e = 0. The capacity, Cfb(α, β) is

defined as the supremum over all(1,∞)-achievable rates.
The transition probabilities can be restricted toα+ β ≤ 1,

a fact that is justified by:

Lemma II.1. The capacity of a BIBO channel satisfies
C(α, β) = C(1 − α, 1− β), for all α, β.

Proof: For a channel with parameters(α, β), apply an
invertible mappingỸ = Y ⊕ 1 on channel outputs so that the
capacity remains the same but the parameters are changed to
(1− α, 1 − β).

The proof of the lemma is valid even when the inputs are
constrained and there is feedback to the encoder.

III. M AIN RESULTS

In this section, we present our main results concerning
the feedback capacity of the BIBO channel, and thereafter,
we show that feedback increases capacity for the BSC. The
optimal PMS for the BIBO channel is not included in this
section and appears in Section V.

A. Feedback capacity

The general expression for the feedback capacity is given
by the following theorem

Theorem III.1 (BIBO capacity). The feedback capacity of the
input-constrained BIBO channel is

Cfb(α, β) = max
zL≤z≤zU

Rα,β(z), (3)

whereα+ β ≤ 1, zL =
√
α

√
α+

√
β̄

, zU =
√
ᾱ√

ᾱ+
√
β

and Rα,β(z)

is defined in(2).
The feedback capacity can also be expressed by:

Cfb(α, β) = log

(
1− pα,β

pα,β − αβ̄

)
+ β

H2(α)

1− α− β
− ᾱ

H2(β)

1− α− β
,

(4)

wherepα,β is the unique solution of

(1− αβ̄)[H2(β)−H2(α)]

= (β̄ − α)[2 log(1− p)− log(p− αβ̄)(1 + αβ̄) + αβ̄ logαβ̄].
(5)

The proof of (3) in Theorem III.1 appears in Section VII
and relies on the formulation of feedback capacity as a DP
problem. From the solution of the DP, we only obtain that

the maximization in (3) is overz ∈ [0, 1], but this can be
strengthened using the following result:

Lemma III.1. LetRα,β(z) be as defined in(2) with 0 ≤ z ≤
1. The argument that achieves the maximum ofRα,β(z) is
unique and lies within[zL, zU ], for all α+β ≤ 1. Additionally,
for the BSC (α = β), the maximum is attained when the
argument is within[zL, 0.5].

The proof of Lemma III.1 appears in Appendix A. The
alternative capacity expression (4) is obtained by taking the
derivative of (3) and substituting the resulting relation into
the capacity expression (3). Note that the LHS of (5) is a
decreasing function ofp, and hence, efficient methods can be
applied to calculate (4).

Remark 1. The feedback capacity can also be calculated using
upper and lower bounds from [26], which turn out to meet for
this channel, instead of the DP approach that is taken in this
paper.

Theorem III.1 provides the capacity of three special cases:
the BSC, the S-channel and the Z-channel. Their feedback
capacities are calculated by substituting their corresponding
parameters in Theorem III.1.

Corollary 1 (BSC capacity). The feedback capacity of the
input-constrained BSC(α = β) is

CBSC(α) = max√
αᾱ≤p≤0.5

H2(p) + pH2

(
αᾱ
p

)

1 + p
−H2(α), (6)

whereα ≤ 0.5. An alternative capacity expression is

CBSC(α) = log

(
1− pα
pα − αᾱ

)
−H2(α), (7)

wherepα is the unique solution of(αᾱ)αᾱ(1 − p)2 = (p −
αᾱ)1+αᾱ.

By operational considerations, the feedback capacity in
Theorem III.1 serves as an upper bound for the non-feedback
setting, which is still an open problem. For the BSC, it will
be shown further in Theorem III.2 that feedback increases
capacity, at least for small values ofα, so this upper bound is
not tight.

Corollary 2 (S-channel capacity). The feedback capacity of
the input-constrained S-channel(β = 0) is

CS(α) = max√
α≤p≤1

H2(p) + pH2

(
α
p

)
−H2(α)

1 + p

= max√
α≤p≤1

ᾱ
H2

(
1−p
1−α

)

1 + p
(8)

The capacity can also be expressed by:

CS(α) = log

(
1− pα
pα − α

)
, (9)

Rα,β(z) =
H2(αz̄ + β̄z) + (αz̄ + β̄z)H2

(
αβ̄

αz̄+β̄z

)
− (z̄ + β̄z)H2(α)− (z + αz̄)H2(β)

1 + αz̄ + β̄z
. (2)
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wherepα is the unique solution of(1− p)2 = (p−α)1+αᾱᾱ.

The second capacity expression in (8) reveals a simple zero-
error coding scheme for the S-channel. To describe this, we
first fix a z ∈ (0, 1), and consider a set,M, consisting of
|M| = 2NH2(z) messages, whereN is a large integer.1 The
coding scheme operates in two stages:

1) Message shaping: The set of messages,M, is mapped
in a one-to-one fashion into the set of length-N binary
sequences containingNz 1s. Thus, each message is
identified with a binary sequence of lengthN with
fraction of1s equal toz. This “message shaping” can be
implemented, for instance, using the enumerative source
coding technique [27, Example 2].

2) Message transmission: Each of the N bits,
b1, b2, . . . , bN , in the shaped message sequence
is transmitted by the encoder using the following
procedure:

To send the message bitb, the encoder transmits
the sequenceb b b b . . ., whereb denotes the com-
plement (NOT) ofb, until a 0 is received at the
channel output, at which point the transmission is
stopped.

Note that ify1y2 . . . yℓ−10 is the sequence received at the
S-channel output in response to the transmission of the
message bitb, then the decoder can determine whether
b = 0 or b = 1 from the parity ofℓ: if ℓ is odd, then
b = 0; if ℓ is even, thenb = 1.

By the law of large numbers, the number ofS-channel
uses needed for the transmission of anN -bit shaped message
sequence is close toN × E[Lz], whereE[Lz] denotes the
expected number of transmissions needed for sending a single
Bernoulli(z) bit b using the procedure described above. It is
easy to check thatE[Lz] equals

z̄ᾱ

∞∑

k=1

(2k − 1)αk−1 + zᾱ

∞∑

k=1

2kαk−1 = −z̄ + ᾱ

∞∑

k=1

2kαk−1

=
1 + p

1− α
, (10)

wherep = z + αz̄. Thus, the rate achieved by this scheme
is (arbitrarily close to) log |M|

N E[Lz]
= H2(z)

E[Lz]
= 1−α

1+p H2

(
1−p
1−α

)
.

Maximizing overz ∈ (0, 1), we conclude that the scheme
achieves the S-channel capacity given by (8).

Corollary 3 (Z-channel capacity). The feedback capacity of
the input-constrained Z-channel(α = 0) is

CZ(β) = max
0≤p≤β̄

H2(p)− p
1−βH2(β)

1 + p

= − log(1 − pβ), (11)

wherepβ is the unique solution of the quadratic equation(1−
p)2 = p · 2

H2(β)

1−β .

1We will be slightly loose in our description of this coding scheme so as
to keep the focus on the simplicity of the scheme. We will ignore alloN (1)
correction terms needed to make our arguments mathematically precise. Thus,
for example, we implicitly assume that2NH2(z) is an integer. We will also
assume thatNz is an integer, and that there are2NH(z) binary sequences
of lengthN which contain exactlyNz 1s.

The feedback capacities of the input-constrained S and Z
channels are different because of the asymmetry imposed
by the input constraint (Fig. 3). Note that for most values
of the channel parameters, the capacity of theS-channel
exceeds that of theZ-channel; intuitively, the decoder can
gain more information when observing two consecutive ones
in the channel output because it knows that there is one error
in this transmission pair.
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Fig. 3. Comparison between the capacities of the constrainedZ- and S-
channels.

B. Feedback increases capacity

In this section, we show that feedback increases capacity
for the input-constrained BSC.

Theorem III.2. Feedback increases capacity for the(1,∞)-
RLL input-constrained BSC, for all values ofα in some
neighborhood around0.

As discussed in Section I, this gives a counterexample to
a claim of Shannon’s from [17]. A subsequent work [28]
related to the conference version of our paper [29] used a
novel technique to calculate upper bounds on the non-feedback
capacity of the input-constrained BSC. The upper bound in
[28] is a tighter upper bound than our feedback capacity,
which shows that feedback increases capacity not only for
small values ofα, but actually for allα.

In order to show Theorem III.2, we provide the asymptotic
expressions of the input-constrained BSC with and without
feedback.

Theorem III.3. The feedback capacity of the input-
constrained BSC is:

CBSC(α) = logλ+
2− λ

3− λ
α logα

+

(
log(2 − λ)− (2− λ)

3− λ

)
α+ O(α2 log2 α), (12)

whereλ is the golden ratio
(
λ = 1+

√
5

2

)
.

The derivation of Theorem III.3 is more involved than
standard Taylor series expansion aboutα = 0, since the
second-order term of (12) isO(α logα). The proof of Theorem
III.3 appears in Appendix B.
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The asymptotic behaviour of the capacity of the input-
constrained BSC without feedback is captured by the follow-
ing result.

Theorem III.4. [18, Example 4.1] The non-feedback capacity
of the(1,∞)-RLL input-constrained BSC is:

CNF(α) = logλ+
2λ+ 2

4λ+ 3
α logα+O(α). (13)

It is now easy to prove Theorem III.2.
Proof of Theorem III.2: The coefficients of the term

α logα in (12) and (13) satisfy2λ+2
4λ+3 >

2−λ
3−λ . Therefore, there

exists α∗ > 0 such thatCBSC(α) − CNF(α) > 0, for all
α < α∗.

IV. T HE OPTIMAL INPUT DISTRIBUTION

In this section, we present the optimal input distribution
for the input-constrained BIBO, based on which the capacity-
achieving coding scheme of the next section is derived. The
optimization problem that needs to be solved when calculating
the feedback capacity of our setting is given in the following
theorem.

Theorem IV.1 ( [13], Theorem3). The capacity of an(1,∞)-
RLL input-constrained memoryless channel with feedback can
be written as:

Cfb = sup lim inf
N→∞

1

N

N∑

t=1

I(Xt;Yt|Y t−1), (14)

where the supremum is taken with respect to{pXt|Xt−1,Y t−1 :
pXt|Xt−1,Y t−1(1|1, yt−1) = 0}t≥1.

The input at time t depends on the previous channel
input, xt−1, and the output samplesyt−1. The description of
such an input distribution is difficult since the conditioning
contains a time-increasing domain,Yt−1. The essence of
the DP formulation is to replace the conditioning onyt−1

with pXt−1|Y t−1(0|yt−1), which is a sufficient statistic of the
outputs tuple. Furthermore, the DP solution in Section VII
reveals that theoptimal input distributioncan be described
with an even simpler notion called aQ-graph, which is suitable
for scenarios where the DP state,pXt−1|Y t−1(0|yt−1), takes a
finite number of values.

Definition 2. For an output alphabet,Y, a Q-graph is a
directed, connected and labeled graph. Additionally, each node
should have|Y| outgoing edges, with distinct labels.

The Q-graph depicted in Fig. 4 will be used to describe
the optimal input distribution. LetQ = {1, 2, 3, 4} denote
the set of nodes of thisQ-graph. We will use a functiong :
Q × {0, 1} → Q to record the transitions along the edges of
the graph. Specifically,g(1, 0) = 4, g(1, 1) = 2, g(2, 0) =
3, g(2, 1) = 1, g(3, 0) = 3, g(3, 1) = 1, g(4, 0) = 3, and
g(4, 1) = 1. Given some initial nodeq0 ∈ Q and an output
sequenceyt ∈ Yt of arbitrary length, a unique nodeqt ∈ Q
is determined by a walk on theQ-graph starting atq0 and
following the edges labeled byy1, y2, . . . , yt, in that order. We
will write this asqt = Φ(q0, y

t), whereΦ : Q×⋃t≥1 Yt → Q
is the mapping recursively described byΦ(q0, y1) = g(q0, y1),

Q = 3

Q = 2Q = 1

Q = 4

Y = 1Y = 1

Y = 1

Y = 1

Y = 0

Y = 0

Y = 0

Y = 0

Fig. 4. TheQ-graph that characterizes the optimal input distribution.

andΦ(q0, yt) = g(Φ(q0, y
t−1), yt) for t ≥ 2. The importance

of theQ-graph for our scheme is that the encoder and decoder
need only track the valueΦ(q0, yt−1), instead of the entire
output sequenceyt−1.

For the description of the optimal input distribution, define
zα,β2 , argmax0≤z≤1Rα,β(z) as the unique maximizer from
Lemma III.1, and the following subsequent quantities:

zα,β1 ,
αz̄α,β2

αz̄α,β2 + β̄zα,β2

zα,β3 ,
ᾱz̄α,β2

ᾱz̄α,β2 + βzα,β2

zα,β4 ,
ᾱβ̄zα,β2

ᾱβ̄zα,β2 + αβz̄α,β2

. (15)

It can be shown thatzα,β1 ≤ zα,β2 ≤ zα,β3 ≤ zα,β4 for all
α + β ≤ 1. For instance, the relationz1 ≤ z2 (superscripts
(α, β) are omitted) can be simplified to(β̄ − α)z22 + 2αz2 −
α ≥ 0. Now, the polynomial(β̄ − α)x2 + 2αx − α has two
roots, one is negative and the other is atx = zL. Since the
polynomial is convex,(β̄−α)z22 +2αz2−α ≥ 0 is equivalent
to z2 ≥ zL. Using the same methodology, it can be shown
that z1 ≤ z2 ≤ z3 ≤ z4 is equivalent tozL ≤ z2 ≤ zU , which
is proved in Lemma III.1.

Define the conditional distributionsp∗X|X−,Q via the condi-
tional probability matrices

p∗X|X−,Q=1 =

[
0 1
1 0

]

p∗X|X−,Q=2 = p∗X|X−,Q=1

p∗X|X−,Q=3 =

[
1− zα,β

2

zα,β
3

zα,β
2

zα,β
3

1 0

]

p∗X|X−,Q=4 =

[
1− zα,β

2

zα,β
4

zα,β
2

zα,β
4

1 0

]
,

(16)

in which X− indexes the rows andX indexes the columns.
To be precise, the first (resp. second) row of each matrix is a
conditional pmf ofX givenX− = 0 (resp.X− = 1).
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The optimal input distribution and alternative capacity ex-
pression are given in the following theorem:

Theorem IV.2 (Optimal input distribution). For any q0 ∈
Q, the input distributionpXi|Xi−1,Y i−1(x | x−, yi−1) =
p∗X|X−,Q

(
x | x−,Φ(q0, yi−1)

)
, defined via (16) and

Fig. 4, is capacity-achieving. Moreover, the random pro-
cess {(Xi, Qi)}i≥1 induced byp∗X|X−,Q is an irreducible
and aperiodic Markov chain on{0, 1} × Q. The sta-
tionary distribution of this Markov chain is given by
πX−,Q = πQπX−|Q, where πQ is the pmf onQ defined

by [πQ(1), πQ(2), πQ(3), πQ(4)] =
[

p
1+p ,

pq
1+p ,

1−p
1+p ,

p(1−q)
1+p

]
,

with p = α(1 − zα,β2 ) + (1 − β)zα,β2 and q = α(1−β)
p ,

and πX−|Q(0|i) = 1 − πX−|Q(1|i) = zα,βi for i =
1, . . . , 4. The feedback capacityCfb(α, β) can be expressed as
I(X ;Y |Q), where the joint distribution isπQ,X,Y (q, x, y) =∑

x− pY |X(y|x)p∗X|X−,Q(x|x−, q)πX−,Q(x
−, q).

The scheme uses the joint probability distribution
pY |Xp

∗
X|X−,QπX−,Q induced by the optimal input distribution

p∗X|X−,Q. Here,X andX− should be viewed as the channel
inputs during the current and previous time instances, respec-
tively, andQ is the value of the node on theQ-graph prior to
the transmission ofX . In the analysis of the coding scheme,
we will use the Markov property of{(Xi, Qi)}i≥1 to show
that I(X ;Y |Q) is achievable. The proof of Theorem IV.2 is
presented at the end of Section VII.

V. THE CODING SCHEME

The coding scheme we describe here consists of two phases:
Phase I is based on a posterior matching scheme (PMS), and
Phase II is a clean-up phase based on block codes.

The main element of any PMS is the posterior distribution
of the message given the channel outputs. The posterior
distribution is represented by the lengths of sub-intervals that
form a partition of the unit interval. Each sub-interval is
associated with a particular message, and henceforth, it will
be referred to as a “message interval”. The initial lengths are
equal for all message intervals, since the decoder is assumed to
have no prior information about the messages. The lengths of
the message intervals are updated throughout the transmission
based on the outputs that are made available to the decoder
(and to the encoder from the feedback). The encoder’s job is
to refine the decoder’s knowledge about the correct message
by simulating samples from a desired input distribution. When
this is done properly, as time progresses, the length of the true
message interval will increase towards1, and the decoder can
then successfully declare its estimate of the correct message.

The above description of PMS is generic and applies to
any setting of channel coding with feedback. What is specific
to our PMS in the input-constrained setting is the input
distribution that the encoder attempts to simulate during its
operation. Most of the adaptations needed for our PMS that are
not present in the baseline PMS for memoryless channels in
[2] and [24] are a natural consequence of the input constraints
and the structure of the input distribution in Theorem IV.2.
However, these adaptations complicate the analysis of the

scheme as the evolution in time of the involved random
variables results in a random process that is difficult to analyze.

The analysis becomes easier upon introducing a certain
message-interval splitting operation (described in Section V-D)
that induces a Markov chain structure on the time-evolution
of the random variables in the scheme. However, the splitting
operation prevents the length of the correct message interval
from increasing to1, but we will show that, with high
probability, the length of this interval will eventually go above
some positive constant. The PMS output at the end of Phase I
will be a list of messages whose interval lengths are above
this constant.

In Phase II, a fixed-length block coding scheme, asymptot-
ically of zero rate, is used to determine which message in the
list produced at the end of Phase I is the correct message.

The remainder of this section is organized as follows. In
Section V-A, the key elements of the PMS of Phase I are
described. This is followed by a description of Phase II of our
coding scheme in Section V-B. The overall coding scheme that
combines the two phases is shown to be capacity-achieving in
Section V-C. At the heart of the PMS of Phase I is a recursive
construction of message intervals, which is described in detail
in Section V-D. This technical description has been left to the
end so as not to distract the reader from the main ideas of the
coding scheme.

A. Phase I: PMS

The PMS is based on the joint probability distribution
πY,X,X−,Q on Y × X × X × Q defined byπY,X,X−,Q :=
πX−,Qp

∗
X|X−,QpY |X , whereπX−,Q and p∗X|X−,Q constitute

the optimal input distribution described in Section IV, and
pY |X is the channel law. In what is to follow, we routinely use
notation such asπQ, πX−|Q, πX,X−|Q etc. to denote certain
marginal and conditional probability distributions specified by
πX,X−,Q. Thus, for example,πQ denotes the marginal distri-
bution onQ of πX,X−,Q. The joint distributionπY,X,X−,Q is
known to the encoder and the decoder.

It is further assumed that the encoder and the decoder share
some common randomness:

• a random initialQ-state2 Q0, distributed according toπQ;
• a sequence(Ui)

n
i=1 of i.i.d. random variables, eachUi

being Unif[0, 1]-distributed.

At the ith time instant, just prior to the transmission of the
ith symbol by the encoder, both the decoder and the encoder
have the output sequenceyi−1 available to them. From this,
and having shared knowledge of a realizationq0 of the initial
Q-stateQ0, each of them can computeqi−1 = Φ(q0, y

i−1).
The assumption of shared randomness simplifies much of

our analysis. It should be noted that by standard averaging
arguments, the shared knowledge can be “de-randomized”,
in the sense that there exists a deterministic instantiation of
Q0 and (Ui) for which our probability of error analysis will
remain valid.

2For the purposes of this description, we use the term “Q-state” to denote
a node on theQ-graph.
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Aside from the shared randomness, the encoder alone has
access to an i.i.d. sequence(Vi)ni=1, with Vi ∼ Unif[0, 1] for
all i. We next describe the main elements of our PMS.

1) Messages and message intervals:At the outset, there
is a set of messagesM = {1, 2, . . . , 2nR}, wheren is a
sufficiently large positive integer andR < I(X ;Y | Q).3

A messageM ∈ M is selected uniformly at random, and
transmitted using the PMS scheme. Our aim is to show that the
probability of errorP (n)

e at the decoder goes to0 exponentially
in n.

Message intervals are central to the operation of the PMS
scheme. At each time instanti ≥ 1, again just prior to the
transmission of theith symbol by the encoder, the decoder
and the encoder can compute a common set,Ji, of message
intervals, which form a partition of[0, 1) into disjoint sub-
intervals of varying lengths. The construction is recursive, with
J1 being computed from the initial knowledge ofq0, and for
i ≥ 1, Ji+1 being computed fromJi based on the additional
knowledge ofyi and ui. Here, ui denotes a realization of
the shared randomnessUi. We will describe the recursive
construction in Section V-D, for now just noting that each
message interval inJi+1 is obtained from a unique “parent”
in Ji.

Each message interval inJi is indexed by an integer
between1 and |Ji|, with ι(J) denoting the index of the
message intervalJ. Additionally, each message interval is
associated with a message fromM, the association being
specified by a surjective mappingµi : Ji → M. Thus, for
eachJ ∈ Ji, µi(J) is the message associated withJ. One of
the message intervalsJ ∈ Ji with µi(J) = m, wherem ∈ M
is the actual message to be transmitted, is designated as the
true message interval, and is denoted byJi. The identity of
Ji is a priori known only to the encoder. This is the message
interval that determines the symbol to be transmitted at time
i.

EachJ ∈ Ji has a “history bit”, denoted byx−i (J). This is
the bit that the encoder would have transmitted at timei − 1
if it were the case that the parent ofJ was the true message
interval Ji−1.

A message intervalJ ∈ Ji can be uniquely identified by
its left end-point ti(J) and its lengthsi(J), so that J =
[ti(J), ti(J) + si(J)). The length ofJ equals the posterior
probability thatJ is the true message interval, givenyi−1 and
ui−1, i.e.,

si(J) = Pr[Ji = J | Y i−1 = yi−1, U i−1 = ui−1]. (17)

In section V-D, it will be shown that the lengthssi(J), J ∈ Ji,
can be computed recursively as a simple function of the lengths
of the parent intervals inJi−1.

The left end-points are then computed as

ti(J) = πX−|Q(0|qi−1)1{x−
i (J)=1} +

∑

J
′: ι(J′)<ι(J),

x−
i (J′)=x−

i (J)

si(J
′).

(18)

3For ease of description,2nR is assumed to be an integer; we may
otherwise take the number of messages to be⌈2nR⌉.

2 3 5 4 6ι(J) = 1

x−i (·) = 0 x−i (·) = 1

πX−|Q(0|qi−1)

si(J)

1ti(J) = 0

Fig. 5. Illustration of the message intervals. Note that the lengths of all
messages intervals withx−

i = 0 sum up toπX−|Q(0|q).

We will show later (see Lemma V.4) that
∑

J∈Ji:x
−
i (J)=0

si(J) = πX−|Q(0|qi−1),

so that the positioning of the left end-points in (18) im-
plies that the message intervals with history bit0 (respec-
tively, 1) form a partition of[0, πX−|Q(0|qi−1)) (respectively,
[πX−|Q(0|qi−1), 1)). The positioning of the message intervals
is illustrated in Fig. 5.

In summary, a message intervalJ ∈ Ji stores five pieces
of data: ι(J), µi(J), si(J), ti(J) and x−i (J). As we will see
in Section V-D, these are computable at both the encoder and
the decoder from their common knowledge at timei.

2) Encoder operation at timei: To describe the symbol
transmitted by the encoder at timei, we need to intro-
duce the labeling functionsLq : [0, 1) → {0, 1}, defined
for each q ∈ Q. The labelingLq assigns the label ‘1’
to the interval [0, πX,X−|Q(1, 0|q)), and ‘0’ to the interval
[πX,X−|Q(1, 0|q), 1). In other words,

Lq(x) =

{
1 if 0 ≤ x < πX,X−|Q(1, 0|q)
0 if πX,X−|Q(1, 0|q) ≤ x < 1.

(19)

The labelingLq is depicted in Fig. 6.
At time i, the encoder knows the true message interval

Ji in Ji. Let ti and si denote its left end-point and length,
respectively, and letx−i be its history bit. Ifx−i = 1, then
Ji is contained in[πX−|Q(0|qi−1), 1), which is a subset of
L−1
qi−1

(0) = [πX,X−|Q(1, 0|qi−1), 1). In this case, the encoder
transmitsxi = Lqi−1(Ji) = 0, in keeping with the(1,∞)-
RLL constraint.

On the other hand, ifx−i = 0, the encoder transmits the bit
xi = Lqi−1(wi) with

wi = ti + ui(qi−1) + si · vi mod πX−|Q(0|qi−1),

whereui(qi−1) := ui · πX−|Q(0|qi−1), andvi denotes a re-
alization of the encoder’s private randomnessVi ∼ Unif[0, 1].
In other words, the encoder pickswi uniformly at random
from the intervalJi + ui(qi−1) mod πX−|Q(0|qi−1), which
is obtained by cyclically shifting the message intervalJi by
the amountui(qi−1), within [0, πX−|Q(0|qi−1)).

Remark 2. The rationale behind the cyclic shifting is the
following: the random variableWi = ti + Ui(qi−1) +
si · Vi mod πX−|Q(0|qi−1) is uniformly distributed over
[0, πX−|Q(0|qi−1)). Hence,Xi = Lqi−1 (Wi) is equal to1

with probability
π
X,X−|Q(1,0|qi−1)

π
X−|Q(0|qi−1)

= p∗X|X−,Q(1|0, qi−1), and

is equal to0 with probability p∗X|X−,Q(0|0, qi−1). Thus, the
cyclic shifting ensures that the conditional distribution ofXi
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(given that the previously transmitted bit wasx−i and theQ-
state just prior to the transmission ofXi is qi−1) matches the
optimal input distributionp∗X|X−,Q(·|x−i , qi−1).

In the analysis of the PMS schemes of [2] and [24],
most of the effort goes in showing that the length of the
true message interval gets arbitrarily close to1, with high
probability, as the number of transmissionsn goes to∞. In
our case, however, the recursive construction ofJi+1 from
Ji involves a key message-interval splitting operation, which
prevents the lengths of message intervals from getting too
large. Nonetheless, we can show that the length of the true
message intervalsi(Ji) either exceeds

Smin := min
x,q: π

X,X−|Q(x,0|q)>0
πX,X−|Q(x, 0|q) (20)

at some timei, or as the time indexi gets close ton, si(Ji)
exceeds a certain thresholdξ > 0 with high probability. The
following theorem, proved in Section VI, gives a rigorous
statement of this fact.

Theorem V.1. Given R < I(X ;Y |Q), there existsξ > 0
(which may depend onR) for which the following holds: for
any sequence of non-negative integers(ζn)n≥1 growing as
o(n),4 a PMS initiated with2nR messages has

Pr
[
snζ

(Jnζ
) < ξ | si(Ji) ≤ Smin, for i ∈ [1 : nζ−1]

]
−→ 0,

asn→ ∞ andnζ := n− ζn.

Recall that the decoder does not know which of the intervals
in Ji is the true message interval, but it is able to compute
the lengthssi(J) for all J ∈ Ji. The theorem above allows
the decoder to create a relatively short list of potential true
message intervals.

3) Decoder decision:Let ξ∗ = min{ξ, Smin}, whereξ is
as in Theorem V.1 above, andSmin is as defined in (20). The
decoder halts operations at timeT = n − ⌈√n⌉, and outputs
the list of messages

M̂ = {µi(J) : J ∈ Ji, si(J) ≥ ξ∗, 1 ≤ i ≤ T }. (21)

In words, this is the set of messages associated with message
intervals whose lengths exceed eitherSmin or ξ at any point
during the operation of the PMS. This signals the end of
Phase I of our coding scheme.

Note that since the lengths of all message intervals at time
i must sum to1, there can be at most⌊1/ξ∗⌋ messages
contributed byJi to M̂, for eachi ∈ {1, 2, . . . , T }. Thus,
we have|M̂| ≤ 1

ξ∗T ≤ 1
ξ∗n.

B. Phase II: Clean-Up

The message list generated at the end of Phase I serves
as the input for Phase II, a complementary coding scheme
to determine the correct message within̂M. The rate of the
coding scheme in this phase can be made to go to zero, since
it only has to distinguish betweenO(n) many messages inM.
Each message in̂M is represented usingkn = ⌈log2(n/ξ∗)⌉
bits, b1b2 . . . bkn

, which are to be transmitted successively.

4This means thatζn/n → 0 asn → ∞.

1) Encoding: Given a string ofk bits, b1, . . . bkn
, the

encoder transmits each bitbi using a length-Ln codeword
bi0bi0 . . . bi0, whereLn is a suitably chosen even number.
Thus,knLn channel uses are required to transmit thesekn bits,
but as we will see,Ln will be chosen so thatknLn = o(n), so
that this is an asymptotically vanishing fraction of the overall
number of channel uses,n. Note that the encoder does not
make use of feedback.

2) Decoding: Based on the sequence ofLn/2 channel
outputs received in response to theLn/2 repetitions of the
bit bi, the decoder declareŝbi = 0 if the output sequence lies
in the typical setT (Ln/2)

ǫ (pY |X=0) for a well-chosenǫ > 0,
and declareŝbi = 1 otherwise. The decoder’s estimate of
the transmitted messageM is the messagêM represented by
b̂1b̂2 . . . b̂kn

.
The next lemma shows that the probability of decoding

error for one message bitb can be made arbitrarily small, by
choosingLn as a suitably slowly growing function ofn. As
usual,b̂ in the statement of the lemma refers to the decoder’s
estimate ofb.

Lemma V.1. If the capacity of the BIBO channel (without
feedback or input constraints) is nonzero, then there exists a
constantC0 > 0 such that for anyLn ≥ C0 log kn, we have
Pr[b̂ 6= b] ≤ 1

k2
n

.

Proof: We use a standard typicality argument based on
the fact that if capacity is non-zero, then

D(pY |X=0||pY |X=1) 6= 0,

and so there exists a sequenceǫ(ℓ) > 0 such that, for all
sufficiently largeℓ, T (ℓ)

ǫ(ℓ)(pY |X=0)
⋂ T (ℓ)

ǫ(ℓ)(pY |X=1) = ∅ and
both typical sets are nonempty.

Without loss of generality, assume that the transmitted bit is
b = 1, so that the sequence of channel outputs in response to
the sequence of transmitted1s is i.i.d.∼ pY |X=1. By standard
arguments, it can be shown that the probability that a length-
L/2 output sequence is inT (L/2)

ǫ′ (pY |X=1) (for some0 <
ǫ′ < ǫ(L/2)) goes to1 exponentially quickly inL, while
the probability that the output sequence is inT (L/2)

ǫ′ (pY |X=0)

decays to0 exponentially quickly inL. Therefore,Pr[b̂ 6= b]
can be made smaller than1k2

n
by choosingLn = C0 log kn for

a sufficiently large positive constantC0.

C. Combining Phases I and II

We now describe how Phases I and II are combined to obtain
a capacity-achieving coding scheme. Fix anR < I(X ;Y |Q)
and letξ be as in Theorem V.1, which in turn determinesξ∗ =
min{ξ, Smin}. We will apply Theorem V.1 withζn = ⌈√n⌉.
Let kn = ⌈log2(n/ξ∗)⌉, andLn = ζn/kn be the parameters
of the coding scheme in Phase II. Note thatLn ≥ C0 log kn
for all sufficiently largen, whereC0 is the constant in the
statement of Lemma V.1.

We will run the PMS of Phase I on a message setM of size
2nR. A messageM ∼ Unif(M) is transmitted usingn uses
of the channel as follows: The PMS of Phase I is executed
until time T = n − ζn (i.e., T = n − ⌈√n⌉), at which time
a list M̂ as in (21) is produced. We then execute Phase II for
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the remainingknLn = ζn channel uses, at the end of which
the decoder produces an estimateM̂ of M . The coding rate
of the overall scheme is1n log2 |M| = R.

To assess the probability of errorP (n)
e , we observe that

P (n)
e = Pr[M 6= M̂ ]

≤ Pr[M /∈ M̂] + Pr[M 6= M̂ |M ∈ M̂]

≤ Pr[M /∈ M̂] +

kn∑

i=1

Pr[b̂i 6= bi]

≤ Pr[M /∈ M̂] +
1

kn
, (22)

the last inequality above being valid for alln large enough that
Ln ≥ C0 log kn, so that the conclusion of Lemma V.1 holds.
Let nζ := n− ζn and then, the probability thatM /∈ M̂ can
be bounded as follows:

Pr[M /∈ M̂]

≤ Pr[si(Ji) ≤ Smin for i ∈ [1 : nζ−1], andsnζ
(Jnζ

) < ξ]

≤ Pr
[
snζ

(Jnζ
) < ξ | si(Ji) ≤ Smin for i ∈ [1 : nζ − 1]

]
,

which, by Theorem V.1, goes to0 asn→ ∞. Hence, by (22),
we also haveP (n)

e → 0 asn→ ∞.
We have thus shown that any rateR < I(X ;Y |Q)

is (1,∞)-achievable. Recall from Theorem IV.2 that
I(X ;Y |Q) = Cfb(α, β). Thus, we have proved the main result
of this section, stated below.

Theorem V.2. For an input-constrained BIBO channel, any
rate R < Cfb(α, β) is (1,∞)-achievable using a coding
scheme that combines Phases I and II.

It remains to tie a couple of loose ends in the description
of our coding scheme, namely, the recursive construction of
message intervals, and a proof of Theorem V.1. The former is
presented in the subsection below, while the latter is given in
Section VI.

D. Recursive Construction of Message Intervals

1) Initialization — Construction ofJ1: J1 consists of the
2nR intervalsJ(j) = [(j − 1)2−nR, j2−nR) of equal length,
indexed byj ∈ {1, 2, . . . , 2nR}, in 1-1 correspondence with
the2nR messages inM. The length of each message interval
is s1 := 2−nR. For thejth message intervalJ(j), the index
ι(J(j)) and associated messageµ(J(j)) are both set to bej.
The history bit of theJ(j) is set to be

x−1 (J
(j)) =

{
0 if (j − 1)2−nR ≤ πX−|Q(0|q0)
1 otherwise,

where q0 is the initial Q-state known to both encoder and
decoder.

We will, for simplicity of description, assume thatn is
chosen so that the message intervals inJ1 with history
bit equal to0 form a partition of [0, πX−|Q(0|q0)).5 For a
uniformly random messageM ∈ M, the true message interval

5If this is not the case, we can get this to happen by splitting into two the
message interval that straddles the boundary pointπX−|Q(0|q0), as described
in the next subsection.

is J1 = J
(M), and isa priori known only to the encoder. Note

that with X0 = x−1 (J1), the pair (X0, Q0) has probability
distributionπX−|QπQ = πX−,Q.

2) Recursion — Construction ofJi+1 fromJi: Recall that,
for i ≥ 1, the encoder and decoder can compute the setJi

based upon their common knowledge ofq0, yi−1 and ui−1.
After determiningJi, they make use of their shared knowledge
of ui to compute a new partition,̃Ji, of [0, 1) into message
intervals. This is an intermediate step in the construction of
Ji+1 from Ji. Message intervalsJ ∈ J̃i also store five pieces
of data: an index̃ι(J), a messagẽµi(J) ∈ M, a lengths̃i(J),
a left end-point̃ti(J), and a bitxi(J). These are explained as
part of the description to follow.

Each message intervalJ ∈ Ji is either retained as is iñJi,
or is split into two intervals inJ̃i using a procedure to be
described shortly. Any message intervalJ ∈ Ji with history
bit x−i (J) = 1 is retained as is inJ̃i. It retains its index,
message, length and left end-point:ι̃(J) = ι(J), µ̃i(J) = µi(J),
s̃i(J) = si(J), and t̃i(J) = ti(J). The bit xi(J) is set to be
equal to0, in keeping with the input constraint.

a) Cyclic shifting and message-interval splitting:To
describe what happens to thoseJ ∈ Ji with history bit
x−i (J) = 0, we first recall that such message intervals form a
partition of [0, πX−|Q(0|qi−1)) — see Lemma V.4.

The fate of message intervalsJ ∈ Ji with history bit
x−i (J) = 0 is determined by the labelingLqi−1 , as defined in
(19). (Recall thatqi−1 can be determined at both the encoder
and the decoder from their common knowledge ofq0 and
yi−1.) Recall from the description of the encoder operation
in Section V-A that when the history bitx−i for the true
message intervalJi is equal to0, then the encoder determines
the next bit to be transmitted asLqi−1(wi), where wi is
chosen uniformly at random from the interval obtained by
cyclically shiftingJi within the interval[0, πX−|Q(0|qi−1)) by
ui(qi−1) := ui · πX−|Q(0|qi−1). Since the decoder does not
know the trueJi, it attempts to keep up with the encoder by ap-
plying the cyclic shifting operation to eachJ ∈ Ji. This results
in a cyclically-shifted intervalJui , for eachJ ∈ Ji, with left
end-point ti(Jui) := ti(J) + ui(qi−1) mod πX−|Q(0|qi−1),
and right end-pointri(Jui) := ti(J) + si(J) + ui(qi−1)
mod πX−|Q(0|qi−1). If J

ui ⊆ L−1
qi−1

(b) for someb ∈ {0, 1},

then J
ui is included in J̃i, with ι̃(Jui ) = ι(J), µ̃i(J

ui ) =
µi(J), s̃i(J

ui) = si(J), t̃i(J
ui) = ti(J), and

xi(J
ui) =

{
0 if J

ui ⊆ L−1
qi−1

(0)

1 if J
ui ⊆ L−1

qi−1
(1).

Note thatxi(Jui ) would have been the bit transmitted by the
encoder at timei, hadJ been the true message interval.

A problem arises whenJui 6⊆ L−1
qi−1

(b) for any b ∈ {0, 1},
as it then straddles at least one of the boundary points,0 and
πX,X−|Q(1, 0|qi−1), of the labelingLqi−1 . This means that
the value of the bitxi transmitted by the encoder at timei,
had thisJ been the true message interval, is determined by
the precise location of the random pointwi within J

ui . While
this is not a problem for the encoder, it creates an issue for
the decoder as it will no longer know what to assign as the bit
xi(J

ui). We deal with this bysplitting J
ui into two or three
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s̃i(J
′)

ti(J)

ti(J
ui)

ι̃(J′) = 1 ι̃(J′′) = 7

Fig. 6. Illustration of the cyclic shifting and splitting of message inter-
vals. The lengths of message intervals are determined by their posterior
probabilities, and the message intervals are positioned in ascending order
of their indices, based on their history bits. Each message intervalJ with
x−
i
(J) = 0 is cyclically shifted within the interval[0, πX−|Q(0|qi−1)) by

addingui(qi−1), and its new left end-point isti(Jui ). In this example, the
labeling Lqi−1 implies that the message interval indexed withι(J) = 1
crosses the boundary pointπX,X−|Q(1, 0|qi−1). Thus, this message interval

is split into two intervalsJ′ and J′′, belonging toJ̃i, and indexed with
ι̃(J′) = 1 and ι̃(J′′) = 7.

parts. To describe this, we first observe that if the length of
J
ui (which is the same assi(J)) is at mostSmin (Eq. (20)),

then anyJui 6⊆ L−1
qi−1

(b), b = 0, 1, can straddle exactly one
of the boundary points ofLqi−1 .

If J
ui straddles only the boundary point0, then we split

J
ui into two intervalsJ′ = [ti(J

ui), πX−|Q(0|qi−1)) andJ′′ =
[0, ri(J

ui)) to be included inJ̃i, with µ̃i(J
′) = µ̃i(J

′′) =
µi(J). The left end-points̃ti and lengths̃si of J′ and J

′′ are
self-evident. Note thatJ′ sits entirely withinL−1

qi−1
(0), so that

we setxi(J′) = 0. By similar reasoning, we setxi(J′′) = 1.
Finally, we set̃ι(J′) = ι(J), while J

′′ is assigned a brand new
index: ι̃(J′′) is set to be equal to the least positive integer that
has not yet been assigned as an index to any message interval
in J̃i.

If J
ui straddles only the boundary point

πX,X−|Q(1, 0|qi−1), then we split J
ui into the two

intervals J
′ = [ti(J

ui), πX,X−|Q(1, 0|qi−1)) and
J
′′ = (πX,X−|Q(1, 0|qi−1), ri(J

ui) to be included inJ̃i.
For the new message intervalsJ′ and J

′′, we setµ̃i and ι̃ as
above, whilexi(J′) = 1 andxi(J′′) = 0. Fig. 6 illustrates the
cyclic shifting and splitting operations on message intervals.

Finally, if si(J) > Smin,6 it is possible forJui to stretch
across both0 andπX,X−|Q(1, 0|qi−1). In this case, we split
J
ui into three intervalsJ′, J

′′, J
′′′ such that each of these

intervals lies entirely within one ofL−1
qi−1

(0) and L−1
qi−1

(1).
Then, for each of these new intervals, we set the bitxi to be
the b ∈ {0, 1} for which the interval lies inL−1

qi−1
(b). The

left end-points̃ti and lengths̃si are determined in the obvious
manner. Finally,µ̃i(J

′) = µ̃i(J
′′) = µ̃i(J

′′′) = µi(J), and
ι̃(J′) = ι(J), while J

′′ andJ′′′ get brand new indices.
Thus, eachJ ∈ Ji gives rise to either one interval (no

6While this case needs to be included for a complete description of the
recursive construction ofJi+1 from Ji, it will play no role in the analysis of
the PMS in Section VI. The analysis there is carried out under the simplifying
assumption that the length of the true message interval never exceedsSmin.

splitting) or two to three message intervals (after splitting) in
J̃i; we will refer to the interval(s) inJ̃i as thechild(ren)
of J ∈ Ji, and to J as their parent. Note that splitting
affects only those message intervals inJi that, when cycli-
cally shifted by ui(qi−1), straddle the boundary points0
andπX,X−|Q(1, 0|qi−1). Thus, splitting causes the number of
intervals to increase by at most two:|Ji| ≤ |J̃i| ≤ |Ji|+ 2.

The splitting of message intervals lends itself to a simple
alternative description of the encoding operation described
earlier in Section V-A. Suppose thatJi = J ∈ Ji. If J

ui

has exactly one child̃J ∈ J̃i, thenxi = xi(J̃). If J has two
children J

′, J′′ in J̃i, then the encoder usesvi to determine
the transmitted bitxi:

xi =

{
xi(J

′) if 0 ≤ vi <
s̃i(J

′)
si(J)

xi(J
′′) if s̃i(J

′)
si(J)

≤ vi < 1.
(23)

The case whenJ has three children is handled analogously:

xi =





xi(J
′) if 0 ≤ vi <

s̃i(J
′)

si(J)

xi(J
′′) if s̃i(J

′)
si(J)

≤ vi <
s̃i(J

′)+s̃i(J
′′)

si(J)

xi(J
′′′) if s̃i(J

′)+s̃i(J
′′)

si(J)
≤ vi < 1.

(24)

b) Construction ofJi+1: The message intervals inJi+1

are in 1-1 correspondence with those in the setJ̃i. Specifically,
for eachJ̃ ∈ J̃i, we introduce a message intervalJ ∈ Ji+1,
with ι(J) = ι̃(J̃), µi+1(J) = µ̃i(J̃) andx−i+1(J) = xi(J̃). We
will refer to the message intervalJ as theimageof J̃. The new
interval lengths

si+1(J) = Pr[Ji+1 = J | Y i = yi, U i = ui], ∀ J ∈ Ji+1,
(25)

can be determined from the set of interval lengths inJ̃i, as we
will describe shortly. Once the interval lengthssi+1(J) have
been determined, the left end-points can be computed as

ti+1(J) = πX−|Q(0|qi)1{x−
i+1(J)=1} +

∑

J
′: ι(J′)<ι(J),

x−
i+1(J

′)=x−
i+1(J)

si+1(J
′).

(26)
To be able to describe how the lengths of intervals inJi+1

are computed from the lengths of intervals iñJi, we need
to understand how the encoder decides the symbolxi to be
transmitted at timei, and how it picks the true message interval
Ji+1 ∈ Ji+1.

c) Choice of the true message intervalJi+1 ∈ Ji+1:
Suppose thatJi = J ∈ Ji. If J has exactly one child̃J ∈ J̃i,
then Ji+1 is taken to be the image of̃J in Ji+1, i.e., the
message interval inJi+1 that has the same index asJ (andJ̃).
On the other hand, ifJ has two childrenJ′, J′′ in J̃i, thenJi+1

is set to be the image ofJ′ (respectively,J′′) if the transmitted
bit xi in (23) equalsxi(J′) (respectively,xi(J′′)). In any case,
note that we always havex−i+1(Ji+1) = xi. The case whenJ
has three children is similarly handled, based on (24).
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3) Computingsi+1(J), J ∈ Ji+1, from s̃i(J), J ∈ J̃i: In
what follows, we useJ to denote a message interval iñJi as
well as its image inJi+1. We state a preliminary lemma first.

Lemma V.2. For any J ∈ Ji+1, we havePr[Ji+1 = J |
Y i−1 = yi−1, U i = ui] = s̃i(J).

Proof: Let J# ∈ Ji be the parent ofJ, so thatJi+1 = J

implies thatJi = J
#. Then,

Pr[Ji+1 = J | Y i−1 = yi−1, U i = ui]

= Pr[Ji+1 = J, Ji = J
# | Y i−1 = yi−1, U i = ui]

= Pr[Ji = J
# | Y i−1 = yi−1, U i−1 = ui−1]

· Pr[Ji+1 = J | Ji = J
#, Ui = ui]

= si(J
#)

s̃i(J)

si(J#)
,

wherePr[Ji+1 = J | Ji = J
#, Ui = ui] =

s̃i(J)
si(J#)

follows
from the way thatJi+1 is chosen, givenJi andui.

We are now in a position to derive the means of computing
si+1(J) from s̃i(J).

Lemma V.3. For eachJ ∈ Ji+1, we have

si+1(J) := Pr[Ji+1 = J | Y i = yi, U i = ui]

= s̃i(J)
pY |X(yi | xi(J))
πY |Q(yi | qi−1)

,

whereqi−1 = Φ(q0, y
i−1).

Proof: We start with

Pr[Ji+1 = J | Y i = yi, U i = ui]

=
Pr[Ji+1 = J, Yi = yi | Y i−1 = yi−1, U i = ui]

Pr[Yi = yi | Y i−1 = yi−1, U i = ui]

(a)
= s̃i(J)

Pr[Yi = yi | Ji+1 = J, Y i−1 = yi−1, U i = ui]

Pr[Yi = yi | Y i−1 = yi−1, U i = ui]

(b)
= s̃i(J)

Pr[Yi = yi | Xi = xi(J)]

Pr[Yi = yi | Y i−1 = yi−1, U i = ui]
,

where (a) is by Lemma V.2, and (b) is due to the fact that if
Ji+1 = J, then the bit transmitted at time instanti must have
beenx−i+1(J) = xi(J).

The denominator on the right-hand-side above can be ex-
pressed as

Pr[Yi = yi | Y i−1 = yi−1, U i = ui] (27)

=
∑

J̃∈Ji+1

Pr[Ji+1 = J̃, Yi = yi | Y i−1 = yi−1, U i = ui]

=
∑

J̃∈J̃i

s̃i(J̃) Pr[Yi = yi | Xi = xi(J̃)] (28)

Now, the last expression above can be written as

 ∑

J̃∈J̃i: xi(J̃)=1

s̃i(J̃)


Pr[Yi = yi | Xi = 1]

+


 ∑

J̃∈J̃i: xi(J̃)=0

s̃i(J)


Pr[Yi = yi | Xi = 0].

By construction ofJ̃i from Ji, the message intervals̃J ∈ J̃i

with xi(J̃) = 1 form a partition of[0, πX,X−|Q(1|0, qi−1)), so
that ∑

J̃∈J̃i: xi(J̃)=1

s̃i(J̃) = πX,X−|Q(1, 0|qi−1)

and
∑

J̃∈J̃i: xi(J̃)=0

s̃i(J̃) = 1−
∑

J̃∈J̃i: xi(J̃)=1

s̃i(J̃)

= 1− πX,X−|Q(1, 0|qi−1).

Thus, (28) simplifies to

Pr[Yi = yi | Y i−1 = yi−1, U i = ui]

= πX,X−|Q(1, 0|qi−1) pY |X(yi|1)
+
(
1− πX,X−|Q(1, 0|qi−1)

)
pY |X(yi|0)

=
∑

x,x−

πX,X−|Q(x, x
−|qi−1) pY |X(yi|x),

recalling thatπX,X−|Q(x, x
−|qi−1) = 0 for (x, x−) = (1, 1).

One simple consequence of Lemma V.3 is that for each
J ∈ Ji+1, we have

si+1(J) ≤ si(J
#) max

x,y,q

pY |X(y|x)
πY |Q(y|q)

,

whereJ# ∈ Ji is the parent ofJ. Recursively applying this
inequality, we obtain

si+1(J) ≤ 2−nR

(
max
x,y,q

pY |X(y|x)
πY |Q(y|q)

)i

, (29)

which is a crude, but useful, upper bound on interval lengths
in Ji+1.

A second consequence of Lemma V.3 is the fact, crucial
for our description of cyclic shifting and message-interval
splitting, that the message intervalsJ ∈ Ji with history
bit x−i (J) = 0 form a partition of [0, πX−|Q(0|qi−1)). This
follows from the next lemma.

Lemma V.4. For any i ≥ 1, we have
∑

J∈Ji: x−
i (J)=0

si(J) = πX−|Q(0 | qi−1).

Proof: The proof is by induction oni. By construction,
the statement is true fori = 1. So, suppose that it holds for
somei ≥ 1. We then consider

∑
J∈Ji+1: x−

i+1(J)=0 si+1(J). By
Lemma V.3, we have

∑

J∈Ji+1: x−
i+1(J)=0

si+1(J)

=
∑

J∈J̃i: xi(J)=0

s̃i(J)
pY |X(yi | xi(J))
πY |Q(yi | qi−1)

=
pY |X(yi | 0)
πY |Q(yi | qi−1)


 ∑

J∈J̃i: xi(J)=0

s̃i(J)



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(a)
=

pY |X(yi | 0)
πY |Q(yi | qi−1)

(
1− πX,X−|Q(1, 0 | qi−1)

)

=

∑
x− pY |X(yi | 0)πX,X−|Q(0, x

− | qi−1)∑
x,x− pY |X(yi|x)πX,X−|Q(x, x− | qi−1)

=

∑
x− pY |X(yi | 0) p∗X|X−,Q(0 | x−, qi−1)πX−|Q(x

−|qi−1)∑
x,x− pY |X(yi|x) p∗X|X−,Q(x|x−, qi−1)πX−|Q(x−|qi−1)

(b)
= πX−|Q(0 | qi),

where (b) can be verified directly from the known expressions
for pY |X , p∗X|X−,Q and πX−|Q. The induction hypothesis
has been used in (a) above to validate the construction of
J̃i from Ji via message splitting, which yields the fact that∑

J∈J̃i:xi(J)=0 s̃i(J) = 1− πX,X−|Q(1, 0 | qi−1).

Remark 3. The PMS construction described in this section
and its analysis to come in the next section are also valid
for non-optimal input distributions and for a broader class of
channels called unifilar finite state channels (with feedback)
[11], provided that one condition is met. This condition,
which may easily go unnoticed within the details of the PMS
construction, is that of Lemma V.4: the sum of the lengths of
all the messages intervals with the same history bitx−i is a
function of theQ-stateqi−1 only. This condition is essentially
equivalent to the BCJR-invariant property that was introduced
in [26, Section III.A]. We emphasize that this property is
immediately satisfied when an input distribution satisfies the
Bellman equation in the corresponding DP problem. However,
this property can also be verified directly, as has been done in
Lemma V.4.

VI. PMS ANALYSIS: PROOF OFTHEOREM V.1

The statement to be proved concerns the probability of
sn−ζn(Jn−ζn) < ξ, conditioned on the occurrence of the
event si(Ji) ≤ Smin, i = 1, 2, . . . , n − ζn − 1. Thus,
throughout this section, we assume thatsi(Ji) ≤ Smin, i =
1, 2, . . . , n− ζn − 1, holds. All probabilities and expectations
in this section are implicitly conditioned on this event. This
results in a simplified analysis of the PMS in Phase I, since,
under this assumption, the true message intervalJi cannot split
into more than two children at any point of the PMS, as is
evident from the description of message-interval splitting in
Section V-D.

Since this proof is concerned only with the sequence of
true message intervalsJi, i = 1, 2, 3, . . ., we will use some
simplified notation:Si+1 = si+1(Ji+1), S̃i = s̃i(Ji+1), Xi =
xi(Ji), X

−
i = x−i (Ji) = xi−1(Ji−1).

A. Preliminaries

Define forρ ∈ [0, 1),

φq,x,q+(ρ) ,

(
pY |X(y|x)
πY |Q(y|q)

)−ρ

, (30)

wherey is the unique solution to the equationq+ = g(q, y).
We also useφ(x,q)ii−1

(ρ) as a shorthand forφqi−1,xi,qi(ρ).
Throughout the analysis, it is assumed thatpY |X(y|x) > 0,

otherwise, defineφq,x,q+(ρ) = 0 and the derivations can be
easily repeated.

Define also

ψs
x−,q,x,q+(ρ)

, E

[(
Si+1

Si

)−ρ

|(Si, X
−
i , Qi−1, Xi, Qi) = (s, x−, q, x, q+)

]
.

Indeed, there ought also be a time index in the notationψ, but
it will be shown in the proof of Lemma VI.1 below that the
expected value does not depend on the time indexi.

B. Analysis

The following lemma comprises the core of our PMS
analysis:

Lemma VI.1. For all δ > 0, there existss∗(δ) such that

ψs
x−,q,x,q+(ρ) ≤ φq,x,q+(ρ)2

δ,

for all s ≤ s∗(δ), 0 ≤ ρ < 1, and all (x−, q, x, q+).

Proof: In this proof we show thatψs
x−,q,x,q+(ρ) can be

made arbitrarily close toφq,x,q+(ρ) if we take s to be small
enough. From Lemma V.3, we have

ψs
x−,q,x,q+(ρ)

= E

[(
Si+1

Si

)−ρ

|(Si, X
−
i , Qi−1, Xi, Qi) = (s, x−, q, x, q+)

]

=

(
pY |X(y|x)
πY |Q(y|q)

)−ρ

· E



(
S̃i

Si

)−ρ

|(Si, X
−
i , Qi−1, Xi, Qi) = (s, x−, q, x, q+)




= φq,x,q+(ρ)

· E



(
S̃i

Si

)−ρ

|(Si, X
−
i , Qi−1, Xi, Qi) = (s, x−, q, x, q+)


 ,

(31)

where in the second equality above,y is the unique solution
of q+ = g(q, y). Our interest is in showing an upper bound on
the expected value in (31). The simpler case is whenX−

i = 1,
since there is no split (i.e.,̃Si = Si), so thatψs

1,q,x,q+(ρ) =
φq,x,q+(ρ).

To deal with the other case,X−
i = 0, we

need the conditional probability density function
fτi,Vi|Si,Qi−1,X

−
i ,Xi,Qi

(u, v|s, q, 0, x, q+), where

τi , ti(Ji) + Ui(q) mod πX−|Q(0|q) denotes the left
end-point of the message intervalJi−1 after cyclic shifting
by Ui(q). Observe that

fτi,Vi|Si,Qi−1,X
−
i ,Xi,Qi

(u, v | s, q, 0, x, q+)
(a)
=

Pr[Xi = x | Si = s,X−
i = 0, Qi−1 = q, τi = u, Vi = v]

Pr[Xi = x | Si = s,X−
i = 0, Qi−1 = q]

· fUi(q),Vi
(u, v)

(b)
=

Pr[Xi = x | Si = s,X−
i = 0, Qi−1 = q, τi = u, Vi = v]

Pr[Xi = x | X−
i = 0, Qi−1 = q]
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· fUi(q),Vi
(u, v)

(c)
=

Pr[Xi = x | Si = s,X−
i = 0, Qi−1 = q, τi = u, Vi = v]

Px,0,q

· fU,V

(
u

πX−|Q(0|q)
, v

)
, (32)

where(a) follows from the Markov chainQi − (Xi, Qi−1)−
(Si, X

−
i , τi, Vi) and the fact thatτi is distributed uniformly

on [0, πX−|Q(0|q)], (b) follows from the Markov chainXi −
(X−

i , Qi−1) − Si and (c) is due to replacement of the
random variableUi(q) with Ui, and the notationPx,0,q ,

πX,X−|Q(x, 0|q). The Markov chainQi − (Xi, Qi−1) −
(Si, X

−
i , τi, Vi) follows from the fact thatQi is a function of

(Yi, Qi−1) and the memoryless property. The second Markov
chainXi − (X−

i , Qi−1) − Si is shown in two steps: first, if
X−

i = 1, thenXi = 0. For the other case,X−
i = 0, note that

Wi, givenX−
i = 0 andQi−1 = q, is distributed uniformly on

[0, πX−|Q(0|q)], andXi is a function ofWi.
Note that the numerator of (32) is an indicator function

of the event that the point(u + sv) mod πX−|Q(0|q) is

mapped toX = x. Also, we havefU,V

(
u

π
X−|Q(0|q) , v

)
= 1

for all (u, v) ∈ [0, πX−|Q(0|q)] × [0, 1]. Thus, the density
fτi,Vi|Si,Qi−1,X

−
i ,Xi,Qi

does not depend on the time index
i. Since the expected value in (31) is determined from this
density function, the time index can be omitted from the
notation ofψs

x−,q,x,q+(ρ).
We begin with the calculation of the expected value in (31)

for the caseXi = 0:

E[S̃−ρ
i /S−ρ

i | Si = s,X−
i = 0, Qi−1 = q,Xi = 0, Qi = q+]

(a)
= sρ

∫

[0,π
X−|Q(0|q)]

∫

[0,1]

fτi,Vi|Si,X
−
i ,Qi−1,Xi,Qi

(u, v | s, 0, q, 0, q+)s̃(q, u, s, 0)−ρdvdu

(b)
=

sρ

P0,0,q

∫

I1∪I2∪I3

∫

IV (u,s)

s̃(q, u, s, 0)−ρdvdu, (33)

where

(a) follows by definings̃(q, u, s, 0) to be the length of the
new true message interval after a possible split, which is
a function of(Qi−1 = q, τi = u, Si = s,Xi = 0) only;

(b) follows from substituting (32) and restricting the integra-
tion overu, v to be on the domains wherePr[Xi = 0 |
Si = s,X−

i = 0, Qi−1 = q, τi = u, Vi = v] = 1, and are
illustrated in Fig. 7. Theu-intervals are given by

I1 ,
[
πX,X−|Q(1, 0|q), πX−|Q(0|q)− s

]

I2 ,
[
πX,X−|Q(1, 0|q)− s, πX,X−|Q(1, 0|q)

]

I3 ,
[
πX−|Q(0|q)− s, πX−|Q(0|q)

]
, (34)

and the correspondingv-intervals that depend onu, s are:

IV (u,s) ,





[0, 1] for u ∈ I1[
−u+P0,0,q

s , 1
]

for u ∈ I2[
0,

−u+P0,0,q+P1,0,q

s

]
for u ∈ I3.

(35)

v

u

I2 I3I1

P1 − sP1 P2 − sP2

1

Fig. 7. Illustration of the intervals in (35). We useP1 , P1,0,q , P2 ,

P0,0,q +P1,0,q . The shaded area corresponds to values ofu andv for which
Pr[Xi = 0 | Si = s,X−

i = 0, Qi−1 = q, τi = u, Vi = v] = 1.

For all u ∈ I1 and allv ∈ [0, 1], s̃(q, u, s, 0) = s, so

sρ

P0,0,q

∫

I1

∫

[0,1]

s̃(q, u, s, 0)−ρdvdu =
P0,0,q − s

P0,0,q
.

For the intervalI2,

sρ

P0,0,q

∫

I2

∫

IV (u,s)

s̃(q, u, s, 0)−ρdvdu

(a)
=

sρ

P0,0,q

1

s

∫

I2

(u− P0,0,q + s) (u− P0,0,q + s)
−ρ
du

=
sρ

P0,0,q

1

s

∫

[0,s]

u−ρ+1du

=
1

P0,0,q

s

(−ρ+ 2)
,

where (a) follows from s̃(q, u, s, 0) = u − P0,0,q + s and
|IV (u,s)| = (u−P0,0,q + s) for all u ∈ I2. The calculation for
the third interval,I3, is similar to that forI2, and results in
the same value for the integral.

To conclude, we have shown that

ψs
0,q,x,q+(ρ) = φq,x,q+(ρ)

[
Px,0,q − s

Px,0,q
+ 2

1

Px,0,q

s

(−ρ+ 2)

]

, φq,x,q+(ρ)2
δq,x(s)

for ρ ∈ [0, 1). The last step is to defineδ(s) , maxq,x δq,x(s),
which goes to zero whens → 0. Now, it is clear that
ψs
x−,q,x,q+(ρ) ≤ φq,x,q+(ρ)2

δ(s) for all (x−, q, x, q+), 0 ≤
ρ < 1 ands ≤ Smin, as required.

Proof of Theorem V.1: Throughout this proof,ζn is a
sequence of integers that satisfiesζn

n → 0. Our aim is to
show that for |M| = 2nR, there existsξ > 0 such that
Pr[Sn−ζn ≤ ξ] → 0 as n increases. For convenience, we
replace the variablen by n+ ζn, so that the analysis is made
for a message set of size|M| = 2(n+ζn)R and the probability
analysis is forPr[Sn ≤ ξ].

From Lemma VI.1, for allδ > 0, there existss∗(δ), such
that for all s ≤ s∗(δ)

ψs
x−,q,x,q+(ρ) ≤ φq,x,q+(ρ)2

δ. (36)

We will utilize (36) to provide a vanishing upper bound on
E[Λ(Sn)], with Λ(s) = s−ρ for a judiciously chosenρ > 0.
This, by the Markov inequality, will imply that the probability
that Λ(Sn) is above a certain threshold is vanishingly small.
Since Λ(s) is a decreasing function ofs, we then obtain
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that the probability thatSn lies below a certain threshold is
vanishingly small, as desired.

We introduce some convenient notation for the upcoming
analysis. Set∆i = (Xi, Qi, Si), and let (X,Q)ji stand for
(Xj

i , Q
j
i ) when i < j. Consider the following chain of

inequalities:

E∆n
[Λ(Sn)]

(a)
= E∆n−1 [Λ(Sn−1)E∆n|∆n−1

[Λ(Sn/Sn−1)|∆n−1]]

= E∆n−1 [Λ(Sn−1)E(Xn,Qn)|∆n−1
[

ESn|(Xn,Qn),∆n−1
[Λ(Sn/Sn−1)|(Xn, Qn),∆n−1]]]

(b)

≤ 2δ E∆n−1 [Λ(Sn−1)E(Xn,Qn)|∆n−1
[φ(X,Q)nn−1

(ρ)]]

= 2δ E(X,Q)nn−1
[φ(X,Q)nn−1

(ρ)

· ESn−1|(X,Q)nn−1
[Λ(Sn−1)|(X,Q)nn−1]]

(a)
= 2δ E(X,Q)nn−1

[φ(X,Q)nn−1
(ρ)E∆n−2|(X,Q)nn−1

[Λ(Sn−2)

· ESn−1|(X,Q)nn−1,∆n−2
[Λ(Sn−1/Sn−2)|(X,Q)nn−1,∆n−2]]]

(c)
= 2δ E(X,Q)nn−1

[φ(X,Q)nn−1
(ρ)E∆n−2|(X,Q)nn−1

[Λ(Sn−2)

·ESn−1|(Xn−1,Qn−1),∆n−2
[Λ(Sn−1/Sn−2)|(Xn−1,Qn−1),∆n−2]]]

(b)

≤ 22δ E(X,Q)nn−1
[φ(X,Q)nn−1

(ρ)E∆n−2|(X,Q)nn−1
[

Λ(Sn−2)φ(X,Q)n−1
n−2

(ρ)]]

= 22δ E(X,Q)nn−2
[φ(X,Q)nn−1

(ρ)φ(X,Q)n−1
n−2

(ρ)

· ESn−2|(X,Q)nn−2
[Λ(Sn−2)|(X,Q)nn−2]]

(d)

≤ 2nδE(X,Q)n1

[
n∏

i=1

φ(X,Q)ii−1
(ρ)ES0|(X,Q)n1

[Λ(S0)|(X,Q)n1 ]

]

(e)
= 2nδ2(n+ζn)Rρ

E(X,Q)n1

[
n∏

i=1

φ(X,Q)ii−1
(ρ)

]
,

where:

(a) follows from the law of total expectation;
(b) follows from (36) since ψSn−1

Xn−1,Qn−1,Xn,Qn
(ρ) =

ESn|(Xn,Qn),∆n−1
[Λ(Sn/Sn−1)|(Xn, Qn),∆n−1];

(c) follows from the Markov chainSi − (∆i−1, (Xi, Qi))−
(X,Q)ni+1 for all i, and specifically fori = n− 1;7

(d) follows from applying the above stepsn− 2 times; and
(e) follows from the fact that|M| = 2(n+ζn)R.

The expectation above can be decomposed into non-
typical and typical sequences with respect to the
Markov distribution p(q+, x|q, x−) :=

∑
y 1{q+ =

g(q, y)}pY |X(y|x)p∗X|X−,Q(x|x−, q). With some abuse
of notation, sinceq and q+ determine a uniquey such that
q+ = g(q, y), we refer toφ(X,Q)ii−1

(ρ) as φQi−1,Xi,Yi
(ρ).

Consider

E∆n
[Λ(Sn)]

(a)

≤ 2n(Rρ(1+ ζn
n

)+δ)

7This Markov chain follows from the same argument used in Lemma VI.1
for the Markov chainXi+1 − (Xi, Qi)− Si.

·
[
ǫn[max

q,x,y
φq,x,y(ρ)]

n +
∏

q,x,y

φq,x,y(ρ)
nπQ,X,Y (q,x,y)+κn

]

= 2n(Rρ+Rρ ζn
n

+δ+Kρ)ǫn

+ 2n(Rρ+Rρ ζn
n

+δ)
∏

q,x,y

2(nπQ,X,Y (q,x,y)+κn) logφq,x,y(ρ)

= 2n(Rρ+Rρ ζn
n

+δ+Kρ)ǫn

+ 2n(Rρ+Rρ ζn
n

+δ)2
−ρ

∑
q,x,y(nπQ,X,Y (q,x,y)+κn) log

(
pY |X (y|x)

πY |Q(y|q)

)

(b)

≤ 2n(Rρ+Rρ ζn
n

+δ+Kρ)ǫn + 2−nρ(I(X;Y |Q)−R(1+ ζn
n

)− δ
ρ
+

κ′
n
n

),
(37)

where(a) follows from separating the contributions made to
the expected value by non-typical and typical sequences: we let
ǫn denote the probability that a sequence is not in the typical
set, K stands formaxq,x,y log

(
πY |Q(y|q)
pY |X(y|x)

)
and, finally, κn

denotes the maximum deviation of the empirical distribution
from πQ,X,Y (q, x, y) for a typical sequence. Item(b) follows
from the notationκ′n , κn|Q||X ||Y|K. Now, sinceǫn de-
creases exponentially withn, there exists a choice of(ρ∗, δ∗)
such that2n(Rρ∗+ ζn

n
+δ∗+Kρ∗)ǫn is arbitrarily small, whileR

can be made arbitrarily close toI(X ;Y |Q).
Finally, the main result can be derived withδ∗ andρ∗:

Pr[Sn ≤ s∗(δ∗)]
(a)
= Pr[Λ(Sn) ≥ Λ(s∗(δ∗))]
(b)

≤ E[Λ(Sn)]

Λ(s∗(δ∗))
(c)→ 0, (38)

where (a) follows from the fact thatΛ(·) is a decreasing
function,(b) follows from Markov’s inequality and(c) follows
from (37).

VII. DP FORMULATION AND SOLUTION

This section covers the formulation of feedback capacity as
DP and its solution. The solution of the DP problem implies
almost immediately the derivations of feedback capacity and
optimal input distribution, which were stated earlier as separate
results in Theorems III.1 and IV.2 (which are proved at the end
of this section). We begin with presenting the family of DP
problems termed infinite-horizon with average reward.

A. Average reward DP

Each DP is defined by the tuple(Z,U ,W , F, PZ , PW , g).
We consider a discrete-time dynamical system evolving ac-
cording to:

zt = F (zt−1, ut, wt), t = 1, 2, . . . (39)

Each state,zt, takes values in a Borel spaceZ, each action,
ut, takes values in a compact subsetU of a Borel space, and
each disturbance,wt, takes values in a measurable spaceW .
The initial state,z0, is drawn from the distributionPZ , and the
disturbance,wt, is drawn fromPW |Zt−1,Ut

. The history,ht =
(z0, w1, . . . , wt−1), summarizes all the information available
to the controller at timet. The controller at timet chooses
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the action,ut, by a functionµt that maps histories to actions,
i.e., ut = µt(ht). The collection of these functions is called
a policy and is denoted asπ = {µ1, µ2, . . . }. Note that given
a policy,π, and the history,ht, one can compute the actions
vector,ut, and the states of the system,z1, z2, . . . , zt−1.

Our objective is to maximize the average reward given a
bounded reward functionr : Z ×U → R. The average reward
for a given policyπ is given by:

ρπ = lim inf
N→∞

1

N
Eπ

[
N∑

t=1

r(Zt−1, µt(ht))

]
,

where the subscript indicates that actionsut are subject to the
policy π. The optimal average reward is defined as

ρ = sup
π
ρπ.

Having defined the DP problem, we are ready to show the
formulation of feedback capacity as DP.

B. Formulation of capacity as DP

The state of the DP,zt−1, is defined as the conditioned
probability vectorβt−1(xt−1) , p(xt−1|yt−1). The action
space,U , is the set of stochastic matrices,pXt|Xt−1

, such that
pXt|Xt−1

(1|1) = 0. For a given policy and an initial state, the
encoder at timet− 1 can calculate the state,βt−1, since the
tuple yt−1 is available from the feedback. The disturbance is
taken to be the channel output,wt = yt, and the reward gained
at time t − 1 is chosen asI(Yt;Xt|yt−1). These definitions
imply that the optimal reward of this DP is equal to the
feedback capacity given in Theorem IV.1.

It can also be shown that the DP states satisfy the following
recursive relation,

βt(xt) = p(xt|yt)

=

∑
xt−1

βt−1(xt−1)ut(xt, xt−1)pY |X(yt|xt)∑
xt,xt−1

βt−1(xt−1)ut(xt, xt−1)pY |X(yt|xt)
,

(40)

whereut(xt, xt−1) corresponds top(xt|xt−1, y
t−1), the de-

pendence onyt−1 being left out of the notation forut. In
[13], this formulation was shown to satisfy the Markov nature
required in DP problems and it was also shown that the optimal
average reward is exactly the capacity expression in Theorem
IV.1. Note that this formulation is valid for any memoryless
channel with our input constraint; moreover, minor variations
can also yield a similar formulation with different input
constraints.

C. The DP for the BIBO channel

Here, each element in the formulation above
will be calculated for the BIBO channel; the DP
state at time t − 1, zt−1, is the probability vector
[pXt−1,Y t−1(0|yt−1), pXt−1|Y t−1(1|yt−1)]. Since the
components of this vector sum to1, the notation can
be abused aszt−1 , pXt−1|Y t−1(0|yt−1), i.e., the first

TABLE I
THE CONDITIONAL DISTRIBUTIONp(yt, xt, xt−1|zt−1, ut)

xt−1 xt yt = 0 yt = 1

0 0 ᾱzt−1ut(1, 1) αzt−1ut(1, 1)
0 1 βzt−1ut(1, 2) β̄zt−1ut(1, 2)
1 0 ᾱ(1− zt−1) α(1 − zt−1)

component will be the DP state. Each action,ut, is a
constrained2× 2 stochastic matrix,pXt|Xt−1

, of the form:

ut =

[
pXt|Xt−1

(0|0) pXt|Xt−1
(1|0)

1 0

]
.

The disturbancewt is the channel output,yt, and thus, it can
take values from{0, 1}.

The notationδt , zt−1pXt|Xt−1
(1|0) is useful and implies

the constraint0 ≤ δt ≤ zt−1, sinceut, by definition, must
be a stochastic matrix. Furthermore, givenzt−1, ut can be
recovered fromδt for all zt−1 6= 0. For the casezt−1 = 0, we
will see thatpXt|Xt−1

(1|0) has no effect on the DP, so it can
be fixed to zero. The system equation can then be calculated
from (40):

zt =

{
ᾱδ̄t

(1−α)(1−δt)+βδt
if wt = 0,

αδ̄t
α(1−δt)+(1−β)δt

if wt = 1.
(41)

The conditional distribution,p(xt, xt−1, yt|zt−1, ut), is de-
scribed in Table I, so one can calculate the reward

r(zt−1, ut) = I(Yt;Xt|zt−1, ut)

= H2(ᾱδ̄t + βδt)− (1− δt)H2(α)− δtH2(β).

Before computing the DP operator, it is convenient to define

pα,β(δ) = αδ̄ + β̄δ

arg1α,β(δ) =
ᾱδ̄

1− pα,β(δ)

arg2α,β(δ) =
αδ̄

pα,β(δ)
.

(42)

We will omit the subscriptsα, β in the notation above when
it is clear from the context. The DP operator is then given by:

(Thα,β)(z) = max
0≤δ≤z

H2(p(δ))− (1 − δ)H2(α) − δH2(β)

+ (1 − p(δ))hα,β(arg1(δ)) + p(δ)hα,β(arg2(δ)),
(43)

for all functionshα,β : [0, 1] → R, parameterized by(α, β).
Now when the DP problem for the BIBO channel is well-

defined, the Bellman equation which can verify the optimal-
ity of rewards, can be used to obtain an analytic solution.
However, the Bellman equation cannot be easily solved, and
therefore, numerical algorithms are required to estimate the
Bellman components. The numerical study of DP problems
is not within the scope of this paper, and the reader may find
[11], [12] to be suitable references for learning this topic in the
context of feedback capacities. Therefore, we proceed directly
to the statement and the solution of the Bellman equation.
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D. The Bellman Equation

In DP, the Bellman equation suggests a sufficient condi-
tion for average reward optimality. This equation establishes
a mechanism for verifying that a given average reward is
optimal. The next result encapsulates the Bellman equation:

Theorem VII.1 (Theorem 6.2, [30]). If ρ ∈ R and a bounded
functionh : Z → R satisfies for allz ∈ Z:

ρ+h(z) = sup
u∈U

r(z, u)+

∫
p(w|z, u)h(F (z, u, w))dw, (44)

thenρ∗ = ρ. Furthermore, if there is a functionµ : Z → U ,
such thatµ(z) attains the supremum for eachz, thenρ∗ = ρπ
for π = {µ0, µ1, . . . } with µt(ht) = µ(zt−1) for eacht.

This result is a direct consequence of Theorem6.2 in [30];
specifically, the triplet(ρ, h(·), µ(·)) is a canonical triplet by
Theorem6.2, since it satisfies (44). Now, because a canonical
triplet defines for allN theN -stage optimal reward and policy
under terminal costh(·), it can be concluded that a canonical
triplet also defines the optimal reward and policy in the infinite
horizon regime, since in this case, the bounded terminal cost
has a negligible effect.

Define two constants

ρ̃α,β = max
0≤z≤1

Rα,β(z)

zopt
α,β = argmax

0≤z≤1
Rα,β(z), (45)

whereRα,β(z) was defined in (2) and has a unique maximizer
from Lemma III.1.

Also, define the functions:

hα,β1 (z) = H2(p(z))− (1− z)H2(α)− zH2(β)

Xα,β(z) = H2(p(z))− (1− z)H2(α)− zH2(β)− p(z)ρ̃α,β

hα,β2 (z) =
Xα,β(z) + p(z)Xα,β(arg2α,β(z))

1− αβ̄
, (46)

for z ∈ [0, 1]. The concatenation of the above functions can
be defined:

h̃α,β(z) =





hα,β1 (z); if 0 ≤ z ≤ zα,β1

hα,β2 (z); if zα,β1 < z ≤ zα,β2

ρ̃α,β if zα,β2 < z ≤ 1,

wherezα,β1 andzα,β2 were defined in (15). With these defini-
tions, we are ready to state the fundamental theorem of this
section.

Theorem VII.2. The functioñhα,β(z) and the constant̃ρα,β
satisfy the Bellman equation, i.e.,

h̃α,β + ρ̃α,β = T h̃α,β,

for all [α, β] ∈ [0, 1]× [0, 1] satisfyingα+ β ≤ 1. Moreover,
the maximum inT h̃α,β is achieved whenδ∗(z) = z for z ∈
[0, zα,β2 ], and δ∗(z) = zα,β2 otherwise.

The computations needed to verify thath̃α,β(z) and ρ̃α,β
indeed satisfy the Bellman equation are given in Appendix C.
To derive this solution in the first place, we started with the
numerical techniques used in similar contexts in the prior

works [11]–[13]. The numerical results indicated that the
optimal actions are linear in parts and that the number of
visited DP states is4. These observations were sufficient for
some good guesswork that helped us to find the Bellman
equation solution. For further reading on solving the feedback
capacity when actions may be non-linear functions but the DP
visits a finite number of states, the reader is referred to [26].
Loosely speaking, the paper [26] includes upper and lower
bounds on the feedback capacity that match if the DP (under
optimal actions) visits a finite number of states.

As consequences of Theorem VII.2, we obtain the facts that
the feedback capacity and the optimal input distribution of the
BIBO channel are as stated in Theorems III.1 and IV.2.

Proof of Theorem III.1: By Theorem VII.2, the DP
optimal average reward is̃ρα,β, which is the same as the
capacity expression in the statement of Theorem III.1.

Proof of Theorem IV.2:We first show that the initial DP
state may be assumed to be such that the optimal policy visits
only a finite set of DP states. From this, we infer the form of
the optimal input distribution given in the theorem statement.
It is then straightforward to check that{(Xi, Qi)}i≥1 forms
an irreducible and aperiodic Markov chain. It follows from
this that the average reward, i.e., the feedback capacity, can
also be expressed asI(X ;Y |Q).

Recall the optimal actions from Theorem VII.2:

δ∗(z) =

{
z if 0 ≤ z ≤ zα,β2

zα,β2 if zα,β2 < z ≤ 1.

The DP state evolution in (41) can be described using the
argjα,β functions in (42). It is easy to check that the set
Z∗ , {zα,βi : i = 1, 2, 3, 4}, with zα,βi as defined in
(15), is closed under the composite function argjα,β ◦ δ∗,
i.e., argjα,β

(
δ∗(zα,βi )

)
∈ Z∗ for all i, j. The functions

argjα,β
(
δ∗(z)

)
, j = 1, 2, create a sink, meaning that there is

always a positive probability for a transition being made from
any DP statez ∈ Z to a state inZ∗, and zero probability of
leaving the setZ∗. Therefore, we can assume that the initial
DP statez0 is from Z∗. Note also that for the functiong(·, ·)
that describes the transitions in theQ-graph in Fig. 4, we
have ℓ = g(i, j − 1) iff zα,βℓ = argjα,β

(
δ∗(zα,βi )

)
, for all

i, ℓ ∈ {1, 2, 3, 4} and j ∈ {1, 2}. Therefore, we may identify
the setZ∗ with the set ofQ-statesQ = {1, 2, 3, 4}, so that the
evolution of the DP states can be described on theQ-graph
of Fig. 4. The form given for the optimal input distribution in
the theorem statement follows directly from this observation.

We next verify the first-order Markov property of
(Xi, Qi)i≥1. Observe that

p(xi, qi|xi−1, qi−1)

=
∑

yi

p(yi, xi, qi|xi−1, qi−1)

(a)
=
∑

yi

p(qi|qi−1, yi)p(yi|xi)p∗X|X−,Q(xi|xi−1, qi−1),

(47)

where (a) follows from the structure ofp∗X|X−,Q given in
(16), the memoryless channel property, and the fact thatQi is a
function of(Qi−1, Yi). It can be verified that the Markov chain
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(Xi, Qi)i≥1 is irreducible and aperiodic, and hence, ergodic.
It is then a straightforward, albeit tedious, exercise to verify
that its (unique) stationary distribution is given byπX−,Q =
πX−|QπQ, as in the statement of the theorem.

Any trajectory of stateszt, t ≥ 0, followed by the DP
under the optimal policy accumulates an average reward of
lim infN

1
N

∑N
t=1 r

(
zt, δ

∗(zt)
)
. Since we assume thatz0 ∈

Z∗, each term in the sum is of the formr
(
zα,βi , δ∗(zα,βi )

)

for some i ∈ Q, which is equal toI(Y ;X |Q = i), the
reward at the DP statezα,βi . It then follows from the ergodicity
of the Markov chain(Xi, Qi)i≥1 that, asN → ∞, the
time average1

N

∑N
t=1 r

(
zt, δ

∗(zt)
)

converges almost surely
to
∑4

i=1 I(Y ;X |Q = i)πQ(i) = I(X ;Y |Q).

VIII. S UMMARY AND CONCLUDING REMARKS

The capacity of the BIBO channel with input constraints
was derived using a corresponding DP problem. A by-product
of the DP solution is the optimal input distribution, which can
be described compactly usingQ-graphs. For the S-channel,
we were able to derive a capacity-achieving coding scheme
with simple and intuitive analysis for the achieved rate. For
the general BIBO channel, we provided a PMS construction
that includes the new element of history bits that captures the
memory embedded in the setting. Furthermore, to ease the
analysis of the scheme, a message-interval splitting operation
was introduced so as to keep a Markov property of the involved
random variables. With these ideas, we showed that the
constructed PMS achieves the capacity of the BIBO channel.

The elements that were presented here for the PMS in
the input-constrained BIBO channel setting may be exploited
to derive a PMS for a broader class of finite-state channels
(FSC) with feedback. Specifically, a FSC isunifilar if the
channel statest is a deterministic function of the previous
channel statest−1, input xt and outputyt. Though several
works have proposed the PMS approach for this class, the
assertion that this approach is optimal (in the sense of being
feedback-capacity achieving) remains to be proved [31], [32].
The idea of history bits that was presented in this paper can
be extended to “history states” for unifilar channels, since
the encoder can determine the channel state at each timet,
assuming knowledge of the initial states0. Moreover, for
all unifilar channels with simple capacity expressions, their
optimal input distributions have aQ-graph representation [26]
so that they satisfy the BCJR-invariant property that is crucial
for the PMS construction. Thus, the steps of the construction
and the analysis can be repeated in order to show that the
corresponding PMS operates successfully in the sense of
Theorem V.1.

APPENDIX A
PROOF OFLEMMA III.1

In this appendix, we show that the argument that achieves
the maximum ofRα,β(z) is unique and lies within[zL, zU ] =[ √

α
√
α+

√
β̄
,

√
ᾱ√

ᾱ+
√
β

]
.

Let p(z) = αz̄+ β̄z and denote byp′ the derivative ofp(z).
After some simplifications, the derivative equals:

d

dz
R(z)

=
1

(1 + p(z))2
{
(1− αβ̄)(H2(α)−H2(β)) + (β̄ − α)

·
[
2 log(1− p(z))− log(p(z)− αβ̄)(1 + αβ̄) + αβ̄ logαβ̄

]}

The above derivative equals zero when the function

fα,β(z) , (1− αβ̄)[H2(α)−H2(β)] + (β̄ − α)

· [2 log(1− p(z))− log(p(z)− αβ̄)(1 + αβ̄) + αβ̄ logαβ̄]

equals zero. It is easy to note that the functionfα,β(z) is a
decreasing function of its argument and, therefore, it can be
zero at one point only.

We will show two facts:

fα,β(p(zL)) ≥ 0 (48)

fα,β(p(zU )) ≤ 0, , (49)

from which we can conclude thatRα,β(z) attains its maximum
at a unique point inz ∈ [zL, zU ]. For the BSC, it needs to be
shown thatfα,α(0.5) ≤ 0 which can be verified immediately.

We begin with an explicit calculation offα,β(p(zL)):

fα,β(p(zL))

(a)
= (1− αβ̄)[H2(α) −H2(β)] + (β̄ − α) ·

· [2 log(1−
√
αβ̄)− log(

√
αβ̄ − αβ̄)(1 + αβ̄) + αβ̄ logαβ̄]

= (1 − αβ̄)

[
H2(α) −H2(β) + (β̄ − α) log

(
1−

√
αβ̄√

αβ̄

)]
,

(50)

where(a) follows from p(zL) =
√
αβ̄. Since1−αβ̄ ≥ 0, we

need to show thatfα,β(p(zL))

1−αβ̄
≥ 0.

We now show that the minimal value of (50) is0. Consider
the first derivative, with respect toα, of fα,β(p(zL))

1−αβ̄
:

d

dα

[
H2(α)−H2(β) + (β̄ − α) log

(
1−

√
αβ̄√

αβ̄

)]

= log

(
(1− α)

√
αβ̄

α(1 −
√
αβ̄)

)
− β̄ − α

2α(1−
√
αβ̄)

≤ (1 − α)
√
αβ̄

α(1 −
√
αβ̄)

− 1− β̄ − α

2α(1−
√
αβ̄)

=
−(
√
β̄ −√

α)2

2α(1−
√
αβ̄)

≤ 0, (51)

where the first inequality follows fromlog x < x − 1 for all

x > 0 with x =
(1−α)

√
αβ̄

α(1−
√

αβ̄)
.

Therefore, for eachβ, the function is non-increasing inα,
so the function can only be decreased if we substituteα = β̄.
Sincefβ̄,β(p(zL)) = 0, inequality (48) is proven.
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We now use a similar methodology to show (49). The
inequality that needs to be shown is

fα,β(p(zU ))

= (1− αβ̄)[H2(α) −H2(β)] + (β̄ − α) ·
· (2 log

√
ᾱβ + αβ̄ logαβ̄ − log(1−

√
ᾱβ − αβ̄)(1 + αβ̄))

≤ 0. (52)

Because it is difficult to prove straightforwardly, we write
inequality (52) as a sum of simpler components, i.e.,
−fα,β(p(zU )) = F 1

α,β + F 2
α,β , and we show thatF 1

α,β and
F 2
α,β are always non-negative. The functions are:

F 1
α,β = αβ̄

[
(β̄ − α)log

(
1−√

ᾱβ − αβ̄

αβ̄

)
+H2(α)−H2(β)

]

F 1
α,β = (β̄ − α) log

(
1−√

ᾱβ − αβ̄

ᾱβ

)
− (H2(α)−H2(β))

As before, we take the first derivative ofF 1
α,β :

d

dα

[
F 1
α,β

αβ̄

]

= (β̄ − α)

[
− 1

α
+

−β̄ + β
2
√
ᾱβ

1− αβ̄ −√
ᾱβ

]
+ log

(
ᾱβ̄

1−√
ᾱβ − αβ̄

)

≤ (β̄ − α)

[
− 1

α
+

−β̄ + β
2
√
ᾱβ

1− αβ̄ −√
ᾱβ

]
+

(
ᾱβ̄

1−√
ᾱβ − αβ̄

)
− 1

=
(
√
ᾱ−√

β)
√
β[
√
ᾱ(α

√
β − β̄

√
ᾱ) + (αβ − ᾱβ̄)]

2α
√
ᾱβ(1−√

ᾱβ − αβ̄)

≤ 0,

where the first inequality follows fromlog x ≤ x − 1 with
x = ᾱβ̄

1−√
ᾱβ−αβ̄

. The last inequality follows fromα ≤ β̄,

which implies, in turn,α
√
β−β̄

√
ᾱ ≤ 0 andαβ−ᾱβ̄ ≤ 0. We

thus conclude thatF 1
α,β is non-increasing inα, and therefore,

if we takeα to be1− β, we get its minimal value. Note that
F 1
β̄,β

= 0, so we haveF 1
α,β ≥ 0.

Now we take the derivative ofF 2
α,β with respect toβ:

d

dβ
F 2
α,β

=
(β − ᾱ)

√
ᾱβ(−β + 2

√
βᾱ)

2β2(1− αβ̄ −√
ᾱβ)

+ log

(
ᾱβ̄

1− αβ̄ −√
ᾱβ

)

≤ (β − ᾱ)
√
ᾱ(−√

β + 2
√
ᾱ)

2β(1 − αβ̄ −√
βᾱ)

+

(
ᾱβ̄

1− αβ̄ −√
ᾱβ

)
− 1

=
(
√
β −

√
ᾱ)

2β(1 − αβ̄ −√
ᾱβ)

(ᾱ
√
β + 2β

√
β +

√
ᾱ(2ᾱ− β))

≤ 0.

The last inequality follows from
√
β −

√
ᾱ ≤ 0. Repeating

the same steps as was done forF 1
α,β , we find thatF 2

α,β ≥ 0,
which, in turn, gives that−fα,β(p(zU )) ≥ 0 as required. �

APPENDIX B
PROOF OFTHEOREM III.3

Throughout this section, we usex = αᾱ, and x′, x′′ to
stand for the first and second derivatives ofx, respectively.

Recall thatpα in Corollary 1 is the solution for(αᾱ) log(αᾱ)+
2 log(1−p) = (1+αᾱ) log(p−αᾱ), and letp′α denote its first
derivative. The next lemma concernsp′α and is the foundation
for the proof of Theorem III.3.

Lemma B.1. The first derivative ofpα is:

p′α = (1− 2α)
(1− pα)(pα − αᾱ)

(αᾱ− 1)(1 + pα)

[
log

(
pα − αᾱ

ᾱ

)
− logα

]

+ (1 − 2α)
1− pα
1− αᾱ

, K2(α) −K1(α) logα,

with the defined functions:

K1(α) , (1− 2α)
(1− pα)(pα − αᾱ)

(αᾱ− 1)(1 + pα)

K2(α) , K1(α) log

(
pα − αᾱ

ᾱ

)
+ (1 − 2α)

1− pα
1− αᾱ

.

Note thatp0 = 2 − λ, soK1(α) andK2(α) are defined at
α = 0:

K1(0) = −p0(1− p0)

1 + p0
K2(0) = K1(0) log p0 + 1− p0.

Proof of Lemma B.1: We calculate the first derivative
for each side of2 log(1 − pα) = (1 + αᾱ) log(pα − αᾱ) −
(αᾱ) log(αᾱ) so we have:

−2

1− pα
p′α = x′

[
log

(
pα − x

x

)
− 1 + pα
pα − x

]
+

1 + x

pα − x
p′α.

(53)

Arranging both sides of (53) complete the proof.
The next lemma is technical and is made to shorten the

proof of Theorem III.3:

Lemma B.2. DefineK3(α) =
x′

1+pα
, then it can be expressed

as

K3(α) =
1

1 + p0
+Nα logα+ o(α logα),

whereN is a constant.

The proof of Lemma B.2 appears in Appendix B-A. We are
now ready to prove the main result of this section.

Proof of Theorem III.3: Consider the next chain of
equalities:

CBSC(α) +H2(α) − CBSC(0) +K3(α)α logα

(a)
= log(1− pα)− log(pα − x)− CBSC(0) +K3(α)α logα

(b)
= α

[ −p′α
1− pα

− p′α − x′

pα − x
+K ′

3(α)α logα

+K3(α)[1 + logα]

]

α=0

+ o(α)

(c)
= α

[
p′α(x− 1)

(1 − pα)(pα − x)
+

x′

pα − x
+K3(α)[1 + logα]

]

α=0

+ o(α)

(d)
= α

[
(K2(α)−K1(α) logα)(x − 1)

(1 − pα)(pα − x)
+

x′

pα − x
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+K3(α)[1 + logα]

]

α=0

+ o(α)

(e)
= Mα+ α

[
K1(α) logα(1− x)

(1− pα)(pα − x)
+K3(α) logα

]

α=0

+ o(α)

(f)
= Mα+ o(α) (54)

where:
(a) follows from Corollary 1;
(b) follows from the Taylor series approximationf(α) =

f(0) + f ′(0)α+O(α2);
(c) follows from Lemma B.2, specifically,

limα→0K
′
3(α)α logα = 0;

(d) follows from Lemma B.1, specifically,p′α = K2(α) −
K1(α) logα;

(e) follows from the notationM , K2(0)
−1

(1−p0)(p0)
+ 1

p0
+

K3(0);
(f) follows from K1(α)(1−x)

(1−pα)(pα−x) +K3(α) = 0.

Thus, we have from (54) thatCBSC(α)+H2(α)−CBSC(0)+
K3(α)α logα =Mα+ o(α).

The derivation is completed with the following equalities:

CBSC(α)

= CBSC(0)−K3(α)α logα−H2(α) +Mα+ o(α)

(a)
= logλ− [K3(0) +Nα logα+ o(α logα)]α logα

−H2(α) +Mα+ o(α)

(b)
= logλ+

2− λ

3− λ
α logα+

(
log(2− λ)− (2− λ)

3− λ

)
α

+O(α2 log2 α)

where:
(a) follows fromCBSC(0) = logλ and Lemma B.2;
(b) follows fromH2(α) = −α logα+α+o(α) and arranging

the equation.

A. Proof of Lemma B.2

By a Taylor series approximation, we have

x′

1 + pα
− x′K1(α)

(1 + pα)2
α logα− 1

1 + p0

= α

[
x′′

1 + pα
− p′α

x′

(1 + pα)2
−
(
x′K1(α)

(1 + pα)2

)′
α logα

− x′K1(α)

(1 + pα)2
(1 + logα)

]

α=0

+ o(α)

(a)
= Cα + α

[
−p′α

x′

(1 + pα)2
− x′K1(α)

(1 + pα)2
logα

]

α=0

+ o(α)

(b)
= Cα+ α

[
K2(α)

−x′
(1 + pα)2

]

α=0

+ o(α)

(c)
= C̃α+ o(α),

where (a) follows from the fact that

limα→0

(
x′K1(α)
(1+pα)2

)′
α logα = 0 and the notationC =

−2
1+pα

− K1(0)
(1+p0)2

, (b) follows fromp′α = K2(α)−K1(α)α logα,

and finally,(c) follows from the notationC̃ = C − K2(0)
(1+p0)2

.

TABLE II
THE FUNCTIONS ARG1(z) AND ARG2(z)

domain h̃(arg1(z)) h̃(arg2(z))

I [0, z1] ρ̃α,β ρ̃α,β

II [z1, z2] ρ̃α,β hα,β
2 (arg2(z))

III [z2, z3] ρ̃α,β hα,β
1 (arg2(z))

IV [z3, z4] hα,β
2 (arg1(z)) hα,β

1 (arg2(z))

V [z4, 1] hα,β
1 (arg1(z)) hα,β

1 (arg2(z))

So, we have that

x′

1 + pα
=

1

1 + p0
+ C̃α+ o(α) +

x′K1(α)

(1 + pα)2
α logα.

Applying the Taylor series approximation once again on
x′K1(α)
(1+pα)2 gives that:

x′K1(α)

(1 + pα)2
=

K1(0)

(1 + p0)2
+ h(α),

whereh(α) is some function such thatlimα→0 h(α) = 0.
Combining the last two derivations, we have the required

equality, i.e.,

x′

1 + pα
=

1

1 + p0
+ C̃α+o(α)+

[
K1(0)

(1 + p0)2
+ h(α)

]
α logα

=
1

1 + p0
+Nα logα+ o(α logα),

whereN = K1(0)
(1+p0)2

. �

APPENDIX C
PROOF OFTHEOREM VII.2

The following lemma is technical and is useful for under-
standing the structure of̃hα,β(z).

Lemma C.1. For all [α, β] ∈ [0, 1]× [0, 1] s.t.α+ β ≤ 1,

1) The functioñhα,β(z) is continuous on[0, 1].
2) The functioñhα,β(z) is concave on[0, 1].
3) The only maximum ofhα,β2 (z) is attained atz = zα,β2 ,

and its value isρ̃α,β .
4) The first derivative ofhα,β1 (z) is non-negative forz ∈

[0, zα,β1 ].

The proof of Lemma C.1 appears in Appendix C-A.
Proof of Theorem VII.2:The functionh̃α,β(z) is defined

as a concatenation ofhα,β1 (z), hα,β2 (z), and ρ̃α,β ; to simplify
the calculation of(T h̃α,β)(z), the unit interval is partitioned
into non-intersecting sub-intervals, where each sub-interval
uniquely determines the functioñhα,β(argi(z)) to behα,β1 (z),
hα,β2 (z) or ρ̃α,β , for i = 1, 2. Since there are two concatenation
points,zα,β1 andzα,β2 , the unit interval is partitioned at the set
of points that satisfy,

arg1α,β(z) = zα,βi

arg2α,β(z) = zα,βi , (55)

for i = 1, 2.
Calculation of the points in (55) reveals that the unit interval

should be partitioned atzα,β1 , zα,β2 , zα,β3 , zα,β4 from (15). Fig.
8 illustrates the argument functions and the partitions when
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Fig. 8. Illustration of the argument functions as a function ofz, for α =
β = 0.25.

α = β = 0.25. As can be seen from Fig. 8, five segments
need to be considered when calculating(T h̃α,β)(z). The
relevant segments are summarized in Table II together with
h̃α,β(argi(z)) for i = 1, 2 for each sub-interval.

Now, the operatorT h̃α(z) can be calculated, such that in
each calculation, we restrict actions to one sub-interval from
Table II. For the interval I, i.e.,z ∈ [0, zα,β1 ),

(T h̃α,β)(z)

= sup
0≤δ≤z

H2(p(δ)) − (1− δ)H2(α)− δH2(β)

+ (1− p(δ))hα,β(arg1(δ)) + p(δ)hα,β(arg2(δ))
(a)
= sup

0≤δ≤z
H2(p(δ))− (1− δ)H2(α)− δH2(β)

+ (1− p(δ))ρ̃α,β + p(δ)ρ̃α,β
(b)
= sup

0≤δ≤z
h1(δ) + ρ̃α,β

(c)
= h1(z) + ρ̃α,β (56)

where (a) follows from the restriction ofz ∈ [0, z1] and
substituting the functions from Table II,(b) follows from
the definition ofh1(δ) in (46) and (c) follows from Item
4) of Lemma C.1, specifically,hα,β1 (z) is non-decreasing on
[0, zα,β1 ]. Note that the maximizer isδ(z) = z.

The operator with actions restricted to interval II, i.e.,δ ∈
[zα,β1 , z] for z ∈ [zα,β1 , zα,β2 ] is:

sup
z1≤δ≤z

H2(p(δ)) − (1− δ)H2(α)− δH2(β)

+ (1− p(δ))h̃α,β(arg1(δ)) + p(δ)h̃α,β(arg2(δ))
(a)
= sup

z1≤δ≤z
X(δ) + p(δ)ρ̃α,β + (1− p(δ))ρ̃α,β

+

[
p(δ)X(arg2(δ)) + αβ̄X(δ)

1− αβ̄

]

(b)
= sup

z1≤δ≤z
h2(δ) + ρ̃α,β

(c)
= h2(z) + ρ̃α,β , (57)

where (a) follows from the definition ofX(δ) in (46) and
Table II, (b) follows the expression forh2(δ) in (46) and(c)
follows from Item 3) in Lemma C.1, where it was shown that
h2(z) is increasing on[0, zα,β2 ].

To conclude the calculation of(T h̃α,β)(z) for z ∈
[zα,β1 , zα,β2 ], consider

(T h̃α,β)(z)
(a)
= max( sup

z∈[0,z1]

h1(z) + ρ̃α,β, sup
z∈[z1,z]

h2(z) + ρ̃α,β)

(b)
= max(h1(z1), h2(z)) + ρ̃α,β
(c)
= h2(z) + ρ̃α,β, (58)

where(a) follows from (56) and (57), and both(b) and (c)
follow from Items 3) and 4) in Lemma C.1. Note also here
that the maximizer of(T h̃α,β)(z) for z on sub-interval II is
δ(z) = z.

For actions that are restricted to interval III, i.e.,δ ∈
[zα,β2 , z] with z ∈ [zα,β2 , zα,β3 ], consider

sup
z2≤δ≤z

H2(p(δ))− (1 − δ)H2(α) − δH2(β)

+ (1 − p(δ))h̃α,β(arg1(δ)) + p(δ)h̃α,β(arg2(δ))

(a)
= sup

z2≤δ≤z
X(δ) + ρ̃α,β + p(δ)

[
X(arg2α,β(δ)) +

(
αβ̄

p(δ)

)
ρ̃α,β

]

(b)
= ρ̃α,β + ρ̃α,β , (59)

where(a) follows from the definition ofX(δ) in (46) and Ta-
ble II and(b) follows from Item 3) in Lemma C.1, specifically,
h2(z) achieves its maximum value atz = z2. Note from (58)
and (59) that the operator on III satisfies(T h̃α,β)(z) = 2ρ̃α,β
and that the maximizer isδ(z) = z2.

For the action restricted on interval IV, i.e.,δ ∈ [z3, z] with
z ∈ [z3, z4], consider

sup
z3≤δ≤z

H2(p(δ)) − (1− δ)H2(α)− δH2(β)

+ (1− p(δ))h̃α,β(arg1(δ)) + p(δ)h̃α,β(arg2(δ))
(a)
= sup

z3≤δ≤z
X(δ) + p(δ)ρ̃α,β + (1− p(δ))h2(arg1α,β(δ))

+ p(δ)

[
X(arg2(δ)) +

αβ̄

p(δ)
ρ̃α,β

]

(b)

≤ ρ̃α,β + ρ̃α,β , (60)

where (a) follows from the definition ofX(δ) in (46) and
Table II and(b) follows from h2(z) ≤ ρ̃α,β shown in Item 3),
Lemma C.1.

The calculation of the last interval,[z4, 1], is omitted
here, but it follows the same repeated arguments, so we
have (T h̃α,β)(z) ≤ 2ρ̃α,β. Now, Item 3) in Lemma C.1
together with (60) gives us that(T h̃α,β)(z) = 2ρ̃α,β also for
z ∈ [z2, z4]. To conclude, we have shown that(T h̃α,β)(z) =
h̃α,β(z) + ρ̃α,β.

A. Proof of Lemma C.1

Throughout this section, we usezi as shorthand forzα,βi

andpopt stands forp(zα,β2 ).
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Continuity: Each of the functions defining̃hα,β(z) is con-
tinuous, and therefore, one should verify that the concatenation
points satisfy

hα,β1 (z1) = hα,β2 (z1)

hα,β2 (z2) = ρ̃α,β . (61)

The second equality in (61) is verified as follows:

(1− αβ̄)hα,β2 (z2)

= X(z2) + poptX(arg2(z2))

= H2(p
opt) + poptH2

(
αβ̄

popt

)
− (z̄2 + β̄z2)H2(α)

− (z2 + αz̄2)H2(β)− (popt + αβ̄)ρ̃α,β

= (1− αβ̄)ρ̃α,β,

and since(1−αβ̄) 6= 0, it follows thathα,β2 (z2) = ρ̃α,β . This
derivation also gives us that

ρ̃α,β = hα,β2 (z2)

(a)
=

X(z2) + poptX(z1)

1− αβ̄
, (62)

where(a) follows from the fact thatz1 = arg2(z2).
The value ofhα,β2 (z1) is

hα,β2 (z1) =
X(z1) +

αβ̄
poptX(z2)

1− αβ̄
(a)
=

1

popt
[ρ̃α,β −X(z2)]

= H2

(
αβ̄

popt

)
− β̄z2
popt

H2(α)−
αz̄2
popt

H2(β)

= H2

(
αβ̄

popt

)
− z̄1H2(α) − z1H2(β) (63)

where(a) follows from (62).
From (46), we have that

hα,β1 (z1) = H2

(
αβ̄

popt

)
− z̄1H2(α) − z1H2(β)], (64)

which together with (63) concludes the continuity ofh̃α,β(z)
at z = z1.

Concavity: First, we show that each element iñhα,β(z)
is concave and then we argue that the concatenation of these
functions is also concave. The functionhα,β1 (z) is concave
since it is a composition of the binary entropy function, which
is concave, with an affine function. The functionhα,β2 (z) can
be written explicitly from (46), and then all of its elements are
linear except for the entropy function which is concave and
the expressionp(z)H2

(
αz̄
p(z)

)
. The latter expression is also

concave since it is known that the perspective of the concave
function H2(z), that is, tf

(
x
t

)
for t > 0 is also concave.

Therefore, each element comprisesh̃α,β(z) is concave.
It was shown in [12, Lemma 5] that a continuous con-

catenation of concave functions is concave if the one-sided
derivatives at the concatenation points are equal. Therefore,
h̃α,β(z) is concave if the following conditions are satisfied:

h′1(z1) = h′2(z1) (65)

h′2(z2) = 0. (66)

An auxiliary relation can be derived using the fact that
Rα,β(z) has a unique maximizer. Specifically, by taking the
first derivative ofRα,β(z) and equating it to zero, we have

p′H ′
2(p) +

[
pH2

(
αβ̄

p

)]′
− p′ρ̃α,β p=popt

= −βH2(α) + ᾱH2(β) (67)

The following calculations are also necessary:

X ′(z) = p′H ′
2(p) +H2(α)−H2(β) − p′ρ̃α,β

X(arg2(z)) = H2

(
αβ̄

p

)
− arg2(z)H2(α)− arg2(z)H2(β)

− αβ̄

p
ρ̃α,β

X ′(arg2(z)) = p′H ′
2

(
αβ̄

p

)
+H2(α)−H2(β)− p′ρ̃α,β ,

where derivatives are taken with respect toz.
The first derivative ofh2(z) is:

d

dz
((1− αβ̄)hα,β2 (z))

= X ′(z) + p′X(arg2(z)) + parg2′(z)X ′(arg2(z))

= p′H ′
2(p)− p′ρ̃α,β + p′H2

(
αβ̄

p

)
− αβ̄

p
p′H ′

2

(
αβ̄

p

)

+ p′
[
−arg2(z)H2(α)− arg2(z)H2(β)

]

+

(
1− αβ̄

p

)
[H2(α)−H2(β)] . (68)

Substitutingz = z2 into (68) and using (67), we obtain the
desired equality in 66

(1− αβ̄)
d

dz
hα,β2 (z)z=z2 = 0.

For the other condition, (65), one can show thatp(zα,β1 ) =
αβ̄

p(z2)
, which results in

(1 − αβ̄)
d

dz
hα,β2 (z)z=z1

= (1− αβ̄)[p′H ′
2

(
αβ̄

popt

)
+H2(α)−H2(β)]

The derivative ofhα,β1 (z) at z = z1 is:

d

dz
hα,β1 (z1) = p′H ′

2

(
αβ̄

popt

)
+H2(α) −H2(β),

and this concludes the concavity ofh̃α,β(z).
The last two items in Lemma C.1 follow from the concavity

of h̃α,β(z) and the fact thatz1 ≤ z2: since the maximum is at
z2, then the derivative ofhα,β2 (z) at z1 is positive and equals
the derivative ofhα,β1 (z) at z1.
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