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Abstract—In this paper, a general binary-input binary-output 0 0
(BIBO) channel is investigated in the presence of feedback and «a
input constraints. The feedback capacity and the optimal input X v
distribution of this setting are calculated for the case of an(1, oo)- B
RLL input constraint, that is, the input sequence contains no
consecutive ones. These results are obtained via explicit solution 1 1-3 1

of an equivalent dynamic programming optimization problem.

A simple coding scheme is designed based on the principlefy 1. BIBO channel with transition probabilitieg, 3). Special cases are
of posterior matching, which was introduced by Shayevitz and the z and S channels, which correspondate= 0 and 8 = 0, respectively,
Feder for memoryless channels. The posterior matching scheme and the BSC whem = 3.

for our input-constrained setting is shown to achieve capacity

using two new ideas:history bits, which captures the memory

embedded in our setting, andmessage-interval splitting, which

eases the analysis of the scheme. Additionally, in the special casghe role of feedback on capacity when input constraints are
of an S-channel, we give a very simple zero-error coding scheme present, and it will be proven that in contrast to the uncon-

that is shown to achieve capacity. For the input-constrained BSC, strained BSCfeedback does increase capadity the input-
we show using our capacity formula that feedback increases constrained BSC

capacity when the cross-over probability is small. ] ) ]
) _ ) The capacity of input-constrained memoryless channels has

b aLEdeéag;?g;_Eég?éﬁ oﬁhi:];]tilr?i’ ngyg?:rr?é%qgo%iﬁg%rtﬁ-’li];ﬁi?gc-;l been extensively investigated in the literature, but still there are
(RLL) constraints. no computable expressions for the capacity without feedback
[B]-]7]. On the other hand, iri [8], it was shown that if there
is a noiseless feedback link to the encoder (Elg. 2), then the
) . ) . feedback capacity can be formulated as a dynamic program-

_Consider the binary symmetric channel (BSC), described ing (Dp) problem, for which there exist efficient numerical
Fig. [ with @ = 5, in the presence of output feedback. Thigqorithms for capacity computation] [9]=[16]. However, as
setting is well understood in terms of capacity= 1—Hz(a), jndicated by the authors of[8], analytic expressions for the
but also in terms of efficient and capacity-achieving codingeqhack capacity and the optimal input distributions are stil
schemes such as the Horstein scheme [1] and the postefigry o optain and remain an open problem. In this paper,
matching scheme (PMS)I[2]. However, imposing constrainfyy feedback capacity and the optimal input distribution of
on the input sequence, even in the simplest cases, makesyfi€pinary-input binary-output (BIBO) channel (FIg. 1) with
capacity calculation challenging, since this setting is equivalent,o_consecutive-ones input constraint are derived by solving
to a finite-state channel. A special case of the setting studigg corresponding DP problem. The BIBO channel includes

here is the BSC with feedback and a no-consecutive-o%specim cases the BSG £ f3), which was studied i8]
input constraint (Figl12), that is, the channel input Sequenggs 7_channel & = 0) and theS-é:hanneI 6 =0). '
cannot contain adjacent ones. We will show for instance, that

its feedback capacity still has a simple expression:

I. INTRODUCTION

Shannon proved that feedback does not increase the capacity
of a memoryless channel [17]; following the proof of his

Hy(p) + pH, (M) theorem, he also claimed that “feedback does not increase
C = max ? — Hy(a), (1) the capacity for channels with memory if the internal channel
P I+p state can be calculated at the encoder”. The input-constrained

and that there exists an effi.cient coQing sc_heme that achieveging studied here can be cast as a state-dependent channel,
this feedback capacity. It is also interesting to understagd it fits Shannon’s description of such a channel. Therefore,

, we investigate the role of feedback for the special case of
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m Constrained  Ti P
> Encoder Y|X

Yi m(y") shown that they do not need to track the entire tupie’, but
a recursive quantization of it on a directed graph. The second
element,z; 1, is a new element in the PMS since it is only
available to the encoder, and it is handled by introducing a
new idea called thaistory bitfor each message. The analysis
Yi1 | init Delaye—2t of the scheme is simplified usingessage-interval splitting
which results in a homogenous Markov chain instead of a
time-dependent random process. These two ideas constitute
Fig. 2. System model for an input-constrained memoryless channel withe core of the PMS for the input-constrained setting, and it
noiseless feedback. is shown that the coding scheme achieves the capacity of the
general input-constrained BIBO channel.
. The remainder of the paper is organized as follows. Sec-
In past works on channels with memory, such s ,[lllTonI]]]presents our notation and a description of the problem
[14], the optimal input distribution provided insights into, e consider. Sections ]Il an@ ]V contain statements of the
the construction of simple coding schemes with zero ergiain technical results of the paper. In Secfidn V, we provide
probability. This methodology also works for tiechannel, e pms for our input-constrained setting, while the optimality
for which we are able to give a simple zero-error codings this scheme is proved in SectiBalVI. The DP formulation
scheme. The coding scheme is similar to the "repeat each fitteednack capacity together with its solution is presented in

until it gets_, through” policy that is optimal fc_>r.a binary erasurese tio{ VI, Sectiof VIl contains some concluding remarks.
channel with feedback. In our case, each bitis repeated wWith&§ e of the more technically involved proofs are given in

complement untit” = 0 is received, so the formed sequence iéppendices to preserve the flow of the presentation.
of alternating bits and satisfies the input constraint. However,

a coding scheme for the general BIBO channel is challenging
since p(y|z) > 0, for all (x,y), and therefore, there is no
particular pattern of outputs for which a bit can be decodedRandom variables will be denoted by upper-case letters,
with certainty. Nonetheless, we are able to use the structuresath asX, while realizations or specific values will be denoted
the optimal input distribution to give a simple coding schemey lower-case letters, e.ge, Calligraphic letters, e.gX’, will
based on the principle of posterior matching as is elaboratgénote the alphabets of the random variables. X &tdenote
below. the n-tuple (X1,...,X,) and letz" denote the realization
Two fundamental schemes on sequential coding for menectors ofn elements, i.e.x” = (z1,22,...,2,). For any
oryless channels with feedback date back to the work s¢alara € [0,1], @ stands fora = 1 — a. Let Hs(«)
Horstein [[1] for the BSC, and that of Schalkwijk and Kailatiflenote the binary entropy for the scalar € [0,1], i.e.,
[21] for the additive white Gaussian noise (AWGN) channeH2 (o) = —alog, o — alog, a.
In [2], Shayevitz and Feder established the strong connectionThe probability mass function (pmf) of a random variable
between these coding schemes by introducing a generic codigs denoted bypx (z), and conditional and joint pmfs are
scheme, termed thgosterior matching schen{®MS), for all denoted bypy|x(y|x) and px y(z,y), respectively; when
memoryless channels. This work provided a rigorous protife random variables are clear from the context we use the
for the optimality of such sequential schemes, a fact that malyorthand notatiop(z), p(y|z) andp(z,y). The conditional
be intuitively correct but difficult to prove. Subsequent workdistribution py-| x is specified by a stochastic matriky x,
proved the coding optimality using different approaches [22]e rows of which are indexed by, the columns byy, and
[23], including an original idea by Li and El Gamal in[24] tothe (=, y)th entry is the conditional probabilityy-| x (y|=) for
introduce a randomizer that is available both to the encoder ang: X andy € ).
the decoder. This assumption markedly simplifies the codingThe communication setting (Fifil 2) consists of a message
analysis, and it was adopted thereafter byl [25] to simplify/ that is drawn uniformly from the sefl,...,2"%} and
their original analysis in[[2]. In our coding scheme, it is alsonade available to the encoder. At timehe encoder produces
assumed that there is a common randomizer available to allbinary output,z; < {0,1}, as a function ofm, and
parties as a key step to the derivations of an optimal PMS five output sampleg‘~!. The sequence of encoder outputs,
the BIBO channel. x12273 . . ., must satisfy th€1, co)-RLL input constraint, i.e.,
The encoder principle in the PMS is to determine the chaR0 consecutive ones are allowed. The transmission is over the

nel inputs such that the optimal input distribution is simulate®!BO channel (FigLIL) that is characterized by two transition
For a memoryless channel, the optimal input distribution Rfobabilities,py|x(10) = « andpy|x(0[1) = 8, wherea
i.i.d. so the encoder simulates the same experiment at all tim@gd 3 are slcalars froni0, 1]. The channel is memoryless, i.e.,
In the input-constrained setting, the input distribution is give(¥:|z", ¥*~") = py|x (y:|z:) for all i.

e : . e
by p(xi|zi—1,y""") (inputs are constrained with probabilitypefinition 1. A (n, 2%, (1, 00)) codefor an input-constrained

1), so the conditioning injects new information on which thepanne| with feedback is defined by a set of encoding func-
encoder should depend. The first element in the conditioning,s.

y'~!, can be viewed as a time-sharing (not i.i.d.) since both }
the encoder and the decoder know this tuple. Indeed, it is o {1, 2"y Yt s X =1, 0,

Decode

II. NOTATION AND PROBLEM DEFINITION
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satisfying f; (m, y* =) = 0if f;_1(m,y"~2) =1 (the mapping the maximization in[(8) is over € [0, 1], but this can be
f1(+) is not constrained), for alim, y*~!), and by a decoding strengthened using the following result:

function ¥ : ™ — {1,....., 2"}, Lemma Ill.1. Let R, g(z) be as defined if2) with 0 < z <

The average probability of errorfor a code is defined as 1. The argument that achieves the maximumRofg(z) is
P™ = Pr[M # WU(Y™)]. A rate R is said to be(1,cc0)- unique and lies withirizr,, 27, for all a+j < 1. Additionally,
achievablef there exists a sequence of, 2%, (1,00)) codes for the BSC ¢ = (), the maximum is attained when the
such thatlim, . 2™ = 0. The capacity C™(a,3) is argument is withinlzy,0.5].

defined as the supremum over @ll co)-achievable rates. The proof of LemmdILlL appears in AppendiX A. The
The transition !o_robab|.l|t|es can be restrictedater 5 < 1, giternative capacity expressid (4) is obtained by taking the
a fact that is justified by: derivative of [B) and substituting the resulting relation into
Lemma Il.1. The capacity of a BIBO channel satisfie$he capacity expressiofi](3). Note that the LHS [df (5) is a
Clo, B) = C(1 —a,1— ), for all «, 5. decreasing function g, and hence, efficient methods can be

) applied to calculatd {4).
Proof: For a channel with paramete(s;, 3), apply an

invertible mapping” = Y @ 1 on channel outputs so that theRemark 1. The feedback capacity can _also be calculated using
capacity remains the same but the parameters are changedPer and lower bounds frori [26], which turn out to meet for

(1—a,1-B). m this channel, instead of the DP approach that is taken in this
The proof of the lemma is valid even when the inputs aRAPer:

constrained and there is feedback to the encoder. TheorenfII.1 provides the capacity of three special cases:

the BSC, the S-channel and the Z-channel. Their feedback

[1l. M AIN RESULTS capacities are calculated by substituting their corresponding

In this section, we present our main results concernifgrameters in Theoren I1l.1.
the feedback capacity of the BIBO channel, and thereaftefprollary 1 (BSC capacity) The feedback capacity of the
we show that feedback increases capacity for the BSC. Ti@ut-constrained BSCa = 3) is
optimal PMS for the BIBO channel is not included in this -
section and appears in Sectioh V. Hs(p) + pH> (%)

CP5%a) = — Hy(a), (6
W= s T () ©
A. Feedback capacity wherea < 0.5. An alternative capacity expression is
The general expression for the feedback capacity is given BSC 1—pa
by the following theorem O™ () = log o aa) Hy(a), ™
Theorem I1l.1 (BIBO capacity) The feedback capacity of thewherep, is the unique solution ofaa)**(1 — p)? = (p —
input-constrained BIBO channel is aa)ltee,
C™(a,8) = max Rap(2), (3) By operational considerations, the feedback capacity in
FLSESZU TheorenfIII.1 serves as an upper bound for the non-feedback

and R 5(2) setting, which is still an open problem. For the BSC, it will

’ be shown further in Theoreln I11.2 that feedback increases
capacity, at least for small values af so this upper bound is
not tight.

wherea+ 5 <1, z;, =
is defined in(2).
The feedback capacity can also be expressed by:

Voo _ Va
\/a+\/E, Va+VB

C™(a, B) = log (ﬂ) +8 Ha(o) _ a Ha(6) Corollary 2 (S-channel capacity)The feedback capacity of

Pa,g — af3 l—a-f 1-a _(4[? the input-constrained S-channgt = 0) is
wherep,, 5 is the unique solution of CS(a) = max Hs(p) + pHo (5) — ()
_ Va<p<i IL+p
(1= aB)[Ha(8) - Ha(a) S i (12)
= (B — a)[2log(1 — p) —log(p — aB)(1 + af) + aflog af]. Cax g/ )
() va<p<t  1+p
The proof of [B) in Theorerfi IM1 appears in Section]VIiThe capacity can also be expressed by:
and relies on the formulation of feedback capacity as a DP (o) —1 1—pa 9
problem. From the solution of the DP, we only obtain that () =log Pa—a)’ ©)
Hy(az + B2) + (az + B2)Ho (a;fﬁz) — (2 + B2)Ho(a) — (2 + az)Ho(B)
Ra5(2) = : (2)

14+ az+ Sz
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wherep,, is the unique solution ofl — p)? = (p — a)!+*ac. The feedback capacities of the input-constrained S and Z

The second capacity expression[ih (8) reveals a simple Ze?(f)wgnnels are different because of the asymmetry imposed
pacity exp P the input constraint (Fid.]3). Note that for most values

) : )
error coding scheme for the S-channel. To describe this, v(\)/% the channel parameters, the capacity of iehannel

1|‘|/r\it| fB(26}\[22(62)(?T’]é)s’sgngscgvnhsé?; ig ;elg,\r/l,eci(r)]r;aslsﬁn_?hgf exceeds that of theZ-channel; intuitively, the decoder can
-~ ges, 9 get. gain more information when observing two consecutive ones

co;ilni/lscheme ohpergtei n wo ?tages: _ d in the channel output because it knows that there is one error
) Message shapinghe set of messages(t, is mapped ; vic transmission pair.

in a one-to-one fashion into the set of lengthbinary
sequences containing/z 1s. Thus, each message is
identified with a binary sequence of lengti with 0.7
fraction of1s equal toz. This “message shaping” can be
implemented, for instance, using the enumerative source

coding technique [27, Example 2]. %‘0,5,
2) Message transmission Each of the N bhits, 5f S - Channel
bi,ba,...,by, in the shaped message sequence & o4 Y /
is transmitted by the encoder using the following <&
procedure: ‘é 03 Z-Channel
To send the message liif the encoder transmits §o.z

the sequencébbb. .., whereb denotes the com-
plement (NOT) ofb, until a 0 is received at the

channel output, at which point the transmission is o s
stopped. 0 01 02 03 04 05 06 07 08 09 1
Channel parameter (a. or )

o
=

Note that ifyys . .. y¢—10 is the sequence received at the
S-channel output in response to the transmission of tpﬁ 3
message bib, then the decoder can determine whethehannels.
b= 0 orb=1 from the parity of¢: if ¢ is odd, then , ,
b=0:if ¢is even, therb — 1. B. Feedback increases capacity
By the law of large numbers, the number Sfchannel  In this section, we show that feedback increases capacity
uses needed for the transmission of/Mrbit shaped messagefor the input-constrained BSC.

sequence is close & x E[L.], where E[L.] denotes the Theorem 111.2. Feedback increases capacity for the co)-
expected number of transmissions needed for sending a sing|g input-constrained BSC, for all values of in some
Bernoulli(z) bit b using the procedure described above. It iﬁeighborhood around.

easy to check thdE[L .| equals

Comparison between the capacities of the constraifiednd S-

o . o As discussed in Section |, this gives a counterexample to
za S (2% — 1)ak! +20—622kak71 _ _54_6[2%0/%1 a claim of Shannon’s from[[l_?]. A subsequent wofk][28]
related to the conference version of our paper [29] used a

= = 1+p = novel technique to calculate upper bounds on the non-feedback
1o (10) capacity of the input-constrained BSC. The upper bound in
wherep = z + «z. Thus, the rate achieved by this schem@] is a tighter upper boun_d than our feed_back capacity,
. S log M| _ Ha(z) _ 1-a 1—p which shows that feedback increases capacity not only for
is (arbitrarily close )x%7T = Tz = 155 M2 m) small values ofr, but actually for alla.

Maximizing overz € (0,1), we conclude that the scheme | grder to show Theoref Il 2, we provide the asymptotic

achieves the S-channel capacity given By (8). expressions of the input-constrained BSC with and without
Corollary 3 (Z-channel capacity)The feedback capacity of feedback.
the input-constrained Z-channgk = 0) is Theorem 111.3. The feedback capacity of the input-
Hy(p) — L5 Ha (B constrained BSC is:
C%(f) = max_ 2(p) ~ 3 5 () _
0sp<f L+p CB5C(a) =log A + 3 /\aloga
= —log(1 — pg), (11) -
wherepg is the unique solution of the quadratic equatidn- + 3\ a+O(a” log” a), (12)
2 Ha(B)
p)=p- 277 , , VB
where \ is the golden ra'uo(/\ = +T)
Iwe will be slightly loose in our description of this coding scheme so as o ’ ]
to keep the focus on the simplicity of the scheme. We will ignoreoaf(1) The derivation of Theoreri 11113 is more involved than

correction terms needed to make our arguments mathematically precise. TR§sndard -|-ay|or series expansion abeout= 0. since the
for example, we implicitly assume that¥2(=) is an integer. We will also !

assume thatVz is an integer, and that there a2é"# (=) binary sequences Second'order_term dﬂlZ) 8(alog o). The proof of Theorem
of length N which contain exactlyNz 1s. T3l appears in AppendikIB.
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The asymptotic behaviour of the capacity of the input-
constrained BSC without feedback is captured by the follow-
ing result.

Theorem I11.4. [I8} Example 4.1] The non-feedback capacity
of the (1, c0)-RLL input-constrained BSC is:

- 2\ + 2
C™ (o) =log A+ D13
It is now easy to prove Theorem11].2.
Proof of TheoreniIILR: The coefficients of the term
aloga in (I2) and [(IB) satisfy}at2 > 2=2. Therefore, there
exists a* > 0 such thatC®5¢(a) — CNF(a) > 0, for all

a < o, [ |

aloga + O(a). (13)

IV. THE OPTIMAL INPUT DISTRIBUTION ) ) o o
) ) . ) .. Fig. 4. TheQ-graph that characterizes the optimal input distribution.
In this section, we present the optimal input distribution

for the input-constrained BIBO, based on which the capacity-

achieving coding scheme of the next section is derived. TRAd ® (g, ") = g(®(qo,y' 1), y¢) for ¢ > 2. The importance
optimization problem that needs to be solved when calculatiggthe )-graph for our scheme is that the encoder and decoder
the feedback capacity of our setting is given in the followingeed only track the valué(qo, '), instead of the entire

theorem. output sequencg!~!.
Theorem IV.1 ( [L3], Theorens). The capacity of arfl, cc)- For the description of the optimal input distribution, define
. ’ ! : . ’ a,B o . ..
RLL input-constrained memoryless channel with feedback can = 28 MaXo<,<; Ra-ﬂ(z? as the unique maximizer from
be written as: Lemma[Tll., and the following subsequent quantities:
N —a,f
L 1 _ a,B A azy
C™ = supliminf — Y I(X,; Y|yt ! 14 JuBba 2
sup }\I]Ilg(?o N ; ( ts t| )a ( ) 1 0423”8 +ﬁZ§’B
J—eN]
where the supremum is taken with respecfaq, x, , y-1 : P %
Px, X0y (1LY ) = 0Fisa. azy"” + Bzy’
. . . = 3,08
The input at timet depends on the previous channel 2P A afzy _ (15)
input, z;_,, and the output sampleg—!. The description of aBzg"? + apzg?

such an input distribution is difficult since the conditioninq o.f o.f o.f op
contains a time-increasing domaip)~'. The essence of It €an be shown that,”" < 2" < 2;»" < z,°" for all
the DP formulation is to replace the conditioning gfr! @ + 8 = 1. For instance, the relatiom < z; (guperscrlpts
with px, v+ (0]y*~"), which is a sufficient statistic of the (@, #) are omitted) can be simplified 107 — a)z; + 2az; —
outputs tuple. Furthermore, the DP solution in Secfion Vvft = 0- Now, the polynomial(§ — a)z* + 2az — a has two
reveals that theoptimal input distributioncan be described "00tS; one is negative and the other iszat= 1. Since the

: _ i be desc o _ ) . )
with an even simpler notion called@graph, which is suitable Polynomial is convex( —a)z; +2az; —a > 0 is equivalent
for scenarios where the DP stagey IYt71(0|yt—1), takes a 10 22 > zr. Using the same methodology, it can be shown
finite number of values. o thatz; < 2y < 23 < 24 is equivalent taz;, < 2z < 27, which

is proved in Lemm&TIL1.

Definition 2. For an output alphabety, a Q-graphis a  Define the conditional distributions; - , via the condi-
directed, connected and labeled graph. Additionally, each nagghal probability matrices '

should have))| outgoing edges, with distinct labels.

The Q-graph depicted in Fig4 will be used to describe P§<|x—,Q:1 = (1) (1) }
the optimal input distribution. LeQ = {1,2,3,4} denote . »
the set of nodes of thi§-graph. We will use a functiom : Px|x-.@=2 = Px|x-.0=1
Q x {0,1} — Q to record the transitions along the edges of i} [ Zgi Z%Z (16)
the graph. Specificallyg(1,0) = 4, g(1,1) = 2, g(2,0) = Px|x-,Q=3 = o Z‘B
3, 9(2,1) =1, g(3,0) = 3, g(3,1) = 1, g(4,0) = 3, and L R
g(4,1) = 1. Given some initial node, € Q and an output B} 12y 2
sequences’ € V' of arbitrary length, a unique nodg € Q PX|x-.Q=17 o 1 ’
is determined by a walk on th@-graph starting at, and -
following the edges labeled by, 3o, . . ., v, in that order. We in which X~ indexes the rows and’ indexes the columns.

will write this asq; = ®(qo,y"), where® : Ox|J,~, V' — @ To be precise, the first (resp. second) row of each matrix is a
is the mapping recursively described ©¥qo,v1) = g(qo0,v1), conditional pmf of X given X~ = 0 (resp.X ~ = 1).
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The optimal input distribution and alternative capacity exscheme as the evolution in time of the involved random
pression are given in the following theorem: variables results in a random process that is difficult to analyze.
The analysis becomes easier upon introducing a certain

. o _ -interval splitting operation (described in SeEfion V-D)

, the input distributionpy. |y, . yi- i1 message-in ) ) .

~ P pxx v (@ | eyt ) that induces a Markov chain structure on the time-evolution

* - i1 : ;
Pxix- (e | @~ ®lg,y")), defined via @8) and 5 "o 0o ables in the scheme. However, the splitting
Fig. [4, is capacity-achieving. Moreover, the random pro-

: N . . . operation prevents the length of the correct message interval
cess {(X;,Q;)}i>1 induced bprlX, o is an irreducible ) . . . .
and aperiodic Markov chain on{0,1} x Q. The sta- from increasing tol, but we will show that, with high

tionary distribution of this Markov chain is given byprobablhty, _the length of this interval will eventually go above
: : some positive constant. The PMS output at the end of Phase |
Tx-,Q = TQTx-|@, Where g is the pmf onQ defined

will be a list of messages whose interval lengths are above

Theorem V.2 (Optimal input distribution) For any ¢ €

by [7q(1), 70(2), T (3), mo(4)] = | &, £L, 52, 201 ihis constant.

with p = a(1 — 257) + (1 — B)22? and ¢ = o=f) In Phase Il, a fixed-length block coding scheme, asymptot-
and mx o(0))) = 1 — mx o(lfi) = S8 for f _ ically of zero rate, is used to determine which message in the
1. 4 Tﬁe feedback capacityg)(a 3) can be expressed as!iSt produced at the end of Phase | is the correct message.
I(X;Y|Q), where the joint distribution isto x.y (¢, z,y) = The remainder of this section is organized as follows. In

Section[\-4, the key elements of the PMS of Phase | are
described. This is followed by a description of Phase Il of our
The scheme uses the joint probability distributiogoding scheme in SectiGi ¥B. The overall coding scheme that
Py|xPx|x-,o7x~,q induced by the optimal input distribution combines the two phases is shown to be capacity-achieving in
p}‘xig- Here, X and X should be viewed as the channeBectiorl V-C. At the heart of the PMS of Phase | is a recursive
inputs during the current and previous time instances, respeenstruction of message intervals, which is described in detail
tively, and@ is the value of the node on th@-graph prior to in SectioV-D). This technical description has been left to the
the transmission off. In the analysis of the coding schemeend so as not to distract the reader from the main ideas of the
we will use the Markov property of (X;, Q;)}i>1 to show coding scheme.
that 7(X;Y|Q) is achievable. The proof of Theordm 1V.2 is
presented at the end of SectlonVII.

Yo by Ix WPy x- o(alzT, O - o (27, @)

A. Phase I: PMS

V. THE CODING SCHEME The PMS is based on the joint probability distribution

The coding scheme we describe here consists of two phadiisx.x—.@ 0NV x & x & x Q defined bymy x x- ¢ =
Phase | is based on a posterior matching scheme (PMS), &nad .QPx|x - QPY|X) Wher?ﬂxicz andp} x-, constitute
Phase Il is a clean-up phase based on block codes. the optlmal input distribution dgscrlbed in Sectl IV, and

The main element of any PMS is the posterior distributiof1x iS the channel law. In what is to follow, we routinely use
of the message given the channel outputs. The posteftiation such asg, mx-|q, 7x x| €fc. to denote certain
distribution is represented by the lengths of sub-intervals t{Rarginal and conditional probability distributions s_pecm_ed_by
form a partition of the unit interval. Each sub-interval i'X,X~.Q- Thus, for examplezr_Q_den_ote_s th_e marginal d|§tr|-
associated with a particular message, and henceforth, it iiftion on@ of mx x- . The joint distributionry, x x - ¢ i
be referred to as a “message interval”. The initial lengths af@°Wn to the encoder and the decoder.
equal for all message intervals, since the decoder is assumed t4 S further assumed that the encoder and the decoder share
have no prior information about the messages. The lengthsS9fM& common randomness:
the message intervals are updated throughout the transmission a random initiaIQ-stat Qo, distributed according tag;
based on the outputs that are made available to the decodar a sequencdU;)? , of i.i.d. random variables, eact;
(and to the encoder from the feedback). The encoder’s job is being Unif0, 1]-distributed.

to refine the decoder's knowledge about the correct messageine jth time instant, just prior to the transmission of the

by simulating samples from a desired input distribution. Wheg, symbol by the encoder, both the decoder and the encoder

this is done properly, as time progresses, the length of the ti& o the output sequengé ! available to them. From this,

message interval will increase towartisand the decoder can g4 having shared knowledge of a realizatigrof the initial
then successfully declare its estimate of the correct messageqiate(,, each of them can compute_; = ®(qo, 5~ ).

The above description of PMS is generic and applies t0rpq as5ymption of shared randomness simplifies much of
any setting of channel coding with feedback. What is specifig,. anajysis. It should be noted that by standard averaging
to our PMS in the input-constrained setting is the 'nplﬁrguments, the shared knowledge can be “de-randomized”,

d'Str'bL_mon that the encoder .attempts to simulate during S the sense that there exists a deterministic instantiation of
operation. M_ost of the ad_aptauons needed for our PMS that %(Oa and (U;) for which our probability of error analysis wil
not present in the baseline PMS for memoryless channelsr ain valid

[2] and [24] are a natural consequence of the input constraints

and the structure of the_ input diStripUtion in Theorﬁll\/.Z. 2For the purposes of this description, we use the te@rstate” to denote
However, these adaptations complicate the analysis of #eode on the&)-graph.
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Aside from the shared randomness, the encoder alone has s:(J) i U ;
access to an i.i.d. sequentg)™ , with V; ~ Unif[0, 1] for =T 2y 3 s 4 . |
all 7. We next describe the main elements of our PMS. I 1 I I ) 1 1
1) Messages and message intervakst the outset, theret;(J) =0 mx-10(0lgi-1) 1
. - R .
is a set of messageM - {1’2’ 2t }’ wheren is a Fig. 5. lllustration of the message intervals. Note that the lengths of all

sufficiently large positive integer an® < I(X;Y | Q)H messages intervals with; = 0 sum up tory - (0lq).
A messageM € M is selected uniformly at random, and
transmitted using the PMS scheme. Our aim is to show that the

probability of errorP™ at the decoder goes toexponentially We will show later (see Lemnia \.4) that

in n.
Message intervals are central to the operation of the PMS Z si(J) = 7x-1@(0lgi-1),
scheme. At each time instant> 1, again just prior to the JeJiw; (9)=0

transmission of theth symbol by the encoder, the decodegy that the positioning of the left end-points {E1(18) im-
and the encoder can compute a common ggtof message pjies that the message intervals with history bifrespec-
intervals, which form a partition of0,1) into disjoint sub- tively, 1) form a partition of(0, 7y, (0]¢;_1)) (respectively,

intervals of varying lengths. The construction is recursive, WitPfX*|Q(O|CIi—1)7 1)). The positioning of the message intervals
J1 being computed from the initial knowledge @f, and for ¢ justrated in Fig[h.

i > 1, Jit1 being computed frony; based on the additional |, summary, a message intervhle J; stores five pieces

knowledge ofy; and u;. Here, ui_denoteg a reallzatlonlof of data:.(J), :(J), s:(J), t:;(J) and z; (J). As we will see

the shared randomneds;. We will describe the recursive iy sectio VD), these are computable at both the encoder and

construction in Sectiofl VD, for now just noting that eack,e gecoder from their common knowledge at time

message interval iff;11 is obtained from a unique “parent”

in J;. 2) Encoder operation at timé: To describe the symbol
Each message interval it7; is indexed by an integer transmitted by the encoder at time we need to intro-

between1 and |.7;|, with .(J) denoting the index of the duce the labeling function€, : [0,1) — {0,1}, defined

message interval. Additionally, each message interval isfor eachg € Q. The labeling £, assigns the labell’

associated with a message frami, the association beingto the interval[0,7x x-|o(1,0|g)), and 0’ to the interval

specified by a surjective mapping : J; — M. Thus, for [7x x-1¢(1,0[g),1). In other words,

eachlJ € J;, u;(J) is the message associated withOne of )

Lo(e) = {1 if 0<a<mxx g(1,0]q)

the message intervalse 7; with u;(J) = m, wherem € M
is the actual message to be transmitted, is designated as the
true message intervahnd is denoted by/;. The identity of The labelingz, is depicted in Figlb.

.Ji Is a priori known _onIy to the encoder. This is th.e MESSAYE ¢ time 4, the encoder knows the true message interval
|'nterval that determines the symbol to be transmitted at tm}? in Ji. Let t; ands; denote its left end-point and length,
" respectively, and let:; be its history bit. Ifz; = 1, then

Ea<_:hJ € Ji has a "history bit", denoted biyi_(‘])‘ Tt"S 'S" J, is contained in[rx-1¢(0[gi—1),1), which is a subset of
the bit that the encoder would have transmitted at timel 1 B .
it it th that th ¢ bfwas the t L,1(0) =[x x-1(1,0]gi-1),1). In this case, the encoder
:n':erv\\:zlr?l € case that the paren as the ue messageyansmitsz; = Lq,,(Ji) = 0, in keeping with the(1, co)-
i—1-

. . . . RLL constraint.
A message interval € J; can be uniquely identified by On the other hand, it; = 0, the encoder transmits the bit
its left end-pointt;(J) and its lengths;(J), so that) = Y '

i = Ly, ;) with

[ti(d),t:(J) + s:(J)). The length ofJ equals the posteriorx i (00) Wi

probability that] is the true message interval, giveir ! and w; = t; +ui(gi—1) + si - v; mod Tx—o(0]gi—1),
uwt e,

(19)

whereu;(gi—1) := u; - mx-(0]g;—1), andv; denotes a re-
s;())=Pr[Ji =J | Y=yt U™t =471, (17) alization of the encoder’s private randomné&$s- Unif[0, 1].
In other words, the encoder picks; uniformly at random
In sectior{ V=D, it will be shown that the lengths(J), J € 7;,  from the interval.J; + ui(gi—1) mod mx-g(0|gi—1), which
can be computed recursively as a simple function of the lengtgsobtained by cyclically shifting the message intervalby
of the parent intervals iy/; ;. the amount; (g;—1), within [0, 7x - (0]gi—1)).

The left end-points are then computed as ) _ _ L
Remark 2. The rationale behind the cyclic shifting is the

ti(J) = mx-10(0lgi 1)1, (=13 + Z s;(J). following: the random variableW; = ¢ + Ui(gi-1) +
‘ 7 (h <), s; - Vi mod mx—-g(0]gi—1) is uniformly distributed over
x; (J)=x; (J) [0, 7x-10(0]g;i—1)). Hence,X; = L,,_,(W;) is equal tol

TX, X~ ‘Q(l,O\qifl)

with probability o = Pxix-.(110,¢i-1), and

) L, XU 1)
3For ease of description2”? is assumed to be an integer; we may'S equal -t0.0 with probabllltpr‘X,’g.(_Om,qi,_l)..Thl.JS, the
otherwise take the number of messages tq Bef]. cyclic shifting ensures that the conditional distributionof
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(given that the previously transmitted bit was and the@- 1) Encoding: Given a string ofk bits, by,...bx,, the
state just prior to the transmission &f; is ¢;_1) matches the encoder transmits each bit using a lengtht,, codeword
optimal input distributiorpjgﬂx, Q(-|x;,qi,1). b;00,0...b;0, where L,, is a suitably chosen even number.

Thus,k,, L,, channel uses are required to transmit thigsbits,

In the analysis of the PMS schemes &f [2] andl[24hut as we will seeL,, will be chosen so that,, L,, = o(n), SO
most of the effort goes in showing that the length of ththat this is an asymptotically vanishing fraction of the overall
true message interval gets arbitrarily close ltowith high number of channel uses,. Note that the encoder does not
probability, as the number of transmissiomggoes toco. In make use of feedback.
our case, however, the recursive construction7f; from 2) Decoding: Based on the sequence @f,/2 channel
J; involves a key message-interval splitting operation, whiabutputs received in response to tlig /2 repetitions of the
prevents the lengths of message intervals from getting tbit b;, the decoder declarés = 0 if the output sequence lies
large. Nonetheless, we can show that the length of the trinethe typical set7(Ln/?) (py|x=0) for a well-choser: > 0,
message interval;(.J;) either exceeds and declare$; = 1 otherwise. The decoder’s estimate of
the transmitted message is the messagé/ represented by
bibs ... by, .

The next lemma shows that the probability of decoding

at some time), or as the time index gets close toy, s;(/;) error for one message Witcan be made arbitrarily small, b
exceeds a certain threshajd> 0 with high probability. The . 9 ) Ty T
choosingL,, as a suitably slowly growing function of. As

following theorgm, proved in Sectiol V|, gives a rlgOroususual,fa in the statement of the lemma refers to the decoder’s
statement of this fact.

estimate ofb.
Theorem V.1. Given R < I(X;Y|Q), there exists{ > 0
(which may depend oR) for which the following holds: for
any sequence of non-negative integés),>1 growing as
o(n) a PMS initiated with2"f* messages has

Pr[snC (Jne) < &1 5i(Ji) < Smin, fori e[l : nc—l]] — 0,

Smin 1= min T _ z,0 20
x,q: ﬂXYX,‘Q(I7O‘q)>O X, X |Q( |Q) ( )

Lemma V.1. If the capacity of the BIBO channel (without
feedback or input constraints) is nonzero, then there exists a
constantCy > 0 such that for anyl,, > Cj log k,,, we have
Pr[b #b] < =

Proof: We use a standard typicality argument based on
asn — oo andn¢ :=n — (. the fact that if capacity is non-zero, then

Recall that the decoder does not know which of the intervals D(py|x=ollpy|x=1) # 0,
in J; is the true message interval, but it is able to compute .
the lengthss;(J) for all J € J;. The theorem above allowsand so there exists a sequengé) > 0 such that, for all

F () () _

the decoder to create a relatively short list of potential trt@%’ﬁ'c'en_ﬂy largel, 7 ) (py|x=o) m7—e(fi)(pWX:l) = 0 and
message i oth typical sets are honempty.

ge intervals. thout | ‘ i hat th itted bit i

3) Decoder decisioniet & — min{¢, Smin}, Where¢ is Without loss of generality, assume that the transmitted bit is

as in TheorerflVI1 above, arfl,y, is as defined in(20). The b =1, so that the sequence of channel outputs in response to

decoder halts operations at tile= n — [/n], and outputs the sequence of transmittéd is i.i.d. ~ Py|x=1. By standard
the list of messages arguments, it can be shown that the probability that a length-

e L/2 output sequence is iﬁ;EL/Q)(py‘le) (for some0 <
M={w(d):Je T, si(J) 2,1 <i<T}.  (21) € < ¢(L/2)) goes tol exponentially quickly inL, while

In words, this is the set of messages associated with messifeProbability that the output sequence ST /2)(pYJX o)

intervals whose lengths exceed eittfgf;, or ¢ at any point decays to) exponentially quickly inZ. Therefore,Pr(b 7 b]

during the operation of the PMS. This signals the end &Rn be made smaller tha@ by choosingL,, = Cq logk, for

Phase | of our coding scheme. a sufficiently large positive constany. [ ]
Note that since the lengths of all message intervals at time

¢ must sum tol, there can be at mostl/{*| messages C. Combining Phases | and |l

contributed byJ; to M, for eachi € {1,2,...,T}. Thus,  we now describe how Phases | and Il are combined to obtain
we have| M| < f%T < %n a capacity-achieving coding scheme. Fix &n< I(X;Y|Q)

and let¢ be as in Theorem M1, which in turn determirggs=
B. Phase IlI: Clean-Up min{&, Smin}- We will apply Theoreni V1 with(,, = [/n].

The message list generated at the end of Phase | sefy85Fn = [logx(n/€7)], and L, = ¢, /k, be the parameters
as the input for Phase II, a complementary coding schefdbthe coding scheme in Phase II. Note ttiat > Cj log &y
to determine the correct message withwi. The rate of the for all sufficiently largen, whereCy is the constant in the
coding scheme in this phase can be made to go to zero, siftdement of Lemma V1. _
it only has to distinguish betwee®(n) many messages it. We will run the PMS of Phase | on a message./stof size

nR i : : :
Each message i is represented using, — [log,(n/¢*)] 27 A messagel ~ Unlf.(/\/l) is transmitted using: uses
bits, b1bs . .. by, , which are to be transmitted successively. of the channel as follows: The PMS of Phase | is executed

until ime T = n — ¢, (i.e., T = n — [/n]), at which time
4This means that, /n — 0 asn — co. a list M as in [21) is produced. We then execute Phase Il for
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the remainingk,, L,, = (. channeIAuses, at the end of whichs J; = J™) and isa priori known only to the encoder. Note
the decoder produces an estimdte of M. The coding rate that with X, = x; (J1), the pair (X, Qo) has probability

of the overall scheme i§ log, |[M| = R. distributionmx - |omg = Tx- -
To assess the probability of errét™, we observe that ; ; .
’ 2) Recursion — Construction ¢f;,; from 7;: Recall that,
P = Pr[M # M) for i > 1, the encoder and decoder can compute the/set

based upon their common knowledge @f y*~' andu’~".

< PrM ¢ M]+Pr[M # M| M e M] After determining7;, they make use of their shared knowledge
— . of u; to compute a new partition7;, of [0,1) into message
< Pr[M ¢ M|+ ZPr[bi # bi] intervals. This is an intermediate step in the construction of
i? Ji+1 from J;. Message interval$ € 7; also store five pieces
< Pr[M ¢ /\7] + =, (22) of data: an index(J), a messagg;(J) € M, a lengths;(J),
Fn a left end-point;(J), and a bitz;(J). These are explained as

the last inequality above being valid for alllarge enough that part of the description to follow.

Ly > Cylogky,, so that the conclusion of Lemriia V.1 holds. Each message intervale 7; is either retained as is if;,

Let n¢ :=n — ¢, and then, the probability that/ ¢ M can oris split into two intervals ing; using a procedure to be

be bounded as follows: described shortly. Any message interdak 7; with history
= bit z; (J) = 1 is retained as is in7. It retains its index,

Pr{M ¢ M] message, length and left end-poiritt) = ¢(J), 2:(J) = u:i(J),

< Prlsi(Ji) < Smin fori € [L:ng—1], ands, (Jn.) <& 5,) = s;(J), and#;(J) = t;(J). The bitz;(J) is set to be

< Prlsn (Jn) <& | 5i(J;) < Smin fori € [1:n¢ —1]], equal to0, in keeping with the input constraint.

. a) Cyclic shifting and message-interval splittingto
which, by Theo(tlerﬂll, goes Wasn — co. Hence, byl(2p), describe what happens to thodec J; with history bit
we also haveP.”’ — 0 asn — co.

z. (J) = 0, we first recall that such message intervals form a
We have thus shown that any ra® < I(X;Y]|Q) 2 () = g

. . titi f[0 0|gi—1)) — L 4.
is (1,00)-achievable. Recall from Theoreri 1V.2 tparnono mx-1@(0lgi-1)) — see Lemma

The fate of message intervals € 7; with history bit
fb i
ogi(ttg's%)ctlor? st(gte%) b-lerc?vi we have proved the main result . (J) =0 is determined by the labeling,, ,, as defined in

(]E) (Recall thay;_; can be determined at both the encoder
Theorem V.2. For an input-constrained BIBO channel, anyand the decoder from their common knowledge ¢gf and
rate R < C™(a, ) is (1,00)-achievable using a coding ¥*~'.) Recall from the description of the encoder operation
scheme that combines Phases | and II. in Section[V-A that when the history bit; for the true
message interval; is equal to0, then the encoder determines
e next bit to be transmitted as,, ,(w;), where w; is
c?rfosen uniformly at random from the interval obtained by
IlcaIIy shifting J; within the intervall0, 7x - (0|gi—1)) by

= U Ty ‘Q(O|ql 1). Since the decoder does not

It remains to tie a couple of loose ends in the descripti
of our coding scheme, namely, the recursive construction
message intervals, and a proof of Theofenj V.1. The l‘ormercﬁC
presented in the subsection below, while the latter is given |

Z

Sectior(¥). know the trueJ;, it attempts to keep up with the encoder by ap-
plying the cyclic shifting operation to eadhe 7;. This results
D. Recursive Construction of Message Intervals in a cyclically-shifted interval“:, for eachJ € 7;, with left
1) Initialization — Construction of7;: J; consists of the end-pointt;(J*¢) = t;(J) + Ui(Qi—l) mod 7x -0 (0[gi-1),
2"E intervals J0) = [(j — 1)27"%, j2-") of equal length, and right end-pointr;(J*) = t;(J) + s;(J) + ui(gi—1)
indexed byj € {1,2,...,2"%}, in 1-1 correspondence withmod mx-|o(0|gi—1). If J* C L' (b) for someb € {0,1},

the 2" messages |n\/l The length of each message intervahen J* is included in7;, th L(Juw) = 1(J), p(Ju) =
is 51 := 27", For thejth message interval’), the index 4;(J), 5(J“) = s;(J), £;(J") = t;(J), and

1(J¥)) and associated messagé)?)) are both set to bg. _

(J) 0 ifJwcL;t (0)

1if gLt (1),

The history bit of the)¥) is set to be

(D) = 0 if (j—1)27"% <7y 0(0lq0) _ _
ay ( “ )1 otherwise, Note that:ci(_J“t) would have been the bit transtnltted by the
encoder at time, hadJ been the true message interval.
where go is the initial Q-state known to both encoder and A problem arises whed®: ¢ £;* (b) for anyb € {0,1},
decoder. - o ~as it then straddles at least one of the boundary pdindsd

We will, for simplicity of deserlptlon, assume that IS 7x x-10(1,0/gi—1), of the labelingZ,, ,. This means that
chosen so that the message intervalsn with history the value of the bitr; transmitted by the encoder at timie
bit equal to0 form a partition of [0, 7x 1 (0l90)) B For a had thisJ been the true message interval, is determined by
uniformly random messag® € M, the true message intervalthe precise location of the random point within J“:. While

this is not a problem for the encoder, it creates an issue for

5If this is not the case, we can get this to happen by splitting into two tI}%
message interval that straddles the boundary poipt ¢, (0]qo), as described € decoder as it will no longer know what to assign as the bit
in the next subsection. x;(J*). We deal with this bysplitting J*¢ into two or three
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10
si(J z () =0z ()=1 splitting) or two to three message intervals (after splitting) in
Message } (=1 2 4 3 s I 4 6 | Ji; we will refer to the interval(s) in7; as thechild(ren)

intervals ¢,(J) of J € J;, and toJ as their parent Note that splitting

affects only those message intervalsjh that, when cycli-

C)Ii:ellirc]:dgrm‘t = - cally shifted by u;(q;—1), straddle the boundary points
ti(Jv) andry x-o(1,0|¢;—1). Thus, splitting causes the number of

intervals to increase by at most twif;| < |7i| < | 7i| + 2.

Labellin gy o’ 0’ " . . .
aﬁbe 9| I I The splitting of message intervals lends itself to a simple
qi—1

|

I
mx,x-1Q(1,0lgi-1) x-1(0lgi—1) alternative description of the encoding operation described
Intervals | o . oyon-ry 2 4 3 % 4y 6 | earlier in Sectio_V-A. Suppose that = J € 7. If J“
after split f oy T T LS 1 has exactly one child € J;, thenz; = x;(J). If J has two
children J’, J” in 7;, then the encoder uses to determine

Fig. 6. lllustration of the cyclic shifting and splitting of message intethe transmitted bit;:

vals. The lengths of message intervals are determined by their posterior

probabilities, and the message intervals are positioned in ascending order {Ii(J/) if0<uw < 5:(J)
T; =

of their indices, based on their history bits. Each message intdrweith _ T, si(J (23)
z; (J) = 0 is cyclically shifted within the interval0, 7 x5 (0lgi—1)) by zi(J7) if Si'((JJ)) svi<l

addingu;(g;—1), and its new left end-point is; (J*#). In this example, the s
labeling £,4, , implies that the message interval indexed witd) = 1 . . .
crosses the b})undary point o (1, 0lg;—1). Thus, this message interval The case whed has three children is handled analogously:

is split into two intervalsJ)’ and J”/, belonging to.7;, and indexed with

i{(J)y=1andi(J")=1. i (J) if0<u; < ii_((JJ’))
pi= Qw()) i) < < BUMROD (g
parts. To describe this, we first observe that if the length of x(J7) if %@S)(J) <w <1
Jui (which is the same as;(J)) is at mostSui, (Eq. [20)),
then anyJ*: ¢ L' (b), b = 0,1, can straddle exactly one _ . _
of the boundary points of,, , . b) Construction of7;+1: The message intervals ifi 1

If Ju straddles only the boundary poifit then we split arein1-1 corrNespon(_:ience with those in the@eﬁpecifically,
Jui into two intervals) = [t;(J*), mx - o(0lgi_1)) andJ” = fo.r eachJ e:Zi, we mtrodu(Ee a message intenBE i1,
[0,7;(J*)) to be included ing;, with fi;(J) = f;(J") = with o(J) = i(J), pi+1(J) = fi(J) anday,, (J) = 2:(J). We
1i(J). The left end-points; and lengthss; of J and J are yv|ll refer to the message intervalas theimageof J. The new
self-evident. Note that’ sits entirely withinZ_ ! (0), so that interval lengths
we setx;(J') = 0. By similar reasoning, we set;(J”) = 1. , o ,

Finally, we seti(J’) = «(J), while J” is assigned a brand new sit1(J) = PrlJipn = J | V' =y U" = u'], VJe T,

index:z(J"") is set to be equal to the least positive integer that ] ) ~ (25)
has not yet been assigned as an index to any message intrgaI0e determined from the set of interval lengthg/inas we
in J,. will describe shortly. Once the interval lengths, 1(J) have

If  J= straddles only the boundary pointbeen determined, the left end-points can be computed as

mx x-10(1,0l¢gi—1), then we split J* into the two

interva‘lz yo = [t;(J%), 7x x-10(1,0]g;—1)) and tiv1(d) = mx-10(01a:) Ly, (5y=1y + > sl
V" = (mx.x-10(1,0lgi—1),7:(J*) to be included inJ. J’:j<J8,<)g<J>; »

For the new message intervalsand J”, we setji; andi as Tt )= i (26)
above, whilez;(J') = 1 andx;(J”) = 0. Fig.[8 illustrates the

. I o . . To be able to describe how the lengths of intervalszjn,
cyclic shifting and splitting operations on message intervals, ) =
) . o . _ are computed from the lengths of intervals jih, we need
Finally, if s;(J) > Sminﬁ it is possible forJ“: to stretch

across bothd and (1,0 ). In this case, we split to understand how the encoder decides the symbdb be
X, x|\, Vi1 ' transmitted at time, and how it picks the true message interval
Ju into three intervals)’, J”, J such that each of these ' P 9

intervals lies entirely within one o, ' (0) and £_' (1). Jiv1 € Jir.
Then, for each of these new intervals, we set therbito be c) Choice of the true message interval, € Ji::
theb € {0,1}~for which the interval lies inC ' (b). The Suppose that; = J € J;. If J has exactly one child € 7,
left end-points; and lengthss; are determined in the obviousthen 7., ; is taken to be the image of in Ji.1, i.e., the
manner. Finally,ii;(J)) = fi:(J") = [1:(J") = pi(J), and  message interval it7;.+ that has the same index agand).
¢(J) = ¢(J), while J” and J” get brand new indices. On the other hand, if has two children’, J” in 7;, thenJ; 1
Thus, each) € J; gives rise to either one interval (nojs set to be the image af (respectively,)”) if the transmitted
bit x; In equalsr; (J') (respectively; (J7)). In any case,
SWhile this case needs to be included for a complete description of tPﬁ)te thagzvva)e a?wa S t(1a\)[e(’ (F} ) 7yx_ (Tl’z)e case )\/Nhed
recursive construction Qf/; 41 from 7;, it will play no role in the analysis of Yy i1\ it1l) = i

the PMS in SectiofYI. The analysis there is carried out under the simplifyifd@S three children is similarly handled, based[od (24).
assumption that the length of the true message interval never exfggds
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3) Computings;+1(J), J € Jit1, from 5;(J), J € Jz In By construction of.7; from 7;, the message intervalse J;

what follows, we usel to denote a message interval jf as with z;(J) = 1 form a partition of[0, 7x,x-|0(1|0,¢i—1)), SO
well as its image in7;. 1. We state a preliminary lemma first.that

Lemma V.2. For any J € J;;1, we havePr[J;,; = J | i ~Z~ 5i(J) = mx.x-1o(1,0lgi-1)
yi-1 — yi—l’ Ut = uz] _ gz(J) JeJi z:(J)=1
Proof: Let J# € J; be the parent ofl, so thatJ;,; = J and
implies that.J; = J#. Then, Z 50 =1- Z ()
PrlJig =J | YT =L U =] JeJi: z:(J)=0 JeJi z;(3)=1
=Pr[Ji1 =4, J; =17 | YT =L U = 4] =1-mx x-1g(1,0]gi—1).
=Pr[J; =7 | YT =L Ui = Y Thus, [2B) simplifies to
Pr[z+1—J|J—J '—uz]

PrlYi =y | Vi =y U =

= s5;(J%) SESJ#Z), = mx x-1Q(1,0lgi-1) Py x (vi[1)
Sq
0 + (1 = 7x,x-10(1,0]gi—1)) Py|x (¥il0)
wherePr[Jiy1 = J | Ji = J#,U; = u;] = 29 follows _ 1 _
si(J%) = ™ - r,T |qi—1)p i|T),
from the way that/;; is chosen givery; anduZ ] ; xx-jel l9i-1) Py x (i)

We are now in a position to derive the means of computir}gca"ing thatry x| (2,2~ |gi_1) = 0 for (z,27) = (1,1).
Si+1(J) from §l(J) ’ |
Lemma V.3. For eachJ € Ji11, we have One simple consequence of LemfmalV.3 is that for each

sit1(d) = PrlJip =1 | V' = ¢, U" = u] 1 € Jis1, we have
i | zi(J
— 5 Py x (¥i | i ))’ s (d) < si(J#) maxpy|x(y|x)’
Ty QWi | gi-1) zy.9 Ty |Q(ylg)
whereq;_1 = ®(qo, y* ). where J# ¢ J; is the parent ofl. Recursively applying this
Proof: We start with inequality, we obtain

Pr[Ji+l =J | Yl = yiv Ui : ui] ) . . S»L'Jrl(.]) S 27HR <I§1&X piYXE?A'I;) (29)
B Pr[Ji-i-l =)Yi=vy | yi-1 — yz—l Ut = uz] Y:a Ty |1Q\Yq
- Pr[Y; = y; | Yi~1 = 4i=1, Ut = uf] which is a crude, but useful, upper bound on interval lengths
@ - Pr['—yz|Jz+1—JY117yZIUliu] N Jita. . .
=5;(J) PrY, =i | YL = 4L, Ui = uf] A second consequence of Lemima]V.3 is the fact, crucial

Pr[Y, ’ | Xi = 2:(J)] for our description of cyclic shifting and message-interval

(:b)gi(J) PrlY, |—sz T — 1ZU T splitting, that the message intervals € J; with history

rlY; =y, 1 — y’L = gt

bit z; (J) = 0 form a partition of [0, 7x - (0[gi—1)). This
where (a) is by Lemmga™M2, and (b) is due to the fact that #bllows from the next lemma.
Ji+1 = J, then the bit transmitted at time instaninust have

beenz, , (J) = zi(J). Lemma V.4. For anyi > 1, we have
The denominator on the right-hand-side above can be ex- Z si(J) = mx-10(0 | gi—1).
pressed as JeTi: 7 (J)=0
Pr[Y; = o | Y7 =941 U =) (27)
_ Z PrlJi =0,Yi=y | Y =y L U =] Proof: The proof is by induction ori. By construction,
jeqn ' the statement is true for= 1. So, suppose that it holds for
i+1 ) somei > 1. We then c0n5|deZJ€J+1 w71 ()=0 si+1(J). By
= > &l Yi=y | Xi =z:i(J)] (28)  Lemmal\3, we have
Jed;
Now, the last expression above can be written as Z sir1(d)
JETit1t z; ,(J)=0
o~ ~ pyix (¥i | zi(J))
Yo m0) | P =y Xi=1] = Y s )
JjeJi: zi (D=1 JeTi: wi(1)=0 YiQii 1=
_ ~ pyix(yi | 0) .
+ > &) | PrlY =y | X; =0 = D)
L . 7"'Y\Q(yz | gi—1)
JeJi x:(J)=0

JeJi: zi(1)=0
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@ pY\X(?J |. ) (1—7xx-10(1,0 | gi1)) othe_rW|se, definep, , ,+(p) = 0 and the derivations can be
Ty QWi | gi-1) easily repeated.
_ e Pyix (Wi [0)Tx x 100,27 | gi—1) Define also
Zz,m* pY|X(yi|'r)*7TX-,X7|Q('r7f7 | Qifl) B w;*,q,m,(fr (p)
2 Pyix Wi 0) i x- (0127, qi1) mx - (27 |gi1) s T8 B ) N
PP py‘X(yi|x)p§ﬂX,7Q(x|gc_,qi_l)7TX7|Q(x_|qi_1) =E ( S, ) (i, X;7, Qi—1, X3, Qi) = (5,27, ¢,2,q47)]| -
(b) . . . .
= WX*\Q(O | 4i), Indeed, there ought also be a time index in the notatiphut

where (b) can be verified directly from the known expressior'1tsWIII be shown in the proof of LemmA V11 below that the

for py|x., p}\xa_Q and 7y 0. The_ induction hypothe_sis expected value does not depend on the time index

has been used in (a) above to validate the construction of .

J; from J; via message splitting, which yields the fact tha: Analysis

ZJej:m-(J):O 5i(J) =1—mx x—10(L,0 | gi—1). ] The following lemma comprises the core of our PMS

analysis:
Remark 3. The PMS construction described in this section y

and its analysis to come in the next section are also vali@¢mma VI.1. For all 6 > 0, there existss*(§) such that
for non-optimal input distributions and for a broader class of W (0) < by ot (0)2°

channels called unifilar finite state channels (with feedback) 27,02tV = Taw ’

[11], provided that one condition is met. This conditionfor all s < s*(6), 0 < p <1, and all (z~, ¢, z,¢").
which may easily go unnoticed within the details of the PMS
construction, is that of Lemnia’V.4: the sum of the lengths %ad
all the messages intervals with the same historyzbitis a
function of the@-stateq; 1 only. This condition is essentially
equivalent to the BCJR-invariant property that was introduced - , . ,+(p)
in [26, Section IIl.A]. We emphasize that this property is
immediately satisfied when an input distribution satisfies the= E
Bellman equation in the corresponding DP problem. However,

Proof: In this proof we show that);_ . (p) can be
e arbitrarily close t@, , .+ (p) if we take's to be small
enough. From Lemm@a .3, we have

Si o _ _
(%) |(S7,1X»L 7Qi—laXiaQi) = (S,(E 7qa$aq+)

2

this property can also be verified directly, as has been done in (py|x(y|:v))_p
Lemma[\/4. 7yl
-, -
VI. PMS ANALYSIS: PROOF OFTHEOREMV ] ‘E (%) (S5, X7 Qio1, X1,Q:) = (5,27, ¢, 2, q7)

The statement to be proved concerns the probability of
Sn—¢, (Jn—c,) < & conditioned on the occurrence of the = ¢, , .+ (p)

event s;(J;) < Swmin, @ = 1,2,...,n — {, — 1. Thus, r, -\ —p
throughout this section, we assume thgt/;) < Swin, @ = ‘E Si (S:, X7, Qi1 Xi, Qi) = (5,27, ¢, q )]
1,2,...,n—(, — 1, holds. All probabilities and expectations S; !

in this section are implicitly conditioned on this event. This (31)
results in a simplified analysis of the PMS in Phase I, since ) , i ) ,
under this assumption, the true message intefyvainnot split where in the Seco”‘?' equaht.y gbO\yals_ the unique solution
into more than two children at any point of the PMS, as @f¢" = g(q,y). Our interest is in showing an upper bound on
evident from the description of message-interval splitting i'il?e expected value i (B1). The simpler case is wign= 1,

Sectior(V-D since there is no split (i.e$; = S;), so thaty] .+ (p) =
Since this proof is concerned only with the sequence 8)fda_|ﬂfaq*(dp)' | with  th h -

true message intervalg;, i = 1,2,3,..., we will use some 0 deal wih the other casexX, = 0 we

simplified notation:Si ;1 = s;11(Jis1), S, = 5:(Jisn), X = need the conditional probability density function

x;(Jp), X, =x; (Ji) = xi—1(Jiz1)- fTi;‘/'L‘SiaQi—laX;’XiaQi (u,v|s,q,0,x,q+), where

i £ ti(Ji) + Ui(g) mod mx-|o(0lg) denotes the left

o end-point of the message intervd)_; after cyclic shifting

A. Preliminaries by U;(q). Observe that

Define forp € [0, 1), Frviisi@io X i@ (W v |1 $:4,0,2,07)

“p B
Pq,a.qt (P) £ <p7”(y|x)) : 30) @ PriXi=z|Si=sX; =0, ch =q 7 =uV; =1
7TY\Q(yM) PI‘[Xl =x | S; = S,Xl- =0,Q;—1 = q]
wherey is the unique solution to the equatigri = g(q, y). Jui(a).vi (4, )
We also usep(, ,:  (p) as a shorthand fovg, , .z, (p). © PrXi=2]Si=sX; =0,Qi-1=¢,7i =u,V; =]
Throughout the analysis, it is assumed thaty (y|z) > 0, PriX; =z | X, =0,Qi—1 = q
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v,
'fUl(q) m(u v) i |
© PriXi=2]8=5X; =0,Qi-1=¢7=uV; =1 %
Pz.,(),q %
u AR

o (7) , (32) |
mx-1Q(0lg) |
where(a) follows from the Markov chair@Q; — (X;,Q;—1) —

(Si, X ,m,V;) and the fact thatr; is distributed uniformly J Ry -y ey =3

on [0, mx-(0]q)], (b) follows from the Markov chainX; —

(X;,Qi_1) — S; and (¢) is due to replacement of the':'g 7. llustration of the intervals i(35). We us&y 2 Pioq, P> =
ld’ iablel/: ith U, d th tation? s Poo,q+ P10, The shaded area corresponds to values afidv for which

random variableU;(q) wi i» and the notation.0.4 = pyix, — 0] 8 = s X, —0,Qs1 = g7 =, V; = 0] — L.

7x,x-|@(7,0lg). The Markov chain@; — (X;,Qi-1) —

(Si, X[ .7, V;) follows from the fact that); is a function of

(Y3, Qi—1) and the memoryless property. The second Markov For all w € I; and allv € [0,1], 5(g, u, 5,0) = s, SO

chain X; — (X;,Qi—1) — S; is shown in two steps: first, if

u

X, =1, thenX,; = 0. For the other caseX, = 0, note that / / q,u,8,0) Pdody = —224
W;, givenX;” = 0 andQ;_, = g, is distributed uniformly on Foo.q J1, Jio) Fo.0.q
[0, mx-1¢(0]¢g)], and X; is a function of W;. For the intervalls,

Note that the numerator of (B2) is an indicator function
of the event that the pointu + sv) mod 7x-o(0[q) is

/ / 5(q,u,s,0)""dvdu
Fo,0,9 Iz Iy (u,s)

mapped toX = z. Also, we havefy v (m,v =1 o

for all (u,v) € [0,7x-¢(0]g)] x [0,1]. Thus, the density @ iz E/ (u—Pooq+s)(u—Poog+s) " du
frvi15.0, . x- x,.q, does not depend on the time index Of;o’ql L2

1. Since the expected value i 131) is determined from this — _° _/ uw Pt

density function, the time index can be omitted from the Po.0.q 5 Ji0.9)

notation of¢3_ . (p)- _ 1 s

We begin with the calculation of the expected valudin (31)  Pooq (—p+2)’

for the caseX; = 0: where (a) follows from (g, u,s,0) = u — Pyo4 + s and

PSP S = s, X7 =0, Qi1 = —0,Q; = |IV(W_)| = (u— Po0.q+ s) fer all w € I,. The calculation fer
[ / | % @isr=aX Qi=4q"] the third interval,ls, is similar to that forl,, and results in
@ SP/ / the same value for the integral.
0,7 x4 (0lg)] /[0,1] To conclude, we have shown that
fn,msl,xl Qix,Q (0 ]15.0,4,0,¢7)3(q,u,5,0) Pdvodu Prog—5 1 s
wo,q,m,zﬁ (P) = ¢q,2.4+ () P + 2p (—p+2)
/ / 5(q,u, s,0) Pdvdu, (33) .09 0,4 { 7P
PO :0,q J UL UIs J Ty o 2 Gyt (p)25q,m(8)
where for p € [0,1). The last step is to definis) £ max, , J,.(s),

(a) follows by definings(q,u,s,0) to be the length of the which goes to zero whes — 0. Now, it is clear that
new true message interval after a possible split, whichis,- , , .+ (p) < &g ¢+ (p)2°®) for all (z~,q,2,¢"), 0 <

a function of (Q;_1 = ¢, 7 = u,S; =5, X; =0) only; p<1ands < Sy, as required. ]
(b) follows from substituting[(32) and restricting the integra- ~ Proof of Theoreni_V1: Throughout this proof(, is a
tion overu,v to be on the domains wheier[X; = 0| sequence of integers that satisfigs — 0. Our aim is to
Si=sX; =0,Qi-1=¢,1=u,V,=0v] =1, and are show that for|M| = 2", there eX|sts§ > 0 such that
illustrated in Fig[¥. Theu-intervals are given by Pr[Sn—¢, < & — 0 asn increases. For convenience, we
replace the variable by n + (,, so that the analysis is made
I £ [mx x-10(1,0]q), 7x -1 (0]g) — 5] for a message set of siza1| = 2(»+<»)E and the probability
L2 [WX,X*|Q(170|Q) — Saﬂx,x—|Q(1,0|q)] analysis is forPr[S,, < ¢]. .
I3 £ [rx-10(0l0) — 5, 7x-10(0]q)] (34) From Lemmd VL1, for alld > 0, there existss*(d), such
37 Mt = & mx-1eUld] that for all s < s*(6)
and the correspondingintervals that depend om s are: Vot (0) < Bamat (p)2°. (36)
[0,1] foru e I We will utilize [@8) to provide a vanishing upper bound on
Ty(us 2 %P“’“’q, 1} foru e I E[A(S,,)], with A(s) = s~* for a judiciously chosem > 0.

This, by the Markov inequality, will imply that the probability
that A(.S,,) is above a certain threshold is vanishingly small.
(35 since A(s) is a decreasing function of, we then obtain

0 —u+Po,0,q+P1,0.4
) s

} foru e Is.
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that the probability thatS,, lies below a certain threshold is n 7. x,v (0,8,9)+Kn
vanishingly small, as desired. len[?ﬁﬁ%’z’y(m] + qu Gq.2.4(p)
We introduce some convenient notation for the upcoming on(Rpt Rp 45+ Kp)
analysis. SetA; = (X;,Q;,5;), and let(X,Q)] stand for = n
(X7,Q}) wheni < j. Consider the following chain of 4 9n(Re+Rp<x+9) H 2(n7q, x v (¢,2,y)+#n) 10g ¢q,2,y (p)
inequalities: @y
— on(Rp+Rp<+5+Kp) .
En, [A(Sh)] "
@ RotFipa +5)0~P S (170, 3.5 @), Tos (LA
= En,_ [A(Sn-1) Ea,ja, i [A(Sn/Sn—1)|An-1]] + Qn(Rpt RS )y Ty vl
=Ea, 1 [ASn1) Bix,.qu)al Y gntrotRpSatstKp) | g-npI(XiY|Q-RO+S) -5+
Es,1(X0.Qu), 801 [A(SR/Sn—1)|(Xn, @n), Ap—1]]] (37)
(b)
<20 Ea, 1 [ASn-1)Ex,.Qu)an 1 [¢x.0)r_, (p)]] where (a) follows from separating the contributions made to

the expected value by non-typical and typical sequences: we let
. €, denote the probability that a sequence is not in the typical
‘Es,_x.@r_ [A(Sh—1) (X, Q)5 _4]] set, K stands formax, ., log %) and, finally, x,
@ 95 Ecx.op [bxor  (0)Ea, ix.opm  [A(Sn—2) denotes the maximum deviation of the empirical distribution
nt not n from 7o x v (¢, z,y) for a typical sequence. Iterfb) follows
E [A(Sn—1/Sn—2)| (X, Q)1 An—2]] e notations’. 2 |
Sn—[(X,Q)7 1 A2 n—1/on=2 1 n—1y 2n=2 from the notationx!, = k,|Q||X||V|K. Now, sincee, de-
@ o6 creases exponentially with, there exists a choice @¢p*, §*)
- 2 E n n ]:E n A n— ’ ’
x.Qu_, [ox.n_, (P Ea, ix.Qrn_, [AM(Sn-2) such thatn(Be" +52 40" +K0") ¢ is arbitrarily small, whileR

Es, 10100180 2MSn—1/9n—2)[(Xn-1,@n-1).An-2]]l " can be made arbitrarily close X ;Y|Q).

=2 Ex,qr [px.@r_, (p)

n—1

) Finally, the main result can be derived wiit and p*:
<2 Ex g [bxon (0 Ea, Lixan Y g
A(Sn—2)d(x.qy-1 ()] Pr(S, < 5*(5°)] £ Pr{A(S,) = A(s*(5%))]
b
=22 Ex.0y_,[0x.ay_, (0)bx.qr-1 (0) ¢ 7@5({2&(&%})
‘Es, )x.n_,[A(Sh—2)[(X, Q)5 _o]] « )
0,

(@) néd & n
<27 By [1:[1¢(X=Q>i1(p)ESo|(X-,Q)?[A(SO)|(X’ Q)l]] where (a) follows from the fact thatA(-) is a decreasing

N function, (b) follows from Markov’s inequality andc) follows
(e) from (37). [ |

no n n
= 20 CIRP Ry o lH ¢x,Qi_, (P)

=1

3

VIl. DP FORMULATION AND SOLUTION
where:

) This section covers the formulation of feedback capacity as
(@) follows from the law of total expectation; DP and its solution. The solution of the DP problem implies
(b) follows from [36) since X" o  x.0.(P) = aimost immediately the derivations of feedback capacity and
B, |(X0.Qn)an s [A(Sn/sn—l)_KXm @n)s An—1l; optimal input distribution, which were stated earlier as separate
(c) follows from the Markov chairb; — (Ai—1, (X3, Qi) = results in TheoreniSTI1 afid V.2 (which are proved at the end
(X, Q) forall i, and specifically fori =n — 1 of this section). We begin with presenting the family of DP

(d) follows from applying the above steps— 2 times; and  roplems termed infinite-horizon with average reward.
(e) follows from the fact thatM| = 2(n+Cn)E,

The expectation above can be decomposed into nog- Average reward DP

typical and typical sequences with respect to the . .
Markov distribution p(¢*,z|g,z7) = Y 1{¢" = Each DP is defined by the tuple€, U, W, F, Pz, Pw, g).

N Z . We consider a discrete-time dynamical system evolving ac-
9(0,v)}py x Wle)p x - (e~ q). With some abuse y y g

of notation, sincey and ¢ determine a unique such that cording to:
q" = g(q,y), we refer 0¢x gy (p) @s dq, ., x,,v:(p). 2 = F(ze-1,up,wt), t=1,2,... (39)
Consider ) )
Each statez,, takes values in a Borel spacg each action,
Ea, [A(S,)] Ut, takgs values in a compact supSﬁbf a Borel space, and
(@) . each_ @_sturbancew,g, takes values in a mfaas_urable spate
< on(Rp(145)+0) The initial statezo, is drawn from the distributio®;, and the
disturbancey, is drawn fromPyy 2, | v,. The history,h; =
"This Markov chain follows from the same argument used in Lefima V1820, Wi, - .., we—1), summarizes all the information available
for the Markov chainX; 1 — (X;, Q) — S;. to the controller at timeg. The controller at time chooses
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. . L . TABLE |
_the actionu,, by a functlonut_ that maps hlStOI’IQS to actions, THE CONDITIONAL DISTRIBUTIOND(Yt, Tt, Tt —1|2¢—1, Ut)
i.e., u; = pt(he). The collection of these functions is called
a policy and is denoted as= {1, o, - . . }. Note that given [@e—1 [ @ || yt =0 | yt =1 |
a policy, w, and the historyj;, one can compute the actions 0 0 || aze—1us(1,1) | oze—rus(1, 1)
vector,u!, and the states of the system, zo, ...,z _1. 0 [ 1)l Bae—rue(1,2) | Bze—aue(l,2)
1 0 a(l—zt—1) a(l—z-1)

Our objective is to maximize the average reward given a
bounded reward function: Z x4 — R. The average reward

for a given policyr is given by: component will be the DP state. Each actiom, is a

constrained x 2 stochastic matrixpx, | x,_,, of the form:

oo
pr = R B

N
ZT(Zt—laﬂt(ht))‘| ;

U — pXt|Xt—1(O|0) pXt|Xt—1(1|0)
t= 1

where the subscript indicates that actiensare subject to the 0
policy w. The optimal average reward is defined as The disturbance, is the channel output,, and thus, it can
B take values from{0,1}.
p = SUD P The notations; £ z,_1px,|x, , (1/0) is useful and implies

] ] the constrain) < ¢, < z,_1, sinceu,, by definition, must

Having defined the DP problem, we are ready to show thg, 5 stochastic matrix. Furthermore, given , u; can be

formulation of feedback capacity as DP. recovered fromd, for all z,_; # 0. For the case,_; = 0, we
will see thatpy, x,_,(1]0) has no effect on the DP, so it can

B. Formulation of capacity as DP be fixed to zero. The system equation can then be calculated

_ _ N from (40):
The state of the DP;;_;, is defined as the conditioned -
probabilit_y vector 51 (z¢—1) é p(:vt._1|yt_1). The action L (l_a)(i’% if wy =0, 1)
spacel{, is the set of stochastic matricesy,|x,_,, such that ¢ s ifw =1

Px,|x,_, (1]1) = 0. For a given policy and an initial state, the
encoder at timg — 1 can calculate the stat@,; , since the  The conditional distributionp(xz, 41, y¢| 21, 1), is de-

tuple y*~! is available from the feedback. The disturbance iscribed in Tablgll, so one can calculate the reward
taken to be the channel output, = y,, and the reward gained

at timet — 1 is chosen ad(Y;; Xi|y'~!). These definitions 7 (z—1,us) = I(Ys; X¢|ze—1,u¢)
imply that the optimal reward of this DP is equal to the = Hy(ad, + 86;) — (1 — 6;)Ha () — 6, Ho(3).
feedback capacity given in Theorédm IV.1.

It can also be shown that the DP states satisfy the followingBefore computing the DP operator, it is convenient to define

recursive relation, _
Da,p(0) = ad + pd

B () :P(It|yt) argl, (5) = ad
2 Bea(@ea)ue, e 1)py x (el 9%.510) = 1 — Pa,s(9) (42)
Yo B (@ i@, 2 )py x (vela) b
(40) arg%”@( ) - pa,ﬁ(a) .

where u; (2, z;_1) corresponds te(z;|z; 1,y 1), the de- We will omit the subscriptsy, 8 in the notation above when
pendence ony’~! being left out of the notation for,. In itis clear from the context. The DP operator is then given by:
[13], this formulation was shown to satisfy the Markov nature
required in DP problems and it was also shown that the optingihavﬁ)(z) = Rax Hy(p(9)) — (1 = 9)Hz(a) — 6H2(6)
average reward is exactly th.e cqpamty expression in Theorem + (1 = p(6))ha.s(argl(s)) + p(6)ha.s(arg2s)),
V.1l Note that this formulation is valid for any memoryless (43)
channel with our input constraint; moreover, minor variations
can also yield a similar formulation with different inputfor all functionsh, s : [0, 1] — R, parameterized by, 3).
constraints. Now when the DP problem for the BIBO channel is well-
defined, the Bellman equation which can verify the optimal-
ity of rewards, can be used to obtain an analytic solution.
C. The DP for the BIBO channel H):)wever, the Bellman equation cannot be easilg; solved, and
Here, each element in the formulation abovéherefore, numerical algorithms are required to estimate the
will be calculated for the BIBO channel; the DPBellman components. The numerical study of DP problems
state at timet — 1, z;_1, is the probability vector is not within the scope of this paper, and the reader may find
[px, 1 ve=1 Oy 1), px, vy (1fy' )] Since the [11], [12] to be suitable references for learning this topic in the
components of this vector sum td, the notation can context of feedback capacities. Therefore, we proceed directly
be abused as;_; = pthl‘yt71(0|yt‘1), i.e., the first to the statement and the solution of the Bellman equation.
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D. The Bellman Equation works [11]-[13]. The numerical results indicated that the

In DP, the Bellman equation suggests a sufficient condiPtimal actions are linear in parts and that the number of
tion for average reward optimality. This equation establish¥sited DP states ig. These observations were sufficient for
a mechanism for verifying that a given average reward ¥9mMe good guesswork that helped us to find the Bellman
optimal. The next result encapsulates the Bellman equatioffduation solution. For further reading on solving the feedback

capacity when actions may be non-linear functions but the DP
Theorem VII.1 (Theorem 6.2[[30)) If p € R and a bounded y;sits a finite number of states, the reader is referred o [26].
functionh : Z — R satisfies for allz € Z: Loosely speaking, the paper |26] includes upper and lower
bounds on the feedback capacity that match if the DP (under

p+h(z) = 21615 T(Zvu)+/p(w|z’“)h(F(Zvu’w>)dw’ (44) optimal actions) visits a finite number of states.

. ) ) _ As consequences of Theorém V1.2, we obtain the facts that
thenp* = p. Furthermore, if there is a functiop : Z*—> U, the feedback capacity and the optimal input distribution of the
such thatu(z) attains the supremum for eachthenp® = o= g|go channel are as stated in TheordmsJil.1 BRd]IV.2.
for m = {10, 1, - } With pu(he) = p(z-1) for eacht. Proof of Theoren{II[]l: By Theorem[VI[2, the DP

This result is a direct consequence of Theoretnin [30]; optimal average reward g, 5, Which is the same as the
specifically, the triplet(p, h(-), u(-)) is a canonical triplet by capacity expression in the statement of Theorem]I1l.1. m
Theorem6.2, since it satisfied{44). Now, because a canonical Proof of Theoreni TV]2:We first show that the initial DP
triplet defines for allV the V-stage optimal reward and policystate may be assumed to be such that the optimal policy visits
under terminal cosk(-), it can be concluded that a canonicaPnly a finite set of DP states. From this, we infer the form of
triplet also defines the optimal reward and policy in the infinitde optimal input distribution given in the theorem statement.
horizon regime, since in this case, the bounded terminal cdists then straightforward to check thgtX;, Q;)}:>1 forms

has a negligible effect. an irreducible and aperiodic Markov chain. It follows from
Define two constants this that the average reward, i.e., the feedback capacity, can
B also be expressed d$X;Y|Q).
Pa,p = D2X Ra,p(2) Recall the optimal actions from Theorém VII.2:
zgp; = argmax R, 5(2), (45) i} . if0<2< Z;’B
’ 0<2<1 5" (2) = af i of
. ) . o Zy’ if 257" <z<1L
whereR,, 3(z) was defined in[{2) and has a unique maximizer S ) )
from LemmaTIL1. The DP state evolution il _(#1) can be described using the
Also. define the functions: argj,,s functions in [42). It is easy to check that the set
o Z, 2 2P 0 = 1,2,3,4}, with 27 as defined in
hi""(z) = Ha(p(z)) — (1 — 2)Hz(ar) — zHa() , is closed under the composite function jarg o §*,
£)
XP(2) = Hy(p(2)) — (1 — 2)Ha() — 2Ha(B) — p(2)fap 1€ aGaps(6*(2%)) € Z. for all i,j. The functions
X*B(2) + p(2)X*F(arg2, 4(z)) argja,(0*(2)), j = 1,2, create a sink, meaning that there is
hg"ﬂ(z) = 1 — P ) (46) always a positive probability for a transition being made from
—af any DP statez € Z to a state inZ,, and zero probability of
for z € [0,1]. The concatenation of the above functions caleaving the setz,. Therefore, we can assume that the initial
be defined: DP statez, is from Z.. Note also that for the functioq(-, -)
hff"ﬁ(z); if0<z2< Z?,B that describes the transitions in tlig-graph in Fig.[%#, we

. _ have ¢ = g(i,j — 1) iff 2" = argj, 5(5*(2"")), for all
o a,3 X a,f a,f g1, ¢ o, i ’

ha.p(2) = ]f? (2); !f Z}!B <ZS 5 i,0 € {1,2,3,4} andj e {1,2}. Therefore, we may identify

Pa,p if 2" <z<1, the setZ, with the set ofQ-statesQ = {1, 2, 3,4}, so that the

wherez* and 2$? were defined in[{15). With these defini-Evolution of the DP states can be described ondhgraph
. f Fig.[4. The form given for the optimal input distribution in
tions, we are ready to state the fundamental theorem of tijis . . .
section the theorem statement follows directly from this observation.
' R We next verify the first-order Markov property of
Theorem VII.2. The functionh, s(z) and the constanf, s (X, Q:)i>1. Observe that
satisfy the Bellman equation, i.e., i1 e
b hed i p(i,qile' ™ )
h(y,ﬁ"i_p(y,ﬁ :Tha7ﬂ7 = Zp(yi,l‘i,q”fﬂiil,qiil)
for all [o, 5] € [0,1] x [0, 1] satisfyinga + 5 < 1. Moreover, Yi

the maximum irl'h, g is achieved when*(z) = z for z €

(a) *
0,20 ando*(z) — 18 otherwise = p(alai-1, yi)p(wile)p x - o (@ilzio1,¢i-1),
257", z) = z5 .

Yi

The computations needed to verify that 5(2) and j. s (47)
indeed satisfy the Bellman equation are given in Appehdix @here (a) follows from the structure op% X-.0 given in
To derive this solution in the first place, we started with th€d), the memoryless channel property, and the fact@has a
numerical techniques used in similar contexts in the priéunction of(Q;_1,Y;). It can be verified that the Markov chain
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(Xi,Q;)i>1 is irreducible and aperiodic, and hence, ergodic. Letp(z) = az+ 3z and denote by’ the derivative of(z).
It is then a straightforward, albeit tedious, exercise to verififter some simplifications, the derivative equals:
that its (unique) stationary distribution is given by - o = d
Tx-|QTqQ, as in the statement of the theorem. —R(2)
Any trajectory of states;, ¢ > 0, followed by the DP dz 1 - -
under the optimal policy accumulates an average reward of T2 {(1 = aB)(Ha(e) — H2(B)) + (B — )
lim inf %Ziﬁ(%ﬁ*(%))- Since we assume that < p _ _ _ _
Z,, each term in the sum is of the form(="", % (2")) [210g(1 = p(2)) = log(p(2) = aB)(1 + aB) + aBlogaff] }

for somei € Q, Whid[} is equal tol(Y; X|Q = 1), the The ahove derivative equals zero when the function
reward at the DP statg"”. It then follows from the ergodicity

of the Markov chain(X;,Q;);>1 that, asN — oo, the f,5(2) = (1 —af)[Ha(a) — Ha(B)] + (B — )
time average S/ 7 (2, 0%(z)) converges almost surely . [21og(1 — p(2)) — log(p(z) — aB)(1 + ) + aB log af]
to =, 1(Y: X|Q = i)mo (i) = 1(X;Y|Q). o
equals zero. It is easy to note that the functinz(z) is a
decreasing function of its argument and, therefore, it can be
VIIl. SUMMARY AND CONCLUDING REMARKS zero at one point only.

The capacity of the BIBO channel with input constraints W& Will show two facts:

was derived using a correspondlpg DP pro.bler_n. A by_—product fas(p(2L)) =0 (48)
of the DP solution is the optimal input distribution, which can
be described compactly using-graphs. For the S-channel, fap(p(2v)) <0, (49)

we were able to derive a capacity-achieving coding schemg, which we can conclude thé, 5(2) attains its maximum
with simple and intuitive analysis for the achieved rate. Fqy; 4 unique point i € [21, zu/] For the BSC. it needs to be

the general BIBO channel, we provided a PMS constructi(yplown thatf. (0.5) < 0 which can be verified immediately.
that includes the new element of history bits that captures theWe begin \;vith an gxplicit calculation of, s(p(z1)):

memory embedded in the setting. Furthermore, to ease the
analysis of the scheme, a message-interval splitting operatﬁqﬁ(p(zL))

was introduced so as to keep a Markov property of the involv _ N
random variables. With these ideas, we showed that the (1 —aB)[Hz(a) — Ha(B)] + (6 —a) -

constructed PMS achieves the capacity of the BIBO channel 5 5 5 5 5 5
“{2log(1 — 4/ —log(\/ a8 — 1 1
The elements that were presented here for the PMS i og( af) — log(yaf = aB)(1 + aff) + aflog af]

the input-constrained BIBO channel setting may be exploited = - 1—+ap
to derive a PMS for a broader class of finite-state channels (| ~ @) [H2(@) = H2(8) + (5 — ) log /o ’
(FSC) with feedback. Specifically, a FSC umifilar if the (50)

channel states; is a deterministic function of the previous

channel states;—1, input z; and outputy;. Though several where(a) follows from p(z;) = v/aB. Sincel — a3 > 0, we
works have proposed the PMS approach for this class, thged to show thafe-2®(zL) >

assertion that this approach is optimal (in the sense of beingye now show thaﬁﬁe minimal value ¢F{50)(s Consider

feedback-capacity achieving) remains to be proved [31], [32he first derivative, with respect to, of Je2(GL).
The idea of history bits that was presented in this paper can 1-ap

be extended to “history states” for unifilar channels, since - 1-/ap
the encoder can determine the channel state at eachtfime ——— [Hz(a) — Hs(B) + (B — a)log (fﬂ
assuming knowledge of the initial statg. Moreover, for @ \/ﬁ

all unifilar channels with simple capacity expressions, their 0 <(1 - a)\/a_5> B —a

optimal input distributions have @-graph representation [26]
so that they satisfy the BCJR-invariant property that is crucial

for the PMS construction. Thus, the steps of the construction  _ (I-a)Vap 1— f—
and the analysis can be repeated in order to show that the — o(1 — +\/ap) 2a(1 — \/ap)
corresponding PMS operates successfully in the sense of - 2
Theoren{ V1. _ M
20(1 — /ap)
<0, (51)
APPENDIXA
PrROOF OFLEMMA [T.1] where the first inequality follows fronbg 2z < 2 — 1 for all
o (1—a)y/aB
In this appendix, we show that the argument that achievés” 0 with = = a(1—y/aB)’
the maximum ofR,_s(z) is unique and lies withifzy, z¢] = Therefore, for eacl$, the function is non-increasing in,
Ja Va so the function can only be decreased if we substitute 3.
Va+y/B VatvB | Since f5 5(p(z1)) = 0, inequality [48) is proven.
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We now use a similar methodology to shofv](49). ThRecall thap,, in Corollary(1 is the solution fofaa) log(aa)+
inequality that needs to be shown is 2log(1—p) = (1+aa)log(p—aa), and letp,, denote its first
derivative. The next lemma concerpls and is the foundation
f“’ﬂ(p(ZU)_) _ for the proof of Theorerfi TITI3.
= (1 - af)[Hz(a) — Ha(B)] + (B~ a) -

_ _ _ _ Lemma B.1. The first derivative op,, is:
- (2log v ap + aflogas —log(l — y/as — apf)(1 + af)) b

1 _pa)(poz - ad) Pa — Q&

<0. 52 =(1-2 ( 1 — ) -1

< (52) pl,=(1-20a) (oo - D +pa) |8 - og o
Because it is difficult to prove straightforwardly, we write 1—pa

inequality [52) as a sum of simpler components, i.e., +(1_20‘)1_aa

—fap(p(zv)) = F) 5+ F2 5, and we show thaf", ; and

5 2 Ky(a) — Ki(a)loga,
F; 5 are always non nega‘uve The functions are:

with the defined functions:

Fog=af [(5 — a)log <—1 — &@ — aﬁ) + Ha(a) — H2(B) N (1 = pa)(pa — aa)
af Kq(a) = (1 -2a) (o5 - D+ po)
= 1-+Vap—«a o
Flo=(-apor (Y= ) ) - ) (T

1—-oaa
As before, we take the first derivative &f, ,:

Note thatpy = 2 — \, so K;(«) and K2(«) are defined at

d FOll,B a=0:
a | af 7 K1(0) = ~ po(1 —po)
1 B \/— O_LB 1+ Po
o 2
=(6—- 1 _ K5(0) = K1(0)1 +1—po.
(B CY) a+1_a6 \/— +Og<1_m_aﬁ) 2() 1()ng0 Po
o Proof of Lemmd _B]1: We calculate the first derivative
<(B-a) ! I —B+ 2¢— +< af > _ 1 for each side oRlog(1 — pa) = (1 + a@)log(pa — ad) —
- a l—af—Va 1—+Vas—ap (a@)log(aa) so we have:
:(f—ﬁ)ﬁ[ﬁ(aﬁ—gﬁ)j‘(aﬁ—dg)] -2 o loe (Pa—% ~ 1+4+pa n 1+
2av/aB(1 — vaB — ap) 1 —papo‘ n & x [ Doy — ol
<0, (53)
where the flrst inequality follows fromogz < = — 1 with Arranging both sides of (33) complete the proof. u
T = F 5 The last inequality follows fromy < 3, The next lemma is technical and is made to shorten the

which implies, in turnp/B—5va < 0 andaf—afs < 0. We proof of Theoreni IIL3:

thus conclude thak’! g Is non-increasing imy, and therefore, Lemma B.2. Define K3(«a) =
if we takea to bel — 3, we get its minimal value. Note thatas
F1 =0, so we haveF, ; > 0.

1+ , then it can be expressed

Now we take the derivative of’ ; with respect tos: Ks(a) = T+ 0 + Nalog o+ o(alog o),
d g where N is a constant.
g

o The proof of Lemm&BlJ2 appears in AppendixB-A. We are
+log ( ?‘5 ) now ready to prove the main result of this section.
l—af - Proof of Theoren{IILB: Consider the next chain of

_ (B-a)VaB(-B+2VBa)
26%(1 - af — Vap)
)

1

(B — a)Va(—vB+2Va) ( ap ) equalities:
< l——
2(5\} - aﬂ vha) L—af—va CBSC(a) + Hy(a) — CBC(0) + Ka(a)aloga
=250 —ah- \/_ (@V/B+28VB+va@a=8) @ log(1 - p,) — log(pa — 7) — CBC(0) + Ka(a)aloga
o/ 2
<0. (_b)a[l Po_ Do —|—K3( Jaloga
— P Pa —
The last inequality follows from/3 — v/a < 0. Repeating
the same steps as was done fgf ;, we find thatF; ; > 0, + K3(a)[1 + log a]] + o(a)
which, in turn, gives that- f, s(p(zr)) > 0 as reqwred | , =0
©@ [ Po(r—1) +—Z + K3(a)[1 + log o]
APPENDIX B (I =pa)(pa =)  pa—2 =0
PROOF OF THEOREMIIL3] + o(a)
Throughout this section, we use = aa, andz’,2” to (@) [(Ka(a)— Ki(a)loga)(z —1) a
stand for the first and second derivativesofrespectively. — (1 = pa)(pa — ) + Pa — T
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+ K3(a)[1 +log a]] +o(w)
a=0
9 prot o | T ky@)toza] o
D Ao+ o(@) (54)
where:

(a) follows from Corollary1,;

(b) follows from the Taylor series approximatigfia) =
F0)+ f'(0)a + O(a?);

(c) follows from Lemma
lim, 0 K} (a)aloga = 0;

(d) follows from LemmdaBl, specifically!, = Kz(a) —
Ki(a)log o

(e) follows from the notation/ £ K,(0)
K5(0);

(f) follows from FLAE—2 4 [¢(a) =

Thus, we have fron{ (34) that®SC¢ (o) + H-
Ki(a)aloga = Ma + o(«).

[BPR,

—1

1
Tpo)o) "0 T

0.
() — CBSC(0) +

The derivation is completed with the following equalities:

CBSC(a)
= CB3Y(0) — K3(a)aloga — Hy(a) + Ma + o(a)
W log A — [K3(0) + Nalog a + o(alog o)]a log «
— Hy(a) + Ma + o(a)

O 2—-A log(2—X)—(2—-X)
_1og/\+3_)\alogo¢—|—( T X @

+ O(a?log” a)

where:
(@) follows fromCBS€(0) = log A and Lemmd B.P;

(b) follows from Hs(a) = —alog a+a+o(«) and arranging

the equation.
[ |

A. Proof of Lemm&Bl2
By a Taylor series approximation, we have

! ' K1 () 1
— aloga —
1+po¢ (1+po¢)2 1+p0
—a[ x" o x _(w’Kl(a) )Ialo N
T T P N\ Apa) OB
' Ki(a) ]
—— (1 +logu + o(a
(1 +pa)2( g ) . ( )
(@) , z'Ki(o) ]
—Coz—i-oz[—pa — log o + o(«
ET R ETNERLL) NI
®) —a
=Ca+al|K S +
« (67 |: 2((1) (1 +poz)2:|a_0 O(Oé)
© Ca+ o(a),
where (a) follows from the fact that

h /
lima_s0 (Zﬁlf;i‘)‘g) aloga =

%—%, (b) follows fromp!, = Ks(a)—Ki(a)aloga,
K5(0)

and finally, (¢) follows from the notatiorC' = C' — (ETmER

0 and the notationC =

specifically,

19
TABLE II
THE FUNCTIONS ARGL(2) AND ARG2(z)
| [ domain [ h(argl(z)) | h(ag2(z)) |
I [07 Zl} ﬁa B ﬁa,ﬁ
| [z1,22] P8 h3"” (arg2z))
M| [z2, 23] Pa.p {7 (arg2(z))
V| [z3,24] | h5"(arglz)) | b7 (arg22))
V | [za,1] [ pTP(arglz)) | AT (arg22))
So, we have that
! 1 ~ ' Kq(a)
=——+4C —=al .
T+ o 1+p0—|— a+0(a)+(1+pa)2a og
,Applying the Taylor series approximation once again on
% gives that;
,TIKl (a) Kl (0)
= + h(a),
T+p?  (rpp T

whereh(«) is some function such thédim, .o h(a) = 0.
Combining the last two derivations, we have the required
equality, i.e.,

/
=1 -l}po + Naloga + o(alog a),
whereN = ({215332. u
APPENDIX C

PrROOF OFTHEOREMIVIIL. 2]

The following lemma is technical and is useful for under-
standing the structure df, g(z).

Lemma C.1. For all [, 8] € [0,1] x [0,1] s.t.a+ 8 <1,
1) The functioni, z(z) is continuous oro, 1].
2) The functioni, s(z) is concave orf0, 1].
3) The only maximum oS’ (z) is attained atz = 257,
and its value isp, .
4) The fi{gst derivative 071‘1)"’8(2) is non-negative for: €
0,257,

The proof of Lemma_C]1 appears in Appendix_ C-A.

Proof of TheorerfLVI[I2: The functionh,, 3(z) is defined
as a concatenation 6f?(z), hS*?(z), andjq 5; to simplify
the calculation of(T'h,, 5)(z), the unit interval is partitioned
into non-intersecting sub-intervals, where each sub-interval
uniquely determines the functidn, s (argi(z)) to behff"ﬁ(z),
hS"P(2) or pa. 5, fori = 1,2. Since there are two concatenation
points,z” andz5"”, the unit interval is partitioned at the set
of points that satisfy,

argl, 4(z) = 2"
arg2, 4(z) = 20",

(55)

fori=1,2.

Calculation of the points if($5) reveals that the unit interval
should be partitioned at®”, zg"ﬁ,z?’ﬁ,zﬁﬁ from (I8). Fig.
illustrates the argument functions and the partitions when
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where (a) follows from the definition ofX (9) in (4€) and
TablefTl, (b) follows the expression foh.(d) in (@8) and(c)

L ] follows from Item 3) in Lemm&<C]1, where it was shown that
argl, 5(2) . hy(z) is increasing orf0, z5°"]. )
/ 1 To conclude the calculation ofTh,)(z) for z €
(227 22°7], consider
o a20) ] (Tha,s)(2) < max( sup hi(2) + fas, sup ha(2) + o)
2’;'@“* - 2€[0,21] z€[z1,2]
a, b .
Zohr : ¢ max(hi(21), ha(2)) + pa,p
" © ha(2) + s, (58)
4 T where (a) follows from (58) and[(37), and botth) and (c)
oo Z";ﬂ ;“aﬁ oo Z"g‘ga‘;; ' follow from Items 3) and 4) in Lemma_Q.1. Note also here
1 2 3 ~4

that the maximizer of T'h,, s)(z) for z on sub-interval Il is
Fig. 8. lllustration of the argument functions as a functionzoffor o = 5(Z) =& . . . .

B =0.25. For actions that are restricted to interval Ill, i.@., €
(2577, 2] with z € [25°7, 25°P], consider

a = 8 = 0.25. As can be seen from Fif] 8, five segments >\ _ Ha(p(9)) — (1 — 0)Ha(e) — 0H2(B)

need to be considered when calculatitifh, g)(z). The o = =

relevant segments are summarized in Tdble Il together Witl:iL (1= p(9)he.p(@rg1(0)) + p(9)ha,s(arg29)) 3

ha,s(argi(z)) for i = 1,2 for each sub-interval. @ sup X(8) + 5. 4+ n(8) | X(ar §) + (04_) ~ ]
Now, the operatofl'h,(z) can be calculated, such that in rreoss (9) 4 fap +p(0) | X(a102,,5(9)) p(8) )"

each calculation, we restrict actions to one sub-interval from) .

Table[Tl. For the interval |, i.e.z € [0, 207), = Pass + Py (59)
(The 5)(2) where(a) follows from the definition ofX (§) in (48) and Ta-
e ble[Mand(b) follows from Item 3) in Lemm&<Cl]1, specifically,
= Sup Hy(p(6)) — (1 = 6)H2 (o) — 6Ha(P) ha(z) achieves its maximum value at= z. Note from [5B)
~0 and [59) that the operator on Il satisfi€Bh,, 5)(z) = 2pa.
+ (1 = p(8))ha,g(@rgld)) + p(d)ha,s(arg2d)) and that the maximizer i§(z) = zo. Bl () ’
W sup Ha(p(8)) — (1 — 6)Ha(a) — §Ha(B) For the action restricted on interval IV, i.6.€ [z, 2] with
0<0<z z € [z3, 24, consider
+ (1= p(0))ass + P(6) o,
o ’ ’ sup H(p(8)) — (1~ 6)Ha(a) — 6Ha(5)
= sup h1(9) + pa,p 2302 ~ ~
o 0=0== + (1 =p(8)ha,s(@rgld)) + p(6)ha.s(argad))
= M2+ Pasp G6) @ sup X(6) +p(0)ias + (1~ p(6))ha(argh, 4(9))
.. 23<6<z
where (a) follows from the restriction ofz € [0, 2] and _
substituting the functions from Tablel I(p) follows from +p(8) | X (arg29)) + O‘_Bﬁaﬁ
the definition of ,(d) in (@86) agd (c) follows from Item p(9)
4) of Lemma[ClLL, specifically;;"”(z) is non-decreasing on ) .
Com o o, 60
[0, 27]. Note that the maximizer i§(z) = z. = Pap s (60)
The operator with actions restricted to interval Il, i€.¢ where (a) follows from the definition of X (4) in (46) and
(208 2] for z € [2°7, 25°F] is: Table[Tl and(b) follows from hs(z) < ja,s Shown in Item 3),
LemmalC1.
ZI%QZH2(79(5)) — (1= 0)Hs(e) — 0H(B) The calculation of the last intervalzy, 1], is omitted
o = 5 here, but it follows the same repeated arguments, so we
+ (1= p(9))ha,5(arg1L0)) + p(0)ha,5(arg29)) have (Tha,s)(z) < 2pa,s. Now, Item 3) in Lemma Cl1
9 sup X(0) + p(8)pas + (1 — p(6))as together with [[6D) gives us thal h, 4)(2) = 2/,.s also for
S0z - 2z € [22,2]. To conclude, we have shown th@th, z)(z) =
. [PO)X(@rg20) +aBX(9) has(2) + s
1—ap
® sup  ha(6) + pa.s A. Proof of Lemm&_Cl1
5052 Throughout this section, we usg as shorthand foef"ﬁ
© ha(2) + pa.s, (57) andp°ft stands forp(zg“’ﬂ).
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Continuity: Each of the functions defining,, 5(z) is con- h4(z2) = 0. (66)
tinuous, and therefore, one should verify that the concatenatio

) . An auxiliary relation can be derived using the fact that
points satisfy

R, (=) has a unique maximizer. Specifically, by taking the
heP(z1) = hyP (z1) first derivative of R, 5(z) and equating it to zero, we have

hSP (23) = pagp- (61)
The second equality il (61) is verified as follows:

(1 - aB)hs” ()
= X(22) + 9P (argy(22))

> /
e ~
P Hj(p) + [sz <?ﬂ>] = P'Pa,s p=p»
= —[Hy(a) + aHz(B) (67)
The following calculations are also necessary:

Z ) ) d — o H! H _H s
= Hop™) + 27 (%) — (22 + B22)Ha () (z)=» 2(p)_+ 2() 2(8) = 1'Pap

= % - z o) — z
— (22 + aZ) Ha(B) — (0°P + ) fa g X(argaz)) = Hy ( » > arg2z)Hs(a) — arg2(z) H»(p)

= — 3)5 a/B =
(1 aﬂ)pﬂé757 _ ?pa.ﬂ
and since(1 — aj) # 0, it follows thath$’ (z,) = Pa,3- This of
derivation also gives us that X'(arg2z)) = p'H) (7) + Ho(a) = Ho(B) — p'pa.s,
Pa.p = hg’ﬂ(@) where derivatives are taken with respect:to
(a) X (22) + p°P'X (21) 62) The first derivative ofiy(z) is:
e L (1 aphs (=)
where(a) follows from the fact that; = arg2z.). dz R
The value ofh$"?(z) is = X'(2) +p' X (arg2z)) + pargZ(2) X' (arg22))
o, X(21) + S X () = p'Hy(p) — P'pas + 1 Ha <%> ~ 9By <a—ﬂ>
hy (z1) = 1 —pOéB ' p p p
@ 1. + 9/ |~agq=) Ha(a) - arg2(=) Ha(B)]
& ilhos = X (22) o
N ) +(1-22) tta(e) - £ (5). (©8)
= (;Tft) - &Hz(a) - %Hz(ﬁ) P

P Substitutingz = z, into (68) and using[{@7), we obtain the

_H, < afB ) A (a) — 21 Ho(B) (63) desired equality i 86

o .

where (a) follows from (G2). (1 —aB)—hy"(2)

From (46), we have that For the other condition[{65), one can show that™") =
o ab_ which results in

h?ﬁ(zl) - H2 (W) - Z_lHQ(Oé) — ZlHQ(ﬂ)L (64) p(22)’

.., =0.

(1~ 0B) b8 ()=,
— (1—aB)p H (5—5) T Hy(a) - Hy(B)]

which together with[{83) concludes the continuityk)j,ﬁ(z)
atz = 2.
Concavity: First, we show that each element i, 5(z)
is concave and then we argue that the concatenation of thesgI:;h derivative ofi®? .
functions is also concave. The functidgf*’(z) is concave e derivative ofi,""(2) atz =z is:
since it is a composition of the binary entropy function, which d o PR o 76]
is concave, with an affine function. The functiéff’(z) can Ehl *(21) = p'H (W) + Ha() — Ha(B),
be written explicitly from[(46), and then all of its elements are

linear except for the entropy function which is concave arﬂ“_lqhth'ls‘ ctotnclu_?es the I(_:oncawty ?%,BII(Z)-f " )
the expressiom(z)Hs ( az S The latter expression is also_, 7 = oo WO IeMS In -emr fa Q.1 follow from the concavity

i e p(z . of Ba7ﬂ(2) and the fact that; < z;: since the maximum is at
concave since it is kr_10wn ”ja‘ the perspeptwe of the conca%g then the derivative ohg’ﬁ (z) at z; is positive and equals
function Hs(z), that is, tf (%) fgr~t > 0is also concave. 1 oo e ofh8 (=) at 21. -
Therefore, each element comprisess(z) is concave.

It was shown in[[I2, Lemma 5] that a continuous con- ACKNOWLEDGMENT

catenation of concave functions is concave if the one-sided_l_h h Id like to thank the A iate Edit d
derivatives at the concatenation points are equal. Therefore, € authors would fike 1o thank the Assoclate tditor an

Ba_ﬁ(z) is concave if the following conditions are satisfied: the anonymous reviewers fqr their valuable and cqnstructwe
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hi(z1) = hy(21) (65) tation considerably.
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