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Abstract—This paper introduces the architecture of a convolu-
tional autoencoder (CAE) for the task of peak-to-average power
ratio (PAPR) reduction and waveform design, for orthogonal
frequency division multiplexing (OFDM) systems. The proposed
architecture integrates a PAPR reduction block and a non-
linear high power amplifier (HPA) model. We apply gradual loss
learning for multi-objective optimization. We analyse the model’s
performance by examining the bit error rate (BER), the PAPR

and the spectral response, and comparing them with common
PAPR reduction algorithms.

Index Terms—Autoencoder, convolutional neural network,
deep learning, OFDM, PAPR, wireless signal processing.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has

been adopted as a standard technology in various wireless

communication systems, such as WiFi, 4G and 5G standards

for wireless communications. Nonetheless, a major drawback

of the OFDM multi-carrier system is its tendency to produce

signals with high peak-to-average power ratio (PAPR) in the

time-domain, since many subcarrier components are added via

a fast Fourier transform (FFT) operation. The contribution of

each subcarrier to the total power is dynamic, which makes

the total power highly variant. These high PAPR signals

pass through a non-linear high power amplifier (HPA), which

is a major power-consuming analog component, resulting in

severe nonlinear signal distortions. Consequently, the resulting

signal exhibits spectral regrowth in the form of in-band signal

distortions and out-of-band radiation [1], and the bit error rate

(BER) increases.

The design of OFDM signals aims to simultaneously

achieve high data rate, high spectral efficiency (measured by

the adjacent channel power ratio - ACPR) and low computa-

tional complexity [2]–[5]. This design is highly affected by the

nonlinear effects of the HPA. While keeping the PAPR level

low is favorable, there are other design criteria that should be

taken into account. Specifically, it is of particular importance

to have acceptable signal spectral behavior and BER, which

are often referred to as waveform design. These criteria often

collide, and some trade-offs appear, thus lower PAPR levels

are achieved with higher BER.

Various OFDM PAPR reduction techniques have been pro-

posed in the literature [6], [7]. Generally, these techniques can

be categorized into model-driven and data-driven techniques.

The first category refers to standard approaches in classical

communications theory, while the second relies on recent

approaches based on machine learning techniques.

A. Classical Approaches (Model Driven)

PAPR reduction schemes are roughly classified into three

categories: The signal distortion category consists of tech-

niques such as clipping and filtering (CF) [8]–[11], which

limits the peak envelope of the input signal in the time domain

to a predetermined value. The multiple signaling probabilistic

category includes methods such as selective mapping (SLM)

[11], [12], partial transmit sequence (PTS) [6], [12], ton reser-

vation and ton injection [6], [7], [13], and constellation shaping

[14]–[16]. The main principle of SLM is to generate several

different candidates for each OFDM block by multiplying

the symbols vector with a set of different pseudo-random

sequences, and to choose the candidate with the lowest PAPR.

In the PTS scheme, input data are divided into smaller disjoint

sub-blocks, which are multiplied by rotating phase factors.

The sub-blocks are then added to form the OFDM symbol

for transmission. The objective of PTS is to design an optimal

phase factor for a sub-block set that minimizes the PAPR. The

coding technique category is presented in [6], [7], [17].

B. Deep Learning Based Schemes (Data Driven)

In recent years much research has been dedicated to

applying deep learning (DL) techniques for designing and

optimizing wireless communication networks, e.g. [2], [18]–

[20]. Several papers propose DL methods to handle PAPR

reduction. For example, the authors of [21], [22], added a

neural network (NN) to reduce the complexity of the active

constellation scheme, followed by CF. In [16], [23] the authors

present an autoencoder (AE) solution for PAPR reduction,

while minimizing the BER degradation. The authors in [24],

[25] proposed a deep NN combined with SLM to mitigate

the high PAPR issue of OFDM signal types. They use an

AE structure to represent the constellation mapping and de-

mapping of the transmitted symbols.

C. Main Contributions

Some of the aforementioned approaches suffer from in-band

interference, out-of-band distortions and high computational

complexity. In this paper we aim to handle the PAPR problem



as an integral part of a waveform design objective. In particu-

lar, we design a communication system, which simultaneously

achieves PAPR reduction, acceptable spectral behavior of the

PA’s output and good BER performance. Novelties we intro-

duce include using a CAE combined with a gradual loss learn-

ing technique to handle the multi-objective optimization of the

network, and adding the HPA effect to an integrated end-to-

end communication system. We demonstrate our algorithm’s

results on simulated data, and we compare them with classical

methods for PAPR reduction and waveform design, showing

competitive results for all three aforementioned objectives. The

proposed algorithm allows performance improvement of future

wireless communication systems.

II. PROBLEM DEFINITION

In an OFDM system with N complex orthogonal subcar-

riers, the discrete-time transmitted OFDM signal is given by

the inverse discrete Fourier transform (IDFT),

xn =
1√
N

N−1
∑

k=0

Xke
j 2πk

LN
kn, 0 ≤ n ≤ LN − 1, (1)

where {Xk}N−1

k=0
are random input symbols modulated by a

finite constellation, and L ≥ 1 is the over-sampling factor

(L = 1 is the Nyquist sampling rate). As shown in [6], [7],

oversampling by a factor of four results in a good approxima-

tion of the continuous-time PAPR of complex OFDM signals.

The PAPR of the transmitted signal in (1) is defined as the

ratio between the maximum peak power and the average power

of the OFDM signal, i.e.,

PAPR ,
max0≤n≤LN−1 |xn|2

E|xn|2
, (2)

where E [·] denotes the expectation operator.

As HPA non-linearity causes spectral regrowth, an important

assessment for the spectral purity of the system is the ACPR

criterion, which is the ratio between the power of the adjacent

channel and the power of the main channel, defined as [26]:

ACPR ,
max

(

∫

3BW/2

BW/2
Pss(f) df,

∫ BW/2

−3BW/2
Pss(f) df

)

∫ BW/2

−BW/2
Pss(f) df

,

(3)

where Pss(·) is the power spectral density (PSD) of the signal

at the HPA’s output, and BW is the main channel bandwidth,

which is assumed to be equal to the data signal bandwidth.

A block diagram of the communication system model is

shown in Fig. 1. Specifically, the encoder and filter blocks

mitigate the PAPR effect and design the waveform to comply

with predefined spectral mask requirements. For example, the

encoder block can model a clipping operation, while the filter

can be a standard band-pass filter (BPF). The filtered signal

xF
n is amplified by a non-linear PA. The amplified signal,

xP
n = G(xF

n), is transmitted through an additive white Gaus-

sian noise (AWGN) channel. The channel decoder receives the

noisy signal and tries to reconstruct the transmitted signal.

Finally, maximum likelihood (ML) is applied for detecting

the estimated symbol denoted by X̂k.
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Fig. 1: System model diagram.

The role of the HPA is to convert the low-level transmission

signal to a high power signal, capable of driving the antenna

at the desired power level. For achieving maximal power

efficiency, the HPA has to operate close to its saturation region.

If the HPA exceeds the saturation point and enters the non-

linear region of operation, the output signal becomes non-

linear. Accordingly, in order to operate the amplifier only in the

linear region, we need to make sure that the amplifier operates

at a power level that is lower than the saturation point, so that

even if the amplifier’s input signal increases, the HPA will

not enter the non-linear region. This is achieved by down-

scaling the input signal by an input back-off (IBO) factor.

The drawback of adding the IBO attenuation is that the output

power decreases, which makes the HPA power-inefficient.

There are several commonly used models for the non-

linearity of an HPA. Here, we will focus on the RAPP model

[27], which is very accurate for solid-state-power-amplifiers

(SSPA), and where only the amplitude is affected (AM/AM

conversion!!!). The model’s AM/AM conversion is given by

G(Ain) = v ·Ain ·
(

1 +

(

vAin

A0

)2p
)− 1

2p

, (4)

where Ain is the input amplitude, A0 is the limiting output

amplitude, v is the small signal gain, p is a smoothness

parameter controlling the transition from the linear region to

the saturation region, and G(A) is the output amplitude. Fig. 2

shows RAPP HPA outputs versus input for several smoothing

factor values.

III. PROPOSED WAVEFORM DESIGN STRUCTURE

In this section, we first briefly discuss the CAE general

concept. The proposed architecture in Fig. 3 is then elaborated,

including the Bussgang’s nonlinearity compensation, followed

by a description of the gradual learning process.

A. Convolutional Autoencoder (CAE)

The proposed implementation uses an AE learning system

based on a convolutional neural network (CNN). The general

structure of an AE consists of two main blocks: the encoder

f(x) and the decoder g(x), where x is the input data. The

AE is trained to minimize a certain joint loss function, which

we denote by L(x, g(f(x))). An end-to-end communication

system can be interpreted as an AE in which the encoder

and the decoder are part of the transmitter and the receiver
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Fig. 2: RAPP HPA output versus input signal for different

smoothness p values.

respectively, and they can be jointly optimized through an

end-to-end learning procedure. AEs have been applied in

recent years to various wireless communication tasks, such as

MIMO detection [28], channel coding [29] and blind channel

equalization [30].

CNNs are widely used for feature extraction and pattern

recognition in ML models. Compared with a fully connected

(FC) network, a CNN has significantly less connections be-

tween adjacent layers, thus less parameters and fewer weights

to train, resulting in lower complexity and much faster training.

B. Proposed CAE Architecture

We propose a CAE learning system, as depicted in Fig.

3, where the input data are the N subcarries {Xk}N−1

k=0
in

the frequency domain. Then the signal is zero-padded and

converted to the time domain by FFT, outputting {xn}LN−1

n=0
.

These symbols serve as input to the encoder, which acts as

a PAPR reduction block, followed by a filter for optimizing

the spectral behavior. Both the encoder and the decoder are

composed of two convolutional layers, each followed by a non-

linear activation function and batch normalization [31], and

then a fully connected layer. We have tested several activation

functions, including sigmoid, rectified linear unit (RELU),

Gaussian error linear unit (GELU), and scaled exponential

linear unit (SELU) [32]. Empirically, SELU activation provides

the best results for our CAE scheme. In addition, the encoder

has a power normalization layer [33], which insures that the

transmitted signal meets the power constraints.

In the transmitter, we use a BPF, whose frequency response

is a rectangular window with the same bandwidth as that of

Xk, for reducing the out-of-band radiation. Then, a predefined

IBO is applied, and the signal is amplified by the HPA. The

signal is then transmitted through an AWGN channel.

To overcome the nonlinearity of the HPA we compensate

the receiver input signal by applying an attenuation factor

represented by α. The Bussgang’s theorem [34] states that if a

zero-mean Gaussian signal passes through a memory-less non-

linear device, then the output-input cross correlation function

is proportional to the input autocovariance. Accordingly, the

value of α is chosen to minimize the variance of the nonlinear

signal distortions. It can be shown that

α =
E
(

xnx
P
n

)

E (|xn|2)
, (5)

where xP
n is the complex output signal of the PA, and xP

n is

its complex conjugate.

On the receiver side, FFT converts the signal to the fre-

quency domain, and the signal is divided by α to compensate

for the nonlinear distortions. The zero-unpadding block re-

moves the out of band samples, and finally the decoder of the

proposed CAE reconstructs the estimated signal.

C. Training of the CAE Network

We train a single CAE model for all tested SNR values.

We use AdamW optimizer [35] that runs back-propagation to

optimize the model during training. AdamW is designed such

that it improves gradients when using L2 regularization.

Our loss function is set to optimize three objectives: accurate

signal reconstruction (minimal BER), minimal PAPR and

minimal ACPR. These objectives are represented by three loss

components L1, L2 and L3, respectively. That is,

L(x, x̂) = L1(x, x̂) + λ2L2(x) + λ3L3(x), (6)

where λ2 and λ3 are hyper-parameters, which balance the

contribution of each loss component to the joint loss function.

The loss functions we use for optimizing signal reconstruc-

tion is the minimum square error (MSE) function with L2

regularization to reduce over-fitting. Denoting by x the input

sample (which is also the output target), x̂ as the estimated

signal, Θ as the model’s weights, and λ1 as a hyper-parameter

for tuning the L2 regularization, the loss function is given by

L1(x, x̂) = ‖x− x̂‖2
2
+ λ1 ‖Θ‖2

2
. (7)

For minimizing the PAPR, we calculate it according to the

BPF output, xF
n (cf. Fig. 3), so that

L2(x) = PAPR{xF
n}. (8)

The ACPR loss component is given by

L3(x) = ACPR{xP
n} − ACPRreq, (9)

where, xP
n is the PA’s output, and ACPRreq is the required

ACPR value, which is usually dictated by a standard. ACPRreq

was set according to LTE standard requirements for high

spectral purity: ACPRreq ≤ −45dB [26].

We have applied a gradual loss learning technique: In the

first stage, the loss functions consisted only of L1, so that

only the reconstruction loss was optimized. Then, after a

predetermined number of epochs, the loss function defined

in (6) was used to reduce the PAPR and improve the spectral

behavior.
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Fig. 3: Structure of the proposed conv-AE scheme.

IV. RESULTS AND INSIGHTS

We consider a SISO OFDM system with 72 subcarriers

and 4-QAM modulation. 4375 batches of 32 samples each

were used for training. An oversampling factor L = 4, and

smoothness factor p = 2 were used. The structure of the

proposed CAE for the above system is described in Table I.

We compare our CAE model to a CF algorithm with clipping

ratio of 1.58 dB, and to SLM with U = 128 phase sequences.

TABLE I: CAE Proposed Structure

Parameter value Kernel In-channel Out-channel

Transmitter

Input size 360

Conv (SELU) - 3 1 13

Conv (SELU) - 3 13 11

FC (Linear) size 360

Receiver

Input size 72

Conv (SELU) - 3 1 11

Conv (SELU) - 3 11 13

FC (Linear) size 72

General definitions

Conv padding 2

Learning rate 0.001

epochs num 160

Subcarriers number 72

λ2 0.004

λ3 0.001

A. BER Analysis

Peak Signal to Noise Ratio (P SNR) is defined as the ratio

between the maximal HPA power A0 and the noise power σ2

w,

such that

P SNR =
A2

0

σ2
w

. (10)

As shown in Fig. 4, the CAE has better BER vs. P SNR

performance compared to the other examined methods.
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Fig. 4: BER vs. P SNR for the considered methods

B. CCDF for PAPR Comparison

In order to evaluate the PAPR performance of different

methods, a complementary cumulative distribution function

(CCDF) curve is presented in Fig. 5. The CCDF of the

PAPR denotes the probability that the PAPR exceeds a certain

threshold, i.e. P(PAPR > PAPR0). As can be seen in Fig. 5,

the proposed CAE achieves better PAPR reduction compared

to the CF and SLM methods.

C. Spectrum Analysis

Fig. 6 compares the spectral performance in terms of PSD of

the transmitted signals for all examined methods. The dashed

rectangle shows perfect spectral behavior for a linear HPA

with no non-linear components. The proposed CAE decreases

the out-of-band distortions at the expense of lower transmitted

power efficiency. The transmitter’s output back-off (OBO),

which evaluates the power efficiency of the system, is defined

as the ratio between the maximal HPA output power A0, and

the mean transmitted power:

OBO =
A2

0

E (|xF
n|2)

. (11)
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Fig. 5: CCDF of PAPR for the considered methods
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Table II compares the ACPR and the OBO of the proposed

CAE to the other methods. As can be seen the ACPR value of

TABLE II: ACPR and OBO

Parameter CAE FC-AE CF SLM No-reduction

ACPR[dB] -28.24 -25.54 -29.3 -27.9 -26.28

OBO[dB] 2.5 1.58 3.34 3.5 3.7

the CAE is comparable with the considered methods. It should

be noted that for 4-QAM and 72 subcarriers, adding the ACPR

constraint showed only a little improvement. We expect it to

have a stronger influence for higher constellations and number

of subcarriers.

In Fig. 7 we further compare the OBO performance for

different ACPR values. It can be seen that the CAE system

has better power efficiency, while maintaining better BER

compared to the other methods.

D. Autoencoder - FC vs. CNN

We have investigated various NN types for the AE, in

particular, FC and CNN. Fig. 8 compares the BER performance

of two AE architectures: the proposed CAE, which contains

convolutional layers, and a fully connected autoencoder (FC-

AE), which contains only FC layers. It can be observed that
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Fig. 7: OBO vs. ACPR for the considered methods

the CAE network has better BER performance compared to

the FC-AE. As shown in Table II, the ACPR of the CAE is

better than that of the FC-AE. Moreover, the CAE has lower

complexity and thus faster training: The two convolutional

layers have a total of 468 parameters, while for FC layers

of sizes 2500 and 3500, as were used for the FC-AE in Fig.

8 and Table II, the number of parameters is around 107.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
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Fig. 8: BER vs. P SNR of FC-AE and CAE

E. Fixed vs. Gradual Loss Learning

For showing the benefits of using a gradual loss learning

procedure, Fig. 9 compares its BER performance to that of a

fixed-loss training procedure, where the loss function’s weights

are fixed for the entire training. It can be observed that the

gradual loss learning procedure significantly improves the

BER. In addition, improving the BER while keeping the PAPR

and spectral performance at the desired levels is easier to

control when applying the gradual loss learning method than

manipulating loss function weights in fixed-loss training.

V. CONCLUSIONS AND FUTURE WORK

In this study we have presented a CAE model for PAPR

reduction and waveform design in an OFDM system. We have

applied a gradual loss learning method to optimize the perfor-

mance of three objectives: low BER, low PAPR and adherence
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to ACPR spectral requirements. The proposed CAE was shown

to outperform the CF and the SLM algorithms. In future work

we plan to extend the model to a multiple-input-multiple-

output (MIMO) scenario with higher modulation schemes and

more complex channel models, aiming to achieve a functional

utility for future wireless communication networks.
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