
Moving Target Classification Based on
micro-Doppler Signatures Via Deep Learning

Yonatan D. Dadon∗, Shahaf Yamin∗, Stefan Feintuch∗, Haim H. Permuter†, Igal Bilik†, Joseph Taberkian†
School of ECE, Ben Gurion University of the Negev

∗. {dadonyon, yamins, stefanfe}@post.bgu.ac.il †. {haimp, bilik, joseph}@bgu.ac.il

Abstract—Radar-based classification of ground moving targets
relies on Doppler information. Therefore, the classification be-
tween humans and animals is a challenging task due to their
similar Doppler signatures. This work proposes a Deep Learning-
based approach for ground-moving radar targets classification.
The proposed algorithm learns the radar targets’ micro-Doppler
signatures in the 2D fast-time slow-time radar echoes domain.
This work shows that the convolutional neural network (CNN)
can achieve high classification performance. Also, it shows that
efficient data augmentation and regularization significantly im-
prove classification performance and reduce over-fit.

I. INTRODUCTION

Target classification is one of the major radar tasks in a
variety of military and security applications. Some of these
applications use electro-optical (EO) sensors, such as video
surveillance [1]. Radars have some significant benefits com-
pared to EO sensors in terms of immunity to severe weather
and poor lighting conditions, low cost, and robustness.

Classification between humans and animals is a challenging
task due to their Doppler similarity. However, they are non-
rigid bodies, and therefore, different motions of their parts
induce additional modulations to the radar echoes [2]. These
modulations, denoted as micro-Doppler, were proposed in the
literature for radar targets classification [3].

Object classification using feature extraction from grid-
like data by convolutional neural networks (CNNs) has been
extensively studied in the literature. [4], [5]. It was shown
that CNN, trained by visual data can outperform human
classification capabilities, under visual distortions [6], [5], [7]
[8].

Majority of widely used training data sets contain objects
that are characterised by visual features that are apparent for
human classifier MNIST [9], ImageNet [10], CIFAR-10 [11].
The main task of the CNN classifier trained with such a dataset
is to extract those distinguishing features.

Typically, radar “raw” data differs from these datasets
because it does not contain identifiable features. Thus, the
MAFAT radar dataset of moving humans and animals [12]
was characterized only by an operational radar frequency. The
radar measurements were collected from humans and animals
moving at a similar radial velocity toward the radar. Therefore,
their classification using only spectral data is challenging, even
for a human classifier. This work’s main idea is that the CNNs
can learn some of a data’s distinguishable characteristics using
sufficiently diverse training data.

This work leverages the CNNs capabilities to extract the
micro-Doppler signatures from the collected radar echoes to
classify between animals and humans. This work adopts some
ingredients from the computer-vision deep learning (DL) for
radar target classification: architectures, regularization meth-
ods to overcome the over-fitting phenomena, pre-processing
methods to emphasize the distinguishing Doppler features, and
data augmentations techniques to enrich the data’s diversity.

A wide variety of micro-Doppler based target classification
methods has been studied in the literature. Ref. [13] showed
that computer-vision methods such as the Gabor filter could
be used for micro-Doppler feature extraction. Ref. [14] used
machine learning approach and micro-Doppler phenomenon
to classify various human activities. These activities are dis-
tinguishable in Doppler and micro-Doppler signatures, con-
trary to the data used in this work. The CNN classification
performance was evaluated in [15] using different data rep-
resentations. It was shown that frequency-domain represen-
tation could provide a significant classification performance
improvement. The maximum-likelihood and majority-voting
classifiers were introduced in [3] for a similar classification
problem. High classification performance was demonstrated
using Gaussian mixture model (GMM). Ref. [16] showed that
data augmentation techniques combined with CNN could sig-
nificantly improve performance on an imbalanced radar echo
dataset. This dataset contains longer radar echo signals with
known physical characteristics, contrary to MAFAT dataset
[12].

This work investigates the impact of the CNN architec-
ture and data augmentation on the radar targets classifica-
tion performance. Efficient CNN training requires a broad,
diverse, and balanced training data set [17]. This work in-
vestigates the CNN classification performance as a function
of the training data set size and data diversity. The data
set in [12] is extremely imbalanced and small. Therefore,
straightforward DL methods are prone to over-fitting. This
work demonstrates that data augmentation can significantly
improve DL-based radar target classification. We show that
using the right configuration of known regularization methods
can further improve the model performance under the ROC-
AUC criteria [18]. Also, we review different depths and blocks
of the CNN architectures and their corresponding performance.
Furthermore, we demonstrate how effective computer-vision
methods can solve the problem above by achieving a single



Fig. 1. Pre-process flow.

model with high classification performance of maximal 0.95
and 0.94 on average under the ROC-AUC criteria over MAFAT
FULL PUBLIC test set [12]. All results included a hyper-
parameter optimization procedure, in which we investigated
the effect of each factor on the overall performance.

II. PROBLEM DEFINITION

The radar target classification problem is defined in this
Section. Conventionally, radars estimate the target’s velocity
from the Doppler phenomenon:

fd ≈ 2v · ft
c
. (1)

where, fd and ft are the Doppler and the carrier frequencies,
respectively, v is the target radial velocity, and c is the speed
of light.

Radar targets classification using Doppler frequency only
is impossible when targets have similar velocities. However,
the classification between non-rigid targets is possible by
exploiting micro-Doppler modulations on the central Doppler
shift, fd. Notice that conventionally, radars operate in the
presence of static but large radar clutter that can “mask”
slowing moving targets. Fig. 2 shows the Doppler, micro-
Doppler, and radar clutter components in the received radar
echo.

Fig. 2. Human example of a received radar echo.

Consider M received and sampled radar echoes in the time
domain. These signals are arranged in a segment matrix whose
horizontal axis represents the pulse transmission time (”slow
time”), and the vertical axis represents the signal samples

within each pulse (”fast time”). Let X ∈ C128x32 be the
complex IQ signal matrix in the time domain at the input of
the pre-processing, and let XF ∈ R128x32 represent a segment
at the output of the pre-processing. Let X̃ be an augmented

segment. xi is the i − th column of X: X =
[ | | ... |
x1 x2 x32

| | ... |

]
.

Y is the label of the segment X such that Y ∈ {0, 1}. In
this work, we denote the uniform distribution on a discrete set
S as Unif [S], the continuous uniform distribution is U [S],
and N (µ, σ2) is a Gaussian distribution with mean, µ, and
variance σ2, respectively.

Small movements of the object’s parts that differ from the
entire object locomotion (for example, the hand movement
during a run ) induce micro-Doppler signatures [19]. The
classification goal is to estimate a model fθ(X) with optimal
parameters θ∗. We denote the model’s output P θY |X(·|X) and
we aim to choose θ∗ such that P θ

∗

Y |X(·|X) will be equal to the
true conditional target distribution PY |X(·|X).

The performance of the proposed CNN-based classifier was
evaluated in this work using the receiver operating character-
istic (ROC)-AUC metric [18]. ROC-AUC is the true positive
rate (TPR) as a function of the False Positive Rate (FPR) at
various decision thresholds. ROC-AUC denotes the area under
the curve, and our goal is to maximize it, i.e., achieve ROC-
AUC that is as close as possible to 1.

III. PRE-PROCESSING

The radar data set contains complex baseband segments
in the time domain. Fig. 1 shows the pre-processing of the
segment X , transformed to the frequency domain at the
processing chain’s output. Ref. [15] showed the superiority
of the training process in the spectrum domain.

The pre-processing can be formalized as follows:
• STFT: xFi (k) = STFT [xi[n]] with Hanning window

function.
• FFT Shift: xFi (k)←− xFi

[
((k − N

2 ))N
]
.

• Absolute + Logarithm: XF ←− log
(
|XF |

)
.

• Normalize: XF ←− XF−mean(XF )
std(XF )

.

Then, XF [i][j]←− max(XF [i][j],median(XF )− 1)

The last normalization operation clips the noise floor to a
single value per segment, equal to median(XF ) − 1). This
operation emphasizes the difference between the object’s valu-
able information and the noise.

IV. PROPOSED SOLUTION

Recently, efficiency of the CNN in image-like data classifi-
cation was shown in [5], [7], [8]. Therefore, this work adopts



Fig. 3. 2-Layer CNN Architecture.

the CNN architecture for radar targets classification. Fig. 3
shows the proposed model architecture that consists of several
DL building blocks: CNN layers, ReLu activation functions,
Max Pooling, fully connected network, regularization tech-
niques to reduce over-fitting: Dropout and L2 regularization,
and learning rate scheduling. Over-fitting occurs when a model
adapts too closely to the particular training data while losing
its generalization ability. This work adopts regularization, data
augmentation, and balancing methods to minimize the over-
fitting.

A. CNN Architecture

The output from a convolutional layer is a 2D grid, where
each grid element has a corresponding number of channels
as the number of filters in the layer. The output is obtained
by ”sliding” each filter over the layer’s input and passing it
through a non-linear activation function. Following the ReLu
success in image processing [20], this work selected it for the
hidden layers activation function.

A Flatten layer follows the convolutional layers. This layer
reshapes the multidimensional 2D output into a 1D vector. We
chose this vectorization instead of global pooling to empower
the network to learn complex connections between the features
extracted by the CNN. This vector is passed to a Dropout
layer and then to a fully-connected NN with ReLu activation
functions [4]. In order to represent the probability function,
the activation function of the output layer is sigmoid.

Dropout [21] is a regularization technique of randomly
dropping units during training in order to prevent them from
co-adapting. Our architecture contains the Dropout right after
the Flatten layer. The motivation for this Dropout position is
that the following layer is dense with 97.5% of the network’s
trainable parameters.

B. Training

The criteria used for the evaluation of our model per-
formance is the ROC-AUC. However, ROC-AUC is not a

differentiable function, and therefore, can not be a loss-
function for the network’s learning. We selected the Log-
Loss function, also denoted as the Binary-Cross Entropy:
Lθ(X,Y ) = −(Y log(f(X; θ)) + (1− Y ) log(1− f(X; θ))).

The Binary-Cross Entropy loss contains the L2 Regular-
ization term [22], which is commonly used to penalize large
weights and biases by addition of a quadratic penalty term to
the loss function. The Adam optimizer, an extension of the
stochastic gradient descent that considers lower-order gradient
moments estimation, was selected for weights adaptation [23].

The learning rate scheduling was used to prevent the
model’s weights from over-fitting. The learning rate is multi-
plied by 0.1 when the train set ROC-AUC exceeds the value of
0.99 (over-fitting phenomenon). The learning rate scheduling
also contributes to the model’s convergence since a lower
learning rate localizes the optimizer to a particular area in
the weight space.

Randomness is a conventional method to prevent the gra-
dient descent algorithm from a convergence into a local
minimum. After each epoch, the entire dataset is shuffled
and randomly split into mini-batches. Data augmentation also
contains some randomization V.

V. DATA AUGMENTATION

Data augmentation is conventionally used in DL network to
prevent over-fitting. In addition, it introduces randomness into
the dataset and contributes to its balancing. Data augmentation
is mandatory in cases where only a small training data set is
available. In these cases, CNN tends to over-fit to the available
small data set and does not generalize to the unseen data.

This section summarises the data augmentation techniques
that were evaluated for the addressed radar-based target clas-
sification problem. Some data augmentation methods, such
as random frequency shift (RFS), were performed in the
original time-domain. Others, such as flipping, noising, and
random time shift (RTS), were performed at the pre-processing
output, i.e., in the image domain. The following details all the



evaluated data augmentation methods, ordered according to
their efficiency, from the most efficient to the least efficient.

Fig. 4. Data augmentation examples.

1) Random Frequency Shift - RFS: This technique
changes the image for each of the 32 sampled signals. i.e.,
each segment (in the time-domain, before any processing) is
being transformed in the following way:

X̃[n][m] = X[n][m]ej
2παmn
N , (2)

n ∈ [0, 127], m ∈ [0, 31], n,m ∈ N.

where αm ∼ N (0, σ2) is the random shift, n and m are
the fast and slow axis indices, respectively. This augmentation
results in a random shift of αm bins in the signal’s spectral
representation. If αm is an integer, then each sampled signal
at the IQ segment is cyclically shifted. If αm is not an
integer, then the original signal is interpolated in the frequency
domain. The kinematic motivation behind this augmentation
is to impose minor fluctuations to the image’s original micro-
Doppler patterns.

2) Random Time Shift - RTS: This augmentation performs
a cyclic shift on the horizontal axis in the image domain:

X̃F [n][m] = XF [n][((m− α))32] , (3)
n ∈ [0, 127], m ∈ [0, 31], n,m ∈ N.

where α ∼ Unif [S], S = {−L, ..., L} \ {0}, L ∈ N+ and
((·))32 is the 32 modulo operation.

3) Noising: This data augmentation adding a small random
changes to the noised signal in the image domain:

X̃[n][m] = X[n][m] + v, v ∼ N c(0, σ2), (4)
n ∈ [0, 127], m ∈ [0, 31], n,m ∈ N.

4) Flipping: Two flipping types were considered: vertical
and horizontal. This augmentation takes a segment in the
image domain and flips it vertically / horizontally. Intuitively,
the vertical flip changes the target velocity direction, and
the horizontal flip changes the target motion direction. Both
augmentations are trivial since they do not affect the micro-
Doppler signatures, and they provide only a factor 4 effect on
the augmented dataset size.

VI. TARGET CLASSIFICATION RESULTS

This section summarises the impact of data augmentation
and model architecture on CNN learning and shows the

classification performance in terms of AUC1. All algorithms,
data processing, and metric evaluation were implemented with
TensorFlow2 [24] library. The used hardware is NVIDIA 1080
Ti.

A. Testbench Dataset

The MAFAT data set [12] published in 2020 contains radar
echo signal recordings of both humans and animals labeled
objects at different operational environments. Each record
contains a complex raw radar signal with its corresponding
label, geographic location, signal to noise ratio (SNR) type,
track ID, sensor type, etc. The data’s physical characteristics,
such as sampling frequency, carrier frequency, baseband band-
width, etc., are unknown. The data set contains four different
data groups: 1) train, 2) experiment, 3) synthetic, and 4)
background 2.

Only the train data set contains the real-world recorded radar
echoes thus, has the best data quality. Unfortunately, the train
set is heavily imbalanced in terms of both target types and
SNR levels. Therefore, a data balancing method is needed to
prevent trained model bias [17].

The goal is to provide the maximum possible diversity in the
dataset. Therefore, the dataset was stabilized by merging all
segments from the training dataset with the synthetic dataset
in a way that ensures the minimal number of segments from
the same track. The provided test set does not have any mutual
track recording with the train, experiment, and synthetic data
sets. Therefore, this “Full Public” data set was used for the
performance evaluation.

B. Data Augmentation Impact on Performance

TABLE I
DATA AUGMENTATION ABLATION TEST

Augmentation method ROC-AUC score
None 0.8862

Vertical Flip 0.9108
Horiz Flip 0.9075

RTS 0.9255
RFS 0.9270

Noising 0.9183

The influence of different model-based data augmentation
techniques over a 2-layer CNN model in Fig. 3 was evaluated.
Table I shows the ROC-AUC for each evaluated data aug-
mentation technique. The results were obtained by averaging
the score over several independent training phases. ”None”
refers to an experiment in which only 15K target balanced
samples were used for training without data augmentation.
Table I shows that the random frequency shift augmentation
outperformed the other techniques.

1The implemented models, experiments, and augmentations can be found
at https://github.com/Shahaf-Yamin/Radar-Moving-Target-Classification-Via-
CNN

2Further details can be found in [12]



C. Train Data Expansion

Table II shows the balanced-augmented train dataset size’s
influence on the ROC-AUC score, compared to duplicated
dataset performance. The original unbalanced train set size
was 6.5K, and the balanced train set size was 15K. Note that
dataset balancing improves ROC-AUC score by 0.2.

Data augmentation facilitates the model effort to generalize
to unseen data. However, expanding the data with too many
augmentations might degrade the performance. This degrada-
tion can be explained by the fact that too much augmentation
from the same kind may lead the model to ”memorize” specific
samples. Table II shows that training with 400K slightly
outperforms the 815K.

TABLE II
ROC-AUC PERFORMANCE AS A FUNCTION OF

BALANCED-AUGMENTED/DUPLICATED DATA SIZE

Size
(K)

6.5 15 45 90 135 225 310 400 540 815

Bal.
+

Aug.

0.69 0.88 0.91 0.92 0.91 0.93 0.92 0.94 0.93 0.93

Dup. 0.69 0.69 0.74 0.71 0.69 0.72 0.71 0.73 0.77 0.75

D. CNN Depth

Fig. 5 shows the evaluation of several CNN architectures
with various depths and layer sizes. The 2-layer CNN model
outperformed all others, both in terms of ROC-AUC criteria
and in over-fitting. Notice the over-fitting phenomenon in Fig.
5 at the 8-layer model. Although regularization techniques can
reduce the larger network’s over-fitting, good performance is
also achievable with lower complexity CNN.

Fig. 5. ROC-AUC as a function of CNN layers.

E. Regularization Methods

The regularization methods and learning rate scheduling
impact on the 2-layer CNN model’s performance is evaluated.

Fig. 6 shows the influence of these methods on over-fitting
and Table III summarizes the final ROC-AUC results. Note
that for the 2-layer CNN model without augmentation, the
gap between validation loss and train loss increases over
epochs and creates the over-fitting “fork”. This trend means
that the model learns to approximate the train set distribution
while diverging from the evaluation set distribution. Moreover,
inserting L2 regularization significantly reduces over-fitting.

Notice the learning rate scheduling impact without and with
scheduling in green and yellow dashed lines, respectively. Both
behave similarly until the point where the green line splits to
create the over-fitting “fork”.

Interestingly, the dropout after the Flatten layer reduces the
over-fit even more since most of the network’s weights are
located in the dropout location (the reduced gap between the
validation and train Loss).

Fig. 6. Regularization methods influence on Loss.

TABLE III
ROC-AUC OF REGULARIZATION METHODS

L2,
Schedul-

ing,
Dropout

L2,
Scheduling

L2 No Regu-
larization

ROC-AUC 0.9381 0.9362 0.9264 0.9070

VII. CONCLUSIONS

This work proposed the CNN-based approach for the radar-
based classification of humans and animals using micro-
Doppler signatures. Several model-based data augmentation
techniques were analyzed. The importance of the data balanc-
ing and data augmentation on the classification performance in
the low-quality data scenarios was demonstrated. The impor-
tance of regularization techniques for over-fitting minimization
was also demonstrated for relatively low-complexity networks
with an augmented dataset.
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