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Abstract

A parametric model and a corresponding parameter estimation algorithm for un-

wrapping two-dimensional phase functions, are presented. The proposed algorithm

performs global analysis of the observed signal. Since this analysis is based on para-

metric model �tting, the proposed phase unwrapping algorithm has low sensitivity

to phase aliasing due to low sampling rates and noise, as well as to local errors.

In its �rst step the algorithm �ts a 2-D polynomial model to the observed phase.

The estimated phase is then used as a reference information which directs the ac-

tual phase unwrapping process: The phase of each sample of the observed �eld is

unwrapped by increasing (decreasing) it by the multiple of 2� which is the nearest

to the di�erence between the principle value of the phase and the estimated phase

value at this coordinate. In practical applications the entire phase function cannot

be approximated by a single 2-D polynomial model. Hence the observed �eld is

segmented, and each segment is �t with its own model. Once the phase model of

the observed �eld has been estimated we can repeat the model-based unwrapping

procedure described earlier for the case of a single segment and a single model �eld.

This work was partially supported by the United States Army Research O�ce under Contract DAAL03-91-

C-0022, sponsored by U.S. Army Communications Electronics Command, Center for Signals Warfare.
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1 Introduction

An important problem in many two-dimensional signal processing applications is the unwrap-

ping of two-dimensional (2-D) phase functions in order to remove existing phase ambiguities.

For example, in Interferometric Synthetic Aperture Radar (INSAR) applications, the phase of

the observed 2-D signal is a function of the scatterer coordinates. This function measures the

elevation of the scattering point on the ground. Hence, ground elevations and terrain maps can

be produced from the INSAR data, [3] { [6]. A critical consideration in producing the 3-D ter-

rain maps is the need to perform 2-D phase unwrapping of the observed signal phase to enable

a meaningful interpretation of the data. Ideally, in the absence of noise and phase aliasing, one

could unwrap the phase information by following an integration path and adding multiples of 2�

to the phase whenever a sudden drop from � to �� occurs. To ensure that no phase-aliasing oc-

curs, the original scene must be properly sampled, so that phase di�erences between two adjacent

samples are smaller than � radians. This requirement cannot be generally satis�ed, and hence

in the presence of noise and phase aliasing, this simple phase unwrapping method is inadequate.

Many 2-D phase unwrapping techniques involve local analysis of the phase image by means

of sequential processing of the di�erences between adjacent pixels, [7], or by employing edge

detection techniques, [4] [5]. The edges, also called fringe lines, represent phase jumps of 2�

radians. The idea behind edge detection based techniques is to �nd the location of the fringe

lines, and then to unwrap the phase by adding a multiple of 2� each time the integration path

crosses a fringe line. Since in general the phase image is noisy, it has to be �rst �ltered to reduce

the noise level. Next, the edges (obtained by some edge detection algorithm) have to be linked by

an edge linking algorithm, or by using some interpolation method, to provide an estimate of the

fringe line [5]. However, due to the presence of the noise, and since fringe lines can become dense

in some areas, it may become very di�cult to track the fringe lines. If phase aliasing occurs, the

algorithm must identify and avoid crossing \ghost lines" in the integration path [7]. (The \ghost

lines" are those segments of the phase discontinuity contour lines in the principal phase image,

which are made invisible due to phase-aliasing). If the integration path of the phase di�erences

crosses a ghost line, a phase error of 2� is propagated from the crossing point ahead, along the

integration path. Hence, the goodness of the estimate of the ghost line positions becomes critical

in the 2-D phase unwrapping procedure. To the best of our knowledge, this problem does not

have a satisfactory solution. Thus, the major problem with this family of algorithms is that they

are all based on local phase properties, and on �nding integration paths in order to perform the

phase unwrapping. Since in such schemes local errors result in global errors, their usefulness in

the presence of noise is limited.

An alternative method for 2-D phase unwrapping, which is not based on any integration path
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following, is to obtain a least squares estimate of the true phase by minimizing the di�erences

between the �rst-order discrete partial derivatives of the wrapped phase function, and those of

the unknown unwrapped solution function [8], [9]. It has been shown that this least squares

solution is equivalent to the solution of Poisson's equation on a rectangular grid with Neumann

boundary conditions [9]. The algorithms are implemented by using the fast cosine transform,

or the fast Fourier transform [10]. Recently, [11], has proposed a two stage phase unwrapping

procedure such that in the �rst stage the gradient of the wrapped phase function is estimated

from the observed data. In the second stage the estimated phase gradients are employed to

estimate the unwrapped phase through minimization of the mean squared error between the

gradient of the unwrapped phase and the gradient estimated from the observed data. Similarly

to the foregoing algorithms, the proposed solution is equivalent to solving a partial di�erential

equation with Neumann boundary conditions. Hence, any error in estimating the phase gradient

at the boundaries (for example, due to noise), would in
uence the results of the entire phase

unwrapping procedure.

In this paper we propose to use a parametric model as an alternative to the foregoing methods.

Since continuous functions can be approximated by polynomials, a natural choice for modeling

any continuous 2-D phase function is a 2-D polynomial of the coordinates. Since the assump-

tion of phase smoothness is implicit to our model, no explicit phase unwrapping is required in

estimating the observed phase. Moreover, the proposed algorithm performs global analysis of

the observed signal and hence no integration path following is needed. Since the global analysis

of the signal is based on parametric model �tting, the proposed phase unwrapping algorithm

has low sensitivity to phase aliasing due to low sampling rates and noise, as well as to local

errors. Hence, the proposed algorithm has the potential of alleviating the problems of existing

algorithms.

More speci�cally, in the absence of observation noise, the phase of the 2-D signal is assumed

to be a 2-D polynomial function of the coordinates. In the special case of a �rst order polynomial,

this reduces to a homogeneous model { a 2-D sinusoid. When the polynomial order is higher,

the model is no longer homogeneous: the spatial frequencies are now a function of location.

The proposed 2-D phase unwrapping algorithm is based on the Phase Di�erencing (PD)

Algorithm [1], [2]. Given the observed 2-D signal, the PD algorithm provides estimates of all

the phase parameters. Since the PD algorithm was found to be quite robust in the presence of

observation noise, the initial step of the phase unwrapping algorithm is to �t a 2-D polynomial

model to the observed phase.

We note that the algorithm attempts to �t a 2-D polynomial phase model to the data itself,

and is not at all concerned with the wrapped phase image as some of the phase unwrapping
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techniques described earlier. Since the model inherently assumes the phase to be a smooth

function of the coordinates, it is not concerned with the 2� ambiguities of the phase function.

In this method the phase parameters can be estimated even for relatively low SNR scenarios, in

which the local edge detection based algorithms are ine�ective.

The estimated phase function is smooth due to the assumed model. This property enables the

derivation of a relatively simple unwrapping step which operates on each sample of the observed

�eld. The estimated phase is used as a reference information which directs the actual phase

unwrapping process: The phase of each sample of the observed �eld is unwrapped by increasing

(decreasing) it by the multiple of 2� which is the nearest to the di�erence between the principle

value of the phase and the estimated phase value at this coordinate.

The paper is organized as follows. In section 2 we describe the parametric model of the

observed signal, the 2-D phase di�erence operator, and the parameter estimation algorithm

which is based on the 2-D phase di�erence operator. In section 3 we present the basic phase

unwrapping algorithm assuming that the entire phase function obeys a single 2-D polynomial

model. This assumption does not generally hold in practice. Hence, in section 4 we extend the

basic algorithm so that it can be applied to any continuous phase function. This is accomplished

by segmenting the observed �eld, and �tting a model to each segment. The segment size must

be chosen so that the phase function is su�ciently smooth, and hence can be �t with a 2-D

polynomial. Once the phase model of the observed �eld has been estimated, we repeat the

model-based unwrapping procedure we have developed in section 3. In section 5 we summarize

our results.

2 The Phase Di�erencing Algorithm

In this section we de�ne the phase di�erence operator and summarize the main results of [1]

and [2]. These results led to the development of the Phase Di�erencing Algorithm which is also

described later in this section. We start with a description of the type of signal for which the

operator was designed.

2.1 The Signal Model

Let fy(n;m)g be a discrete complex valued 2-D random �eld consisting of the sum of a random

amplitude deterministic phase signal, and an additive white Gaussian noise. We further assume

that the signal phase is a smooth enough function of the �eld coordinates so that it can be

approximated by a 2-D polynomial function of these coordinates. The amplitude function is a
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sum of a real valued mean and a real valued homogeneous random �eld. More speci�cally

y(n;m) = v(n;m) + u(n;m) ; n = 0; 1; : : : ; N � 1 ;m = 0; 1; : : : ;M � 1 ; (1)

where

v(n;m) = A

�
1 + z(n;m)

�
expfj�S+1(n;m)g ; (2)

�S+1(n;m) =
X

f0�k;`:0�k+`�S+1g

c(k; `)nkm` : (3)

We shall call �S+1(n;m) 2-D polynomial of total-degree S+1. For example, using this terminology

we say that a constant valued �eld is a 2-D polynomial phase signal of total-degree 0, and a 2-D

exponential signal is a 2-D polynomial phase signal of total-degree 1. In other words, one might

think of the phase polynomial �S(n;m), as if it has S `layers' since increasing S by one adds a

`layer' of additional S + 2 parameters to the phase model.

The amplitude A is a real valued positive constant. Since in many physical systems the

observed signal amplitude is subject to a real valued multiplicative noise, we model it by A
�
1 +

z(n;m)
�
, where z(n;m) is a real valued, zero mean, noise �eld. The additive observation noise

u(n;m), is assumed to be complex valued, zero mean white Gaussian noise. (Note that the scaling

coe�cients associated with horizontal and vertical sampling, are absorbed into the coe�cients

c(k; `)).

To simplify the presentation we start with the case in which there is no observation noise and

A � 1. Hence, y(n;m) = v(n;m) = expfj�S+1(n;m)g.

2.2 The PDn and PDm Operators

Next we de�ne the basic phase di�erencing operators.

De�nition 1: Let �m and �n be some positive constants. De�ne

PDm(0)[v(n;m)]
�
= v(n;m) ; n = 0; 1; : : : ; N � 1 ;m = 0; 1; : : : ;M � 1 ; (4)

PDm(1) [v(n;m)]
�
= v(n;m)v(n;m+ �m)

� ; (5)

where the resulting 2-D signal PDm(1) [v(n;m)] exists for n = 0; 1; : : : ; N � 1 ;m = 0; 1; : : : ;M �

1� �m. In the following we keep the same type of notation to indicate the indices for which the

left hand-side of the equation exists.
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In general we have

PDm(q)[v(n;m)]
�
= PDm(q�1)[v(n;m)]

�
PDm(q�1) [v(n;m+ �m)]

��
;

n = 0; 1; : : : ; N � 1 ;m = 0; 1; : : : ;M � 1� q�m : (6)

Similarly

PDn(0)[v(n;m)]
�
= v(n;m) ; n = 0; 1; : : : ; N � 1 ;m = 0; 1; : : : ;M � 1 ; (7)

PDn(1)[v(n;m)]
�
= v(n;m)v(n+ �n;m)� ;

n = 0; 1; : : : ; N � 1 � �n ;m = 0; 1; : : : ;M � 1 ; (8)

and

PDn(p)[v(n;m)]
�
= PDn(p�1)[v(n;m)]

�
PDn(p�1) [v(n+ �n;m)]

��
;

n = 0; 1; : : : ; N � 1� p�n ;m = 0; 1; : : : ;M � 1 : (9)

Note that applying any of the operators PDm(1)[�], or PDn(1) [�] to a 2-D polynomial phase

signal of total-degree S, results in a 2-D polynomial phase signal of total-degree S � 1.

Assume we have sequentially applied the phase di�erence operator PDn(1) P times, and the

phase di�erence operator PDm(1) S�P times, to some complex-valued 2-D signal v(n;m). Then,

the resulting signal which we denote by PDn(P );m(S�P ) [v(n;m)] is given by, [2],

PDn(P );m(S�P ) [v(n;m)] =
S�PY
q=0

(
PY
p=0

�
v(�

(p+q))(n + p�n;m+ q�m)
�(Pp))(S�Pq )

; (10)

where we de�ne

v(�
(p+q))(n+ p�n;m+ q�m) =

(
v(n+ p�n;m+ q�m); p + q even

v�(n+ p�n;m+ q�m); p + q odd
: (11)

Theorem 1: Applying the operator PDn(P );m(S�P ) [�] to the 2-D signal

v(n;m) = expfj
X
k;`2I

c(k; `)nkm`g ; n = 0; 1; : : : ; N � 1 ;m = 0; 1; : : : ;M � 1 ; (12)

6



where I = f0 � k; ` and 0 � k + ` � S + 1g, results in a 2-D exponential which is given by

PDn(P );m(S�P ) [v(n;m)] = exp
�
j[!Sn+ �Sm+ 
S(�n; �m)]

�
;

n = 0; 1; : : : ; N � 1� P�n ;m = 0; 1; : : : ;M � 1� (S � P )�m ; (13)

and

!S = (�1)Sc(P + 1; S � P )(P + 1)!(S � P )!�Pn �
S�P
m ; (14)

�S = (�1)Sc(P; S + 1 � P )P !(S + 1 � P )!�Pn �
S�P
m ; (15)

and 
S(�n; �m) is not a function of m nor n.

Theorem 1 implies that applying in some arbitrary sequence, P times the operator PDn(1),

and S�P times the operator PDm(1) , to the observed signal (12), the resulting signal is the 2-D

exponential PDn(P );m(S�P )[v(n;m)] = exp
�
j[!Sn+�Sm+
S(�n; �m)]

�
where !S and �S are given

by (14) and (15), respectively. We can thus reduce any 2-D non homogeneous, polynomial phase

signal, v(n;m), whose phase is of total-degree S+1, to a 2-D single tone signal whose frequency

is (!S ; �S).

Hence, estimating (!S ; �S) using any standard frequency estimation technique, results in an

estimate of c(P + 1; S � P ), and c(P; S + 1 � P ). In this paper we estimate the frequency of

the exponential using a search for the maximum of the absolute value of the signal 2-D Discrete

Fourier Transform (2-D DFT). More speci�cally, having estimated !S and �S in (14) and (15),

we have

ĉ(P + 1; S � P ) =
!̂S

(�1)S(P + 1)!(S � P )!�Pn �
S�P
m

; (16)

and

ĉ(P; S + 1 � P ) =
�̂S

(�1)SP !(S + 1� P )!�Pn �
S�P
m

; (17)

which constitutes an estimate of two of the parameters of the highest order `layer', S + 1, of the

phase model parameters (i.e., those c(k; `)'s for which 0 � k; ` and k + ` = S + 1).

Recall however that the highest order `layer', S+1, of the phase model parameters has S+2

parameters, which need to be estimated. This can be achieved by repeating the procedure which

was described above assuming some arbitrary P , for all P such that 0 � P � S. Note that this

procedure results in repeated estimation of some of the phase parameters.

Multiplying v(n;m) by expf�j
PS+1

k=0 ĉ(k; S + 1 � k)mS+1�knkg results in a new polynomial

phase signal whose total-degree is S. By applying to the resulting signal a procedure similar to

the one used to estimate the parameters c(k; `) for k + ` = S + 1, we obtain an estimate of the

S + 1 parameters in the S `layer'. Multiplying the 2-D polynomial phase signal of total-degree
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S, which was obtained in the previous step by expf�j
PS

k=0 ĉ(k; S�k)m
S�knkg we obtain a new

polynomial phase signal whose total-degree is S � 1.

Let v(s+1)(n;m) denote the 2-D signal, where s + 1 denotes the current total-degree of its

phase polynomial. By repeating for all s = S; : : : ; 0, the two basic steps of estimating the c(k; `)

parameters of `layer' s+1 through �nding the maxima of
����DFT

�
PDn(P ) ;m(s�P )[v(s+1)(n;m)]

�����, for
all 0 � P � s, followed by multiplying the already reduced order 2-D polynomial phase signal

by expf�j
Ps+1

k=0 ĉ(k; s+ 1� k)ms+1�knkg in the next step, we obtain estimates for all the phase

parameters except c(0; 0). The resulting signal after this processing, v(0)(n;m), is a constant

phase 2-D signal. Taking now the average of the imaginary part of the logarithm of this signal

we obtain an estimate for c(0; 0). We have thus completed the estimation of all the coe�cients

of the 2-D phase polynomial of total-degree S + 1.

Once the phase parameters were estimated, the amplitude of the polynomial phase signal is

obtained by multiplying the original signal by e�j�̂(n;m), where �̂(n;m) is the estimated phase.

Ideally, the resulting 2-D signal is constant with amplitude A. The algorithm which is based on

the foregoing results is summarized in Table 1. In the following we refer to the algorithm as the

Phase Di�erencing Algorithm (PD Algorithm).

So far we described the parameter estimation algorithm for the case in which no observation

noise exists. However, in many practical situations the signal is observed in the presence additive

and multiplicative noise, i.e., the observed �eld is fy(n;m)g as given by (1), (2), (3). Thus, a

straightforward but computationally prohibitive alternative to the PD Algorithm is to develop

a maximum likelihood estimator for the polynomial phase parameters. This estimator involves

a multi-dimensional search in the parameter space and is not practical except for very low order

models.
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Let S + 1 denote the total-degree of the observed signal phase.

s = S; v(s+1)(n;m) = v(n;m); n = 0; : : : ; N � 1; m = 0; : : : ;M � 1.

While s � 0 ( s + 1 is the `layer' index)

for P = 0; : : : ; s ( �nd all the parameters of the s+ 1 `layer' )

x(n;m) = PDn(P );m(s�P )[v(s+1)(n;m)]

(!̂s; �̂s) = argmax
(!;�)

����DFT
�
x(n;m)

�����
ĉ(P + 1; s � P ) = !̂s

(�1)s(P+1)!(s�P )!�Pn �
s�P
m

ĉ(P; s + 1� P ) = �̂s

(�1)sP !(s+1�P )!�Pn �
s�P
m

end

v(s)(n;m) = v(s+1)(n;m) expf�j
P
fk+`=s+1g ĉ(k; `)n

km`g

s=s-1

end

c(0; 0) = 1
NM

PN�1
n=0

PM�1
m=0 Imflog(v

(0)(n;m))g

Table 1: The Phase Di�erencing Algorithm.

In [2] we have derived the Cramer-Rao lower bound on the error variance in estimating the

phase model parameters when the signal is observed in the presence of additive white Gaussian

noise. More speci�cally, let � denote the observations log likelihood function and let SNR = A2

�2

denote the signal-to-noise ratio where �2 is the observation noise variance. In [2] we conclude

that the elements of Fisher Information Matrix (FIM) block which corresponds to the phase

parameters are given by

�E
�

@2�

@c(k; `)@c(p; q)

�
= 2 SNR

N�1X
n=0

nk+p
M�1X
m=0

m`+q ; (18)

and that the FIM is block diagonal. Hence the CRB's on the estimation of the phase parameters,

the amplitude parameter, and the observation noise variance are decoupled. From the decoupling

of the bounds and (18) we conclude that the bound on the phase parameters is a function only

of the total-degree of the 2-D polynomial phase function, the SNR, and the dimensions of the

observed �eld, but is independent of the phase parameters.

It turns out that although the PD algorithm is suboptimal (relative to the ML algorithm),
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its performance is close to the CRB for moderate to high signal to noise ratios. In [12] we

have further studied the performance of the PD Algorithm in the presence of additive white

Gaussian noise. In particular, we have concentrated on deriving expressions for the bias and

the mean squared error in estimating the coe�cients c(k; `) of the S + 1 layer of a constant

amplitude polynomial phase signal with total-degree S + 1 (i.e. the coe�cients c(k; `) such that

k + ` = S + 1) in the presence of additive circular white Gaussian noise. We show that the

estimates are unbiased for any SNR, and derive a rule for optimal selection of the algorithm

parameters. It is shown that a nearly optimal choice of the algorithm free parameters �n and �m

is to set �n =
N

P+1
and �m = M

S�P+1
. This parameter setting essentially guarantees that the mean

squared error (MSE) in estimating the phase model parameters is minimized. For example, for

the case in which N >> P we obtain

Ef[�c(P + 1; S � P )]2g �
6 C(P; S;SNR)�

(P + 1)!(S � P )!
�2�

N
P+1

�2P+3�
M

S�P+1

�2S�2P+1 (19)

where C(P; S;SNR) is a function of P , S, and the SNR only.

3 2-D Phase Unwrapping

The proposed 2-D phase unwrapping algorithm is based on the PD Algorithm. Since the PD

Algorithm was found to be quite robust in the presence of observation noise and phase aliasing,

the initial step of the phase unwrapping algorithm is to �t a 2-D polynomial model to the

observed phase. Note that the algorithm �ts a 2-D polynomial phase model to the data itself,

and is not concerned with the wrapped phase image, as some of the existing phase unwrapping

techniques described earlier. Since the model is inherently smooth, the algorithm is not concerned

with the 2� ambiguities of the phase function. Furthermore, while existing phase unwrapping

algorithms are severely a�ected by insu�cient spatial sampling (with respect to the instantaneous

frequency), and noise, e.g., [11], the proposed phase unwrapping algorithm is highly robust in

the presence of phase aliasing due to both low sampling rates and noise, as long as the true phase

function is a continuous function of the coordinates. This robustness is achieved by the initial

�tting of a parametric model to the phase of the observed signal.

In order to further illustrate this point consider the 2-D signal y(n;m), whose true phase

function is shown in Figure 1. Note the very low sampling rate of this phase function (the

phase-axis of this �gure is measured in radians, and the dimensions of the sampling grid are

100 � 100). The wrapped phase function of the observed signal as well as the wrapped phase

image are shown in Figure 2. The signal has an amplitude A = 1, the noise �eld fz(n;m)g is a
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Figure 3: The 2-D polynomial phase signal after applying the operator PDn(0);m(1) to
the observed signal of total-degree 2. (In this iteration, s = 1; p = 0). Left: Real
part of the resulting 2-D signal. Right: Absolute value of the resulting 2-D signal
DFT.

zero mean white Gaussian �eld with variance selected so that the SNR is -5 dB. The variance of

the additive noise fu(n;m)g is similarly selected so that the SNR is -5 dB. The phase function

is a 2-D polynomial of total-degree 2. Note that the highly noisy appearance of the phase image

suggests that restoration of the phase information using local operators, such as edge detectors

and fringe tracking, is impossible.

Since the proposed phase unwrapping algorithm initially �ts a 2-D polynomial model to

the observed phase, we will �rst illustrate the �rst step of the suggested parameter estimation

algorithm. Since the polynomial phase total-degree is 2, we start by estimating the parameters

of `layer' 2. In the �rst step of the PD algorithm we have s = 1, and P = 0. Hence, applying

the operator PDn(0);m(1) to the observed signal, we obtain the signal x(n;m) which is a 2-D

polynomial phase signal of total-degree 1, i.e., a 2-D exponential signal. The real part of this

signal is shown in the left image of Figure 3, and the absolute value of its DFT is shown in the

right hand side of the same �gure. Note that although the noise level is very high, applying the

proposed operator to the observed signal results is a clearly observed spectral peak. Estimating

the spatial frequency of the spectral peak results in the estimates of c(1; 1), and c(0; 2). Following

the remaining steps of the PD Algorithm we obtain estimates of all the phase parameters.

The estimated phase function is smooth, leading to relatively simple unwrapping step. In

the unwrapping step the algorithm operates on each sample of the observed �eld. The estimated

phase is now used as a reference information which directs the actual phase unwrapping process:
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Recall that the principal value of the observed signal phase is in the interval [��; �]. On the

other hand the true (and the estimated) phase can assume any real value. Hence, the phase of

each sample of the observed �eld is unwrapped by increasing (decreasing) it by the multiple of 2�

which is the nearest to the di�erence between the principle value of the phase and the estimated

phase value at this coordinate.

More speci�cally, let �(n;m), �PV (n;m),  (n;m) denote the phase function of the noiseless

signal, the principle value of the observed phase, and the unwrapped phase obtained by the

proposed procedure, respectively. Also let �̂(n;m) denote the estimated phase obtained using

the estimation procedure of section 2. In the absence of noise we have that

�(n;m)� �PV (n;m) = 2�k ; (20)

where k is some integer. However, in practice �(n;m) is unknown to us, and we only have

�̂(n;m), which is estimated from the observed noisy measurements. Hence, replacing �(n;m) by

�̂(n;m) we obtain the basic unwrapping formula for the observed signal phase:

 (n;m) = 2� � ROUND
�
�̂(n;m)� �PV (n;m)

2�

�
+ �PV (n;m) : (21)

In Figure 4 we illustrate the result of applying the proposed phase unwrapping algorithm to

the above example. Note that although the observed signal is critically undersampled, and the

SNR is low, the phase unwrapping procedure results in a very good reproduction of the true

phase function. Analysis of the error in estimating the phase function shows that the maximal

deviation of the unwrapped noisy phase function from the true and noiseless phase is 0:999�.

Repeating this example in the absence of observation noise, results in a maximal di�erence of

4:5 � 10�7 between the unwrapped and the true phase functions, although the phase is critically

undersampled.

Due to the presence of noise, outliers may exist in the unwrapped phase obtained using

the foregoing algorithm. By locally smoothing such outliers, an improved result of the phase

unwrapping procedure can be obtained. Clearly, such a procedure is e�ective for medium to high

SNRs where outliers can be easily detected, and is less e�ective for low SNRs.

In [2] it is shown that overestimating the order of the phase polynomial yields estimated

coe�cients, equal to zero, for the non-existing coe�cients. In other words, for all L > S applying

L times, in any order, the operators PDn(1) [�] and PDm(1) [�] to a 2-D polynomial phase signal

v(n;m) of total-degree S yields a constant amplitude signal. This property allows for a relatively

simple order estimation in cases where the polynomial total-degree S is unknown. We start with

an assumed upper bound on the total-degree S. The decision that ĉ(k; `) = 0 can be based on
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Figure 4: The unwrapped phase.

comparison with the Cramer-Rao bound, [2]. We will decide that c(k; `) = 0 whenever jĉ(k; `)j

is not considerably higher than fCRB[c(k; `)]g
1
2 . In other words, we expect that overestimating

the polynomial phase order will result in estimated coe�cients which are approximately zero, for

coe�cients which belong to `layers' that are higher than the true total-degree of the polynomial

phase signal. Coe�cients belonging to `layers' which are within the true total-degree will, of

course, be estimated correctly. As an example we have applied the PD algorithm to the observed

�eld described above, but this time the algorithm assumes that the polynomial phase is of total-

degree 3. This assumption led to identical phase estimation and unwrapping results, as in the

�rst case (in which the algorithm assumes a correct total-degree of 2).

4 Phase Unwrapping for Arbitrary Phase Functions

In section 3 we developed the 2-D phase unwrapping algorithm, assuming that the entire phase

function obeys a single 2-D polynomial model. However in practical applications this assumption

does not generally hold. Hence the observed �eld has to be segmented, and each segment must

be �t with its own model. The segment size must be chosen so that the phase function is smooth

enough and hence can be �t with a 2-D polynomial with a total-degree which is small relative to

the segment size, so that a meaningful parameter estimate of the phase model can be obtained.
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After the observed �eld has been segmented, we apply to each of the segments the phase

estimation algorithm described in section 2. As a result we obtain unwrapped polynomial ap-

proximations to the phase function in each segment. However, since the parameter estimation is

performed independently for each of the segments, the estimated phase of each segment is known

only up to a constant of magnitude 2�k where k is some unknown integer. Hence, an additional

alignment stage has to be incorporated into the phase unwrapping procedure. In this stage a

reference segment is arbitrarily chosen, and the phase values of all other segments are sequen-

tially adjusted by the necessary factor of 2�k, so that adjacent segments will form a continuous

phase surface.

The proposed alignment procedure is not meant to eliminate phase discontinuities along

segments boundaries in cases where the magnitude of the discontinuity is lower than 2�. Such

discontinuities may occur due to a mismatch between the polynomial approximation of the phase

function at a given segment and the true phase, due to the presence of noise, and since the pa-

rameter estimation is performed independently for each of the segments. The e�ect of such

discontinuities can be reduced by an additional alignment stage in which a reference segment is

arbitrarily chosen, and the phase values of all other segments are sequentially adjusted, so that

the discontinuities of adjacent segments are made smaller, at least in one direction . Note how-

ever that if in each segment the true phase function is su�ciently smooth, and the approximating

polynomial total degree is su�ciently high, the discontinuities essentially disappear. Moreover,

since the true phase function is assumed to be smooth, it is clear that by smoothing the disconti-

nuities near segments boundaries, a further improvement in the phase estimate can be obtained

even in cases of high noise or model mismatch.

Once the phase model of the observed �eld has been estimated we can repeat the model-based

unwrapping procedure we have described in the previous section for the case of a single segment

and a single model �eld. Note that for the phase unwrapping purpose, the estimated phase is

used only as a reference which indicates which multiple of 2� ought to be added to the observed

principal value of the phase in order to unwrap it. Hence in general, small discontinuities in the

estimated phase, will not result in errors in the phase unwrapping, even without smoothing the

estimated phase.

In order to illustrate the procedure, consider a unit amplitude signal whose true phase function

is shown in Figure 5. In this example the observations are subject to noise. The multiplicative

noise �eld fz(n;m)g is a zero mean white Gaussian �eld with variance which was selected such

that the SNR is 5 dB. The variance of the additive white Gaussian noise was also selected so

that the SNR is 5 dB. A 3-D plot of the wrapped phase function of the observed �eld as well as

the wrapped phase image are shown in Figure 6.
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In order to estimate the phase function of the signal, the observed �eld was divided into 16

non-overlapping blocks of 25 � 25 samples. A 2-D polynomial of total-degree 3 was �t to each

patch. The result of applying the estimation procedure is illustrated in Figure 7. It can be seen

that the estimated phase function has some discontinuities along segments boundaries. The dis-

continuities are the result of the error in estimating the parametric models of the di�erent phase

segments, due to the presence of noise. Note however in Figure 8 that these small discontinuities

still allow for a proper unwrapping of the observed phase, since the estimated phase is used only

as a reference which indicates which integer multiple of 2� should be added to the observed

phase.

5 Conclusions

We presented a model based 2-D phase unwrapping algorithm. While many conventional ap-

proaches to the 2-D phase unwrapping problem involve local analysis of the phase image, the

proposed algorithm performs global analysis of the observed signal. The algorithm is based on

�tting a 2-D polynomial phase model to each segment of the observed signal. Using the esti-

mated phase model of the observed signal, the phase information is restored in a robust and

computationally e�cient way. Since the proposed phase unwrapping algorithm initially �ts a

parametric model to the observed data, it is less sensitive to problems of phase aliasing due to

noise and undersampling than algorithms that are based on waveform �tting.
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