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Abstract

We consider nonhomogeneous 2-D signals which can be represented by a constant modulus

polynomial-phase model. A novel 2-D phase di�erencing operator is introduced, and used to develop

a computationally e�cient estimation algorithm for the parameters of this model. The operation

of the algorithm is illustrated using an example.

1 Introduction

A fundamental problem in two-dimensional signal processing and in many image processing ap-

plications, is the modeling and analysis of nonhomogeneous two-dimensional (2-D) signals. For

example, in almost any image taken by a camera, perspective exists, and hence the acquired 2-D

signal is nonhomogeneous, even if the original scene was homogeneous. Conventional approaches

to the problems of perspective and camera orientation estimation usually involve local analysis

of the image, by means of edge detection algorithms, [6]. Recently, a nonparametric method for

estimating, and then canceling, the e�ects of perspective was suggested in [7], using the Chirplet

transform. In this method a 1-D cross-section of the image is expanded onto a set of modulated and

warped versions of one \mother-waveform", in order to later compute an unwarped representation

of the original image.

Parametric models, when used in image processing, generally assume the observed image to be

homogeneous, or piece-wise homogeneous. In this paper we consider a parametric model which is

nonhomogeneous, and attempts to perform global (or at least, less localized) image analysis. More

speci�cally, the proposed model is aimed at modeling images which result from continuous coordi-

nate transformations of homogeneous images. Since 2-D continuous functions can be approximated

by 2-D polynomials we will study a model consisting of a sine (or cosine) of a polynomial function

of the image coordinates. In the special case of a �rst order polynomial this reduces to a homoge-

neous model { a simple 2-D sinusoid. When the polynomial order is higher, the model is no longer

homogeneous: the spatial frequencies are now a function of location. This type of model arises, for

example, when a homogeneous image consisting of a periodic structure undergoes distortion due to
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perspective. Using the 2-D Wold decomposition, it is shown in [3] that an approximate model for

homogeneous textures is a sum of harmonic components in additive noise. Hence, in general, the

deterministic component [3], of a homogeneous texture undergoing nonlinear continuous warping

can be approximated by a sum of 2-D sinusoids of a polynomial function of the image coordinates.

The proposed model belongs to the general class of AM-FM signals which has been recently

investigated both for 1-D and 2-D signals using nonparametric methods, [9], [8], [10], [11]. It is

shown that the Teager-Kaiser energy operator can be used to approximately estimate the amplitude

envelope of the AM component as well as the instantaneous frequency of the FM component.

However, using this method an approximation error exists even when no observation noise is present.

The estimation algorithm of 2-D multicomponent AM-FM signals, [11], initially uses multiband

bank of Gabor wavelets to isolate the di�erent components, thus avoiding the interference between

the various components, and increasing the e�ective SNR. The estimation of the AM and FM parts

of each component follows in the next stage.

For reasons which will become clear later, it is more convenient to work with a complex valued

model in which the sinusoidal function is replaced by a complex exponential. In some applications,

such as Synthetic Aperture Radar imaging, the 2-D signal is complex valued to begin with. In other

applications the 2-D signal is real, but can be converted subject to some restrictive conditions, into

complex form through the Hilbert Transform [2].

Throughout this paper we will consider 2-D signals which can be represented by a constant

amplitude complex exponential whose phase is a polynomial function of the coordinates. Having

de�ned the model, we will study the problem of estimating its parameters given observations on the

2-D signal. In the presence of additive white Gaussian noise a straightforward but computation-

ally prohibitive approach is to develop a maximum likelihood estimator for the polynomial phase

parameters. This estimator involves a multi-dimensional search in the parameter space and is not

practical except for very low order models. In this paper we present a suboptimal, but compu-

tationally e�cient algorithm for estimating the parameters of 2-D constant amplitude polynomial

phase signals. This algorithm is an extension of the so-called Polynomial Phase Transform which

was introduced in [1]. The algorithm is based on the properties of a 2-D polynomial phase di�erence

operator, which is de�ned in the next section.

The paper is organized as follows. In section 2 we de�ne the parametric model of the observed

signal, de�ne the 2-D polynomial phase di�erence operator, and present some properties of the

operator. In section 3 we present the proposed parameter estimation algorithm which is based on

the 2-D polynomial phase di�erence operator and its properties. We then illustrate the algorithm

operation using a numerical example.
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2 The Phase Di�erence Operator

In this section we de�ne the phase di�erence operator and present some of its basic properties. We

start with a description of the type of signal for which the operator was designed.

2.1 The Signal Model

Let fv(n;m)g be a discrete 2-D constant amplitude polynomial phase signal. More speci�cally

v(n;m) = A expfj�S+1(n;m)g ; n = 0; 1; : : : ; N � 1 ; m = 0; 1; : : : ;M � 1 ; (1)

where �S+1(n;m) =
P

(k;`)2I c(k; `)n
km`, and I = f0 � k; ` and 0 � k + ` � S + 1g. We shall

call �S+1(n;m) a 2-D polynomial of total-degree S + 1. For example, using this terminology we

say that a constant valued �eld is a 2-D polynomial phase signal of total-degree 0, and a 2-D

exponential signal is a 2-D polynomial phase signal of total-degree 1. In other words, one might

think of the phase polynomial �S(n;m), as if it has S `layers' since increasing S by one adds a

`layer' of additional S+2 parameters to the phase model. The amplitude A is a real valued positive

constant. To simplify the presentation we assume that A � 1. Note that the scaling coe�cients

associated with horizontal and vertical sampling, are absorbed into the coe�cients c(k; `). The

performance of the algorithm in the presence of additive noise is analyzed in [5].

2.2 The PD Operators

In this section we de�ne the two Polynomial Phase Di�erence Operators which we denote by PDn

and PDm. First we give a brief heuristic explanation of the idea behind the operator.

Consider the observed signal which is given by (1), and assume for the moment thatm and n are

continuous variables. Di�erentiating the observed signal P times along the m axis and S�P times

along the n axis, (in any order, as long as the total number of di�erentiation operations in both axes

is S), results in a 2-D complex exponential signal. It can be shown that the spatial frequency (!; �)

of this complex exponential is a function of two of the coe�cients of the highest `layer', S + 1, of

the phase polynomial parameters, and other known quantities. The exact functional relation of the

exponential spatial frequency and the phase parameters is given in the next section. By estimating

the frequency of the complex exponential (using standard frequency estimation techniques), we

obtain estimates of two of the coe�cients of the highest `layer' of the phase polynomial model.

Repeating this procedure for all 0 � P � S, all the coe�cients of the highest `layer', S + 1, of the

phase polynomial model are estimated.

Having completed the estimation of the phase parameters in the highest `layer', their contribu-

tion to the signal phase can be eliminated, thus resulting in a polynomial phase signal of total-degree
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S. By repeating this entire process for all the `layers' in the phase model, all the phase parameters

are estimated. The details of how that works will be presented later.

Since in our problem the variables n and m are discrete, phase di�erentiating will be replaced

by phase di�erencing. In principle, this could be accomplished by computing the phase of the 2-D

signal and then performing the di�erencing operation. However, extraction of the phase function is

di�cult because of the need to perform phase unwrapping. As we will show next, phase di�erencing

can be accomplished without phase unwrapping, by performing a certain nonlinear operation on the

2-D signal, using what we call \the phase di�erencing (PD) operator". We next de�ne the basic

polynomial phase di�erencing operators.

De�nition 1: Let �m and �n be some positive integers. De�ne

PDm(0) [v(n;m)]
�
= v(n;m) ; n = 0; 1; : : : ; N � 1 ; m = 0; 1; : : : ;M � 1 ; (2)

and in general,

PDm(q) [v(n;m)]
�
= PDm(q�1) [v(n;m)]

�
PDm(q�1) [v(n;m+ �m)]

��
; (3)

where the resulting 2-D signal PDm(q) [v(n;m)] exists for n = 0; 1; : : : ; N � 1 ; m = 0; 1; : : : ;M �

1� q�m. Similarly

PDn(0) [v(n;m)]
�
= v(n;m) ; n = 0; 1; : : : ; N � 1 ; m = 0; 1; : : : ;M � 1 ; (4)

PDn(p) [v(n;m)]
�
= PDn(p�1) [v(n;m)]

�
PDn(p�1) [v(n+ �n; m)]

��
;

n = 0; 1; : : : ; N � 1� p�n ; m = 0; 1; : : : ;M � 1 : (5)

Note that applying any of the operators PDm(1) [�], or PDn(1) [�] to a 2-D polynomial phase signal of

total-degree S + 1, results in a 2-D polynomial phase signal of total-degree S.

Assume we have sequentially applied, in some arbitrary sequence, P times the phase di�erence

operator PDn(1) , and S�P times the phase di�erence operator PDm(1) , to the signal v(n;m). Then,

it can be shown [4] that the resulting signal, which we denote by PDn(P );m(S�P ) [v(n;m)] is given by

PDn(P );m(S�P ) [v(n;m)] =
S�PY
q=0

(
PY
p=0

��
v(n+ p�n; m+ q�m)

�(�1)p+q�(Pp))(S�Pq )
: (6)

Theorem 1: Let PDn(P );m(S�P ) [v(n;m)] be the 2-D signal obtained by successively applying in

some arbitrary sequence, P times the operator PDn(1) [�], and S � P times the operator PDm(1) [�],
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to the observed signal (1). Then, the signal PDn(P );m(S�P ) [v(n;m)] is a 2-D exponential given by

PDn(P );m(S�P ) [v(n;m)] = exp

�
j[!Sn+ �Sm+ 
S(�n; �m)]

�
;

n = 0; 1; : : : ; N � 1� P�n ; m = 0; 1; : : : ;M � 1� (S � P )�m ; (7)

where

!S = (�1)Sc(P + 1; S � P )(P + 1)!(S � P )!�Pn �
S�P
m ; (8)

�S = (�1)Sc(P; S + 1� P )P !(S + 1� P )!�Pn �
S�P
m ; (9)

and 
S(�n; �m) is not a function of m nor n.

Note from the de�nition of the phase di�erence operators in De�nition 1, and Theorem 1 that

for a 2-D polynomial phase signal v(n;m) of total-degree S, PDm(S+1�P );n(P ) [v(n;m)] = 1, and

similarly PDm(S�P );n(P+1) [v(n;m)] = 1. Hence, for all L > S applying in some arbitrary sequence,

P times the operator PDn(1) , and L � P times the operator PDm(1) , to a 2-D polynomial phase

signal v(n;m) of total-degree S yields a unit amplitude constant signal.

3 The Parameter Estimation Algorithm

Consider the observed signal which is given by (1), where S is a non-negative integer, which initially,

we assume to be known. We now present an algorithm for sequentially estimating the parameters

fc(k; `)j 0 � k; `; 0 � k + ` � S + 1g of the observed 2-D polynomial phase signal.

Theorem 1 implies that applying in some arbitrary sequence, P times the operator PDn(1) , and

S � P times the operator PDm(1) , to the observed signal v(n;m), the resulting signal is the 2-D

exponential PDn(P );m(S�P ) [v(n;m)] = exp

�
j[!Sn+ �Sm+ 
S(�n; �m)]

�
where !S and �S are given

by (8) and (9), respectively. We can thus reduce any 2-D nonhomogeneous, constant-amplitude

polynomial-phase signal, v(n;m), whose phase is of total-degree S + 1, to a 2-D single tone signal

whose frequency is (!S ; �S).

Hence, estimating (!S ; �S) using any standard frequency estimation technique, results in an

estimate of c(P + 1; S � P ), and c(P; S + 1� P ). In the present paper we estimate the frequency

of the exponential using a search for the maximum of the absolute value of the signal 2-D Discrete

Fourier Transform (2-D DFT). More speci�cally, having estimated !S and �S in (8) and (9), we

have

ĉ(P + 1; S � P ) =
!̂S

(�1)S(P + 1)!(S � P )!�Pn �
S�P
m

; (10)

and

ĉ(P; S + 1� P ) =
�̂S

(�1)SP !(S + 1� P )!�Pn �
S�P
m

; (11)
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which constitutes an estimate of two of the parameters of the highest order `layer', S + 1, of the

phase model parameters (i.e., those c(k; `)'s for which 0 � k; ` : k + ` = S + 1).

Recall however that the highest order `layer', S + 1, of the phase model parameters has S + 2

parameters, which need to be estimated. This can be achieved by repeating the procedure which

was described above assuming some arbitrary P , for all P such that 0 � P � S. Note that this

procedure results in repeated estimation of some of the phase parameters.

Multiplying v(n;m) by expf�j
PS+1

k=0 ĉ(k; S + 1 � k)nkmS+1�kg results in a new polynomial

phase signal whose total-degree is S. By applying to the resulting signal a procedure similar to the

one used to estimate the parameters c(k; `) for k + ` = S + 1, we obtain an estimate of the S + 1

parameters in the S `layer'. Multiplying the 2-D polynomial phase signal of total-degree S, which

was obtained in the previous step by expf�j
PS

k=0 ĉ(k; S�k)nkmS�kg we obtain a new polynomial

phase signal whose total-degree is S � 1.

In general, let v(s+1)(n;m) denote the 2-D signal, where s+1 denotes the current total-degree of

its phase polynomial. By repeating for all s = S; : : : ; 0, the two basic steps of estimating the c(k; `)

parameters of `layer' s+1 through �nding the maxima of

����DFT
�
PDm(s�P )

�
PDn(P ) [v

(s+1)(n;m)]

������,
for all 0 � P � s, followed by multiplying the already reduced order 2-D polynomial phase signal

by expf�j
Ps+1

k=0 ĉ(k; s+ 1 � k)nkms+1�kg in the next step, we obtain estimates for all the phase

parameters except c(0; 0). The resulting signal after this processing, v(0)(n;m), is a constant phase

2-D signal. Taking now the average of the imaginary part of the logarithm of this signal we obtain

an estimate for c(0; 0). We have thus completed the estimation of all the coe�cients of the 2-D

phase polynomial of total-degree S + 1.

Once the phase parameters were estimated, the amplitude of the polynomial phase signal is

obtained by multiplying the original signal by e�j�̂(n;m), where �̂(n;m) is the estimated phase.

Ideally, the resulting 2-D signal is constant with amplitude A. The algorithm is summarized in

Table 1.

It was shown in section 2 that overestimating the order of the phase polynomial yields zero

estimated coe�cients, for the non-existing coe�cients, i.e., for all L > S applying L times, in

any order, the operators PDn(1) [�] and PDm(1) [�] to a 2-D polynomial phase signal v(n;m) of total-

degree S yields a unit amplitude constant signal. This property allows for relatively simple order

estimation in cases where the polynomial total-degree S is unknown. We start with an assumed

upper bound on the total-degree S. In the presence of observation noise, the decision that ĉ(k; `) = 0

can be based on comparison with the Cramer-Rao lower bound (CRB) on the accuracy of jointly

estimating the model parameters, derived in [4]. We will decide that c(k; `) = 0 whenever jĉ(k; `)j

is not considerably higher than fCRB[c(k; `)]g
1
2 .

Next, we present a numerical example to illustrate the operation of the proposed parame-

ter estimation algorithm. Consider a unit amplitude 2-D polynomial phase signal of total-degree
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2. In this example the observed �eld dimensions are N = 100; M = 100. The phase coe�-

cients are given by c =
�
1; 4:5 � 10�1; 8:2 � 10�1;�1:5 � 10�3; 16 � 10�3;�2:2 � 10�3

�T
, where all the

phase parameters were assembled, `layer' after `layer' into a vector c of the general structure

c = [c(0; 0); c(0; 1); c(1; 0); c(0; 2); c(1; 1); c(2; 0); : : : ; : : : ; c(0; S); : : : ; c(S; 0)]T , where we use `;' to

distinguish `layer' from `layer'.

The image of the real part of the observed �eld v(n;m) is shown in Figure 1, and a plot of the

absolute value of its Fourier Transform is shown on its right. It is clear from these two �gures that

the observed signal is nonhomogeneous and is of a broad bandwidth.

We next describe the steps of the suggested parameter estimation algorithm. Since the polyno-

mial phase total-degree is 2, we start by estimating the parameters of `layer' 2. In the �rst step of

the algorithm we have s = 1, and P = 0. Hence, applying the operator PDn(0);m(1) to the observed

signal, we obtain the signal x(n;m) which is a 2-D polynomial phase signal of total-degree 1, i.e.,

a 2-D exponential signal. The real part of this signal is shown in the left image of Figure 2, and

the absolute value of its DFT is shown in the right hand side of the same �gure. Estimating the

spatial frequency of the spectral peak results in the estimates of c(1; 1), and c(0; 2). We therefore

see how a broadband nonhomogeneous 2-D signal has been reduced to a 2-D homogeneous signal,

in a way that enables us to estimate two of the parameters of the observed signal.

Repeating now the same procedure for s = 1, and P = 1, i.e., applying the operator PDn(1);m(0)

to the observed signal, we obtain another 2-D exponential signal. The real part of this signal is

shown in the left image of Figure 3, and the absolute value of its DFT is shown in the right hand side

of the same �gure. Estimating the spatial frequency of the spectral peak results in the estimates

of c(2; 0), and c(1; 1). We have therefore obtained estimates for all three parameters of `layer' 2.

Note, that an estimate of c(1; 1) was obtained twice, however both are essentially identical.

Multiplying v(n;m) by expf�j
P

k+`=2 ĉ(k; `)n
km`g we obtain a new polynomial phase signal,

v(1)(n;m), whose total-degree is 1. Its real part is shown in the left image of Figure 4, and the

absolute value of its DFT is shown in the right hand side of the same �gure. Since in this iteration

s = 0, and P = 0, we have x(n;m) = v(1)(n;m), and the parameters c(1; 0), and c(0; 1) of `layer' 1

are estimated by �nding the spatial frequency of the peak of the 2-D signal DFT.

Multiplying v(1)(n;m) by expf�j
P

k+`=1 ĉ(k; `)n
km`g we obtain the signal, v(0)(n;m), whose

total-degree is 0. The coe�cient c(0; 0) can now be computed as the arithmetic average of the

imaginary part of the logarithm of v(0)(n;m). Thus, at this point we have completed the estimation

of all the phase parameters of the observed 2-D nonhomogeneous signal.
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4 Conclusions

We presented a parametric model which can be used as the basic building block in parametric

modeling of a broad class of nonhomogeneous signals. We considered 2-D signals which are repre-

sented by a single constant-amplitude polynomial phase function. More complex 2-D signals can be

represented by sums of components of this type. Using the Polynomial Di�erence operator and its

properties, we derived a computationally e�cient (relative to the maximum likelihood estimator)

algorithm for estimating the parameters of the polynomial phase function.
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Figure 1: The real part of the observed signal, and the magnitude of
the signal DFT.

Table 1: The Estimation Algorithm.

Let S + 1 denote the total-degree of the observed signal phase.

s = S; v(s+1)(n;m) = v(n;m); n = 0; : : : ; N � 1; m = 0; : : : ;M � 1.

While s � 0 ( s+ 1 is the `layer' index)

for P = 0; : : : ; s ( �nd all the parameters of the s + 1 `layer' )

x(n;m) = PDm(s�P )

�
PDn(P ) [v

(s+1)(n;m)]

�

(!̂s; �̂s) = argmax
(!;�)

����DFT
�
x(n;m)

�����
ĉ(P + 1; s� P ) = !̂s

(�1)s(P+1)!(s�P )!�Pn �
s�P
m

ĉ(P; s+ 1� P ) = �̂s

(�1)sP !(s+1�P )!�Pn �
s�P
m

end

v(s)(n;m) = v(s+1)(n;m) expf�j
P

fk+`=s+1g ĉ(k; `)n
km`g

s=s-1

end

c(0; 0) = 1
NM

PN�1
n=0

PM�1
m=0 Imflog(v

(0)(n;m))g
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Figure 2: The 2-D polynomial phase signal after applying the operator
PDn(0);m(1) to the observed signal of total-degree 2. (In this iteration,

s = 1; p = 0, and the signal is the observed signal v(2)(n;m)). Left:
Real part of the resulting 2-D signal. Right: Absolute value of the
resulting 2-D signal DFT.
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Figure 3: The 2-D polynomial phase signal after applying the operator
PDn(1);m(0) to the observed signal of total-degree 2. (In this iteration,

s = 1; p = 1, and the signal is the observed signal v(2)(n;m)). Left:
Real part of the resulting 2-D signal. Right: Absolute value of the
resulting 2-D signal DFT.
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Figure 4: The reduced order 2-D polynomial phase signal v(1)(n;m).
(In this iteration, s = 0; p = 0). Left: Real part of the 2-D signal.
Right: Absolute value of the 2-D signal DFT.
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