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Bounds for Estimation of Complex
Exponentials in Unknown Colored Noise

Joseph M. Francos, Member, IEEE, and Benjamin Friedlander, Fellow, IEEE

Abstract—We consider the problem of estimating the parame-
ters of complex exponentials in the presence of complex additive
Gaussian noise with unknown covariance. Bounds are derived
for the accuracy of jointly estimating the parameters of the
exponentials and the noise. We first present an exact Cramér-Rao
bound (CRB) for this problem and specialize it for the cases of
circular Gaussian processes and autoregressive processes. We also
derive an approximate expression for the CRB, which is related to
the conditional likelihood function. Numerical evaluation of these
bounds provides some insights on the effect of various signal and
noise parameters on the achievable estimation accuracy.

I. INTRODUCTION

HE need to estimate the parameters of sinusoids and

complex exponentials in the presence of noise arises in
many engineering problems. An extensive amount of work
has been done on the development and performance analysis
of estimation algorithms for such signals [9], [17]-[19]. The
overwhelming majority of this work focuses on the case where
the harmonic signals are contaminated by white Gaussian
noise. The case where the additive noise is nonwhite but has a
known correlation function can be reduced to the former case
by an operation known as “prewhitening” (with the possible
exception of the case where the noise has spectral zeros).

When the additive noise has an unknown covariance func-
tion, the problem becomes more difficult. An unbiased estima-
tor of the signal parameters will require, in general, the joint
estimation of the parameters of the harmonic component and
the parameters of the noise process. In this paper, we develop
bounds on the achievable accuracy of jointly estimating the
parameters of a complex harmonic process composed of a sum
of complex exponentials and the parameters of an additive
zero mean Gaussian process.

It should be noted that the Wold decomposition [1] implies
that any regular discrete and stationary random process can be
represented as a sum of two mutually orthogonal components:
a purely indeterministic process and a deterministic one. The
spectral measure of the purely indeterministic component is
absolutely continuous with respect to the Lebesgue measure.
The spectral measure of the deterministic component is sin-
gular with respect to the Lebesgue measure, and therefore,
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it is concentrated on a set of Lebesgue measure zero on
the frequency axis. For practical applications, we can ex-
clude singular-continuous spectral measures and distribution
functions from the framework of our treatment. Hence, the
“spectral density function” of the deterministic component
can be represented as a countable sum of delta functions.
Under this assumption, the deterministic component is simply
the harmonic process h(n) = XL, Ce“t™, where the
C¢’s are mutually orthogonal random variables, and w; is the
frequency of the /th harmonic. To put this in other words, the
class of signals consisting of exponentials in additive noise
is quite general and encompasses essentially all stationary
processes. Since, in general, only a single realization of the
random process is observed, we cannot infer anything about
the variation of the C;’s over different realizations. The best
we can do is to estimate the particular values that these
coefficients take for the given realization; in other words, we
might just as well treat the C’s as unknown constants.

The problem of analyzing mixed spectrum processes has
received some attention in the past. Priestley [2] describes
Whittle’s and Bartlett’s periodogram-based tests for detecting
harmonic components in colored noise, as well as a se-
quential, periodogram-based estimation method for analyzing
the long-term sample covariances of the observed data. The
estimation method is based on the assumption that for long
lags, the contribution of the noise to the covariance function
is insignificant. The idea is to first test for the existence
of harmonic components. If such components are detected,
their parameters are estimated, and their contribution to the
sample covariance is removed. Next, the spectral density
function of the noise is estimated from the “corrected” sample
covariances. More recently, a conditional maximum likelihood
algorithm for estimating the parameters of exponentials in
colored AR noise was suggested in [4] and [5]. In [6],
the asymptotic properties of the AR and Capon’s spectral
estimators are employed for mixed spectrum identification
in situations where a large number of correlation lags are
available. However, all the above works are concerned with
real valued processes. The algorithm [4] was extended to the
case of circular Gaussian complex-valued processes in [7].
Beyond that, little information seems to be available on the
problem of estimating mixed-spectrum complex processes.

In this paper, we show that for Gaussian noise, the esti-
mation of the noise and harmonic components are decoupled,
regardless of the parametric model used for the noise. We
derive the results both for the general case where the noise is
a complex-valued Gaussian process and for the special case of
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a circular Gaussian process. For the case of an autoregressive
noise process, we present an analytic expression for the
exact Cramér-Rao bound (CRB) on the noise and harmonic
signal parameters. We also derive the conditional CRB, which
corresponds to the estimation algorithm proposed in [7].

The paper is organized as follows. We first derive an
exact CRB for the joint estimation problem in terms of the
noise covariance function without assuming any specific model
for this component. In Section III, we give results for the
special case of circular Gaussian processes. In Section IV,
we present the results for the case in which the noise is an
autoregressive Gaussian process. In Section V, we derive an
approximate expression for the CRB on the autoregressive
noise and the harmonic signal by computing the CRB from
the conditional likelihood function of the observed data, rather
than the exact likelihood function. The results show that for a
conditional ML estimator, the bounds on both the amplitude
and frequency parameters of the harmonic components are
functions of the frequency response of the colored noise model
at the frequencies of the harmonic components and of the
derivative of the frequency response at these frequencies. The
relation of this approximation to the exact CRB is also studied,
and it is shown how the conditional bound can be derived
as a special case of the exact bound. A conditional bound
on the frequency parameters of exponentials in AR noise has
been recently stated (with no proof) in [10]. In Section VI, we
present numerical examples in order to provide some insights
on the effect of various signal and noise parameters. Some
concluding remarks are presented in Section VIL

II. THE CRB ON THE HARMONIC AND NOISE COMPONENTS

In this section, we present the CRB formulas for the joint
estimation problem for the most general case. We start by
formulating the problem and introducing some of the necessary
notation.

We are given measurements from a single realization of a

process {y(n)}N =}, where

y(n) = p(n) + w(n),

is the sum of a zero-mean, stationary, complex Gaussian noise
process w(n) and a complex harmonic mean. Let us rewrite
the equation above using real variables:

y(n) = fu(n) + w(n) @

where g(n) = [Re{y(n)},Im{y(n)}]",d(n) =
[Re{w(n)}, Im{w(n)}]T, i(n) = [u(n),v(n)]T. In other
words, the real and imaginary parts of the harmonic process
are defined by

n=0,1,-,(N-1) (1)

p#(n) = u(n) + ju(n) ©)

where

L L
u(n) = Re{u(n)} = Z Cf coswpn — Z CZI sinwen, (4)

=1 =1
L L
v(n) =Im{p(n)} = Z Ct coswen + Z Cfsinwen  (5)
=1 =1

and Cf = Re{C,},C] = Im{C,}.
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Lett=[0,1,---,(N — 1)]T be the time index, and let
A = [coswil- - coswri] 6)

where coswyt denotes a column vector whose elements are
coswyt, where t are the elements of £. Similarly

B = [sinwit- - -sinwpi] )

where sinwyt denotes a column vector whose elements are
sinwygt, where ¢ are the elements of ¢.
Next, we make the following definitions:

w= [w1-~-wL]T, ®)
CR = [Cle Tty Cg]Tv (9)
cr=[Cl,---, ChT. (10)

In addition, let
y= [y(o)vy(l)v Tty y(N - 1)]T

The vectors w, i, u, v are similarly defined.

Let ji be the real valued vector ji = [uT»7]7. Similarly,
let & = [Re{w”} Im{w”}]T,§ = [Re{y”} Im{y”}]”, and
¢ = [cEeF)T. Thus

11

= pc (12)

_|A -B
=i W)
Let @ = {a, ¢,w} be the vector of unknown parameters. Here,
we assume that the noise component w has some known
parametric model, where the real vector a is the parameter
vector. At the moment, we will not specify the model but rather
leave it implicit. In Section IV, we specialize our results for the
case in which a is the parameter vector of an autoregressive
process.
The general expression for the Fisher information matrix
(FIM) of a real Gaussian process is given by (e.g., [15])

. il . _1 O .18 .1 0I"
To(0) = B OB +%tr{l’ 10r 4, 13—} (14)

where

(13)

a0, 90, 86, 90,

where I' is the covariance matrix of y and f is its mean.
To compute the elements of the FIM, we need to evaluate the
derivatives of the covariance matrix and the mean with respect
to the various unknown parameters.
Taking the partial derivatives of & we get
g—; = pes = p (15)
where e; is a column vector whose /th element is 1, and all its
other elements are zero, and p, is the £th column of p. Since the
noise component w is a zero mean process, f is independent
of the parameters of the noise component, and hence

op

£ _o. 16
aak 0 ( )
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Therefore

gt OF p1or } a7

oo L or
Jk,l (0) = 2“‘{11 aak aal

Note also that since the process covariance function I is
independent of the mean

ar
— =0 18
Ber (. )
Hence, the 1tr{-} term in (14) vanishes for all the FIM entries
that correspond to tche amplitude parameters of the mean, and
e,
it follows that J =~ = 0.
The FIM elements that correspond to the amplitude param-
eters of the harmonic component are given by
~c, ~ =1
T =0kl py. (19)
Taking the partial derivative with respect to the harmonic
frequencies, we get

S = —T(CEsinwyt + Cf coswyt), (20)
0wy
s T I
— =T(C} coswit — Cy sinwyt) 1)
Jwy,
where T = diag{¢}. Hence
ou
o _ | dw
dwp, | 9v | @
3wk

Note also that since the process covariance function I' is

independent of the mean of y(n)
ar
o (23)

Hence, the %tr{} term in (14) vanishes for all the FIM entries
that correspond to parameters of the mean of y(n), and we
have 7 = 0, and

~C,w = 8'1
I8 = ot TR 24
ke = Pk ER 24)
Finally
~w,w 8” T~—1 8”
joe (SR proR
k.t Owr ERp (25)

Hence, we conclude that the bound on the achievable accu-
racy in estimating the parameters of the noise component is
decoupled from the bound on the mean parameters. Therefore,
the bound on the noise component is found by inverting (17),
and it is independent of the mean parameters. Hence, this
bound is identical to the one obtained for a zero mean process.
A similar conclusion was derived in [12] for real-valued
processes.
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III. THE CRB FOR CIRCULAR GAUSSIAN PROCESSES

The results in the previous section were derived for a
general complex stationary Gaussian process. A special class
of complex Gaussian processes that arises in many engineering
applications is the class of circular Gaussian processes [16].
In this section, we derive briefly the CRB for this important
class of processes.

An N-dimensional complex valued random vector y is
circular Gaussian if the 2N vector

Re{y}
[Im{,,}] @9
is normally distributed with mean
Re{pu}
i) @
and covariance matrix
Re{I'} —-Im{I'}
%[Im{l‘} Re{T} ] (28)
where
r=E{y-my-m"} 29)

The probability density function of a circular Gaussian process
is given by
Py) = < exp{~- W T @-w). GO
wNdet I

The FIM of a circular Gaussian process is given by
ouH . op _,or _._,or
= _— -_— '__I‘ v
Ji,e(0) 2Re{ aakl’ a6, +t I” FTR a0,
G1)
where @ is a real-valued parameter vector (e.g., [11]). Since
op _ Ou . Ov

- = - 32
&.zk Bwk + J awk ( )
we obtain,using (20) and (21)
3 = —T(CEsinwit + C{ coswyt)
awk
+ JT(CF cos wit — Cf sin wyt)
= jCx T exp(jwit). (33)
Similarly, using (15), we conclude that
Op
— =p; +3ip; 34
Bes P¢ P (34)
where
p¢ = [pe(0), -+, pe(N = )T (35)
and
i = [pe(N), -+, pe(2N — D). (36)

Following the same arguments as in the previous section, we
finally conclude that the FIM of y is given by

Joe 0 0
J=10 g g
O (Jc,w)T Jw,w

(37N
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where
Ty :n{r—l%r*s—;}, (38)
Jo=2 Re{%l"lg—g}, (39)
J5% =2Re {88’; 1’—1;—“’;}, (40)
T8 =2Re {‘;’:}kr* 5“’;} a1)

Note that for the special case of a single exponential in circular
complex white Gaussian noise of variance o2, (39)—(41)

reduce to
Jo = %Re{ % gg}, @)
B w
with
S = joiTexpliond) 45)
gcﬁl = exp(jwit), (46)
oL = jexplisnd). @)
Since ¢; = CF and ¢, = C{, the FIM block that corresponds

to the parameters of the exponential is given in this case by
N 0 0
N

Ji==
0 C’RZn oAk Zn

a2
n=0

which is a well known result [8], [9].

(48)

IV. THE ExacT CRB FOR AUTOREGRESSIVE NOISE

In the previous sections, we have derived the CRB for a gen-
eral noise process, whose covariance matrix is parameterized
in some unspecified way. It is well known that the most general
model for the noise component w is that of a complex moving
average model with a possibly infinite order. In this section,
we consider the special case in which the noise component is
a Pth-order autoregressive (AR) process. The autoregressive
process is defined by

P
Zalw n—1)+ u(n)

=1

w(n) =

49)

with u(n) = uf(n) + jul(n), where {uF(n)} and {u!(n)}
are independent real Gaussian white noise processes each with
zero mean and variance UQAR /2. The process (49) is a circular
Gaussian process, and therefore, the results of Section III are
applicable to this case.
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Since I' is Toeplitz—Hermitian, it can be shown (e.g., [13])
that the inverse covariance matrix I'"! of a Pth-order AR
process (N > P) is given by

rt= (AIAH — Ay Al (50)
TiR
where A; and A, are lower triangular Toeplitz matrices such
that
1, i=7
(A1)i; :{ai—js i>] (5D
0, 1<
(A)i; = ON_itjo Z Zj (52)
3 0, 1<J
and a; = 0 for k<0 and £ > P. Hence
I = 63 (A AT — A AFHY1, (53)
In the present case, the parameter vector of the
noise process a is the 2P + 1 dimensional vector
a = [oig,af,ad, - 0l 0l al, - ,ab]T, where
a® = Re{a.} and al = Im{a,}. Taking the partial
derivatives of I'"! with respect to ofm, using (50), we get
or—t
= (AIAH - A A = ——rA (54)
a"?\R UAR oir

Taking the partial derivatives of I'~! with respect to the real
and imaginary components of a,, we get

ar—t _ 1 foa 0AY _0Az 5, 0A7
dal ~ o%p \ OaR 0ok T 9aR? > 9al
= 2—(ZnA{I + A1Z’£ - ZanAg - A2Z£—n)
AR
n:l,---,P (55)
or—!
= ) (Z AT — A ZT + Zn_ A — AT )
n TAR
n=1,---,P (56)
where Z,, is the down shift matrix
L i-g=n
(Zn)ij = {0, otherwise. 57)

Substituting (50) and (54)—(56) into the general expression
of JZ‘Z‘ in (38), we obtain a relatively simple expression for
J%. Similarly, substituting (50) into (39)—(41), expressions
for J©¢, J°¥, and J*** are obtained. Hence, we have obtained
a simple expression for the CRB on the parameters of the
harmonic signal and on the colored AR noise in which it is
embedded.

Following (37) and the general conclusions of the previous
section, we conclude that if the noise process is an AR
process, the bound on the AR process parameters is obtained
by inverting (38) after the above substitutions were made. This
bound is independent of the mean parameters and is identical
to the one obtained for the same AR process with a mean
component, which is identically zero.

In many cases, we are interested not in the mean or the
noise component parameters but in estimating some function
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of these parameters. For example, having estimated e, we can  Taking the partial derivative with respect to the AR process
estimate the spectral density function of the process by using driving noise variance parameter yields
the estimated parameters. The CRB on the spectral density
function S(e’*) of the noise component is given by (see e.g., { 2In P } 1 Z i Ap(n — i)
- a;———
4 n=P \i=0 aok

[14D 907 00,

4
CRB(S(¢/*)) = W CRB(a)W” (58) AR

P
where (z a;ly*(n —i) — p*(n - Z)])

W {BS(ej“’) as(e?*)  8S(eM) =
T P02y ' 0af T BaE N N , _.)
. . ily(n—1) — pu(n —1
95(e’) 35(6"”)] nz:; ;0 W )= ul )
dal 7 Bal il *(n—1

; 11 ef;(p_l) : (Zaga“—g_’))} =0. (63

= w - i= k

28(e )[%iR’ Re{ () } ’

_Re el (P=2) ) Similarly, taking the partial derivatives with respect to the real
Aeiw) |° ( and imaginary parts of the AR process parameters {a}t}}_;
eIw(P=1) 1 and {af};_,, we find that —E{06?In P/98;0af} = 0 and
Im{m}» - { () ] (39) -E{6?InP/06,0a}} = 0.
Thus, the conditional FIM is block diagonal. Hence, the
conditional CRB on the parameters of the harmonic mean is
A(e?) = 7P 4 a1 P 4 .. 4 ap. (60) decoupled from the bound for the autoregressive parameters,
as was the case for the exact CRB. Therefore, the conditional
V. THE CONDITIONAL CRB FOR AUTOREGRESSIVE Noise ~ CRB is obtained by inverting the FIM blocks that correspond
A conditional maximum likelihood (CML) algorithm for to the mean and t.o the AR P aramgers, respectively.
. . L s . Taking the partial derivatives with respect to the parameters
Jjoint estimation of the parameters of exponentials in circular f the harmonic mean. we get
Gaussian AR noise, and the AR model parameters, was ° > We B
suggested in [7]. In this section, we derive the performance

and

N-1/P .
bound for this algorithm and compare it with the exact bound _E P -1 Z Z @ a“("__— i)
that was derived in the previous section. 00,00, 3R = * 00,
The conditional CRB is derived by using the conditional P
probability density function of the observed process. (Z al a“ i )
P(yly(0)---y(P —1);0) P
1 1 «— ou(n —1)
= T3 N_P + = aG— ="
(Wo.zAR)N P UAR Z;) (; a0,
2
P
~exp{ E Zaz[y(n—z - p(n —1)] } (Za S G )
R n=p|i=0 i=0

©n) Rl A ()
where a9 = 1. _2Re{a Z (Zai o0,
Let us denote by § the mean component parameter vector, P
ie., 8 = [¢T wT]T. Taking now the partial derivatives of the (Z 1%__)> } (64)
conditional log likelihood function with respect to the mean o 00,
parameters, we have

oln P N- P Bu(n — i) Thus, the derivation of the conditional FIM reveals that the
— {Z (Z l”—) bounds on both the amplitude and the frequency parameters
90, UA =P \i=0 90 of the harmonic components are functions of the frequency

of the harmonic components and of the derivative of the

-(Za:[y*(n—i) -

response of the AR model transfer function at the frequencies
(n—1)]

=0 frequency response at these frequencies.
N-1/P Finally, writing (64) in matrix form, we get
+3 (Z aily(n — i) — p(n - Z')])
n=P \i=0 2 9 H_ _ 9
P Au*(n — 1) —E{ a_ln.P} =2iRe (KT“) AlAfI (KT“)}
. Z al L) 62) 00,00, Tir 00 00,
im0 90, (65)
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A, is the N x (N — P) matrix of the conjugates of the first
N — P columns of A4,

r 1 7
a*(1) 1
a*(2)  a*(1) 1
Ao am-n 3 ©0
a*(p) a*(1)
and L a*(p)
0 0 1
0 1
K=|. (67)
1 00

is the exchange matrix.
Next, we will study the relationship of the conditional CRB
to the exact CRB.

A. Analysis of the Conditional CRB

__Let y be the reverse-order version of y, i.e. ¥ = Ky. Let
I" be the covariance matrix of . Since I" is Hermitian and
Toeplitz

T=EKy"K"|=KrK =17 (68)

where we have used the Hermitian property of K. Hence, in
our problem

-y L or . or
T (8) =2 Re] 28—
ke(6) e{ao T 56 v\ 26l 20,

=2 Re{ ?90 KEKRr-KH g O }

a0,
or or
-1 -1
+tr{1“ 80kl“ 801}

:2Re{ (K;TI:)H(I“ )T (

or or
-1 ~1
+ tr{l' I 03} (69)

o
00,
80

where the last equality results from the fact that KI'" 'K =
K7 'I'''K~! = (KT'K)~ = (I'")~. Substituting (50) into
the mean dependent part of (69) yields for the mean parameters

el () o7 ()}
() (e2)

()

- () ()

2 ap\® T( 3 )
- ——R — ) Aa3AT (K= 70
o3r e{( 60k) 272\ o8, 7
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. TABLE I
THREE FIRST-ORDER AR MODELS
Test Case oj B ay
Narrow Band AR 1 —0.9756 ¢
Medium Bandwidth AR 1 —0.85¢lT
Wideband AR 1 —0.356%

where A} denotes the conjugate of Ay, ie., A} = (A7)T and
similarly for A3. Note that (K (Ou/00)))¥ A} is a function
of only the last P elements of K(8u/d8}), which are the P
initial values of du/ 08y.. In addition, note that the entries of
A, are all zeros except for the lower P x P triangular block.

For N > P, we can ignore the contributions to (70) of the
term that is a function of Ay as well as the contribution of
the P right-most columns of A; (which is also a function of
only the P initial values of Ou/88}), in which case, the part
of (69) depending on the mean can be approximated by

2 Re{—a—lf—l"l o }
80, 90,

~ 2 Re {(Ki") A4, ( 85‘)} (1)
UAR 00y, o8,
which is identical to (65). Hence, the derivation of the con-
ditional CRB through the use of the conditional likelihood is
equivalent to the approximation (71) of the exact CRB. Note
that this approximation holds for any mean function pu(n)

and is independent of the parametric model selected for the
harmonic mean.

VI. NUMERICAL EXAMPLES

To gain more insight into the behavior of the different
bounds, we resort to numerical evaluation of some specific
examples. In this section we present several such examples,
which illustrate the dependence of the bounds on various signal
and noise parameters.

A. The Bound for the AR Parameters

In the first part of this section we investigate the behavior
of the exact CRB for autoregressive noise. We consider
three different first-order AR models: narrow band, wide
band, and medium band. All three models have their
spectral peak at 0.257. The parameters of the AR processes
are listed in Table I.

Since we have shown that the bound for the noise is
independent of the bound for the harmonic mean, the same
results hold for any choice of harmonic component. The data
length in these experiments is N = 256.

Figs. 1-3 depict the spectral density function of the AR
component. The mean value of the spectrum (dashed line) and
the confidence bounds (solid lines), i.e., the mean plus and
minus the standard deviation computed from the CRB, are
shown.

B. The Effect of the Data Record Length

Next, we investigate the relations between the exact and
conditional bounds for the parameters of the harmonic compo-
nent as a function of the data length for different combinations
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Fig. 1. Spectral density and confidence bounds for the narrowband Gaussian

AR component.
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Fig. 2. Spectral density and confidence bounds for the medium bandwidth

Gaussian AR component.
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Fig. 3. Spectral density and confidence bounds for the wideband Gaussian

AR component.

of the harmonic and noise components. For the colored noise,
we consider the three AR models of Table L.

The harmonic component is comprised of two exponential
components (L = 2). The exponential frequencies are 0.247

CRB (Harmonic Frequency)

Data Length
> .

gl 101———— Harmonic FrequencyBound
[

E 1.01 1
= 1005 1
K-}

&

S % 100 150 200 250

Data Length

Fig. 4. CRB for the frequency of one of two exponentials in a narrowband
Gaussian AR component. The exponentials’ frequencies are far from the peak
of the noise spectral density.

8 x103 Exact and Conditional Bounds

6~ 4

CRB (Harmonic Frequency)
»

15

CRB Ratio Harmonic Frequency
~N
T T

1
100 120 140 160 180 200 220 240 260

Data Length

Fig. 5. CRB for the frequency of one of two exponentials in a narrowband
Gaussian AR component. The exponentials’ frequencies are close to the peak
of the noise spectral density.

and 0.267 for one set of experiments and 0.497 and 0.517
for a second set. Here C; = 1,05 = 1 - ¢#("/18)_ For the
exponentials, we have plotted for each test case both the exact
(solid line) and the conditional (dashed line) CRB’s on the
frequencies and the ratio of the two bounds (i.e., the results
of the conditional bound are normalized with respect to the
exact bound).

The simulation results indicate that for the case where
the AR process is narrowband and the frequencies of the
exponentials are far from the frequency of the peak of the
noise spectrum, the conditional CRB and the exact CRB are
very close, even for relatively short (N < 100) data records
(Fig. 4). Larger deviation from the exact bound is observed as
the bandwidth of the colored noise spectral density increases
(Figs. 6 and 8).

For the case in which the exponentials frequencies are
close to the peak of the colored noise spectrum (Figs. 5, 7,
and 9), we see that the conditional CRB usually has a large
deviation from the exact bound for short data records, although
it converges to the exact bound as the data length increases.
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Fig. 6. CRB for the frequency of one of two exponentials in a medium
bandwidth Gaussian AR component. The exponentials’ frequencies are far
from the peak of the noise spectral density.
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Fig. 7. CRB for the frequency of one of two exponentials in a medium
bandwidth Gaussian AR component. The exponentials’ frequencies are close
to the peak of the noise spectral density.

In some cases, the conditional bound is considerably higher
than the exact bound. In fact, for the case depicted in Fig. 5,
for data length N = 50, the conditional bound is 100 times
higher than the exact bound (and hence not depicted in the
figure itself).

C. The Bounds as a Function of Exponential Frequency

Next, we investigate the exact and conditional bounds on the
harmonic component parameters, as a function of frequency,
for constant local SNR and a fixed data length. The harmonic
component is comprised of a single exponential. For each of
the three different noise models listed in Table I, the frequency
of the exponential is varied in the interval (0,2m), while the
local SNR, which is given by

ICk|?

SNRL,),C = —SW‘_)
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Fig. 8. CRB for the frequency of one of two exponentials in a wideband
Gaussian AR component. The exponentials’ frequencies are far from the peak
of the noise spectral density.
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Fig. 9. CRB for the frequency of one of two exponentials in a wideband
Gaussian AR component. The exponentials’ frequencies are close to the peak
of the AR noise spectral density.

is held constant at a level of SNR,,, = 10 dB. Here, S(e’*) =
03 /|A(e’)|? denotes the spectral density function of the
AR process. In this set of examples, the data length is chosen
to be relatively short (N = 100), in order to not to have
“asymptotic” results.

The results depicted in Fig. 10 (a solid line denotes the exact
CRB, and a dashed line denotes the conditional CRB) indicate
that the performance of the conditional ML estimator is very
close to the exact bound for the parameters of the harmonic
component, as long as the exponential frequency is not too
close to the spectral peak of the noise. At these frequencies,
the conditional CRB is larger than the exact CRB, especially
for the narrowband case.

D. The Bounds as a Function of the Spectral Slope

In this example, the harmonic component is comprised of
a single exponential, and the data length is chosen to be
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Fig. 10. CRB on the frequency of a single exponential in narrow, medium,
and wideband Gaussian AR noise as a function of the exponential frequency.
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Fig. 11. CRB for the frequency and amplitude of a single exponential in
Gaussian AR noise versus noise bandwidth. The exponential frequency is
w/3 for the upper pair of figures and 57/4 for the lower pair.

N =100 and is held fixed throughout the experiments. The
local SNR is also held constant. However, the bandwidth of
the noise and, hence, the derivative of the AR model transfer
function at the exponential’s frequency, are changed. The exact
and conditional bounds on the parameters of the harmonic
component are investigated under these conditions.

The harmonic component is comprised of a single exponen-
tial with frequency w; = 7 /3 and amplitude C; = 1 in the first
experiment, and w; = 57/4,C; = 1 in the second. In each
experiment, the bandwidth of the noise is varied by changing
the modulus of the pole of the first-order AR model (all models
have their spectral peak at 0.257). The local SNR (see (72)) is
held constant at a level of SNR,,, = 10 dB. Varying the noise
bandwidth while holding the local SNR fixed has the effect of
varying only the derivative (slope) of the noise spectrum at the
frequency of the exponential. The results depicted in Fig. 11
indicate that both the exact and the conditional bounds for
short data records are affected significantly by the slope of the
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noise spectrum. Here, a solid line denotes the exact CRB, and
a dashed line denotes the conditional CRB. It is also interesting
to note that in these examples, the conditional bound is very
close to the exact bound.

VII. CONCLUSIONS

In this paper, we derived the exact CRB for the joint
estimation of the parameters of complex exponentials and
complex colored additive Gaussian noise. These results were
specialized to the cases of circular Gaussian noise and complex
autoregressive noise. An approximate bound, which we refer
to as the conditional CRB, was derived as well, and it was
shown that the conditional CRB can be obtained as a special
case of the exact bound. We have shown that both the exact
and conditional CRB’s for the noise and harmonic mean
parameters are decoupled. In most cases, the conditional bound
is quite close to the exact bound. However, when the number
of data points is small, they may be significantly different.
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