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Abstract— Any regular stationary random processes can be
represented as the sum of a purely indeterministic process and a
deterministic one. This paper considers the achievable accuracy
in the joint estimation of the parameters of these two components,
from a single observed realization of the process. An exact form of
the Crameér-Rao Bound (CRB) is derived, as well as a conditional
CRB. The relationships between these bounds, and their relations
to the previously derived asymptotic bound, are explored by
analysis and numerical examples.

Index Terms—Stationary process, Wold decomposition, purely
indeterministic process, deterministic process, Cramer-Rao
bound.

I. INTRODUCTION

N THIS paper we address the general problem of establish-

ing bounds on the achievable estimation accuracy of the
parameters of a regular, stationary process, from a single ob-
served realization of this process. The Wold decomposition [1]
implies that any regular, discrete, stationary random process
can be represented as a sum of two mutually orthogonal com-
ponents: a purely indeterministic process and a deterministic
one. The purely indeterministic process has a unique white
innovations driven moving average representation (of possibly
infinite order). Its spectral measure is absolutely continuous
with respect to the Lebesgue measure, while the spectral
measure of the deterministic component is singular with re-
spect to the Lebesgue measure. Since for practical applications
we can exclude singular-continuous spectral measures and
distribution functions from the framework of our treatment,
the deterministic component becomes the harmonic process

L L

h(n) = Co + ZOeCOSw -t ZDgsinwg -n (1)
£=1 =1

where the C,’s and D,’s are mutually orthogonal random
variables, E[C¢]? = E[D¢]? = o7, and wy is the frequency
of the /th harmonic. In general, L is infinite.
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Let {y(n)} be the observed regular process. The foregoing
discussion implies that y(n) is uniquely represented by y(n) =
w(n)+h(n), where {w(n)} denotes the purely indeterministic
component. Since, in general, only a single realization of the
random process is observed, we cannot hope to infer anything
about the statistics of the Cy’s, and D,’s over different
realizations. The best we can do is to estimate the particular
values which these coefficients take for the given realization.
In other words, we might just as well treat these as unknown
constants, and the deterministic component as the unknown
mean of the observed realization. In the present framework we
assume the number L of harmonic components to be known
and finite.

The problem of analyzing mixed-spectrum processes has
received some attention in the past. Priestley [2] describes
Whittle’s and Bartlett’s periodogram-based tests for detecting
harmonic components in colored noise, as well as a sequential,
periodogram-based estimation method for analyzing the long-
term sample covariances of the observed data. More recently, a
conditional maximum-likelthood algorithm for estimating the
parameters of sinusoids in colored autoregressive (AR) noise
was suggested in [4] and [5], where the model order selection
problem was considered as well. In 5], an approximation to
the conditional Fisher Information Matrix (FIM) is presented.

The special case of estimating the parameters of harmonic
components in the presence of noise with a known spectrum
or covariance function has been studied quite exfensively
[71-[9]. Most of this work assumes that the noise is white.
Relatively little work seems to have been done for the case of
harmonic components in unknown noise. Asymptotic results
on the achievable accuracy of estimating the parameters of
sinusoidal signals in colored noise were given in [3]. However,
as we show in this paper, for short data records (and in some
cases even for relatively long data records) the asymptotic
bound demonstrates large deviation from the exact one.

In the present paper we concentrate on a solution to the
problem of the achievable accuracy in jointly estimating the
parameters of the harmonic (deterministic) and purely indeter-
ministic components of the process, based on a finite-length,
single observed realization of this process. In Section II we
derive an exact Cramér—Rao Bound (CRB) expression for the
estimation problem in terms of the covariance function of the
purely indeterministic component, without assuming any spe-
cific model for this component. We show that for a Gaussian,
purely indeterministic component, the bounds on the purely
indeterministic and harmonic components are decoupled, re-
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gardless of the parametric model for the purely indeterministic
component. In Section III, by assuming an AR model for the
purely indeterministic component, we find a closed-form exact
CRB on the achievable accuracy of jointly estimating the
parameters of the harmonic and autoregressive components
of the process. Next we derive an approximate expression
of the CRB by computing it from the conditional-likelihood
function of the observed data, rather than by using the exact-
likelihood function. The results show that the . conditional
bounds on both the amplitude and frequency parameters of the
harmonic components are functions of the frequency response
of the colored noise model at the frequencies of the harmonic
components, and of the derivative of the frequency response
at these frequencies. Finally, the exact and conditional bounds
are compared with the asymptotic bound of [3] which shows
dependence only on the local SNR at the frequencies of the
harmonic components, but not on the derivatives.

II. A GENERAL FORM OF THE CRB

We start by assuming that the purely indeterministic com-
ponent is a general Gaussian process. Hence, the observed
process {y(n)}N=} which is given by

y(n) = p(n) +win), n=0,1,---,(N-1) 2)

is the sum of a real, zero-mean, stationary, purely indeter-
ministic, Gaussian process w(n) and a real harmonic mean,
which can be written as

K
p(n) =3 crpr(n) &)
k=0

where pp(n) are sine or cosine functions with different fre-
quencies, and K = 2L + 1.

Next we will rewrite (1) in a generalized matrix form. To do
that, we introduce some notation. Let £ = [0,1,---, (N —1)]T
be the time index vector, and let

p=11

where 1 is an N x 1 vector of 1’s, and where cos wyt denotes
a column vector whose elements are cos wyt, where ¢ are the
elements of ¢. Next we define the amplitude and frequency
vectors for the sine and cosine functions by

coswit---coswrt sinwit---sinwrt]  (4)

c:[COaCh"",CInDly'"aDL}T (5)

w=[wr, -, w]T ©)

Finally, we assemble the elements of the observed process
into vector form,

y = [y(0),y(1),--

The vectors w and p are similarly defined. Thus we can
rewrite (3) in matrix form as

Sy(N =11 (7

= pe. ®)

Assuming that the purely indeterministic component, {w(n)},
admits some finite-order parametric model, let a be its pa-
rameter vector. Let # = {a,c,w} be the parameter vector
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of the process {y(n)}. The general expression for the Fisher
Information Matrix (FIM) of a real Gaussian process is given
by (e.g., [12])

ot . op 1 [ .0 _dr

where p is the mean of the observation vector, and I its

covariance matrix. Since the purely indeterministic component

{w(n)} is a zero-mean process, p is independent of the

parameters of the purely indeterministic component, and hence
Op/day, = 0. Therefore

1 or or

Jo0) = s I —rt— 0. 10

k,é( ) 2 8ak aa[ ( )

Note also that since the process covariance function I' is

independent of the mean

or
Ber =0. (11)
or
— =0. 12
Do (12)

Hence, the $tr{-} term in (9) vanishes for all the FIM
entries that correspond to parameters of the mean. Therefore,
J*¢ = 0, and J¥“ = 0. Taking the partial derivatives of p
we get

ou

—— = T(Dy cos wil — Cy sinwyt) (13)
dwk
where T' = diagt, and
Ou
— = 14
E Py (14)

where p, is the fth column of p. Using (14) and (11) we
conclude that the FIM elements which correspond to the
amplitude parameters of the mean component are given by

Toe =0T pp (15)
Substituting (14), (11), (13), and (12) into (9) yields
JiE = PET (D cos wet — Cy sinwyt). (16)
Finally, substituting (13), and (12) into (9) we get
T8 =T (D coswit — Cy sinwyt) I
-T(Dgcoswet — Cpsinwgt). 7

Since J*° = 0 and J**“ = 0 we conclude that the estima-
tion problems of the purely indeterministic and deterministic
components are decoupled. Hence, the bound on the purely
indeterministic component is found by inverting (10), and it
is independent of the mean parameters. Therefore, this bound
is identical to the one obtained for a zero-mean process.
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III. THE CRB FOR AN AR PURELY
INDETERMINISTIC COMPONENT

As stated earlier, the most general model for the purely
indeterministic component {w(n)} is the moving average
(MA) model. In this section we analyze the special case in
which the purely indeterministic component is a Pth-order
AR process. For this special case, we derive closed-form
formulas for the exact CRB. Next we derive the conditional
and asymptotic CRB’s and compare them to the exact bound.

A. The Exact CRB
A real Gaussian AR process is defined by

win) =

Z a;w(n — 1) + u(n)

i=1

where {u(n)} is a stationary, zero-mean Gaussian white noise
with variance UiR' It can be shown [11] that the inverse
covariance matrix I'' of a Pth-order AR process (N >P)

is given by
1

JAR

I''= (A4 — A,A7) (18)

where A; and A, are lower triangular Toeplitz matrices such

that
1, =]
(A1), = { ai—j, 1>] 19
0, 1<
. _ ) ON—itj i Zj
(AZ)Z,] — { 0, Z<] (20)

and a(k) = 0 for k<0 and &k > P.

For an AR modeled purely indeterministic component, the
parameter vector « is the P + 1-dimensional vector @ =
[03r,a(1),a(2),--,a(P)]?. Taking the partial derivatives
of I'"* in (18) with respect to a, followed by substituting
these derivatives and (18) itself into the previously derived
general expressions of J%, J%¢ J and J“*“ we obtain
closed-form expression for the CRB on the parameters of the
deterministic component and on the colored AR process in
which it is embedded. Hence we conclude that if the purely
indeterministic process is an AR process, the bound on the AR
parameters is obtained by inverting (10), after the substitutions
above are made. This bound is identical to the one obtained for
the same AR process in the case where the mean component
is identically zero [10].

B. The Conditional CRB

A conditional ML algorithm for estimating the parameters
of sinusoids in AR process, jointly with estimating the AR
model parameters, was suggested in [4]. In this section we
derive the performance bound for this algorithm.

The conditional CRB is derived using the conditional prob-
ability density function of the observed process. In order to
simplify and unify the notations we assume here that Cy = 0.
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The joint probability density function of the observations,
conditioned on the vector of initial conditions (the first P data
samples) is given by

P(yly(0)---y(P —1);0)

1 ;N
(V2roag)N—F P { 2031 nz;

P L
- {Zai<y(n~z ZCECOS(U[ n—1i)
i=0 (=1

2
+ Dy sinwg(n — z)]) } 21)

where ag = 1. Let
pux(n) = Cy coswgn + Dy sinwgn (22)

be the kth component of the mean p(n). Hence, for 6
Ck, Dy, or wg,0u/060, = Op,, /00, where

Taking the partial derivatives of the conditional log-likelihood
function with respect to the AR process parameters, we have

dlnP 1 &
Y (e

sy = [ur(0), (1), - - (23)

aily(n — i) — p(n — i)])

=0
(y(n = k) — p(n = k)] (24)
and
dmP N-P 1 =
do3n 2025 20%R =

Taking now the second derivative with respect to the mean
component parameters 6,,, yields

oo ()

Jy(n — k) — p(n — k)

+ (Z aily(n — i) — p(n — i)])

8%In P
8(1,]989“5

06, } =0 (26)
and
9?InP
_E{ anRagw }
1 N—
= }TE{ Z (Zal[y (n—1)— p(n— z)])
AR n=p
P
. <Z aiw) } - 0. 27
i=0 Fne
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Thus the conditional FIM is block-diagonal, and the condi-
tional CRB for the parameters of the mean is decoupled from
the bound for the autoregressive parameters. This is the same
situation as in the case of the exact CRB which was presented
in the previous section. Therefore, the conditional CRB for
the parameters of the mean can be obtained by inverting the
corresponding block of the FIM.
Let us define

P
A(E?) = ae™ A(E) = A7)
t=0

and let

N-—-1

N, = E ed(wWrtwe)n
n=P
N-1

Ny= 3 eflen=wom
n=pP
N-1

E ned(ws—won

Ny =

71
-

nel(@ktweon

N4:

21
N

N5 — ner(wk+wg)n

n

N

E RZeJ(wk—we)n.

n=pP

T
-

Ne =

Taking the partial derivatives with respect to the mean com-
ponent parameters, we find that

—F { 822 12);3 }
1 OV
N-1/P
1 op(n — 1) Ap(n —1)
= 5 a; i
o3r P (; o ) (l}; 9,
N-1 P
1 0 0
=== ) a;ur(n = 9)
% S (% ).
P
: (Z aipe(n — z)) (28)
i=0

Substituting (22) into (28) we find after some algebraic ma-
nipulations that

_E 5%In P
&ukan
1

. o .
Jwey __~ J@k —
207 Re {NlA(e )6‘% A(e?**)(Cy — jDy)

S | .
+ NoA(e”*) — A™(e”*)(C, + j D)
&uk
+ N3 A7) A* (e ) (Dy, — jCy)
+ Ny A(e7) A(e7“% ) (Dy, + .9‘6%)}

29
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E o2 1?13
OweOwy,
205, { [Nﬂ(ej“k)A(eM) — Ny A
Owy,

=53
20% R

d . .
. 5@14(6]“2)} [(—CkCg + DkDg) + ](CkDg + ch’g)]

9 : D
Jwey Jwi JwiY__~

+ Ny {A(ﬁ )aWkA(e )+ Ae )&dz

- A(eM)J [(Cx D¢ + DCe) + §(CrCp — Dy Dy)]

o .
A*(eIwr
8wk (6 )

+ [N(;A*(ej‘*’k JA(e?t) + Ny

9] ; .
. a—we-A(ejw):l [(Ckcyg + DkDg) — .](CkDg — DkCg)]
+ Nj iA*(ejwk)A(ejwl) _ A*(ejwk)iA(ejwl)
Owy, Owy
- [(CrDe¢ + DiCy) + j(CrCy + DkDE)]}~ (30)
A similar result to (30) is also stated in [6].
Also
8%2In P 1 , )
—_ — Jwe J Wk
E(80k80,3> 257 Re { No A(e?“¢) A(e?%)
+ NyA(e7F) A* (7))
(31
and, in a similar manner,
P 1 . .
- = Re { N A(e?“) A" (eI«k
E(amam) 207, Re (NaA(e) A7)
— NoA(e79%) A7)}
(32)
9?InP ) .
- = Jwe JWr
E{@Dkan} 207 Im { N2 A(e?“¢) A(e?%)
- N4A(ej“f)A*(ej“"“)}.
(33)

The derivation of the conditional FIM reveals that the bounds
on both the amplitude and the frequency parameters of the
harmonic components are functions of the frequency response
of the colored noise model at the frequencies of the harmonic
components, and of the derivative of the frequency response
at these frequencies. Next we study the relationship between
the conditional CRB and the exact bound.

C. Analysis of the Conditional CRB
Let

: (34)
1 --- 0 0

be the exchange matrix, and let £ be some vector z =
[(0),z(1),---,2(N — 1)]* and let z be its “flipped around”
version, i.e., z = Kz. Let R, and R, be the covariance
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matrices of z and z, respectively. Note that since R is
Toeplitz
R, = E[Kzxz"K")= KR.K = R, (35)

where we have used the symmetric property of K. Hence, in
our problem

ot op 1 _,or _._,or
e O\ e O
- (KW> K0,

+ ltr{r—la—rrfla—F}. (36)

2 00y, 04,
Substituting (18) into the mean dependent part of (36), we have

o\ 0w\ 1 (0N ar( e Om
et il el YA il
(K aak> r (K 96, )  oip Ko, ) A K,

1 op g T op
—— (K22 a,4T (K2 ).
a§R< aek> 2" 66,

(37)

Note, that (K(0u/80;))" Az is a function of only the last
P elements of K(9p/06)) which are the P initial values of
Op/00y). Also note that the entries of A, are all zeros except
for the lower P x P triangular block.

In the case where N > P we can neglect the second term
in (37) (which is a function of As), as well as the contribution
of the P rightmost columns of A; (which is a function only
of the P initial values of du/06}). In that case, (37) can be

approximated by
op T ou 1 o T T op
K K (Ko | AiA) (K
(i) 7 ()~ () 4 ()
(38)

where A; is the N x (N — P) matrix of the first N — P
columns of Aq

(1)
a(2) a(l) 1

A= a) alp-1) 1 &
a(p) a(1)
L a{p) |
Let z = Kp and , = Kp,. Then (38) yields
1 on \ = =7 op
— | K AA
O?AR ( 801%) H (K89W>
1 8p T _7 om
R W L
oar 90y, O,
/)
= AjA, — 40
U%\R 08, = 00y, 40

which is identical to (28). We conclude that the derivation
of the conditional CRB through the use of the conditional
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likelihood is equivalent to an approximation (38) of the
exact CRB. Note that this approximation holds for any mean
function p(n) and is independent of the parametric model for
the mean.

D. The Asymptotic’ Bound

In the previous sections we derived a closed-form exact CR
bound for the case of an AR-modeled purely indeterministic
component, and gave an approximation to this bound through
the conditional-likelihood function. In this section, we show
how the asymptotic results of [3] can be derived as a special
case of the bounds which were presented in the previous
sections.

Let S(e/) = o%x/|A(e’“)|? denote the spectral density
function of the AR process. Also, let

_Ci+Dj
© 285(edwr)

Returning now to the results presented in Section III-B and
letting N — oc while using the formula [13]

SNR,,, 41)

N 1
. 1 _0
lim > nfcos(wn) =4 pr1 ¢ (42)
Nooo NFHL £~ 0, w#0
we find that
N 1 N N3
: 2 3 1z 2
> n?= sy nf=—. (43
w2 =N NN T )

Therefore, limy oo Ng = N?/3 for elements on the diagonal
of the FIM block which corresponds to the sinusoids frequency
parameters. The remaining coefficients in (30) either tend to
zero or are functions of N2 and N. If we now neglect all terms
in (30) which grow slower than N3, we have that

2InP 24 D2 N? :
— lim E a n2 :Ck—l; k___lA(e]wk)|2
02 +D2
=Nk K 44
65(cior) “4)

Since for k # £, N1, Ny, N3, Ny, N5, Ng, all tend to zero as
N — oo, off-diagonal terms of the FIM blocks tend to zero as
N — oc. By using similar arguments to those we have applied
to obtain the asymptotic FIM block, which corresponds to the
sinusoids frequency parameters, all the blocks of asymptotic
FIM are obtained. Taking the inverse of the asymptotic FIM
while using the diagonality of its blocks, it can be shown that
the block of the asymptotic CRB matrix, which corresponds
to the sinusoids frequency parameters, is diagonal with the
diagonal elements given by

12
CRB = —ge—,
@) = VosnR,,
The asymptotic CRB on the amplitude parameter Cj, is given
by

(45)

O2 + 4D?

CRB (Cy) = NSNR
Wi

(46)

and the asymptotic CRB on the amplitude parameter Dy, is
similar. These results are identical to those in [3]. Hence, the
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Fig. 1.
peak of the AR spectrum.

TABLE 1
THREE SECOND-ORDER AR MODELS
Test Case g/Z\R %1 9
Narrowband AR 1 —1.378 0.95
Medium-bandwidth AR 1 -1.183 0.7
Wideband AR 1 —0.447( 0.1

asymptotic bound of [3] is a special case of the conditional
CRB derived in Section III-B, which is itself an approximation
to the exact bound presented in Section III-A.

IV. NUMERICAL EXAMPLES

To gain more insight into the behavior of the different
bounds, we resort to numerical evaluation of some specific
examples. In the first part of this section we investigate
the relations between the three bounds derived in the pre-
vious sections, as a function of the data length, for different
combinations of the deterministic and purely indeterministic
components. For colored noise, we consider three differ-
ent second-order AR models: narrowband, wideband, and a
medium band. All three models have their spectral peaks
at 0.257. The parameters of the AR processes are listed in
Table 1.

In the second part, the data length is chosen to be relatively
short (N = 100) and is held fixed throughout the experiment.
The deterministic component is comprised of a single sinusoid.
For each of the three different noise models listed in Table I,
the frequency of the sinusoid is changed, while the local SNR
(41) is held constant.

In the third set of experiments, the deterministic component
is comprised of a single sinusoid, the data length is chosen
to be N = 100 and is held fixed throughout the experiments.
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The CRB on the frequency of a single sinusoid in narrow, medium, and wideband Gaussian AR mnoise. The sinusoid frequency is near the

The local SNR is also held constant. However, the bandwidth
of the noise, and hence the derivative of its spectral density at
the sinusoidal frequency, is changed.

A. The Bounds as a Function of the Data Record Length

Let the deterministic component be a single sinusoid (i.e.,
L = 1 in (1)). We perform two experiments: the first with
sinusoidal frequency of 0.247, and the second with sinusoidal
frequency of 0.57. In both cases C; = D; = 1.

In the second set of examples the same second-order AR
processes are used. However, the deterministic component
is now comprised of two sinusoidal components (L = 2).
The sinusoidal frequencies are 0.24nx and 0.267 for one set
of experiments and 0.497 and 0.517 for a second set. Here
C, =0y =Dy =Dy = 1.

In all these examples, the results are normalized with respect
to the exact bound, i.e., the plots show the ratio of the
asymptotic CRB and the conditional CRB to the exact CRB. In
all the plots, the solid line denotes the ratio of the asymptotic
CRB to the exact CRB while the dashed line denotes the ratio
of the conditional CRB to the exact CRB.

The simulation results indicate that in the case where the AR
process is narrow band, and the harmonic frequencies are far
from the frequency of its spectral peak, the conditional CRB
and the exact CRB are very close, even for relatively short
(N < 100) data records—see Figs. 2 and 4. Larger deviations
from the exact bound are observed as the bandwidth of the
colored noise increases. We can therefore conclude that the
conditional CRB is close to the optimal performance bound
of an unbiased estimator (which is given by the exact CRB)
as long as the harmonic frequencies are far from the spectral
peaks of the noise. Note also, that as expected, the asymptotic
bound approaches ‘the exact CRB as the length of the data
record increases.
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the peak of the AR spectrum.

In the case where the sinusoidal frequencies are near the
peak of the colored noise spectrum, see figs. 1 and 3, we note
that the conditional CRB usually has a larger deviation from
the exact bound than that of the asymptotic CRB, although they
both converge to the exact bound as the data length increases.
These results imply that for short and medium length data
records, when the harmonic frequencies are close to the peaks
of the noise spectrum, the conditional bound may be far from
the optimal bound.

B. The Bounds as a Function of the Sinusoidal Frequency

In this set of examples the data length is chosen to be rela-
tively short (N = 100), so as not to have “asymptotic” results.
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The CRB on the frequency of one of two sinusoids in narrow, medium, and wideband Gaussian AR noise. The sinusoids frequencies are near

This data length is held fixed throughout the experiment. The
deterministic component is comprised of a single sinusoid. For
each of the three different noise models which are listed in
Table I, the frequency of the sinusoid is varied in the interval
(0, ), while the local SNR (41) is held constant at a level of
SNR,,, = 10 dB. Here, the solid line denotes the exact CRB,
the dashed line denotes the conditional CRB, and the dotted
line denotes the asymptotic bound.

The results depicted in Figs. 5 and 6 indicate that for
medium- and narrowband noise the conditional CRB is very
close to the exact bound, as long as the sinusoidal frequencies
are not too close to the spectral peaks of the noise. At those
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Fig. 4. The CRB on the frequency of one of two sinusoids in narrow, medium, and wideband Gaussian AR noise. The sinusoids frequencies are far
from the peak of the AR spectrum.
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Fig. 5. The CRB on the frequency of a single sinusoid in narrow, medium, and wideband Gaussian AR noise, as a function of the sinusoidal frequency.

frequencies, the conditional CRB is significantly larger than
the exact CRB. For the wideband case, it can be seen that the

difference between the conditional and exact bounds is almost

constant, in most of the interval (0, 7).

Note that all the experimental results in Sections IV-A
and IV-B indicate that, while the asymptotic bounds on the
frequencies and amplitudes of the sinusoidal components are
functions only of the local SNR, for finite-length data both
the exact and conditional bounds depend on the locations of
the sinusoidal frequencies with respect to the spectral peaks

of the noise. This dependence is quite strong even when the
local SNR is held constant.

C. The Bounds as a Function of the Spectral Slope

In this section the data length is chosen to be N = 100
and is held fixed throughout the experiment. The deterministic
component is comprised of a single sinusoid with frequency
of 0.2n and amplitude parameters C; = D; = 1 in the first
experiment, and 0.57,Cy = D; = 1 in the second. In each
experiment, the bandwidth of the noise is varied by varying
the modulus of the poles of the second-order AR model (all
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Fig. 7. The CRB on the frequency and amplitude of a single sinusoid in Gaussian AR noise versus noise bandwidth. The sinusoidal frequency is 0.27

for the upper pair of figures,

and 0.57 for the lower pair.

models have their spectral peak at 0.257). The local SNR, V. CONCLUSIONS

(41), is held constant at a level of SNR,,, = 10 dB. Varying
the noise bandwidth while holding the local SNR fixed has
the effect of varying only the derivative (slope) of the noise
spectrum at the frequency of the sinusoid. The results, depicted
in Fig. 7, indicate that while asymptotically the bound is not
affected by the slope of the noise spectrum, it does affect the

We presented an exact form of the CRB for estimating
the parameters of a general regular stationary process, and
specialized it for the case where the purely indeterministic
component is an autoregressive process. Comparison of the
exact CRB with the conditional and asymptotic bounds shows

exact and conditional bounds for short data records. Here, the that the approximations deviate significantly from the exact
solid line denotes the exact CRB, the dashed line denotes the bound in many cases. It is therefore recommended that the
conditional CRB, and the dotted line denotes the asymptotic ~exact form of the bound be used unless the data length is

bound.

sufficiently large.
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The results presented here are useful for assessing the
achievable accuracy in estimating the amplitudes and fre-
quencies of sinusoidal signals in the presence of colored
noise with unknown characteristics. This type of estimation
problem arises in many engineering applications in the areas
of communications, array processing, and sonar.
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