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A WOLD-LIKE DECOMPOSITION OF TWO-DIMENSIONAL
DISCRETE HOMOGENEOUS RANDOM FIELDS

BY JOSEPH M. FRANCOS, A. ZvI MEIRI AND BOAZ PORAT

Ben-Gurion University, Elscint and Technion—Israel Institute of Technology

Imposing a total order on a regular two-dimensional discrete random
field induces an orthogonal decomposition of the random field into two
components: a purely indeterministic field and a deterministic field. The
deterministic component is further orthogonally decomposed into a half-
plane deterministic field and a countable number of mutually orthogonal
evanescent fields. Each of the evanescent fields is generated by the column-
to-column innovations of the deterministic field with respect to a different
nonsymmetrical-half-plane total-ordering definition. The half-plane deter-
ministic field has no innovations, nor column-to-column innovations, with
respect to any nonsymmetrical-half-plane total-ordering definition. This
decomposition results in a corresponding decomposition of the spectral
measure of the regular random field into a countable sum of mutually
singular spectral measures.

1. Introduction. In this paper we consider the structure of two-
dimensional (2-D) discrete homogeneous random fields. We extend the
results of Helson and Lowdenslager (1962), Korezlioglu and Loubaton (1986),
Kallianpur, Miamee and Niemi (1990) and Chiang (1991) to show that
the two-, three- and four-fold Wold-type decompositions are special cases
of the countably-infinite-fold decomposition presented in this paper. The
countably-infinite-fold decomposition arises from a set of new total-order and
nonsymmetrical half-plane (NSHP) definitions imposed on the random field.
These order definitions are obtained by rotating the NSHP support by angles
of rational tangent, rather than considering only the vertical and horizontal
orientations.

A family of real, zero-mean, random variables {y(n,m), (n,m) € 2%} is
called a discrete homogeneous random field if E[ y*(n,m)] < oo, and if r(k,1) =
E[y(n+ k,m+1)y(n,m)] is independent of n and m, where (k,1) € 2. Let
y(n,m) be the projection of y(n,m) on the Hilbert space spanned by those
samples of the field that are in the “past” of the (n, m)th sample, where the
“past” is defined with respect to the totally ordered, nonsymmetrical-half-plane
support, that is,

(i,J) < (s, t) iff (i,j)e{(k])|k=s, l<t}

(1)
U{(k,1)| k<s,—00 <l < o0o}.
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Because in this paper we consider other total-order definitions as well, we
shall denote this order definition by o = (1,0). The reason for this notation
is explained in Section 2. The results given in this section are with respect
to o = (1,0). The innovation with respect to the defined support and total
order is given by u(n,m) = y(n,m) — y(n,m) and its variance is denoted by
o?. If E[y(n,m) — 3(n,m)]? = 02 > 0, the field {y(n,m)} is called regular.
The field is called deterministic if E[ y(n,m) — y(n, m)]2iO. A regular field
{y(n,m)} is called purely indeterministic if y(n,m) € Sp{u(s,t) | (s,t) <
(n,m)}. In the following text, all spectral measures are defined on the square
region K =[-1/2,1/2]x[—1/2,1/2]. The spectral representation of y(n, m) is
given by y(n,m) = [ exp[27 j(nw+mv)]dZ(w,v), where Z(w, v) is a doubly
orthogonal increments process, such that dF,(w,v) = E[dZ(w,v)dZ*(w,v)].
F,(w,v) is the spectral distribution function of {y(n,m)}. Let f(w,v) be the
corresponding spectral density function, which is the Lebesgue 2-D derivative
of F'y(w,v). F*(w,v) denotes the singular part in the Lebesgue decomposition
of Fy(w,v). Let L be a set of Lebesgue measure zero in K, such that the
measure defined by F*(w,v) is concentrated on L.

THEOREM 1 [Helson and Lowdenslager (1962)]. Let {y(n,m), (n,m)e 92}
be a 2-D regular and homogeneous random field. Then y(n, m) can be uniquely
represented by the orthogonal decomposition

(2) y(n’,m) = w(n,m) + U(n’m)’

where

3 w(n,m) = Z a(k,Du(n—k,m—1)
(0,0) < (&,1)

and ¥ (0,0)< (k1) a?(k,l) < oo, a(0,0) = 1. The field {w(n,m)} is purely-
indeterministic and regular. The field {v(n,m)} is a deterministic ran-
dom field. The innovation field {u(n,m)} is a.white noise field. The fields
{w(n,m)} and {v(s,t)} are mutually orthogonal for all (n,m) and (s,t).
The spectral representations of the purely indeterministic and deterministic
components are given by w(n,m) = [x 1 exp[27 j(nw + mv)]dZ(w,v) and
v(n,m) = [, exp[27 j(nw+mv)]dZ(w,v), respectively. Hence, F,(w,v) can be
written uniquely as F,(w,v) = Fy(w,v) + F,(w,v). The spectral distribution
function F,(w,v) of the purely-indeterministic component is absolutely con-
tinuous, and F,(w,v) = F%(w,v), where F,(w,v) is the spectral distribution
function of the deterministic field.

Let # be the Hilbert space formed by the random variables y(n,m) such
that (n,m) € 92. Define #” y = = Sp{y(s,t) | (s,t) < (n,m)} C H#; Jffnm)’

(n,m

szn m) are similarly deﬁned Usmg these notations, we have from Theorem 1

ol .
'that szn my = an 'y DH (n m)" Define Jf(”n o) = ﬂ:__oo Hn,m)- Using Theorem 1
it can also be shown that for all m, Jffn m) = JZ’(n o)
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Define Jf( vor—00) = [N(nm)eg? (n m)- The Hilbert space Jf «) 18 called the
remote past space w.r.t. the NSHP total-order definition o. It is spanned by the
intersection of all the Hilbert spaces spanned by samples of the regular field
{y(n,m)} at all (n,m), with respect to the specific order definition denoted
by o.

Let JZ}" =Sp{v|veH# (n —o0)? Tn_1. oo)} We thus have that #
Jf‘?v

Tn—1.—00) D JZL . Hence, as was shown by Helson and Lowdenslager (1962),
Korezlioglu and Loubaton (1986) and Chiang (1991),

v H#P

(n —c0) —

(4) %nm)_%n oo)_yoo w)ea@%l]

l=—00

The subspace EB;L:_OOJ;% v is spanned by the column-to-column innovations of
the regular field deterministic component.

DEFINITION 1. A 2-D deterministic random field {e,(n,m)} is called
evanescent w.r.t. the NSHP total order o if it spans a Hilbert space identical
to the one spanned by its column-to-column innovations at each coordinate
(n, m) (w.r.t. the total order o).

In the following sections we introduce the concept of multiple NSHP total-
ordering definitions. Using this new approach, we derive a countably-infinite-
fold decomposition and show that the preceding decomposition is a special
case of the countably-infinite-fold decomposition.

2. Multiple order definitions and the evanescent fields. The NSHP
support definition that results from the total-order definition (1) is not the only
possible definition of that type on the 2-D lattice. Korezlioglu and Loubaton
(1986) define “horizontal” and “vertical” total orders and describe the hori-
zontally and vertically evanescent components of homogeneous random fields.
Kallianpur, Miamee and Niemi (1990), as well as Chiang (1991), employ sim-
ilar techniques to obtain four-fold orthogonal decompositions of regular and
homogeneous random fields. In the following text, we shall generalize the idea
of multiple order definitions by introducing a family of NSHP total-ordering
definitions in which the boundary line of the NSHP is of rational slope. Note
that it is only the total order imposed on the random field that is changed,
but not the 2-D discrete grid itself. We show that by using multiple total-
order definitions the regular field deterministic component can be decom-
posed into a countably infinite number of mutually orthogonal components,
rather than the two components that result from the three-fold decomposi-
tion of Helson and Lowdenslager (1962) and Kallianpur, Miamee and Niemi
(1990) or the three components that result from the four-fold decompositions
" of Chiang (1991), Kallianpur, Miamee and Niemi (1990) and Korezlioglu and
Loubaton (1986).
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DEFINITION 2. Let a, B be two coprime integers, such that « # 0. Let us
define a new NSHP total ordering by rotating the NSHP support, which was
defined with respect to (1), through a counterclockwise angle 6 about the origin
of its coordinate system, such that tan § = B8/ a.

Let the coordinates (n*, m*) be defined by

) n* _ Ja? + B2 0 cosf —sinf n
m* ] 0 1/y/e2+ B2 |\ sin cosb m)’

where (n,m) are the original coordinates and

cosf —sinf Va2 + B2 0
sin@ cosf )’ 0 1//a% + B2

are the rotation transformation matrix and the normalization matrix, respec-
tively. The normalization matrix is such that the indices n* of the “columns”
under the new total-order definition are consecutive integers and the distance
between two neighboring samples on the same “column” is 1. Thus, the new
coordinates (n(®F), m(®P)) of the original point (n, m) are given by

n(@B) — p*

(6)

m@B) — m* — c(n(“’ﬁ)).

c(n'®P)) is a correction term that guarantees that m(®#) is an integer as well.
For each fixed column index n(®#) of the new total order, c(n(®#)) is determined
by c(n'®P)) = arg min,« - {|m*|}, that is, c(n(*P)) is set equal to the m* of
the lowest absolute value in the n(®#) column. For § = 7/2 the transformation
is obtained by interchanging the roles of columns and rows. The total order in
the rotated system is defined similarly to (1), that is,

(i(a,ﬁ),j(a,ﬁ)) < (S(a,ﬂ),t(a,ﬂ))

(7 iff (@B, j@B)) e [(k,1) | b =s®P) [ <t@P)}
U{(k,1) |k <s%F —oo<l<o0}.

Let us denote by O the above-defined set of all possible NSHP total-ordering
definitions on the 2-D lattice, in which the boundary line of the NSHP is of
rational slope, that is, O = {(a,B) | a, B are coprime integers}. We shall
call such support rational nonsymmetrical half-plane (RNSHP). An example
is illustrated in Figure 1. Note the way the column is defined.

THEOREM 2. The regularity property of a homogeneous random field is
NSHP total-ordering invariant: if @ homogeneous random field is regular with
respect to one NSHP total-ordering definition, then it is regular with respect to
any other NSHP total-ordering definition.
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FiG. 1. RNSHP total-order definition.

PROOF. Because a 2-D homogeneous random field {y(rn,m)} is regular
if and only if f(w,v) > 0 almost everywhere in K (Lebesgue measure) and
Jxlog f(w,v)dwdv > —oo, [Helson and Lowdenslager (1958)], and because
this result is independent of the chosen total-order definition, the proof

follows. O

THEOREM 3. The decomposition of the regular random field into purely in-
deterministic and deterministic random fields is unique and is NSHP total-
ordering invariant: The purely indeterministic (deterministic) component ob-
tained with respect to one NSHP total-ordering definition is identical to the
purely indeterministic (deterministic) component obtained with respect to any
other NSHP total-ordering.

PROOF. The proof readily follows from the foregoing one-to-one correspon-
dence between the decomposition of the regular random field into purely in-
deterministic and deterministic components, and the unique decomposition of
the regular field spectral measure into two mutually singular spectral mea-
sures, which are concentrated on the sets K \ L and L, respectively. O

Note that Theorems 2 and 3 are valid for any NSHP total-ordering definition
and it is not required that the support be RNSHP.

As was shown in (4) for a specific total-order, under each order definition o €
O, only a single evanescent field can be resolved: The field that generates the
column-to-column innovations of the deterministic component. Next, we shall
study the family of total orders defined by Definition 2 to gain further insight

.into the structure of the deterministic component of the decomposition (2).

Define Jfg;‘o’w) = Sp{u(n,m) | (n,m) € $?}, to be the Hilbert space spanned

by the purely indeterministic component of the regular field and similarly
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define A3 | = Sp{v(n,m) | (n,m) e 22} to be the Hilbert space spanned by
the deterministic component of the regular field.

LEMMA 1. Interchanging of roles of “past” and “future” in any RNSHP
total-ordering definition imposed on a regular field results in identical evanes-
cent components.

PROOF. Let P be some RNSHP total order. The Hilbert space spanned by
the corresponding evanescent component is given by

o P
® @%v—@slo{vwe Ky VLAY o)
n=—o0o

Let F denote the total order obtained by rotating the order P by 8 = 7. The
Hilbert space spanned by the corresponding evanescent component is given
by

00 F oo
9) @%?= @S {UIUEZW oo)’v'l‘)fnloo)}

n'=—o00 n’=-o00
Let (n,m) and (n’,m’) be the indices of the same grid point under the two
different order definitions. The properties of the determimstlc random field

[

imply that for any (s,?) and for any fixed 0 € O, #,) = Jfgs o) = Hs00)"

Because for any o’ € O, # (n, N = Sp{v(s,t) | (s,t) < (n/,m’)} and because
the deterministic component of the random field is unique and NSHP total-
ordering invariant,

F F
(10) Kooy = Kooy = Moo © Koty = Koy © Ho oy

Due to the reversed order of indexing induced by the two total-order definitions
P and F, when m — oo, m’ — —oo. By the same argument,

F
(11) Hnr—1,-00) = H{o0,00) © an+1 —00)*

Hence,

00 F oo
@ Jf;‘f}: @ Sp{vlve%:o,oo)e;f(n —00)? UJ‘%:o,oo)e%rwl oo)]

n'=—oo n=—0oo

- X p
Sp{v]veél’w:l o) vJ_Jfn oo)}= P #. O

n=— n=—0oo

Il
'@8

Define Jf Y 7 or—00) = ﬂoeoéfg 00,-00)" Note that # 2’ 00,-00) is the Hilbert space

~ spanned by the intersection of all Hilbert spaces spanned by the regular field
samples {y(n,m)} for all (n,m) and w.r.t. all possible RNSHP total-order
definitions.
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DEFINITION 3. A 2-D deterministic random field { p(n, m)} is called half-
plane deterministic if it has no column-to-column innovations w.r.t. any RN-
SHP total-ordering definition.

THEOREM 4. Let {v(n,m)} be the deterministic component of a 2-D regular
and homogeneous random field. Then {v(n,m)} can be uniquely represented
by the countably infinite orthogonal decomposition

(13) v(n,m)=p(n,m)+ Y eqp(n,m).
(a,B)€e0

The random field { p(n,m)} is half-plane deterministic. The field {e(,, 3)(n
m)} is the evanescent component that generates the column-to-column inno-
vations of the deterministic field w.r.t. the RNSHP total-ordering definition

(a, B) € O.

PRrROOF OF THEOREM 4. We first show that for any pair of RNSHP total-
ordering definitions o, 0o’ € O such that o’ is not obtained by rotating o by
0=,

(14) ( D y) _L( D ;?,f;).

n=-—00 n'=—o00

Using Lemma 1, we conclude that it is sufficient to consider only —7 < 8 < 0.
Let v(n,m) be the deterministic component of the (n,m)th sample of the
regular field, where the indexing is w.r.t. the order definition o. Let also
Jf(q) Sp{v(k l) | R =n, I < q} (the indexing is w.r.t. 0). Let u be a
vector such that u € Jf v for some fixed n. Using the definition of ;f” and

because for all m, 95’{,1 m) = ;f?n o) W€ conclude that for all m,
(15) K = Hg ) © Hig_ 0y C Hn(m).

(n,-o0p % L H_1_co)-
Because any support o’ considered here will contain an infinite number of
samples {v(n,m)}, ___, from the nth column deﬁned w.r.t. the RNSHP order

definition o, we have that for any o’, Jf (t)ycH# (n, 1,—00)" Because (15) holds for

0/ 0,
Assume u € ¥, for some fixed n’. Therefore, u € #?

all m, we have Jf” C Jf(t) Hence, Jf C Jf{n 1,—00) and u = 0. Because the

preceding argument holds for all n’, we conclude that, j L@y __ ooéf;j’. Re-
peating the same arguments for each n, we obtain (14). Hence the evanescent
fields are mutually orthogonal.

The deterministic component of the random field is unique and NSHP total-
ordering invariant. We can therefore rewrite (4) for any total-order definition



ORTHOGONAL DECOMPOSITIONS OF RANDOM FIELDS 255

o € O, while letting n, m — oo

(16) e

00,00)

=;fgoooo)_;foo oo)ea @ #

l=—00

For any o € O, @j’i_wéf; vCc HY Also, for any two total-order definitions

(00,00)*

0,0 €0 such that o’ is not obtained by rotating o by 6 = =, (@2 _o j") L

(B _ o 7). Hence, we conclude using (16) that for any two such total-order
definitions o, o’ € O,

17 ( @ ) (oo oo

Using (16) together with the uniqueness and NSHP total-ordering invariance
of the deterministic component, we conclude that

00
(oo ) ﬂ (oo o) — Q(%E/OO,—OO) @l@ %v)

o€

00
= ;fzfoo,—oo) @ @ @ %v’

0€0 l=—00

(18)

where the last equality results from the definition of ¥ (—o00,—00)? from (14),
which results in the elimination of the cross terms that 1nvolve the inter-
section of more than one Hilbert space of the type ®° _ #", and from (17).
Doco B2 _ Jf is the Hilbert space spanned by all the evanescent components
of the regular field. Because O is a countable set, the number of evanescent
components of a regular field is countable. By (18) and Definition 3, JZ’( 00,—00)
is spanned by a half-plane deterministic field. O

The result in (17) implies that for each RNSHP total-order definition o €
O, all subspaces spanned by the evanescent components e,, where o’ # o,
remain in the remote past space Jf% Y 00,—00)? which corresponds to the definition
o. Hence, from (18) we conclude that in order to resolve all the evanescent
components of a regular field, the field has to be tested against all the possible
RNSHP total-ordering definitions in O. Note also that because column-to-
column innovations are found only when RNSHP total-ordering definitions
are imposed on the field, and because the half-plane deterministic component
of the decomposition is deterministic by definition, we conclude that the half-
plane deterministic field has no innovations nor column-to-column innovations
w.r.t. any NSHP total ordering.

Because the purely-indeterministic component is unique and RNSHP total-

‘ordering invariant, the same subspace #* . is obtained w.r.t. any order def-

(00,00)
inition and hence we omit the order notation. Let #% be the Hilbert space
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spanned by the evanescent field that corresponds to the RNSHP total-ordering
o € O, that is,

o0
(19) K= P H#.

n=-—0o

COROLLARY 5. The following orthogonal decomposition holds:

(20) H =K o) ® H o, oo)e;e%;feo
oe

PRrOOF. Using the direct sum representation (18) and Theorem 3, (20) re-
sults. O

Hence, if {y(n,m)} is a 2-D regular and homogeneous random field, then
y(n, m) can be uniquely represented by the orthogonal decomposition

(21) y(n,m)=w(n,m)+ p(n,m)+ Y  e@p(n,m).
(a,B)e0O

THEOREM 6. The spectral measures of the decomposition components in (21)
are mutually singular.

PROOF. Let P, denote the projection operator of /# onto H oo 00) and let

P, denote the projection operator of # onto #¢. Similarly, let us denote by
P the projection operator of s# onto #~ All subspaces in the right-

00,—00
hand side of (20) are mutually orthogona(l and 1)t is readily verified that they
are all invariant to the vertical and horizontal shift operators. Hence for any
pair of these subspaces, say A and B, we have, using Chiang (1991), Lemma 7,
that PoPg = PgPs = Panp and for any A(w,v) € LtziFy’

@ Paa| [ MomdZen|= [ homdzen)
K A*NB*
where A*, B* are two-dimensional Borel sets in K, such that
PA{/ h(w,v)dZ(w,v)} = fA hw,v)dZ(w,v)
K *
and
PB{/ h(w,v)dZ(w,v)} = / h(w,v)dZ(w,v).
K B
Because A and B are mutually orthogonal, the left-hand side of (22) is iden-

tically O for any A(w,v) € L2 ar," Hence A*, B* are disjoint, except maybe on a
set of d F', measure zero. O
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Let F, be the spectral distribution function of the half-plane deterministic
component of the regular and homogeneous random field, and let F,_ , (w,v)
be the spectral distribution function of the evanescent component that gen-
erates the column-to-column innovations of the deterministic field w.r.t. the
RNSHP total-ordering («, 8). Hence, Theorem 6 implies that the spectral dis-
tribution function of the regular field deterministic component is uniquely
represented by

(23) Fy(w,v)=Fplo,v)+ Y Fe,(0,v)
(a,8)e0

and that the spectral measures defined by F, and F,_,, (o, B) € O, are all
mutually singular.

Thus, the decomposition of the deterministic component of a regular field
into a half-plane deterministic field and a countable number of evanescent
fields corresponds in terms of spectral measures to the representation of the
spectral measure of the deterministic component as a countable sum of mu-
tually singular spectral measures. However, contrary to the separation of the
absolutely continuous component of the regular field spectral distribution from
the singular component, which can be accomplished by a linear operation on
the “past” defined with respect to any RNSHP total ordering, the decomposi-
tion of Theorem 6 is attained only by using a countable number of total-order
definitions, while performing a linear operation on the “past” defined with re-
spect to each one of these definitions. Note that because both the half-plane
deterministic field and all the evanescent fields in the decomposition (21) are
components of the deterministic component of the regular field, their spectral
measures are concentrated on subsets of the set L. Hence, the spectral decom-
position in Theorem 6 yields a decomposition of a spectral measure which is
concentrated on a set of Lebesgue measure zero.

Using Theorem 3 we have that the decomposition of the regular random
field into purely indeterministic and deterministic random fields is NSHP
total-ordering invariant. It is therefore invariant to the interchange of past
and future definitions. We have also shown that interchanging the roles of
past and future in any total-order definition results in identical evanescent
components. Hence, using (16), we conclude that if a total-order definition o
is obtained by /rotating some other total-order definition o by 6 = 7, then

Jf? Y o,—00) = JX’E Y 00,—00)" Therefore, the regular field decomposition w.r.t. the
total-order definition in which the roles of past and future were interchanged
is identical to the one obtained under the original RNSHP total-ordering, and
no additional components of the random field can be found in this way. Hence,
in Definition 2, it is sufficient to consider only 0 < # < 7. By similar arguments
it can be shown that for any given RNSHP total-ordering, no new components
of the random field are found when a new RNSHP total-order is defined by

reflecting the order on one of the axes.
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Finally, all the subspaces JZ% v, l € @, spanned by the column-to-column in-
novations of the deterministic field with respect to some RNSHP total-ordering
o € O have the same dimension. Let us denote this dimension by M. We shall
call M the multiplicity of the random field with respect to the RNSHP total-
ordering o. Thus the multiplicity properties defined by Chiang (1991) and by
Kallianpur, Miamee and Niemi (1990), with respect only to the horizontal
and vertical NSHP definitions, can be naturally defined with respect to any
RNSHP definition.

3. Approximations and applications. The definition of the evanescent
field and Theorem 6 imply that the spectral measure of the evanescent com-
ponent that generates the column-to-column innovations for (a, 8) = (1,0) is
a linear combination of spectral measures of the form

(24) dF..,(0,v) = k(w)dodF(v),

where F?(v) is a one-dimensional singular spectral distribution function and
k(w) is a one-dimensional spectral density function. In other words, the spec-
tral distribution function of each evanescent component is separable: it is
absolutely continuous in one dimension and singular in the orthogonal one
(or a linear combination of such separable distribution functions).

According to Theorem 1, the spectral measure of the deterministic compo-
nent is concentrated on a set of Lebesgue measure zero. For practical appli-
cations we can exclude singular-continuous spectral distributions from the
framework of our treatment. Hence, the “spectral density function” of the
evanescent field e(; o) has the countable sum form £, (0,7) = 3; ki(@){3(v—
v;) + 8(v +v;)}. A model for this evanescent field is given by

(25) e,0(n,m) =Y s;i(n)cos2mmy; + t;(n) sin2wmy;,
;

where the 1-D purely-indeterministic processes {s;(n)}, {sj(n)}, {tz(n)},
{t;(n)} are mutually orthogonal for all i, j,k,l,i # j,k # [, and for all i
the processes {s;(n)} and {¢;(n)} have an identical spectral density function,
2ki(w).

Similarly, for any (a, 8) € O,

e(a,,g)(n(a’ﬂ), m(a,B))

2 o [+ [+3 . o a
(26) = Zsﬁ ’B)(n(“’ﬁ))COSZﬂ'm(“’B)vE By tE ’B)(n(“’ﬂ))sm%rm( ’B)VE ’B),
i
where the 1-D purely-indeterministic processes {sf.“’B )(n(®B))}, {sﬁ“’ﬁ )(n(@h)),
{t;ea’ﬁ)(n(“’ﬁ))}, {t;a’m(n(“’ﬂ))} are mutually orthogonal for all i, j,k,l,i #

 j,k # I, and for all i the procésses {sﬁ“’ﬁ)(n(“ﬁ))} and {tﬁ“’B)(n(‘*’B))} have
an identical autocorrelation function. Using the transformation (5), we can
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rewrite (26) in terms of the original indices:

(a B)

e(ap)(n,m) = Zs(a,ﬂ)(na mﬁ)cos(Zﬂ' ﬁZ(nB-l-ma))
@7
(01 B)
+t(°‘B)(na—m,B)s1n(27T B2(n,8+ma)).

Hence, the “spectral density function” of each evanescent component has the
form of a countable sum of 1-D delta functions that are supported on lines of
rational slope in the 2-D spectral domain.

One component of the half-plane-deterministic component, which is often
found in physical problems, is the harmonic random field {A(rn, m)}. This com-
ponent generates the 2-D delta functions of the “spectral density.” The har-
monic field has the countable sum representation

(28)  h(n,m) =) {Cpcos2m(nwp+ mvy) + Dpsin2m(nw, + mv,)},
P

where the C p’s and D,’s are mutually orthogonal random variables, E [C2] =
E [DZ] = a , and (wp,v,) are the spatial frequencies of the pth harmonic.

The foregomg analysis establishes a basis for solving problems that require
the modeling and parameter estimation of 2-D homogeneous random fields
with mixed spectral distributions. One such problem is that of texture model-
ing in 2-D images, [Francos, Meiri and Porat (1993) and Francos, Narasimhan
and Woods (1994)]. The texture field is assumed to be a realization of a regular
homogeneous random field. On the basis of the 2-D Wold-like decomposition,
the texture field is decomposed into a sum of mutually orthogonal components:
a purely indeterministic component, a harmonic component and a countable
number of evanescent components. The resulting model, which is applicable to
a wide variety of texture types found in natural images, leads to the derivation
of texture analysis and synthesis algorithms designed to estimate the texture
parameters and to reconstruct the original texture field from the estimated
parameters. The model is very efficient in terms of the number of parame-
ters required to faithfully represent textures. The reconstructed textures are
practically indistinguishable from the originals.

REFERENCES

[1] CHIANG, T. P. (1991). The prediction theory of stationary random fields. III. Fourfold Wold
decompositions. J. Multivariate Anal. 37 46-65.

[2] FRANCOS, J. M., MEIRI, A. Z. and PORAT, B. (1993). A unified texture model based on a 2-D
Wold like decomposition. IEEE Trans. Signal Process 41 2665-2678.

[3] FRANCOS, J. M., NARASIMHAN, A. and WooDS, J. W. (1994). Maximum likelihood param-
eter estlmatlon of textures using a Wold decomposition based model. Unpublished
manuscript.

[4] HELSON, H. and LOWDENSLAGER, D. (1958). Prediction theory and Fourier series in several
variables. Acta Math. 99 165-202.



260 J. M. FRANCOS, A. Z. MEIRI AND B. PORAT

[5] HELSON, H. and LOWDENSLAGER, D. (1962). Prediction theory and Fourier seij‘ies in several
variables. Acta Math. 106 175-213.

[6] KALLIANPUR, G., MIAMEE, A. G. and NIEMI, H. (1990). On the prediction theory of two-
parameter stationary random fields. J. Multivariate Anal. 32 120-149.

[7] KoOREZLIOGLU, H. and LOUBATON, P. (1986). Spectral factorization of wide sense stationary
processes on 2. J. Multivariate Anal. 19 24-47.

JOSEPH M. FRANCOS A. Zvi MEIRI
ELECTRICAL COMPUTER ELSCINT
ENGINEERING DEPARTMENT P. O. Box 550
BEN GURION UNIVERSITY HAIFA 31004
BEER-SHEVA 84105 ISRAEL
ISRAEL
BOAZ PORAT

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY
HAI1FA 32000

ISRAEL





