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Abstract—We propose a novel parametric approach for mod-
eling, estimation, and detection in space-time adaptive processing
(STAP) radar systems. The proposed parametric interference mit-
igation procedures can be applied even when information in only
a single range gate is available, thus achieving high performance
gain when the data in the different range gates cannot be assumed
stationary. The model is based on the Wold-like decomposition
of two-dimensioanl (2-D) random fields. It is first shown that
the same parametric model that results from the 2-D Wold-like
orthogonal decomposition naturally arises as the physical model
in the problem of space-time processing of airborne radar data.
We exploit this correspondence to derive computationally efficient
fully adaptive and partially adaptive detection algorithms. Having
estimated the models of the noise and interference components
of the field, the estimated parameters are substituted into the
parametric expression of the interference-plus-noise covariance
matrix. Hence, an estimate of the fully adaptive weight vector
is obtained, and a corresponding test is derived. Moreover, we
prove that it is sufficient to estimate only the spectral support
parameters of each interference component in order to obtain a
projection matrix onto the subspace orthogonal to the interference
subspace. The resulting partially adaptive detector is simple to
implement, as only a very small number of unknown parameters
need to be estimated, rather than the field covariance matrix.
The performance of the proposed methods is illustrated using
numerical examples.

Index Terms—Airborne radar, clutter, detection, evanescent
fields, interference mitigation, jamming, STAP, two-dimensional
random fields, Wold decomposition.

I. INTRODUCTION

WE PROPOSE a new approach for parametric modeling
and estimation of space-time airborne radar data, based

on the two-dimensional (2-D) Wold-like decomposition of
random fields. Most interestingly, the proposed parametric
estimation algorithms of the interference components provide
new tools to estimate and mitigate the Doppler ambiguous
clutter. The algorithms we develop enable estimation of the in-
terference signals using the observations inonly a single range
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gate. This property makes the proposed method particularly
suitable for nonstationary clutter and jamming environments.
Our modeling approach also provides a new analytical insight
into the space-time adaptive processing (STAP) problem.

The goal of STAP is to manipulate the available data to
achieve high gain at the target’s angle and Doppler and maximal
mitigation along both the jamming and clutter lines. Because
the interference covariance matrix is unknowna priori, it is
typically estimated using sample covariances obtained from
averaging over a few range gates. Next, a weight vector is
computed from the inverse of the sample covariance matrix
[1]–[5]. It is shown in [6] that the dominant eigenvectors of
the space-time covariance matrix contain all the information
required to mitigate the interference. Thus, the weight vector is
constrained to be in the subspace orthogonal to the dominant
eigenvectors. In [8], a reduced-rank constant false alarm
(CFAR) detection test is developed, assuming the dominant
eigenvectors of the interference are known, and in [9], a
multistage partially adaptive CFAR detection algorithm is
introduced. In [17], an approach that bypasses the need to
estimate the covariance matrix is presented: The data collected
in a single range gate is employed to obtain a least-squares
estimate of the signal power at each hypothesized direction
of arrival, through evaluation of a weight vector constrained
to null the unknown interference and noise. In [18], a simple
ad hoc model of the clutter signal and covariance matrix is
proposed. The model represents the spectral density of the
clutter as a sum of Gaussian-shaped humps along the support
of the clutter ridge. In [19], this model is employed to estimate
the clutter covariance matrix from the data observed in a single
range gate.

In this paper, we adopt the 2-D Wold-like decomposition
of random fields [10] as the parametric model of the observed
data. Employing this model, we derive computationally effi-
cient algorithms useful for parametrically estimating both the
jamming and clutter fields. The estimation procedure we pro-
pose is capable of estimating the interference parameters from
the information in a single range gate. Hence, no averaging
over a few range gates is required. This property provides
significant advantage in the practical case where data in the
different range gates is nonstationary. Having estimated the
interference terms parametric models, their covariance matrix
can be evaluated based on the estimated parameters. Moreover,
the problem of evaluating the rank of the low-rank covariance
matrix of the interference is solved as a byproduct of obtaining
the parametric estimates of the interference components.
Once the parametric models of the interference components
have been estimated, several alternative detection procedures
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are available. In this paper, we present two such methods:
the parametric fully-adaptive processing and the parametric
partially-adaptive processing.

The paper is organized as follows. In Section II, we briefly
summarize the main results of the 2-D Wold-like decomposi-
tion and the resulting random field model. Next, in Section III,
the correspondence between this model and the physical model
of the STAP data is identified. In Section IV, we elaborate on
the parametric representation of the covariances of the different
components of the random field. The estimation algorithm of
the random field parametric model is presented and analyzed
in Section V. After the method for estimating the parametric
models of the different components of the data field has been
established, we present the parametric fully adaptive processing
method and the computationally more efficient parametric
partially adaptive processing method in Sections VI and VII,
respectively. The performance of both methods is illustrated
using synthetic data examples. We summarize our conclusions
in Section VIII.

II. RANDOM FIELD MODEL

In this section, we briefly review the 2-D Wold-like decom-
position of random fields and the resulting random field model.
In the next section, the applicability of this model to STAP data
will be explained. It is shown in [10] that any 2-D regular and ho-
mogeneous discrete random field can be represented as a sum of
two mutually orthogonal components: apurely indeterministic
(unpredictable in the mean-square sense) field and adetermin-
istic (predictable in the mean-square sense) one. The purely in-
deterministic component has a unique white innovations driven
nonsymmetrical half-plane (NSHP) moving average represen-
tation. The deterministic component is further orthogonally de-
composed into aharmonicfield and a countable number of mu-
tually orthogonalevanescentfields. This decomposition results
in a corresponding decomposition of the spectral measure of the
regular random field into a countable sum of mutually singular
spectral measures. The purely indeterministic component has an
absolutely continuous spectral distribution function. The spec-
tral measure of the deterministic component is singular with re-
spect to the Lebesgue measure, and therefore, it is concentrated
on a set of Lebesgue measure zero in the frequency plane. It is
shown in [12] that under some mild assumptions (that always
hold in practice), the spectral supports of the different evanes-
cent components have the form of lines whose slope is a rational
number.

More specifically, let be a complex
valued, regular, homogeneous random field. Then, can
be uniquely represented by the orthogonal decomposition

(1)

The field is a deterministic random field. The field
is purely indeterministic and has a unique white in-

novations driven moving average representation, which is given
by

(2)

Fig. 1. Rational nonsymmetrical half-plane support; example witha = 2 and
b = �1.

where , and
is the innovations field of . The notation

implies that the weighted summation includes and
all the samples in its “past,” where the past is defined with
respect to any selected NSHP total-ordering on the 2-D lattice
(see, for example, Fig. 1).

We call a 2-D deterministic random field evanes-
cent w.r.t. the NSHP total-orderif it spans a Hilbert space iden-
tical to the one spanned by itscolumn-to-column innovations
at each coordinate (w.r.t. the total-order ). The deter-
ministic field column-to-column innovation at each coordinate

is defined as the difference between the actual
value of the field and its projection on the Hilbert space spanned
by the deterministic field samples in all previous columns.

It is possible to define [10] a family of NSHP total-order def-
initions such that the boundary line of the NSHP has a rational
slope. A NSHP of this type is calledrational nonsymmetrical
half-plane(RNSHP), (see, for example, Fig. 1). Letand be
two coprime integers, such that both . The slope of the
RNSHP is then given by (and ). For the case
where , the RNSHP is uniquely defined by setting .
(For the case where , the RNSHP is uniquely defined by
setting .) We denote by the set of all possible RNSHP
definitions on the 2-D lattice (i.e., the set of all NSHP defini-
tions in which the boundary line of the NSHP has a rational
slope). The introduction of the family of RNSHP total-ordering
definitions results in the following countably infinite orthogonal
decomposition of the deterministic component of the random
field:

(3)

The random field is half-plane deterministic, i.e., it
has no column-to-column innovations w.r.t. any RNSHP total-
ordering definition. The field is the evanescent
component that generates the column-to-column innovations of
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the deterministic field w.r.t. the RNSHP total-ordering definition
.

Hence, if is a 2-D regular and homogeneous
random field, then can be uniquely represented by the
orthogonal decomposition

(4)

In the following, all spectral measures are defined on the
square . It is shown in [10]
and [11] that the spectral measures of the decomposition com-
ponents in (4) are mutually singular. The spectral distribution
function of the purely indeterministic component is absolutely
continuous, whereas the spectral measures of the half-plane de-
terministic component and of all the evanescent components are
concentrated on a set of Lebesgue measure zero in. A model
for the evanescent field that corresponds to the RNSHP defined
by is given by

(5)

where and are coprime integers satisfying . For
the case where , we have , and for

, we have . The 1-D purely inde-
terministic, complex-valued processes and

are zero-mean and mutually orthogonal for
all . Hence, the “spectral density function” of each evanes-
cent field has the form of a sum of 1-D delta functions that are
supported on lines of rational slope in the 2-D spectral domain.
The amplitude of each of these delta functions is determined by
the spectral density of the 1-D modulating process. Since the
spectral density of the modulating process can rapidly decay
to zero, so will the “spectral density” of the evanescent field,
hence, the name “evanescent.” Since interchanging the roles of
past and future in any total-order definition amounts to substi-
tuting by in the model (5), we assume without
limiting the generality of the derivation that , and can
assume any integer value.

One of the half-plane-deterministic field components, which
is of prime importance in the STAP problem is the harmonic
random field

(6)

where the s are mutually orthogonal random variables, and
are the spatial frequencies of theth harmonic.

III. STAP MODEL AND THE 2-D WOLD DECOMPOSITION

The random field parametric model that results from the
2-D Wold-like orthogonal decomposition naturally arises as
the physical model in the problem of space-time processing of
airborne radar data. Let denote the sensor index, and let
be the time index. In the STAP problem, the target signal is
modeled as a random amplitude complex exponential where the
exponential is defined by a space-time steering vector that has
the target’s angle and Doppler. In other words, in the space-time
domain the target model is that of a 2-D harmonic component
similar to (6). The sum of the white noise field due to the
internally generated receiver amplifier noise, and the colored
noise field due to the sky noise contribution, is the purely
indeterministic component of the space-time field decompo-
sition. The presence of a jammer results in a barrage of noise
localized in angle and uniformly distributed over all Doppler
frequencies. Hence, in the space-time domain, each jammer
is modeled as an evanescent component with
such that its 1-D modulating process is the random
process of the jammer amplitudes. The jammer samples from
different pulses are uncorrelated. In the angle-Doppler domain
each jammer contributes a 1-D delta function, parallel to the
Doppler axis and located at a specific angle [using the
notation of (5)]. The ground clutter results in an additional
evanescent component of the observed 2-D space-time field.
The clutter’s echo from a single ground patch has a Doppler
frequency that linearly depends on its aspect with respect to
the platform. Hence, clutter from all angles lies in a “clutter
ridge,” which is supported on a diagonal line (that generally
wraps around in Doppler) in the angle-Doppler domain. A
model of the clutter field is then given by (5) with the slope
of the clutter ridge given by and with
being a 1-D colored noise process. Since the rational numbers
are dense in the set of real numbers, an irrational slope of the
clutter ridge can be approximated arbitrarily close by a rational
one. Hence, any clutter signal can be either exactly modeled or
approximated by an evanescent field.

Fig. 2 graphically illustrates a typical example of the
matching between the 2-D Wold decomposition based para-
metric random field model and the physical model of STAP
data. In this synthetic example, the observed random field is
the sum of two evanescent components that correspond to the
clutter component with , and a
jammer with . Fig. 2 depicts the magnitude of the
DFT of the observed field.

We therefore conclude that the foregoing derivation opens the
way for newparametricsolutions that can simplify and improve
existing methods of STAP.

IV. COVARIANCE STRUCTURE OF THEOBSERVEDFIELD

Based on the random field model derived in the previous sec-
tions, we derive in this section a closed-form parametric ex-
pression for the covariance matrix of the observed STAP data
field in terms of the model parameters. We begin by stating our
assumptions.



2464 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 10, OCTOBER 2003

Fig. 2. Magnitude of the DFT of an observed field containing two evanescent
components that correspond to a clutter component with(a; b) = (1; 2),
� = 0, and a jammer with� = 0:2.

Let , , where
, be the observed random field.

Assumption 1:The purely indeterministic component
is a zero mean circular complex valued random

field.
Assumption 2:The number of evanes-

cent components in the field isa priori known. This assumption
can be later relaxed.

Assumption 3:For each evanescent field , the
modulating 1-D purely indeterministic process is a
zero-mean circular complex valued process.

Let

(7)

(8)

(9)

Let

(10)

be the vector whose elements are the observed samples from the
1-D modulating process . Define

(11)

Given a scalar function , we will denote the matrix, or
column vector, consisting of the values of evaluated for all
the elements of , where is a matrix, or a column vector, by

. Using this notation, we define

(12)

Thus, using (5), we have that

(13)

where denotes an element-by-element product of the vectors.
Note that whenever for some integers

such that and
, the same sample from the modulating process is

duplicated in the elements of . It is shown in [15] that for
a rectangular observed field of dimensions , the number
of distinct samples from the random process that are
found in the observed field is

(14)

This is because is the number of different “columns” one
can define on such a rectangular lattice for a RNSHP defined
by . We note here that in the special case where ,
(14) provides the well-known Brennan rule [3] on the rank of
the clutter covariance matrix.

We therefore define theconcentrated version of
to be an -dimensional column vector of nonrepeating sam-
ples of the process . More specifically, for the case in
which and , is given by

(15)
whereas for the case in which and , is given
by

(16)

Thus, for any , we have that

(17)

where is rectangular matrix of zeros and ones that repli-
cates rows of .

Note, however, that due to boundary effects, the vector
is not composed of consecutive samples from the process

unless or . In other words, for some
arbitrary and , there are missing samples in .
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We note that the covariance matrix , which character-
izes the second-order properties of the process , is de-
fined in terms of the concentrated version vector , i.e.,

(18)

and not in terms of the covariance matrix

(19)

of the vector . The matrix is a singular matrix,
where .

Since the evanescent components are mutually or-
thogonal and since all the evanescent components are orthog-
onal to the purely indeterministic component, we conclude that

, which is the covariance matrix of, has the form

(20)

where is the covariance matrix of .
Using (5) and (13), we find that

(21)

A compact matrix representation of for any
cannot be derived due to the dependence of the matrix structure
on . However, for the case in which
(and similarly for ), a somewhat more compact
representation is possible, using Kronecker products instead of
the Hadamard products.

More specifically, for this special case, (13) can be expressed
in the form

(22)

where is the Kronecker product. Hence

(23)

where and are Toeplitz matrices, given by (24)
and (25), as shown at the bottom of the page.

V. PARAMETRIC ESTIMATION OF THE

INTERFERENCECOMPONENTS

In this section, we derive a computationally efficient algo-
rithm for estimating both the jamming and clutter fields, based
on the above results. More specifically, for each interference
component of the observed field, we estimate its spectral sup-
port parameters as well as and the parametric
model of the modulating 1-D purely indeterministic process

. In the setting of the radar problem considered here,
partial information on the different components of the field is
a priori known: The jamming signals are localized in angle
and distributed over all Doppler frequencies. Thus, each jammer
contributes an evanescent component with spectral support pa-
rameters and an unknown frequency . The
clutter signal is also modeled as an evanescent component with

and an unknown pair, which is uniquely de-
termined by the platform motion parameters.

The proposed estimation algorithm of the spectral support pa-
rameters of the evanescent field and is based on the
following lemma.

Lemma 1: Let be an evanescent field and let
be an integer. The samples of the evanescent field along a line

...
...

.. .
...

...

(24)

...
...

.. .
...

...

(25)
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on the sampling grid defined by are the samples
of a 1-D constant amplitude harmonic signal, whose frequency
is .

Proof: Since for fixed , is the linear
Diophantine equation (see the Appendix), its solutions are given
by

(26)

(27)

where is a solution of the equation, andis an integer
such that the sequence of consecutive values ofcorresponds
to the different lattice point on the line . From
(5), we have, for the evanescent field samples along the line

(28)

where the last equality is because are coprime integers such
that . Hence, in each realization and for a fixed,

is a (random) constant.
Hence, the proof follows.

The algorithm is implemented by the following four-step
procedure:

Initial estimation of and : In the presence of an evanes-
cent component, the peaks of the observed field periodogram are
concentrated along a straight line such that its slope is defined
by the two coprime integersand . Hence, several alternative
approaches for obtaining an initial estimate of the spectral sup-
port parameters of the evanescent component can be derived by
taking the Radon or Hough transforms [20] of the observed field
periodogram. (The current implementation employs the Hough
transform for detecting straight lines in 2-D arrays). However,
due to noise presence, this estimate may perturb. Since, on a fi-
nite-dimension observed field, only a finite number of possible

pairs may be defined, the output of the initial stage is a set
of possible pairs such that the ratio is close to the ratio
obtained for the pair estimated by the Hough transform.

Estimation of the frequency parameter of the evanescent
component:For each possible pair, we next evaluate the
frequency parameter of the evanescent component . As-
suming the considered pair is the correct one, we have,
from Lemma 1, that in the absence of background noise for a
fixed (i.e., along a line on the sampling grid), the
samples of the evanescent component are the samples of a 1-D
constant amplitude harmonic signal, whose frequency is .
Hence, by considering the samples along such a line, we ob-
tain samples of a 1-D constant amplitude harmonic signal whose
frequency can be easily estimated using any standard fre-
quency estimation algorithm (e.g., the 1-D DFT).

Final estimation of the spectral support parameters of
each evanescent component:The test for detecting the cor-
rect and is then based on multiplying the observed

signal by for each of the
considered and triplets and evaluating the variance
of this signal along a line on the sampling grid such that

. Clearly, the best estimate of and is the
one that results in minimal variance for the 1-D sequence be-
cause in the absence of noise, the correct and result
in a zero variance. Note that are two coprime integers sat-
isfying the linear Diophantine equation when
are replaced by their estimated values. Clearly, obtained
as solutions to the linear Diophantine equation are not unique
(see the Appendix). The correct pair is then determined by
employing the symmetry properties of the field covariance se-
quence (see [12] for details). Since, in the STAP problem, it is
a priori known that for the jammers , whereas
for the clutter , the parameters do not appear in
the model and, hence, need not be estimated. Nevertheless, to
maintain the generality of the algorithm description, we proceed
for the final step of the algorithm with the general description,
assuming have been estimated (or area-priori known as in
the STAP case).

Estimating the model of the 1-D purely indeterministic
modulating process of the evanescent field:Having estimated
the spectral support parameters of each evanescent component,
we take the approach of first estimating anonparametricrepre-
sentation of its 1-D purely indeterministic modulating process

, and only at a second stage do we estimate the para-
metric models of these processes. Hence, in the first stage, we
estimate the particular values that the vectors take for the
given realization, i.e., we treat these as unknown constants. The
estimation procedure is implemented as follows: Multiplying

the observed signal by
and evaluating the arithmetic mean of this signal along a line
on the sampling grid such that , we have

(29)

where denotes the number of the observed field samples that
satisfy the relation . Once we obtained the sequence
of estimated samples from the 1-D modulating process ,
the problem of estimating its parametric model becomes entirely
a 1-D estimation problem. Assuming the modulating process is
an autoregressive (AR) process and applying to the sequence an
AR estimation algorithm (see, e.g., [21]), we obtain estimates
of the modulating process parameters as well.

Finally, it is important to note that we solve the difficult
problem of evaluating the rank of the low-rank covariance
matrix of the interference as a byproduct of obtaining the
parametric estimates of the interference components: De-
note the number of evanescent components (interference
sources) of the field by . It is then shown in [16] that
the rank of the interference covariance matrix is given by

. In fact,
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the special case where and is the well-known
Brennan rule [3] on the rank of the clutter covariance matrix.
Hence, following the estimation of the spectral support param-
eters of the different evanescent components, the rank of the
interference covariance matrix is also determined.

VI. PARAMETRIC FULLY ADAPTIVE PROCESSING

Having estimated the parametric models of the purely inde-
terministic and evanescent components of the field, the esti-
mated parameters can be substituted into (20) and (21) to obtain
an estimate of the interference-plus-noise covariance matrix.
In this section, we show how the estimated interference-plus-
noise covariance matrix is employed to obtain a fully adaptive
space-time filter.

Let denote the target steering vector given by

(30)

Assuming a linear, uniformly spaced, sensor array and a uniform
coherent-processing interval (CPI) are employed in our model,
the spatial steering vector and the temporal steering vector

are given by

respectively. Assume for the moment that only a single target
may exist in the observed data and that both the target’s steering
vector and the interference-plus-noise covariance matrixare
known. We next derive a fully adaptive detection algorithm
based on the generalized likelihood ratio test (GLRT). Since
and are assumed known, the GLR has to be maximized only
with respect to , which is the unknown amplitude parameter
of the target. Thus, the GLR has the form

(31)

Following a standard procedure (see, e.g., [7] and [9]), the GLR
test statistic, which we denote by , can be shown to
have the equivalent form

(32)

Let . We thus have

(33)

Reorganizing the elements ofinto a matrix where the
elements of the th row of are ,
we conclude that for a linear, uniformly spaced, sensor array and
uniform CPI

(34)

Thus, and are a 2-D DFT pair. However,
since in fact the steering vector is unknown, the detector must
first estimate the frequency where the magnitude of the 2-D DFT
of is maximal, followed by comparison of the value of the test

statistic evaluated at this frequency against the threshold. Thus,
the GLRT when is perfectly known is given by

(35)

In other words, in the case of a known covariance matrix, the test
is equivalent to finding the 2-D frequency where the magnitude
of the 2-D DFT of is maximal, followed by comparison of the
value of the test statistic at this frequency against the threshold.

Note that under both the null hypothesis (no target) as
well as under the alternative hypothesis,
is a Gaussian random variable, being a linear transformation of
a Gaussian random vector. Assumingis perfectly known, it
is not difficult to show [13] that after prewhitening by ,
the probability density function of the GLRT in (35) is dis-
tributed with two degrees of freedom under and noncentral

with two degrees of freedom under .
Finally, since is also unknown, we adopt an approach sim-

ilar to that employed in the derivation of the adaptive match
filter (AMF) in [7] and substitute the unknown covariance ma-
trix with its estimate, which is obtained as explained in the pre-
vious sections.

To illustrate the operation of the proposed solution, we
resort to numerical evaluation of some specific examples
(see [13] for a detailed performance analysis and additional
examples). Consider a 2-D observed random field consisting
of a sum of a purely indeterministic component (background
noise), a single evanescent (interference) component, and three
harmonic components (targets). The purely indeterministic
component is a complex valued circular Gaussian white noise
field. The evanescent component spectral support parameters
are , . The modulating 1-D purely
indeterministic process of this evanescent component is a
first-order Gaussian AR process, with driving noise variance

and . There are three targets
that are located at , , and ,
respectively. The observed field dimensions are .

Let us define the power of each of the field components
as for the purely indeterministic component;

for the evanescent component; and
for each of the harmonic com-

ponents, where is defined in the same way and
are defined. In this example, we have dB,
whereas for the three targets, we have dB,

dB, dB. Due to the strong
interference component, the presence of the three targets is hard
to detect in the observed data whose power spectral density is
depicted in Fig. 3. However, these targets are easily detected
by the test statistic , depicted in Fig. 4. In Fig. 4,

is depicted as a function of the 2-D frequencies, i.e.,
angle and Doppler.

VII. PARAMETRIC PARTIALLY ADAPTIVE PROCESSING

The low rank of the interference covariance matrix is ex-
ploited in the partially adaptive STAP to significantly reduce
the adaptive problem dimensionality. In this section, we derive a
partially adaptive processing algorithm, based on the estimated
parametric model of the interference. Moreover, it is proved in
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Fig. 3. Power spectral density of the observed field.

Fig. 4. Test statisticjz($; #)j.

this section that in order to implement the proposed partially
adaptive processing method,only the spectral support parame-
ters of the interference need to be estimated, and there is no need
whatsoever to estimate the modulating process of the interfer-
ence model, nor the data covariance matrix.

More specifically, recall that

(36)

Having estimated and using the algorithm in Sec-
tion V, the vector is known. Hence, demodulating ,
we conclude using (13) that

(37)

However, from (17), we conclude that the covariance matrix of
is given by

(38)

In the following, we prove that since and are already
known, an orthogonal projection matrix onto the low-rank
subspace spanned by the evanescent field covariance matrix
can be foundwithout estimating the parametric model of the
evanescent field 1-D modulating process and, hence, without
estimating . Moreover, this result enables us to avoid
the need in both evaluating the field covariance matrix and in
employing a computationally intensive eigenanalysis to the
estimated covariance matrix. More specifically, let us construct
the following orthogonal projection matrix:

(39)

It is easily verified (by substitution) that is an orthogonal
projection onto the range space of since for any -di-
mensional vector

(40)

In addition, , and .
Note that since is a sparse matrix of zeros and

ones only, the computation of is very simple. The
projection matrix onto the subspace orthogonal to the inter-
ference space is therefore given by .
Hence, by projecting the demodulated observed data vector

onto the subspace orthogonal to the
interference subspace, a reduced-dimension data vector given
by is obtained, such that the interference
contribution to the observed signal is mitigated. Remodulating

by evaluating , followed by sequentially applying
this procedure to mitigate each of the interference sources, the
detection problem is reduced to that of detecting a target in
the presence of background noise only. Following a similar
derivation to the one in (31)–(35), we conclude that in the
special case where the background noise is known to be a
white noise field, the statistical test is obtained by finding
the 2-D frequency where the magnitude of the 2-D DFT of
the processed data vector (organized back into a 2-D array)
is maximal, followed by comparison of the value of the test
statistic at this frequency against the threshold. In the more
general case, where the purely indeterministic component of
the field is not a white noise field, the observed data vector
is first prewhitened by the estimated . It is shown in
[13] that the probability density function of the GLR test that
upper bounds the performance of the actual detector iswith
two degrees of freedom under and noncentral with two
degrees of freedom under .

As an example, consider the same field as in the previous sec-
tion. Due to the strong interference component, the presence of
the three targets is difficult to detect in the observed data, whose
power spectral density is depicted in Fig. 3. However, these
targets are easily detected in the processed data, as illustrated
in Fig. 5. This result is obtained without estimating the para-
metric model of the evanescent field 1-D modulating process
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Fig. 5. Test statistic of the parametric partially adaptive processor. The power
spectral density of the field after being projected onto the subspace orthogonal
to the interference subspace.

and, hence, without estimating the interference-plus-noise co-
variance matrix. Since both the estimation of the interference-
plus-noise covariance matrix, as well as its analysis, are saved,
the proposed parametric partially adaptive processing method
is robust and computationally attractive (see [13] for a detailed
performance analysis and additional examples).

VIII. C ONCLUSIONS

In this paper, a novel parametric approach for modeling,
estimation, and target detection for STAP data has been
derived. The proposed parametric interference mitigation
procedures employ the information in only a single range gate,
thus achieving high performance gain when the data in the
different range gates cannot be assumed stationary. The model
is based on the results of the 2-D Wold-like decomposition.
We showed that the same parametric model that results from
the 2-D Wold-like orthogonal decomposition naturally arises
as the physical model in the problem of space-time processing
of airborne radar data. We exploited this correspondence to
derive computationally efficient fully adaptive and partially
adaptive detection algorithms. Having estimated the models
of the noise and interference components of the field, the
estimated parameters are substituted into the parametric ex-
pression of the covariance matrix to obtain an estimate of the
interference-plus-noise covariance matrix. Hence, the fully
adaptive weight vector is obtained, and a corresponding test is
derived. Moreover, we proved that it is sufficient to estimate
only the spectral support parameters of each interference com-
ponent in order to obtain a projection matrix onto the subspace
orthogonal to the interference subspace. Thus, the resulting
detector is statistically superior to the fully adaptive detector
as considerably fewer parameters need to be estimated. Since
a much smaller number of parameters need to be estimated the
proposed partially adaptive detector is also computationally

much simpler. Statistical analysis of the performance of the
proposed detectors is considered in [13].

APPENDIX

LINEAR DIOPHANTINE EQUATION

Let and be two nonzero integers andsome other integer.
The equation

is called thelinear Diophantine equation. A solution of this
equation is a pair of integers (alattice pointin the plane)
that satisfies the equation. We use the following well known the-
orem (e.g., see [23])

Theorem 1: The linear Diophantine equation

has a solution if and only if , (i.e., divides ), where
. Furthermore, if is a solution of this

equation, then the set of solutions of the equation consists of all
integer pairs of the form

and (41)

Note that if and are coprime, then there will always be solu-
tions, given by (41).
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