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Interference Mitigation in STAP Using the
Two-Dimensional Wold Decomposition Model
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_ Abstract—We propose a novel parametric approach for mod- gate. This property makes the proposed method particularly
eling, estimation, and detection in space-time adaptive processing suitable for nonstationary clutter and jamming environments.
(STAP) radar systems. The proposed parametric interference mit- modeling approach also provides a new analytical insight

igation procedures can be applied even when information in only . h . .
a single range gate is available, thus achieving high performance into the space-time adaptive processing (STAP) problem.

gain when the data in the different range gates cannot be assumed The goal of STAP is to manipulate the available data to
stationary. The model is based on the Wold-like decomposition achieve high gain at the target’s angle and Doppler and maximal
of two-dimensioanl (2-D) random fields. It is first shown that mijtigation along both the jamming and clutter lines. Because
the same parametric model that results from the 2-D Wold-like the interference covariance matrix is unknowarpriori, it is

orthogonal decomposition naturally arises as the physical model tvoicall timated usi | . btained f
in the problem of space-time processing of airborne radar data. ypically estimated sing Sampie covariances obtained irom

We exploit this correspondence to derive computationally efficient averaging over a few range gates. Next, a weight vector is
fully adaptive and partially adaptive detection algorithms. Having computed from the inverse of the sample covariance matrix
estimated the models of the noise and interference components[1]—[5]. It is shown in [6] that the dominant eigenvectors of

of the field, the estimated parameters are substituted into the the space-time covariance matrix contain all the information
parametric expression of the interference-plus-noise covariance . o - . -

matrix. Hence, an estimate of the fully adaptive weight vector requweql to mltlgate_ the interference. Thus, the weight vect(_)r is
is obtained, and a corresponding test is derived. Moreover, we COnstrained to be in the subspace orthogonal to the dominant
prove that it is sufficient to estimate only the spectral support eigenvectors. In [8], a reduced-rank constant false alarm
parameters of each interference component in order to obtain a (CFAR) detection test is developed, assuming the dominant
projection matrix onto the subspace orthogonal to the interference eigenvectors of the interference are known, and in [9], a

subspace. The resulting partially adaptive detector is simple to . - . - - -
implement, as only a very small number of unknown parameters multistage partially adaptive CFAR detection algorithm is

need to be estimated, rather than the field covariance matrix. introduced. In [17], an approach that bypasses the need to
The performance of the proposed methods is illustrated using estimate the covariance matrix is presented: The data collected
numerical examples. in a single range gate is employed to obtain a least-squares
Index Terms—Airborne radar, clutter, detection, evanescent €stimate of the signal power at each hypothesized direction
fields, interference mitigation, jamming, STAP, two-dimensional of arrival, through evaluation of a weight vector constrained
random fields, Wold decomposition. to null the unknown interference and noise. In [18], a simple
ad hocmodel of the clutter signal and covariance matrix is
proposed. The model represents the spectral density of the
clutter as a sum of Gaussian-shaped humps along the support
WE PROPOSE a new approach for parametric modeling the clutter ridge. In [19], this model is employed to estimate
and estimation of space-time airborne radar data, basgd clutter covariance matrix from the data observed in a single
on the two-dimensional (2-D) Wold-like decomposition ofange gate.
random fields. Most interestingly, the proposed parametric|, this paper, we adopt the 2-D Wold-like decomposition
estimation algorithms of the interference components provige random fields [10] as the parametric model of the observed
new tools to estimate and mitigate the Doppler ambiguodgta. Employing this model, we derive computationally effi-
clutter. The algorithms we develop enable estimation of the igient algorithms useful for parametrically estimating both the
terference signals using the observationenty a single range jamming and clutter fields. The estimation procedure we pro-
pose is capable of estimating the interference parameters from
the information in a single range gate. Hence, no averaging
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are available. In this paper, we present two such method:
the parametric fully-adaptive processing and the parametri
partially-adaptive processing.

The paper is organized as follows. In Section II, we briefly
summarize the main results of the 2-D Wold-like decomposi:
tion and the resulting random field model. Next, in Section 11l
the correspondence between this model and the physical moc
of the STAP data is identified. In Section IV, we elaborate on
the parametric representation of the covariances of the differe - ------
components of the random field. The estimation algorithm o
the random field parametric model is presented and analyze
in Section V. After the method for estimating the parametric
models of the different components of the data field has bee
established, we present the parametric fully adaptive processil
method and the computationally more efficient parametric
partially adaptive processing method in Sections VI and VII,
respectively. The performance of both methods is illustrate:

using synthetic data examples. We summarize our conclusions
in Section VIII. Fig. 1. Rational nonsymmetrical half-plane support; example with 2 and
b= —1.

m

Il. RANDOM FIELD MODEL
. : , : : where > b (k,f) < oo;b(0,0) = 1, and
- - - (0,0)=(k, £) : 1A
In this section, we briefly review the 2-D Wold-like decom i“(na m)} is the innovations field ofy(n, m)}. The notation

position of random fields and the resulting random field mode< implies that the weighted summation include, m) and

In the next section, the applicability of this model to STAP datgl” the samples in its “past,” where the past is defined with

will be explained. Itis shown in [10] that any 2-D regularand hor'es ect to any selected NSHP total-ordering on the 2-D lattice

mogeneous discrete random field can be represented as a SUEQ for example, Fig. 1)

two mutyally or.thogonal componentsparely.indeterminigtic Wé calla2-D déterministic random field,(n, m)] evanes-
(unpredlct_able |n.the mean-square sense) field agetermin- centw.r.t. the NSHP total-orderif it spans a Hilbert space iden-
istic (predictable in the mean-square sense) one. The purelydnz, e one spanned by itolumn-to-column innovations
deterministic component has a unique white innovations drivsp each coordinatén, m) (W.rt. the total-orden). The deter-
nonsymmetrical half-plane (NSHP) moving average represefi,istic field column-to-column innovation at each coordinate

tation. The deterministic component is further orthogonally d%—l_ m) € 22 is defined as the difference between the actual

composed into &armonicfield and a countable number of Mu-5)e of the field and its projection on the Hilbert space spanned

tually orthogonakvanescertftelds. This decomposition resultsby the deterministic field samples in all previous columns.
in a corresponding decomposition of the spectral measure of thg; j5 possible to define [10] a family of NSHP total-order def-
regular random field into a countable sum of mutually singulkitions such that the boundary line of the NSHP has a rational
spectral measures. The purely indeterministic component hagfghe, A NSHP of this type is calledtional nonsymmetrical
absolutely continuous spectral distribution function. The SPekalf-plane(RNSHP), (see, for example, Fig. 1). Leandb be
tral measure of the deterministic component is singular with rgyq coprime integers, such that bathb # 0. The slope of the
spect to the Lebesgue measure, and therefore, it is concentrgRHP is then given by-a/b (andcot # = —b/a). For the case
on a set of Lebesgue measure zero in the frequency plane. liferea = 0, the RNSHP is uniquely defined by settibg- 1.
shown in [12] that under some mild assumptions (that alwayisor the case where= 0, the RNSHP is uniquely defined by
hold in practice), the spectral supports of the different evanegttinga = 1.) We denote by the set of all possible RNSHP
cent components have the form of lines whose slope is a ratiogafinitions on the 2-D lattice (i.e., the set of all NSHP defini-
number. tions in which the boundary line of the NSHP has a rational
More specifically, ley(n, m), (n, m) € Z*} be acomplex slope). The introduction of the family of RNSHP total-ordering
valued, regular, homogeneous random field. Theén, m) can  definitions results in the following countably infinite orthogonal
be uniquely represented by the orthogonal decomposition  decomposition of the deterministic component of the random

field:
y(n, m) = w(n, m) + v(n, m).
The field {v(n, m)} is a deterministic random field. The field v(n, m) =p(n, m)+ Y e@up(nm). (@)
{w(n, m)} is purely indeterministic and has a unique white in- (a,b)€0
novations driven moving average representation, which is given . i o
by The random field{p(n, m)} is half-plane deterministid.e., it

has no column-to-column innovations w.r.t. any RNSHP total-
w(n, m) = Z b(k, O)u(n — k, m —£) (2) ordering definition. The fielde(,,+)(n, m)} is the evanescent
(0,0)=(k, ) component that generates the column-to-column innovations of



FRANCOS AND NEHORAI: INTERFERENCE MITIGATION IN STAP 2463

the deterministic field w.r.t. the RNSHP total-ordering definition 1ll. STAP MODEL AND THE 2-D WoOLD DECOMPOSITION
(a, b) € O.
Hence, if {y(n, m)} is a 2-D regular and homogeneous 1he random field parametric model that results from the

random field, thery(n, m) can be uniquely represented by the-D Wold-like orthogonal decomposition naturally arises as
orthogonal decomposition the physical model in the problem of space-time processing of

airborne radar data. Let denote the sensor index, and et
be the time index. In the STAP problem, the target signal is
y(n, m) = w(n, m)+p(n, m)+ Y e@n(n,m). (4 modeled as arandom amplitude complex exponential where the
(a,b)€0 exponential is defined by a space-time steering vector that has
the target’s angle and Doppler. In other words, in the space-time
In the following, all spectral measures are defined on tiomain the target model is that of a 2-D harmonic component
squareK = [—1/2, 1/2] x [-1/2, 1/2]. It is shown in [10] similar to (6). The sum of the white noise field due to the
and [11] that the spectral measures of the decomposition cafiernally generated receiver amplifier noise, and the colored
ponents in (4) are mutually singular. The spectral distributigipise field due to the sky noise contribution, is the purely
function of the purely indeterministic component is absolutelfideterministic component of the space-time field decompo-
continuous, whereas the spectral measures of the half-planesiéon. The presence of a jammer results in a barrage of noise
terministic component and of all the evanescent components i@alized in angle and uniformly distributed over all Doppler
concentrated on a set of Lebesgue measure zeko ivmodel  frequencies. Hence, in the space-time domain, each jammer
for the evanescent field that corresponds to the RNSHP defiriédnodeled as an evanescent component Witth) = (0, 1)

by (a, b) € O is given by such that its 1-D modulating procesfé)’ 1)(m) is the random
process of the jammer amplitudes. The jammer samples from
[(a.b) different pulses are uncorrelated. In the angle-Doppler domain
e(a.)(n, m) = Z eE“’“(m m) each jammer contributes a 1-D deI_tg functlor}), par_allel to the

’ Pt Doppler axis and located at a specific ang,f@’ [using the

notation of (5)]. The ground clutter results in an additional

e’ evanescent component of the observed 2-D space-time field.

)
- Z 5" (na + mb) The clutter’s echo from a single ground patch has a Doppler
=1 frequency that linearly depends on its aspect with respect to
-exp (j27ruf"’b)(nc + md)) (5) the platform. Hence, clutter from all angles lies in a “clutter
ridge,” which is supported on a diagonal line (that generally

wraps around in Doppler) in the angle-Doppler domain. A
wherec andd are coprime integers satisfying — bc = 1. For model of the clutter field is then given by (5) with the slope
the case wherg, b) = (0, 1), we have(c, d) = (1, 0),andfor of the clutter ridge given by/a and with s\*** (na + mb)

(a, b) = (1, 0), we have(c, d) = (0, 1). The 1-D purely inde- peing a 1-D colored noise process. Since the rational numbers
terministic, complex-valued processes® ) (na + mb)} and  are dense in the set of real numbers, an irrational slope of the
{s](“’ b)(na + mb)} are zero-mean and mutually orthogonal foclutter ridge can be approximated arbitrarily close by a rational
alli # j. Hence, the “spectral density function” of each evanesne. Hence, any clutter signal can be either exactly modeled or
cent field has the form of a sum of 1-D delta functions that asgpproximated by an evanescent field.
supported on lines of rational slope in the 2-D spectral domain.Fig. 2 graphically illustrates a typical example of the
The amplitude of each of these delta functions is determined Isatching between the 2-D Wold decomposition based para-
the spectral density of the 1-D modulating process. Since thetric random field model and the physical model of STAP
spectral density of the modulating process can rapidly decaata. In this synthetic example, the observed random field is
to zero, so will the “spectral density” of the evanescent fieldhe sum of two evanescent components that correspond to the
hence, the name “evanescent.” Since interchanging the rolegigitter component with(a, b) = (1, 2), »(»?) = 0 and a
past and future in any total-order definition amounts to subsfammer with»(%:1) = 0.2. Fig. 2 depicts the magnitude of the
tuting ui(“’b) by —ui(“’b) in the model (5), we assume withoutDFT of the observed field.
limiting the generality of the derivation that > 0, andb can We therefore conclude that the foregoing derivation opens the
assume any integer value. way for newparametricsolutions that can simplify and improve
One of the half-plane-deterministic field components, whicfxisting methods of STAP.
is of prime importance in the STAP problem is the harmonic

random field
P IV. COVARIANCE STRUCTURE OF THEOBSERVEDFIELD
h(n, m) = Cpexp (j2r(nw, + mu,)) (6)  Based on the random field model derived in the previous sec-
p=1 tions, we derive in this section a closed-form parametric ex-

pression for the covariance matrix of the observed STAP data
where theC),s are mutually orthogonal random variables, aniield in terms of the model parameters. We begin by stating our
(wp, 1) are the spatial frequencies of thh harmonic. assumptions.
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' ra ' ' ' ( be the vector whose elements are the observed samples from the
o4 'f""‘f?’ S Pt 1 1-D modulating procesgsl(“’b)}. Define
03l §@ I e R SR f | | V(a,b) — [01 d7 o (T—l)d, ¢ C—|—d7
oab B S éy’ ..... ........ b -
é o ) 5 c+(T=1)d, ..., ..., (S=1e, (S—1Dec+d
© : : : :

Given a scalar functiorf(v), we will denote the matrix, or
column vector, consisting of the valuesfifv) evaluated for all
the elements of,, wherev is a matrix, or a column vector, by
f(v). Using this notation, we define

Normalized Doppler Frequency

< =g g
o =
S T

e : 4 dga’b) = exp (j27r1/i(a’b)v(a’b)) . (12)
| TS ST 2 P

ﬁﬂ; Thus, using (5), we have that
085 04 o3 w0z o1 0 o

Spatial Frequency . l } el(a, b) = fga’ b) @ dl(»a’ b) (13)

Fig. 2. Magnitude of the DFT of an observed field containing two evanescewthere® denotes an element-by-element product of the vectors.
components that correspond to a clutter component withh) = (1, 2), Note that whenevena + mb = ka + ¢b for some integers
v(12) =0, and a jammer with (-1 = 0.2.
n, m, k,£suchthatd < n,k < S—1and0 < m, /¢ <
T — 1, the same sample from the modulating proo[eé%“ b)} is
Let {y(n, m)}, (n, m) € D, whereD = {(i, j)|0 < < duplicated in the elements f"*. It is shown in [15] that for
§—1,0<j <T -1}, be the observed random field. a rectangular observed field of dimensiohisc 7', the number
Assumption 1:The purely indeterministic component; distinct samples from the random proce@“”’)} that are
{w(n, m)} is a zero mean circular complex valued randogynd in the observed field is
field.
Assumption 2:The numbed = 3>, ;. [ of evanes- N, = (S — 1)|a| + (T = 1)[b] + 1 — (|a| — 1)(|b] — 1). (14)
cent components in the field éspriori imown. This assumption
can be later relaxed. This is becauséV. is the number of different “columns” one

Assumption 3:For each evanescent fie|qe§“”’>}, the can define on such a rectangular lattice for a RNSHP defined
by (a, b). We note here that in the special case where 1,
(14) provides the well-known Brennan rule [3] on the rank of
the clutter covariance matrix.
We therefore define theoncentrated versioslga’ ") of 55"’ ?)
to be anN.-dimensional column vector of nonrepeating sam-
y=[y(0,0),...,4(0,7-1),y(1,0),...,y(1,T-1) ples of the procesés!™"}. More specifically, for the case in

........ Y(S—1,0),...,y(S—1,T-1)T  (7) Whicha >0andb < 0,s{" is given by

modulating 1-D purely indeterministic proce$s§“’b)} is a
zero-mean circular complex valued process.
Let

w=[w(0,0),...,w(0,7=1),w(1,0),...,w(l,T-1) sl = [sg“’b)((T —1)b), ey, S (S - l)a)}T
e w(S=1,0), .. w(S—1,T-1)]"  (8) ,y . 15
whereas for the case in whieh> 0 andb > 0, s§“7 )is given
el®?) = [eg‘“b)(o, 0),....el""0,7-1),e""(1,0) by
A1), LY (51,0 s{®?) = [sg""">(o)7
(a,b) T (a,b) T
Lem(s-1,7-1)] ©) (S = Dat T =1)] . (16)

Thus, for any(a, b), we have that

é.ga,b) _ Aga,b)sga,b) (17)

(a,b) _ (a,b) (a,b) (a,b) _
&= [Si (0), 87 7B, o s (T = 1)) whereAE“’b) is rectangular matrix of zeros and ones that repli-

SO0 @0 (1) SO (g (m 1))  cales rows k(™"
‘ ‘ ‘ Note, however, that due to boundary effects, the vedfo’
ey sga"b)((S —1)a), sg“’b)((S —1)a+0b) is not composed of consecutive samples from the process
(ab) T {s,ﬁ“’b)} unlessja| < 1 or |b] < 1. In other words, for some
8 (S =1a+ (T - 1)b)} (10)  arbitrarya andb, there are missing samplessif*".
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We note that the covariance matﬁb{a’b), which character-  More specifically, for this special case, (13) can be expressed
izes the second-order properties of the prode$s '}, is de- in the form

. . . b) .
fined in terms of the concentrated version ve<st£6r ,l.e., ego, 1 _ dEO’ Vg SEO’ 1) 22)
R(* = F |s{") (Sg%b))H (18) Wwhere® is the Kronecker product. Hence
- - H
. . . (0,1) _ (0,1) ( 4(0,1) (0,1)
and not in terms of the covariance matrix L= (di (di ) ) ®R;
R©Y _ g _g(g,b) (gﬁ“’b))H_ (19) gD gROD 23)

(a,b) o ab) _ . WhereREO’l) andEEO’l) are Toeplitz matrices, given by (24)
of the vectorg;”"’. The matrixR; is a singular matrix, gnq (25), as shown at the bottom of the page.
whereR(*? = Al* PRV (APH
Since the evanescent Componefﬁg"b)} are mutually or- V. PARAMETRIC ESTIMATION OF THE
thogonal and since all the evanescent components are orthog- INTERFERENCECOMPONENTS
onal to the purely indeterministic component, we conclude that

o . . In this section, we derive a computationally efficient algo-
T, which is the covariance matrix ¢f, has the form P y 9

rithm for estimating both the jamming and clutter fields, based
1(a.) on the above results. More specifically, for each interference
L=Tp+ Z Z I\ga;b) (20) component of the observed field, we estimate its spectral sup-
port parameters, b, »(**) as well asc, d and the parametric

a,b i=1
(heo model of the modulating 1-D purely indeterministic process
whereT'("") is the covariance matrix af\**"). {s*")}. In the setting of the radar problem considered here,
Using (5) and (13), we find that partial information on the different components of the field is
a priori known: The jamming signals are localized in angle
b (A(a,b)R(a, b) (A(a, b))T) and distributed over all Doppler frequencies. Thus, each jammer
v ’ ! ! contributes an evanescent component with spectral support pa-

clutter signal is also modeled as an evanescent component with
v(¢:%) = ( and an unknowra, b) pair, which is uniquely de-
A compact matrix representation &.“") for any (a, b)) termined by the platform motion parameters.
cannot be derived due to the dependence of the matrix structurdhe proposed estimation algorithm of the spectral support pa-
on (a, b). However, for the case in whictu, b) = (0, 1) rameters of the evanescent fieidh andv*" is based on the
(and similarly for(a, b) = (1, 0)), a somewhat more compactfollowing lemma.
representation is possible, using Kronecker products instead oEkemma 1: Let {e(“"’)(n, m)} be an evanescent field and let

i

H rameter b) = (0, 1) and an unknown frequenay” . The
o (a” ()" e s ais aueney

the Hadamard products. k be an integer. The samples of the evanescent field along a line
_ TEO,l)(O) Tg(),l)(_l) TZ(O,l)(_(T_ 1))_
1”,50’1)(1) 7“50’1)(0) . T,§071)(—(T . 2))
RV = : : (24)
- r (1)
_7“,50’ D(T —1) 7“,50’ D(T —2) .. rl(o, 1)<0)
_ 1 exp (‘jQWVfo’ 1)) o exp (—j27r(5 WO 1)) -
exp (j27r1/i(0’ 1)) 1 .- exp (—jZTF(S . 2)1/2.(0’ 1))
B = 5 2 (25)
exp (—j27ﬂ/i(0’ 1))
exp (.]'27r(5' — 1)1/50’ 1)> exp (j27r(S — 2)1/50’ 1)) 1
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on the sampling grid defined by = na + mb are the samples  Final estimation of the spectral support parameters of
of a 1-D constant amplitude harmonic signal, whose frequenegch evanescent componenifhe test for detecting the cor-
is yi(“’ 2 rect(a, b) andz/i(“"’) is then based on multiplying the observed
_ Proo_f: Since for fixeda, b, k, k = na + mb is Fhe Iinear_ signaly(n, m) by eXp(—j27T19i(&’b)(7‘L@ + md)) for each of the
Diophantine equation (see the Appendix), its solutions are 9\VE€Bnsideredi, b and ﬁi(a, b) triplets and evaluating the variance
by of this signal along a line on the sampling grid such that
(26) "+ mb. Clearly, the best estimate of b, and " is the
one that results in minimal variance for the 1-D sequence be-
m =my — ta (27) cause in the absence of noise, the coriedt, anduf“’ Y result
_ _ ) ) ) in a zero variance. Note that d are two coprime integers sat-
where(ny, my) is a solution of the quatlon, amds an integer isfying the linear Diophantine equatiom — bc = 1 whena, b
such that the sequence of consecutive valuegsaoiresponds 4ye replaced by their estimated values. Cleatly] obtained
to the different lattice point on the link = na + mb. From a5 sojutions to the linear Diophantine equation are not unique
(5), we have, for the evanescent field samples along the Il(lfee the Appendix). The correct péjra? is then determined by
k = na+mb employing the symmetry properties of the field covariance se-
(a,b) guence (see [12] for details). Since, in the STAP problem, it is
( a priori known that for the jammerg:, b) = (0, 1), whereas
= 54" (ng + mb) exp (ﬂwi(a,b)(nc n md)) for the clutterv(:®) = 0, the parameters, d do not appear in
the model and, hence, need not be estimated. Nevertheless, to
Sl(a b)(k) exp (jzﬂyi(a,b)(nkc + mpd — t(ad — bc))) maintair_1 the generality of the_algorit_hm description, we proqeed
’ ’ for the final step of the algorithm with the general description,
assuming:, d have been estimated (or aeoriori known as in
the STAP case).
Estimating the model of the 1-D purely indeterministic
modulating process of the evanescent fielddaving estimated
the spectral support parameters of each evanescent component,
we take the approach of first estimating@nparametriaepre-
sentation of its 1-D purely indeterministic modulating process
{s,ﬁ“’b)}, and only at a second stage do we estimate the para-

n=ny+tb

n, m)

= [sga’b)(k) exp (j27rufa’b)(nkc + mkd)ﬂ
- exp (—j27rl/,i(a’b)t> (28)

where the last equality is becausel are coprime integers such
thatad — bc = 1. Hence, in each realization and for a fixed
s\ (k) exp(j2nv (Y (nc + mid)) is a (random) constant.

3 2

Hence, the proof follows. [ | i dels of th H " the first st
The algorithm is implemented by the following four—ste;{"e_ ric Models of these processes. Hence, mb) € first stage, we
procedure: estimate the particular values that the vecfé?s take for the

Initial estimation of « and b: In the presence of an evanesdiven realization, i.e., we treat these as unknown constants. The

cent component, the peaks of the observed field periodogram §Fdmation procedure is implemented as Egllgws: Multiplying

concentrated along a straight line such that its slope is defilé@ observed signaj(n, m) by exp(—j2ro;" " (né¢ + md))

by the two coprime integersandb. Hence, several alternativeand evaluating the arithmetic mean of this signal along a line

approaches for obtaining an initial estimate of the spectral suji the sampling grid such that= na + mb, we have

port parameters of the evanescent component can be derived DY) 1

taking the Radon or Hough transforms [20] of the observed fiefd (k) = N Z y(n, m)

periodogram. (The current implementation employs the Hough * natmb=k

transform for detecting straight lines in 2-D arrays). However, o (@b 4 5

due to noise presence, this estimate may perturb. Since, on a fi- ' eXp(_ﬂm/i( )(nc +md)) (29)

nite-dimension observed field, only a finite number of possiblghere N, denotes the number of the observed field samples that

(a, b) pairs may be defined, the output of the initial stage is a sg4tisfy the relatioma-+mb = k. Once we obtained the sequence

of possible(a, b) pairs such thatthe ratig'a is close to the ratio of estimated samples from the 1-D modulating pro<{e$§ b) 1,

obtained for théa, b) pair estimated by the Hough transform.the problem of estimating its parametric model becomes entirely
Estimation of the frequency parameter of the evanescent g 1-D estimation problem. Assuming the modulating process is

component:For each possiblez, b) pair, we next evaluate the an autoregressive (AR) process and applying to the sequence an

frequency parameter of the evanescent compoqié’n?). As- AR estimation algorithm (see, e.g., [21]), we obtain estimates

suming the considere(@:, b) pair is the correct one, we have,of the modulating process parameters as well.

from Lemma 1, that in the absence of background noise for aFinally, it is important to note that we solve the difficult

fixed k = na 4+ mb (i.e., along a line on the sampling grid), theproblem of evaluating the rank of the low-rank covariance

samples of the evanescent component are the samples of ahddrix of the interference as a byproduct of obtaining the

constant amplitude harmonic signal, whose frequeno§/“r§>. parametric estimates of the interference components: De-

Hence, by considering the samples along such a line, we oiate the number of evanescent components (interference

tain samples of a 1-D constant amplitude harmonic signal whassurces) of the field byQ. It is then shown in [16] that

frequency/f‘l’b> can be easily estimated using any standard frehe rank of the interference covariance matrix is given by

quency estimation algorithm (e.g., the 1-D DFT). SS9 ak]l + TS be] — X% Jar] 52, [bi]. In fact,
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the special case wher@ = 1 anda = 1 is the well-known statistic evaluated at this frequency against the threshold. Thus,
Brennan rule [3] on the rank of the clutter covariance matrixhe GLRT wherT is perfectly known is given by

Hence, following the estimation of the spectral support param- )

eters of the different evanescent components, the rank of the max |2(@, D" = . (35)

interference covariance matrix is also determined. . ) .
In other words, in the case of a known covariance matrix, the test

VI. PARAMETRIC FULLY ADAPTIVE PROCESSING is equivalent to find?ng the_ 2-D frequency where th(_a magnitude
) ) ) ~ofthe 2-D DFT ofY is maximal, followed by comparison of the
Having estimated the parametric models of the purely indgajye of the test statistic at this frequency against the threshold.
terministic and evanescent components of the field, the estiygte that under both the null hypothesis (no target) as
mated parameters can be substituted into (20) and (21) to obigif)| as under the alternative hypothesis, b (w)@al (1)
an estimate of the interference-plus-noise covariance Mlrixjs 3 Gaussian random variable, being a linear transformation of
In this section, we show how the estimated interference-plus$Gaussian random vector. Assumifigs perfectly known, it
noise covariance matrix is employed to obtain a fully adaptiyg not difficult to show [13] that after prewhitening iy~ (1/2),

space-time filter. . _ the probability density function of the GLRT in (35) i€ dis-
Let v; denote the target steering vector given by tributed with two degrees of freedom undég and noncentral
v = b(w;) ® a(?y). (30) x* with two degrees of freedom undef; .

) ) ) ) Finally, sincer is also unknown, we adopt an approach sim-
Assuming alinear, uniformly spaced, sensor array and a unifo[i} o that employed in the derivation of the adaptive match

coherent-processing interval (CPI) are employed in our modghe, (AMF) in [7] and substitute the unknown covariance ma-
the spatial steering vecta(«/) and the temporal steering vectory \yith its estimate, which is obtained as explained in the pre-

b(w) are given by vious sections.

a(¥) =[1, 2™ ... 2 (T-1)9T To illustrate the operation of the proposed solution, we

B ionm j2m(S—1yewT resort to numerical evaluation of some specific examples

b(w) =1, ¢ 1eeen € ] (see [13] for a detailed performance analysis and additional
respectively. Assume for the moment that only a single targ@amples). Consider a 2-D observed random field consisting
may exist in the observed data and that both the target’s steef@ig sum of a purely indeterministic component (background
vector and the interference-plus-noise covariance mataxe hoise), a single evanescent (interference) component, and three
known. We next derive a fully adaptive detection algorithrharmonic components (targets). The purely indeterministic
based on the generalized likelihood ratio test (GLRT). Since component is a complex valued circular Gaussian white noise
andT are assumed known, the GLR has to be maximized orfigld. The evanescent component spectral support parameters
with respect taC;, which is the unknown amplitude parametegre (a, b)) = (1, 2), »(-» = 0. The modulating 1-D purely

of the target. Thus, the GLR has the form indeterministic process of this evanescent component is a
first-order Gaussian AR process, with driving noise variance
; Ce|H ’
A= maxc, PylHl(B;{ M) (31) (¢™2)?2 = 2. anda?(1) = —0.5. There are three targets
Py[r, (¥[Ho) that are located &10.05, 0), (0.15, 0.15), and(—0.25, 0.15),

Following a standard procedure (see, e.g., [7] and [9]), the GLBspectively. The observed field dimensions 4§e« 48.
test statistic, which we denote ty(ww, ¥)|?, can be shownto  Let us define the power of each of the field components

have the equivalent form as £, = wHw for the purely indeterministic component;
, VAT ly|? E, = (el®")Hel®?) for the evanescent component; and
|2(@e, VI° = =y, (B2) E,, = hfh;, k = 1,2, 3 for each of the harmonic com-
t ! ponents, wherd,, is defined in the same waw ande(*?
Let ¥ = I'~'y. We thus have are defined. In this example, we ha./E, = 6dB,
s  [VE®]?2  |bf(wm) @ af(9,)®)? whereas for the three targets, we havg /E,, = —12.8dB,

|2(wt, D4)]

T vAT-Ty, vAT-1y, - (33) E,,/E, = —14.5dB, E},/E,, = —15dB. Due to the strong

Reorganizing the elements#finto a5 x T matrix Y where the interference component, the presence of the three targets is hard

elements of théth row of Y are® ((k — 1)T + 1) - - - ¥ (kT) to detect in the observed data whose power spectral density is
' (E%oicted in Fig. 3. However, these targets are easily detected

we conclude that for a linear, uniformly spaced, sensor array aby the test statistidz(w, )|, depicted in Fig. 4. In Fig. 4,
uniform CPI ) . . S

" " |z(w, ¥)| is depicted as a function of the 2-D frequencies, i.e.,
b" (w)®a™ (J)¥ angle and Doppler.

s T
= Z Z emI2m == —i2n(a=10y (). (34) VII. PARAMETRIC PARTIALLY ADAPTIVE PROCESSING
p=1qg=1

The low rank of the interference covariance matrix is ex-
Thus,b? (w) ® a¥ (9)¥ andY are a 2-D DFT pair. However, ploited in the partially adaptive STAP to significantly reduce
since in fact the steering vector is unknown, the detector muke adaptive problem dimensionality. In this section, we derive a
first estimate the frequency where the magnitude of the 2-D DFpErtially adaptive processing algorithm, based on the estimated
of T is maximal, followed by comparison of the value of the tegtarametric model of the interference. Moreover, it is proved in
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Angle-Doppler PSD However, from (17), we conclude that the covariance matrix of
1000 55“’1’) is given by
~ T
o00 Rz(a,b) _ Aga,b)Rga,b) (Aga,b)) ) (38)

In the following, we prove that since and b are already
known, an orthogonal projection matrix onto the low-rank
subspace spanned by the evanescent field covariance matrix
can be foundwithout estimating the parametric model of the
evanescent field 1-D modulating process and, hence, without
estimatingRE“”’). Moreover, this result enables us to avoid
the need in both evaluating the field covariance matrix and in
employing a computationally intensive eigenanalysis to the
estimated covariance matrix. More specifically, let us construct
the following orthogonal projection matrix:

(D) A <(A5a,b))TAEa,b)>_l (Aga,b)>T. (39)

NORMAUZED DOPPLER FREQUENCY

"5 0 05

SPATIAL FREQUENGY )
Itis easily verified (by substitution) thaIE“’ Jisan orthogonal
projection onto the range spaceﬁf“’b) since for anyST-di-
mensional vecto¥

ROVy = REVTENy Z T@IREDy (40)

In addition, (T!*")2 = T(*? and(T{*")? = T{=?,

Note that sinceAga’b) is a sparse matrix of zeros and
onesonly, the computation ofI‘E“’b) is very simple. The
projection matrix onto the subspace orthogonal to the inter-
ference space is therefore given ¢{* ")+ = 1 — T{*".
Hence, by projecting the demodulated observed data vector
oy =y o ((d™")H)T onto the subspace orthogonal to the
interference subspace, a reduced-dimension data vector given
by y = (TE"”’))ly is obtained, such that the interference
contribution to the observed signal is mitigated. Remodulating
y by evaluatingy © dE“’ ®) followed by sequentially applying
this procedure to mitigate each of the interference sources, the

detection problem is reduced to that of detecting a target in

B s T the presence of background noise only. Following a similar
SPATIAL FREGUENCY derivation to the one in (31)—(35), we conclude that in the

special case where the background noise is known to be a
white noise field, the statistical test is obtained by finding

. . . . ._the 2-D frequency where the magnitude of the 2-D DFT of
this section that in order to implement the proposed partlali

danti . thazhlv th tral ¢ Ne processed data vector (organized back into a 2-D array)
adaptive processing me yythe Sspectral Support parameq maximal, followed by comparison of the value of the test

ters of the interference need to be estimated, and there is no n&%ﬂstic at this frequency against the threshold. In the more
whatsoever to estimate the mo_dulating process of the intencSre'neral case, where the purely indeterministic component of
ence model, hor the data covariance matrix. the field is not a white noise field, the observed data vector
More specifically, recall that is first prewhitened by the estimatddy,{"/?. It is shown in
@5 [ @b @b [ x@)\T [13] that the probability density function of the GLR test that
L; - <Ai R; (Ai ) ) upper bounds the performance of the actual detectgt isith
. two degrees of freedom undef, and noncentrag? with two
o (dga,b) (dga’b)) ) . (36) degrees of freedom undef; .
As an example, consider the same field as in the previous sec-
) ) (a,b) . ) tion. Due to the strong interference component, the presence of
~ Having estlmat?adl,))b_ andy; " using the algorithm n ?)ec- the three targets is difficult to detect in the observed data, whose
tion V, the vectord, ™ is known. Hence, demodulating™", power spectral density is depicted in Fig. 3. However, these
we conclude using (13) that targets are easily detected in the processed data, as illustrated
(a,b) (a,b) (@b m\ T in Fig. 5. This result is obtained without estimating the para-
§ =0 ((di ) ) . (37)  metric model of the evanescent field 1-D modulating process

Fig. 3. Power spectral density of the observed field.
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much simpler. Statistical analysis of the performance of the
proposed detectors is considered in [13].

APPENDIX
LINEAR DIOPHANTINE EQUATION

Let £ and/ be two nonzero integers apdgome other integer.
The equation

kx —Lly=1p

is called thelinear Diophantine equationA solution of this
equation is a paifz, y) of integers (dattice pointin the plane)
that satisfies the equation. We use the following well known the-
orem (e.g., see [23])

Theorem 1: The linear Diophantine equation

kx —ly=p

has a solution if and only if | p, (i.e., ¢ dividesp), where

Fig. 5. Test statistic of the parametric partially adaptive processor. The power= g.c.d.(k, £). Furthermore, if(zo, yo) is a solution of this
spectral density of the field after being projected onto the subspace Oﬂhog%‘aluation, then the set of solutions of the equation consists of all

to the interference subspace.

and, hence, without estimating the interference-plus-noise co-
variance matrix. Since both the estimation of the interference-

integer pairgz, y) of the form

l k
r=xz9+t— and y=yo+1t—, teZ. 41)
q q

plus-noise covariance matrix, as well as its analysis, are savidte that ifk and/ are coprime, then there will always be solu-
the proposed parametric partially adaptive processing methazhs, given by (41).

is robust and computationally attractive (see [13] for a detailed
performance analysis and additional examples).
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VIIl. CONCLUSIONS

In this paper, a novel parametric approach for modeling,
estimation, and target detection for STAP data has beerni]
derived. The proposed parametric interference mitigation
procedures employ the information in only a single range gate,
thus achieving high performance gain when the data in the[3]
different range gates cannot be assumed stationary. The modﬂ]
is based on the results of the 2-D Wold-like decomposition.
We showed that the same parametric model that results fronts]
the 2-D Wold-like orthogonal decomposition naturally arises
as the physical model in the problem of space-time processindG]
of airborne radar data. We exploited this correspondence to
derive computationally efficient fully adaptive and partially [7]
adaptive detection algorithms. Having estimated the models
of the noise and interference components of the field, the[s]
estimated parameters are substituted into the parametric ex-
pression of the covariance matrix to obtain an estimate of theyq
interference-plus-noise covariance matrix. Hence, the fully
adaptive weight vector is obtained, and a corresponding test js
derived. Moreover, we proved that it is sufficient to estimate
only the spectral support parameters of each interference com-
ponent in order to obtain a projection matrix onto the subspacg!]
orthogonal to the interference subspace. Thus, the resulting,,
detector is statistically superior to the fully adaptive detector
as considerably fewer parameters need to be estimated. Sin(ig
a much smaller number of parameters need to be estimated the]
proposed partially adaptive detector is also computationally

ducing the numerical examples.
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