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Abstruct- We present a solution to the problem of modeling, 
parameter estimation, and synthesis of natural textures. The tex- 
ture field is assumed to be a realization of a regular homogeneous 
random field, which can have a mixed spectral distribution. On 
the basis of a 2-D Wold-like decomposition, the field is represented 
as a sum of a purely indeterministic component, a harmonic 
component, and a countable number of evanescent fields. We 
present a maximum-likelihood solution to the joint parameter 
estimation problem of these components from a single observed 
realization of the texture field. The proposed solution is a two- 
stage algorithm. In the first stage, we obtain an estimate for the 
number of harmonic and evanescent components in the field, 
and a suboptimal initial estiqate for the parameters of their 
spectral supports. In the second stage, we refine these initial 
estimates by iterative maximization of the likelihood function 
of the observed data. By introducing appropriate parameter 
transformations the highly nonlinear least-squares problem that 
results from the maximization of the likelihood function, is 
transformed into a separable least-squares problem. In this new 
problem, the solution for the unknown spectral supports of the 
harmonic and evanescent components reduces the problem of 
solving for the transformed parameters of the field to linear least 
squares. Solution of the transformation equations then provides 
a complete solution of the field-model parameter estimation 
problem. The Wold-based model and the resulting analysis and 
synthesis algorithms are seen applicable to a wide variety of 
texture types found in natural images. The support or shape 
of the analyzed texture patch may be arbitrary. Our model is 
very efficient in terms of the number of parameters required to 
represent and faithfully reconstruct the original texture. 

1. INTRODUCTION 

ANY natural images can be described as a finite set M of patches of uniform textures. Hence, a fundamental 
problem in image processing applications such as segmen- 
tation, synthesis, restoration, and coding of textured images 
(or of textured regions in larger images), is the modeling 
and estimation of textures. In parametric texture modeling the 
objective is to find a general model whose parameters have a 
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meaningful interpretation in terms of the visual properties of 
the observed texture. Such a general model, accompanied by 
an appropriate parameter estimation method, can then serve as 
the basic building block in a variety of applications. 

In essence, there are two approaches to the analysis and 
synthesis of textures: structural and statistical. The structural 
methods describe the texture as a cellular, and to some extent, 
an ordered phenomenon. Therefore, texture is characterized 
by a description of its primitives and their placement rules 
[2], [3], [4], (see also [13] for the references therein). In 
the statistical methods, texture is described by a collection 
of statistics of the selected features, or by a stochastic model. 
Parametric stochastic modeling approaches assume that the 
observed texture is a finite sample from a single observed 
realization of a two-dimensional (2-D) random field. Chel- 
lappa and Kashyap [ 5 ] ,  [6], suggested the use of a 2-D 
autoregressive, noncausal model for synthesizing textures that 
visually resemble natural textures. Due to its properties, this 
type of model is more suitable for parameterizing fine (purely 
random) textures, than for structured ones. Causal Gaussian 
AR texture models were successfully used in [7], as well 
as in [8], for unsupervised texture segmentation algorithms. 
Both works use Markov random fields (MRF) to model the 
texture labeling process. Cohen and Cooper [9], and Geman 
and Graffine [lo], also used a two-tiered MRF model in 
order to perform supervised segmentation of natural textures, 
and obtained accurate segmentation results. However, even 
though the estimated parameters allowed for a successful 
segmentation, samples generated using the estimated model 
did not produce a close replica of the original texture, [lo]. A 
similar conclusion was recently obtained in [ 111, where the 
SAR model of [5], [6], was used as the texture model in 
a two-tiered segmentation scheme. Gaussian MRF (GMRF) 
texture models were applied in an unsupervised texture seg- 
mentation procedure [12], and in a classification algorithm of 
rotated and scaled textured images [13]. Most of the above 
stochastic models perform reasonably well in synthesizing 
the original texture from the estimated parameters as long as 
the original texture is purely random (microtextures). How- 
ever, they perform poorly when the texture becomes more 
structured. 

In [14] we have presented a 2-D Wold-like decomposition 
for homogeneous random fields. The texture model suggested 
in the present paper is based on this decomposition. The texture 
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field is decomposed into a sum of two mutually orthogonal 
components: a deterministic component which results in the 
structural attributes of the observed realization, and a purely 
indeterministic component which is the structureless, “random 
looking” component of the texture field. The deterministic field 
is further orthogonally decomposed into a harmonic compo- 
nent and a countable number of evanescent components. The 
harmonic field results in the periodic attributes of the texture, 
whereas the evanescent components result in directional ones. 
Using the decomposition results, the problem of estimating 
the texture model parameters becomes that of simultaneously 
estimating the parameters of the harmonic and evanescent 
components of the observed realization of the texture, in the 
presence of an unknown colored noise generated by the purely- 
indeterministic component, jointly with estimating the purely- 
indeterministic component parameters. Since the proposed 
texture model is based on the Wold decomposition results, 
it enables a rigorous mathematical treatment of the texture 
modeling and parameter estimation problems. Moreover, due 
to the generality of the decomposition, the model is not tailored 
to any specific type of texture. 

In the proposed model, and in the derived analysislsynthesis 
method, the texture field is assumed to be a realization of 
a 2-D homogeneous random field. Hence, the problem of 
estimating the texture parameters is strongly related to the 
more general problem of fitting a parametric model to a 
finite observed sample from a single realization of a 2- 
D homogeneous random field. This homogeneous random 
field is characterized in general, by a mixed spectral distri- 
bution (the singular component of the spectral distribution 
is due to the deterministic component of the field, while 
the absolutely continuous component of the distribution is 
associated with the purely indeterministic component of the 
field). Until recently [ 161, this estimation problem has been 
largely unsolved. Existing methods either assume the field 
has an absolutely continuous spectral distribution and try to 
fit noise driven linear models to the observed field, or treat 
the special case of estimating the parameters of a sinusoidal 
signal in white noise. The existence of evanescent random 
fields has not received any attention in the estimation literature, 
although the evanescent components have major impact on 
the structure and properties of the random field, as they 
result in directional attributes in the observed realizations. 
Among the noise driven models we find the 2-D AR and 
ARMA models, as well as the Gauss-Markov random field 
model. As mentioned earlier, these types of models were also 
suggested for texture modeling applications. However, both 
white- and correlated-noise driven linear models can only 
produce fields with absolutely continuous spectral distribution 
functions. Hence, they cannot be applied to the general case in 
which the spectral distribution of the observed field contains 
singular components as well. Since noise-driven models cannot 
model the singular components of the spectral distribution, and 
since the singular components result in the structural features 
of the texture, nois-driven models can be successful only in 
modeling random looking textures, and fail to model structured 
ones, as was previously concluded based on experimental 
results, [lo], [ll]. 

In [16], we have presented a maximum likelihood so- 
lution to the problem of fitting a parametric model to a 
finite observed sample from a single realization of a 2-D 
homogeneous random field, with mixed spectral distribution. 
This solution is based on the theoretical results of the 2-D 
Wold decomposition. In the present paper, we employ the 
same theoretical framework to formulate the texture modeling 
problem, and extend the algorithm suggested in [16] so that 
it can be used for estimating the texture model parameters. 
The parametric modeling and estimation approach suggested 
in the present paper provides a unifying framework for many 
applications in which texture analysis is involved, together 
with the optimality properties of an ML estimation algorithm. 
Since different textures have different models, such a model 
can be used for image segmentation, for texture classification. 
for model based adaptive restoration of textured images, etc. In 
the present paper, the estimated parametric model is applied to 
synthesize textures which are statistically and visually similar 
to the observed ones. The synthesis procedure uses only the 
estimated parameters. 

This paper is organized as follows: In Section 11, we 
present the texture model. The model is based on the results 
of the 2-D Wold decomposition. Section I11 presents an 
overview on the maximum likelihood estimation algorithm 
for the parameters of the harmonic, evanescent and purely 
indeterministic components of the texture. In Section IV, we 
further elaborate on the estimation problem of the evanescent 
components, and present a complete estimation algorithm for 
these components. In Section V, we present and analyze the 
texture estimation and synthesis results obtained by applying 
the proposed method to a number of natural textures. We 
compare the results with those obtained by other models and 
methods. 

11. THE WOLD-BASED TEXTURE MODEL 

We derive our texture model based on the results of the 
Wold-type decomposition of 2-D regular and homogeneous 
random fields, [14]. Let {y(n,m),  (n,m) E Z 2 }  be a real 
valued, regular, and homogeneous random field. Then y(n, m) 
can be uniquely represented by the orthogonal decomposition 

y(n,m) = w(n,m)  + ?I(n,m) . (1) 

The field { ~ ( n ,  m)}  is purely indeterministic and has a unique 
white innovations driven moving average representation. The 
field {w(n, m)}  is a deterministic random field. It can be shown 
that it is possible to define a family of nonsymmetric half- 
plane (NSHP) total-order definitions such that the boundary 
line of the NSHP is of rational slope. Let a,  ,Ll be two coprime 
integers, such that Q # 0. The angle 0 of the slope is 
given by tan 0 = P / Q  (see, for example, Fig. 1). Each of 
these supports is called rational nonsymmetrical half-plane 
(RNSHP). We denote by 0 the set of all possible RNSHP 
definitions on the 2-D lattice, (i.e., the set of all NSHP 
definitions in which the boundary line of the NSHP is of 
rational slope). The introduction of the family of RNSHP 
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Fig. 1.  RNSHP support. 

total-ordering definitions results in the following countably 
infinite orthogonal decomposition of the field's deterministic 
component, [ 141 

The random field { p ( n ,  m)}  is a half-plane deterministic field, 
and {e(,,p) (n, m)}  is the evanescent field corresponding to the 
RNSHP total-ordering definition ( a ,  p) E 0. 

Hence, if {y(n,m)} is a 2-D regular and homogeneous 
random field, then y(n,m) can be uniquely represented by 
the orthogonal decomposition 

Y(? m) = w(n, m) + dn, m) + c e(,$) (n,  m) . ( 3 )  
( e , P ) E O  

In this paper, all spectral measures are defined on the square 
region K = [-1/2,1/2] x [-1/2,1/2]. It is shown in [14] 
that the spectral measures of the decomposition components in 
(3) are mutually singular. The spectral distribution function of 
the purely-indeterministic component is absolutely continuous, 
while the spectral measures of the half-plane deterministic 
component and all the evanescent components are concen- 
trated on a set L of Lebesgue measure zero in K .  Since 
for practical applications we can exclude singular-continuous 
spectral distribution functions from the framework of our 
treatment, a model for the evanescent field which corresponds 
to the RNSHP defined by ( a ,  p)  E 0 is given by 

(4) 

where the 1-D purely-indeterministic processes { .sjCu") (na - 

mp)} are mutually orthogonal for all i ,  j, k ,  e, i # j ,  k # e, 
and for all i the processes {s~"")(na-m,L?)} and {t{"")(na- 
mp) } have an identical autocorrelation function. Hence, the 
"spectral density function" of each evanescent field has the 

mp)}, { s y ) ( n a  - mp)}, {t?'P)(na - mp)}, {tk"'P)(na - 

form of a countable sum of 1-D delta functions which are 
supported on lines of rational slope in the 2-D spectral domain. 

Let n(a)P) = na - mp. In the following, we assume 
that the modulating 1-D processes { S : " " ' ( ~ ( ~ J ? ) ) }  and 
{ t : " 'P ' (n("~P))}  of each evanescent field can be modeled 
by a finite order AR model, i.e., 

v;"2P) 

s( " 'P) (n ( .y ,P)  a ) = - & P ) ( , ) , p P )  [n (%P) - 71 
r=l 

+ p P ) ( n ( " ' P )  1 (5) 

and 
y ( f f , P )  

t j " q n ( " > P ) )  = - a j " , P ) ( 7 ) t ~ " ' P ) [ , ( " , ~ )  - 71 
r=l 

+ p P ) ( n ( " > m  1 (6) 

where sL(e'B)(n(cy~P)), (Le'P)(n(eiP)) are independent 1-D 
white innovation processes of identical variance, (CT:~"))~. 

One of the half-plane-deterministic field components, which 
is often found in natural textures, is the harmonic random field 

h(n, m) 

1 P 

= c ( C, cos 2r(nwp + mup) + D~ sin 2 r ( n w p  + mu,) 
p=l  

(7) 

where the Cp's and Dp's are mutually orthogonal random 
variables, E[C,]2 = E[DpI2 = op", and (wp,vp) are the 
spatial frequencies of the pth harmonic. In general, P is 
infinite. This component generates the 2-D delta functions of 
the "spectral density" (the 2-D delta functions are singular 
functions supported on discrete points in the frequency plane). 
The parametric modeling of deterministic random fields whose 
spectral measures are concentrated on curves other than lines 
of rational slope, or discrete points in the frequency plane, is 
still an open question to the best of our knowledge. Since such 
components seem to be of very little practical importance for 
the texture modeling problem, we assume that the half-plane 
deterministic field consists only of the harmonic random field. 

As stated earlier, the most general model for the purely in- 
deterministic component w(n,  m) is the MA model. However, 
if its spectral density function is strictly positive on the unit 
bicircle and analytic in some neighborhood of it, a 2-D AR 
representation for the purely indeterministic field exists as well 
[15]. In the following, we assume that the above requirements 
are satisfied. Hence, the purely indeterministic component's 
autoregressive model is given by 

w ( n , m )  = - b(lc,.e)w(n-k,m-.e)+u(n,m) (8) 
( O 3 0 ) 4 ( k O  

where {u(n,m)} is the 2-D white innovations field, whose 
variance is a2. In the practical estimation problem, the model 
support is assumed finite. 

Hence, the observed texture field {y(n, m)}  is uniquely 
represented by the orthogonal decomposition y(n, m) = 
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w(n,m) + h(n,m) + C ( a , ' ) E O e ( Q , P ) ( v 4 .  Thus, *e 
problem of estimating the texture model parameters, becomes 
one of estimating the parameters of the harmonic and 
evanescent components of the field in the presence of an 
unknown colored noise generated by the purely-indeterministic 
component, jointly with estimating the purely-indeterministic 
component parameters. 

111. THE ML ESTIMATION ALGORITHM 

The texture parameter estimation algorithm (which we now 
present) is a two-stage procedure for simultaneously estimating 
the parameters of all the texture components (purely inde- 
terministic, harmonic, and evanescent) using a finite sample 
from a single observed realization of the texture field. In 
the first stage, we obtain an estimate for the number of 
harmonic and evanescent components in the observed field, 
and a suboptimal initial estimate for the parameters of their 
spectral supports. This first stage is implemented by solving 
the set of 2-D overdetermined normal equations for the pa- 
rameters of an approximate high-order linear prediction model 
of the observed texture field. In the second stage of our 
joint-parameter estimation algorithm, we refine these initial 
estimates by iterative maximization of the likelihood function 
of the observed data. This proceeds via the minimization of 
an objective function which is expressed in terms of only 
the parameters of the spectral supports of the evanescent and 
harmonic components, rather than the entire set of parameters 
of the original problem. This significant reduction in the 
complexity of the original problem is made possible by a 
set of suitable parameter transformations. These parameter 
transformations transform the highly nonlinear least-squares 
problem that results from the maximization of the likelihood 
function into a separable least-squares problem. In this new 
problem, the solution for the unknown spectral supports of 
the harmonic and evanescent components reduces the problem 
of solving for the transformed parameters of the field to 
linear least squares. Solution of the transformation equations 
provides a complete solution of the field model parameter 
estimation problem. 

Next, we briefly summarize the suggested algorithm and 
introduce some necessary notations and definitions. A detailed 
description of the algorithm can be found in [16]. 

When expressed in the general form (7), the coefficients 
{ C,, D p }  of the harmonic component are real valued, mutually 
orthogonal random variables. However, since in general, only 
a single realization of the random field is observed we cannot 
infer anything about the variation of these coefficients over 
different realizations. The best we can do is to estimate 
the particular values which the C,'s and Dp's take for the 
given realization; in other words we might just as well 
treat the Cp's and Dp's as unknown constants. Note that in 
applications like image coding, the estimation of the values 
that the deterministic components assume in the given texture 
realization is essential, in order to preserve the exact structural 
properties of the observed image. 

The question of estimating the number of harmonic and 
evanescent components is discussed later in this section. Let us 
assume, for now, that the number P of harmonic components, 

the number of the different evanescent fields, the orders V,("") 
of the AR models of the 1-D purely-indeterministic processes 
{st"'"}, {t,("'")}, and S N , M ,  which is the support of the 2-D 
NSHP AR model, are all known and finite. Hence, w ( n , m )  
is given by (8) with ( k ,  1) E SN,M\{(O, 0)}, where SN,M = 
{ ( i ; j ) l i  = 0,o  5 j 5 M } U { ( i , j ) l l  5 i 5 N , - M  5 j 5 
M } .  

estimated are { C p ,  D,,% .,>,'=1> { b ( k , - e ) } ( k , t ) E S N J 4 >  g2> 

Let (y(n,m), (n,m) E D }  be the observed random field. 
The shape of D may be arbitrary. The parameters to be 

and ( ~ , p ) ,  V Z ( ~ ' ~ ' ) ,  { a : " " ) ( ~ ) } ~ ; ~  , ( o ~ " ' ~ ) ) ~  for all ( a , @ )  
pairs and for all i = 1, . . . , I(Q>fl). We denote this vector of 
unknown parameters by 8. 

In the proposed algorithm we take the approach of first 
estimating a nonparametric representation of the 1 -D purely- 
indeterministic processes {sia")}, {t,"'"}, and only in a 
second stage the AR models of these processes are estimated. 
Hence, in the first stage we estimate the particular values which 
the processes take for the given realization, i.e., we treat these 
as unknown constants. 

Assuming that the white innovations field {u(n,m)} is 
Gaussian with unknown variance cr2, we have, 

The conditional maximum likelihood estimate of 8 is found 
by maximizing (9), or equivalently by minimizing 

J =  u2(n,m) (9) 
(n,m) E D1 

where D1 is the interior of D ,  and D\D1 is the set of required 
initial conditions. Thus, only actually occurring values of the 
observed field are used in the estimation procedure. Using this 
method we sum the squares of only ID1 I values of U ( % ,  m),  
but this slight loss of information will be unimportant if the 
size of the observed field, IDI, is large enough. 

P aZ+, l? ' .  Using (8), u(n,m) is given by u(n,m) 

Since w = y - h - C(Q,p)Eo 
in the form [16], 

A a 
Let S'-w,M = sN,M\{(o,o)}, Y -il. +,a = 

C ( k , t ) E S N , , w  b ( k W ( n  - k , m  - -e) with b(O,O) = 1. 
= 

we can express u(n, m) 

k , m  - 

(CY,')€O i=l 

where we define the following systems of transformations (see 
bottom of the next page): 
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Note that J = C(n,m)ED1 u2(n,m) = uTu,  where 
uis a column vector whose elements are the samples 
u(n,m),  (n ,m) E D1. By writing (10) for all (n,m) E D1, 
we obtain the following matrix representation for J: 

The vector j = 1 ,2  , comprises the set of 
~ ( ( n ( ~ ~ P ) ) ' s  for n(cyiP) = na - mp such that (n,m) E D1. 
Hence, the structure of the matrices ECa,o), and of the 
cosine and sine terms of the evanescent fields, respectively, 
is determined by the structure of $a,P,,. The remaining 

T 
parameter vectors are defined as follows: pJ= 
j = 1 , 2  and 

b=-[b(O, I) ,  . . . , b(O,M),b(l, - M ) ,  . . . , b ( I , M ) ,  . . . , 
b(N, - M ) ,  . . . ,b(N,M)]T. 

y is a column vector whose elements are the values of the 
observed field p(n ,  m) for all (n, m) E D1. Y is a data matrix 
whose elements are the given observed values of the field. The 
matrices E t  and E;, contain the cosine and sine terms of the 
harmonic field. 

Let E: be the matrix obtained by concatenating all matrices 
ECa,D),, for all (a ,p )  E 0, and for all i = 1 , .  . . , I (a )P) .  
Correspondingly, let q1 be the column vector obtained by 
stacking all column vectors qta,@)* for all (a ,@)  E 0, and 
for all i = 1,. . . , I(">P). The matrix EL, and the vector q2 are 
defined in a similar way. 

Define D a [YEfEiEFEi] and 

2 T  1 T  2 T T  81 [bT(P1)T(P ) (p l  1 (7 1 1 . 

Then we can rewrite (15) as 

Because the objective function is a quadratic function of 81, 
the minimization over 81 can be carried out analytically for 
any given value of D. Using the well known solution to the 
least-squares problem we have that 

el = ( D T D ) - ~ D T ~  (17) 

will minimize J(8)  over el. By inserting (17) into (16) we 
find that the minimum value of J(8) is given by 

Jmin = yT(I - D(DTD)-lDT)y. (18) 

Here, D is assumed to be full rank so that (DTD)-' exists. 
Thus, maximization of the likelihood function is achieved 

by minimizing the new objective function Jminr which is a 
function only of the deterministic component spectral support 
parameters. We have thus shown that the minimization prob- 
lem (15) which is obtained after taking the transformations 
(12)-(14) is separable since its solution can be reduced 
to a minimization problem in the nonlinear deterministic 
component's spectral support parameters, {w,, v,}:=~, the 
(a ,  p)  E 0 and the { v , ! ~ ' ~ ) } ~ ~ ~ ~ )  for each (a ,  p), only, while 
b, pl ,  p2, ql, q2 can then be determined by solving a linear 
least-squares problem. This new minimization problem is of 
a considerably lower complexity, as we end up minimizing 
a function of only the spectral support parameters of the 
harmonic and evanescent components, instead of minimizing 
an objective function over the high dimensional parameter 

and 
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space of the original problem. Since Jmin is a nonlinear 
function of the spectral support parameters of the harmonic and 
evanescent components, this optimization problem cannot be 
solved analytically and we must resort to numerical methods. 
In order to avoid the enormous computational burden of an 
exhaustive search, we use a two-step procedure. 

The first step in solving the presented estimation problem 
is the minimization of Jmin with respect to the spectral 
support parameters of the harmonic and evanescent compo- 
nents. However, we have first to determine the number of 
harmonic and evanescent components in the given texture 
field. Order selection criteria like minimum description length 
(MDL) require the minimization of the log-likelihood function 
for all possible combinations of the numbers of harmonic 
and evanescent components and orders of the 2-D AR model 
NSHP support. Since this approach is computationally very 
expensive, we have adopted a suboptimal approach which is 
based on solving the set of 2-D overdetermined normal equa- 
tions for the parameters of an approximate high-order linear 
prediction model of the observed texture field. This is followed 
by a search for the peaks of the magnitude of the predictor 
transfer function inverse. The harmonic components result 
in isolated peaks, while the evanescent components result in 
peaks that form continuous lines. Hence, this method allows us 
to obtain an estimate for the number of harmonic and evanes- 
cent components, as well as initial estimates for the values of 
the deterministic components spectral support parameters. 

These estimates are used to initialize the iterative numerical 
minimization of Jmin. Our minimization approach is based 
on the conjugate gradient method of Fletcher and Reeves 
[ 181. Note that in general, the procedure could result in local 
minima. As a result, the choice of an initial guess of the 
problem parameters is of prime importance. A good initial 
starting point can alleviate the problems associated with local 
minima, and considerably reduce the computational burden. 

For our problem, the vector of the deterministic com- 
ponents' spectral support parameters comprises the set of 
the harmonic component frequencies given by { (up ,  up)},',, 
along with the set of the evanescent components' spectral 
support parameters: The a , P  's (which are expressed as 
r , S  's) and the frequencies {u,'"'"}>,'i";", for all (a,,B). 
We then seek the minimum of Jmin with respect to these 
parameters. The algorithm is summarized in Table I. In the 
algorithm, C is some predetermined constant which guarantees 
that we consider only RNSHP definitions for which there is a 
"sufficiently" large number of samples per column (row), and c 
is a small predetermined constant. The details of the algorithm 
derivation can be found in [16]. The solution for the unknown 
spectral supports of the harmonic and evanescent components 
reduces the problem of solving for the transformed parameters 
in (15) to linear least squares. Using the estimated parameters, 
we can now return to the parameter transformation (1 1)-( 12) 
to obtain estimates for the amplitude parameters C,, Dp of 
each harmonic component. The estimates are obtained by 
solving the simultaneous equations (1 1)-( 12) for each p .  The 
solution for the parameters of the 1-D modulating purely- 
indeterministic processes associated with each evanescent field 
is given next. 

Iv. ESTMATION OF THE EVANESCENT FIELD PARAMETERS 

The algorithm presented in the previous section provides es- 
timates of the evanescent components' spectral support param- 

(aJ) E 0. In this section, we present an algorithm for 
estimating the parameters of the 1-D modulating sequences 
of each evanescent field, using the above set of estimated 
parameters. 

Let k(",a) = k a - l p ,  l ( " ) P )  = kp+ecu Let us also denote by 
a 2 + p 2 .  

b(">3)(k("."), t?(";P)) the coefficient b ( k ,  !) for ( k ,  !) E SN,M,  
under the total-order definition ( a ,  p) E 0. Define 

eters and of the v:(n(",P)), $(n("iP)), for i = 1,. . . , I("&, 

(k ( " :a ) )  

5 b( ">P)  (k(">P) ; [ ( " > P ) )  (-0s 2 T v p P ) & P )  

I3ff.o) 
(19) 

H,(".P) (k ( " :P ) )  

a b(">P) (k(">P) ; & > P ) )  sin 2 T u p P ) @ )  
e(Q.8, 

(20) 

where the summation w.r.t. l ( " i P )  is taken over all pairs 
(k(">P),!(",P)) which result from the mapping of ( k , L )  E 
SN,M by the above transformation, while holding k(">P) fixed. 
By substituting (19)-(20) into (13)-( 14), and substituting the 
AR models (5), (6) of { S ! " ' ~ ' [ ~ ( " > P ) ] }  and {ti"'P'[n(">P)]}, 
respectively, into the resulting equations, we obtain 

r=1 

+ i""." ( J G ( " ' P ) ) p 4  (,(">P) - k(">P)) 
k ( Q . 3 )  

+ G:",P)(F(",P))[!"iP) (,(",P) - k(",P) I] (22) 

where the summations are taken over all k(",P) such that 
( k , l )  E S N , M .  

Hence, (21) and (22) imply that solving the problem of 
estimating the unknown parameters of the 1-D purely indeter- 
ministic processes associated with each evanescent component 
is equivalent to solving the foregoing one-dimensional two- 
channel ARMA problem, where the {G,("'"(k(">P))} and 
{ H,"'P'( k("iP))} have previously been estimated. The "ob- 
servations" sequences are the {vt(n("'P))}, and {vf(n(">P))}. 

This two-channel ARMA problem can be solved using any 
standard estimation procedure for vector ARMA processes, 
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TABLE I 
THE ESTIMATION ALGORITHM. 

0. Let Q be the total number of evanescent components in the field. 

Let x = { {(%%)}pP=l> { 7 q , 6 q > 4 : = l } .  

1. Find the minimum of J,,, with respect to x. 

If for some evanescent component(s) 8, << e then for these compo- 
nent(s) j ,  = 0, &, = 1 . 

If for some evanescent component(s) Tq << e then for these compo 
nent(s) j ,  = I,&, = 0 . 

For each one of the remaining evanescent components, find all coprime 
integer pairs ( k , , l , )  such that 0 < /k,/,It,/ < mzn(S,T)/C for which 
(8q/?q) - e < e,/!, < (6,/-7,) + e .  For all 4's for which only a single pair 
results, set (&,,p,) = (k,,!,) . 

If for one (or more) q's, more than one pair (k,,!,) results from step 4, 
then 
a) For each resolved evanescent component, set y, = &,6, = A. 
b) For each possible combination of (k,, e,)%, where each (k,,!,) is asso- 
ciated with a different unresolved evanescent component: Set for each 
unresolved evanescent component (y,, 6,) = (&, &). Minimize 
Jmin w.r.t. the remaining unknown parameters. 

2. 

3. 

4. 

5. 

6. For each unresolved q from step 5, set (&,,&) = (k,,t,) where ( k q , t q )  
is the pair for which the minimal value of J,,, was achieved. 

7. Set the {(L& and { i j q } $ l ,  to their values obtained by the min- 
imization procedure for which the minimal value of J,,, was achieved. 

like the modified Yule-Walker method of [ 171, or the maximum 
likelihood estimator (if we further assume the innovation 
processes {[j"'P'(n(">fl))} and {(i"")(n(">P))} to be Gauss- 
ian). Note however that the AR parameters are identical in 
both channels, and the regression part of (21) is a function 
of qa(n(">P)) only, while the regression part of (22) is a 
function of $ (n(",P)) only. Hence, the estimation procedure 
can be significantly simplified. Applying the standard single- 
channel modified Yule-Walker method to the ARMA equation 

in (21), we obtain estimates of the { U ~ " ' ~ ) ( T ) } , = ~  . Let 

A ( z )  = U { " ' ~ ) ( T ) Z - ~ ,  a{"")(O) = 1. Once the AR 
parameters have been estimated, the sequences { qi  (n(")P))} 
and {$(n("'p))} are filtered by the estimated filter A ( z )  
to produce approximate M A  processes. We denote these se- 
quences by {tj(n(")P))} and (ts(n("'P))}, respectively. Thus, 
we have (23) and (24), shown at the bottom of this page, 
where all the parameters in the right hand side of (23) and in 
the right hand side of (24) have previously been estimated, 
except the variances of <ja")(n("~~))  and [j"7p)(n(">P)). 

V ! f f x P )  

V;ff%P) 

Fig. 2. 
Reconstruction (purely indeterministic). 

Top left: Original texture. Top right: Periodogram. Bottom left: 

Since the sequences {[j"'P)(n("'P))}, {(i"")(n(">fl))} are 
independent 1-D white innovation processes of identical vari- 
ance, ( ~ j " " ) ) ~ ,  we obtain by multiplying (23) by c;(n("iP)) 
and taking the expected value of both sides 

~f (n("ip))~f (,(">p) 

By replacing Var{ej(n("'P))} with the sample variance, an 
estimate of (u,!" '")~ is obtained. 

Finally, note that the two-channel AFWA model (21), (22), 
has in general, a noncausal M A  part. Nevertheless, since 
[la"), and are stationary white noise processes, the 
noncausal M A  part can be replaced by its shifted, and hence 
causal, version (i.e., the white input sequence is replaced with 
its shifted version, which has the same statistics). Hence, esti- 

mates of { a i a l P ) ( ~ ) } T = l  , and for i = 1 . . .I(">@), 
vt(a,o, 

and 
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Fig. 3. 
model, reconstruction by the proposed algorithm. 

Clockwise, from top left: Original texture, periodogram, harmonic component, purely indeterministic component, reconstruction using 2-D AR 

are obtained in this case, using the same procedures described 
earlier. 

v. ESTIMATION W D  SYNTHESIS OF NATURAL TEXTURES 

Experimental results are first presented below. This is 
followed by a section on discussion of the results. 

Experimental Results 

In this section, we present some examples to illustrate 
the performance of the suggested parametric texture model 
and the joint parameter estimation algorithm. All the tex- 
tures presented here are natural textures, and hence, the 
true parameters are unknown. For the analysis of synthetic 
examples (where the true parameters are known) we refer the 
interested reader to [ 161. The synthesis algorithm reconstructs 
the original texture using only the estimated parameters. In 
all six examples presented, the original image is such that 
it can be bounded by a 64 x 64 pixels box. For each 
example, the original texture, and the texture synthesized 
using the estimated parameters are shown. Also shown are 
the components (harmonic, purely indeterministic, evanescent) 
which exist in each texture. Through experiments on a few 
textures, it was determined that a S(4,4) NSHP AR model 
yields a sufficiently accurate reconstruction of the purely 
indeterministic component for the textures considered here. 
As indicated below, in some cases even a smaller support 
yields a sufficiently accurate reconstruction. For comparison 
with the quality of the estimatiodsynthesis results obtained 
by a widely used continuous spectrum model, we show for 
each texture the reconstruction obtained by “fitting” the texture 
with a high-order 2-D AR model. 

Note that for the synthesis of the evanescent components, 
two different parametric representations can be used. The 
first uses a complete parametric model as described above. 
In the second, the synthesis is done using the estimated 
~ t ( n ( ~ ) @ ) ) ,  $(n(“l@)) for all (a,P) and i = l,...,I(a,fi) 

TABLE I1 

FIG. 2, (e.g., read b(3 ,  -4) = -0.00871). 
PARAMETERS {b (k ,  I ) }  FOR THE TEXTURE OF 

a’ = 456.47 

by substituting them into the synthesis equation (lo), without 
explicitly solving for the parameters of the modulating purely 
indeterministic processes of each evanescent field. In the 
following examples, the full parametric modeling approach 
was adopted for modeling and estimating the parameters of 
the evanescent components. 

In Fig. 2 we consider a carpet texture, which is modeled 
as a purely indeterministic field using a S(4,4) NSHP AR 
model. Note that for this example, our solution is identical to 
that obtained by fitting a 2-D AR model to the texture, since 
this texture contams no singular spectral components. For this 
example, the estimated parameters are listed in Table 11. 

Fig. 3 shows a corduroy fabric texture. It is modeled as the 
sum of a single harmonic component and a purely indeter- 
ministic component. The purely indeterministic component is 
modeled by a S(l,l) NSHP AR model. For this example, the 
estimated parameters are listed in Table 111. 

Fig. 4 presents an example of a fabric texture. This texture is 
composed of harmonic and purely indeterministic components. 
For this example, we used 25 harmonic components and 
a S(4,4) NSHP AR model for the purely indeterministic 
component. 
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Fig. 4. Clockwise, from 
model, reconstruction by 

top left: Original texture, periodogram, harmonic component, purely indeterministic component, reconstruction using 2-D AR 
the proposed algorithm. 

Fig. 5. Clockwise, from 
model, reconstruction by 

top left: Original texture, periodogram, harmonic component, purely indeterministic component, reconstruction using 2-D AR 
the proposed algorithm. 

TABLE III 
PARAMETERS { b ( k ,  I ) } ,  { U ,  U } .  C, D FOR THE TEXTURE OF FIG. 3 

U' = 5.65 

1 harmonic component at (w. Y) = (0.1825, -0.3095) 
with C = 2.001 and D = 2.120 

Fig. 5 shows another fabric texture, composed of harmonic 
and purely indeterministic components. This texture is mod- 

eled using 20 harmonic components and a S(4,4) NSHP AR 
model for the purely indeterministic component. 

In Fig. 6 we consider a wood texture. Observe from the 
periodogram in Fig. 6 that this texture has dominant evanes- 
cent components. For this example, we use five evanescent 
components with ( a ,  p)  = (1,0), two evanescent components 
with (a,p) = (0, I), and a S(4,4) NSHP AR model for the 
purely indeterministic component. The evanescent components 
image in Fig. 6 shows the image obtained by summing the 
synthesis results produced by the estimated models of all seven 
evanescent components. 

Fig. 7 shows a brick texture. It contains evanescent and 
purely indeterministic components. For this example, we use 
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Fig. 6. 
2-D AR model, reconstruction by the proposed algorithm. 

Clockwise, from top left: Original texture, periodogram, evanescent components image, purely indetenninistic component, reconstruction using 

Fig. 7. 
2-D AR model, reconstruction by the proposed algorithm. 

Clockwise, from top left: Original texture, penodogram, evanescent components image, purely indeterministic component, reconstruction using 

three evanescent components with (a ,  p)  = (1; 0), one evanes- 

AR model for the purely indeterministic component. The 
evanescent components image in Fig. 7 shows the image 
obtained by summing the synthesis results produced by the 
estimated models of all four evanescent components. For this 
example, the estimated parameters are listed in Table IV (a) 
and (b). 

Discussion 

TABLE IV(a) 
cent component with (&, p) = (0, I), and a Sc2,2) NSHP P W T E R S  OF THE EVANE~CENT COMPONENTS FOR THE TEXTURE OF FIG. 7 

hand, it is clear that any attempt to estimate the texture pa- 
rameters using a continuous spectral density estimator is both 
theoretically inappropriate, as well as practically unsuccessful 
as illustrated above. However, practically indistinguishable 
synthesis results are obtained when a 2-D AR model is 

The synthesis results obtained by the suggested ML algo- 
rithm are both visually and statistically very similar to the 
originals, and in some cases, indistinguishable. On the other 
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TABLE IV (b) 
PARAMETERS { b ( k ,  1 ) )  FOR THE TEXTURE OF FIG. 7 

1 2 1 1 1 0  

0 I 0.04742 10.08592 I - 

g2 = 126.16 

fitted to a purely-indeterministic texture since the purely- 
indeterministic field has no singular spectral components. 

Since both white- and correlated-noise driven linear models 
can only produce fields with absolutely continuous spectral 
distribution functions, they cannot be applied to the general 
case, in which the spectral distribution of the observed field 
contains singular components as well. Because noise driven 
models cannot model the singular components of the spectral 
distribution, and since the singular components result in the 
structural features of the texture, noise driven models can be 
successful only in modeling random looking textures, and fail 
to model structured ones. Our theoretical and experimental 
analyses indicate that any estimation method of homogeneous 
texture parameters has to account for the existence of the 
various components of the texture; those of singular spectral 
distribution and those of continuous distribution. 

In [I], we have introduced a simple to implement, but 
suboptimal, texture analysis and synthesis algorithm which is 
based on the same texture model that was described here, in 
Section 11. The model and the derived estimatiodsynthesis 
algorithms presented in [l], enable the synthesis of purely 
random, as well as structured textures from the estimated 
parameters. Although the algorithm in [I]  is suboptimal, the 
parameter estimation and synthesis results obtained by this 
method were far superior to those obtained by the frequently 
used AR and MRF models. The algorithm in [ I ]  is a sequential, 
periodogram based estimation algorithm. In the first stage the 
parameters of the harmonic and evanescent components are 
estimated and their contribution to the observed realization is 
removed. Ideally, the obtained residual is the purely indeter- 
ministic component of the texture. In a second stage, a 2-D 
AR model is fitted to the residual. However, the algorithm 
in [ 11 suffers from some practical and theoretical limitations. 
Most importantly, since the algorithm in [ l ]  uses the Discrete 
Fourier Transform to estimate the evanescent components, the 
evanescent components had to be approximated by a linear 
combination of harmonic components whose frequencies are 
along a “line” in the sampled frequency domain. Hence, [ l ]  
results in an approximate parameterization of the evanescent 
fields, which is different from the evanescent component 
model given by (4), (9, (6) .  Moreover, the asymptotic consid- 
erations which motivate the approach of [ 11 are problematic 
when the number of samples in the observed realization of the 
field is small. In addition, the algorithm itself is useful mainly 
for rectangular texture patches. 

The new algorithm suggested here, is an ML estimation 
procedure for jointly estimating the parameters of the har- 

monic, evanescent, and purely indeterministic components of 
the texture, based on a small patch from a single observed 
realization of the field. As an ML algorithm it is asymptotically 
unbiased and efficient. Contrary to [ 11, the proposed algorithm 
results in a complete estimate of the model parameters for each 
of the evanescent components. In addition, in the suggested 
algorithm, the shape of the observed texture patch may be 
arbitrary. Note, however, that the new method overcomes 
the practical and theoretical limitations of the suboptimal 
estimation procedure in [ 11, at the cost of higher computational 
requirements. 

VI. CONCLUSION 
In this paper, we have presented a solution to the problem 

of modeling, parameter estimation, and synthesis of natural 
textures. The texture field was assumed to be a realization of 
a regular homogeneous random field possessing, in general, 
a discontinuous spectral distribution. Our suggested paramet- 
ric modeling and estimation approach provides a unifying 
framework for many applications in which texture analysis 
is involved, together with the optimality properties of an ML 
estimation algorithm. The model and the resulting analysis 
and synthesis algorithms are seen to be applicable to a wide 
variety of texture types found in natural images. It also turns 
out that the model is very efficient in terms of the number of 
parameters required to represent, and faithfully reconstruct the 
original texture from the estimated parameters. 
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