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Bounds for Estimation of Multicomponent Signals
with Random Amplitude and Deterministic Phase

Joseph M. Francos, Member, IEEE, and Benjamin Friedlander, Feliow, IEEE

Abstract— We study a class of nonstationary multicomponent
signals, where each component has the form «(t) exp j¢(t). where
a(t) is a random amplitude function, and ¢(t) is a deterministic
phase function. The amplitude funetion consists of a stationary
Gaussian process and a time varying mean. The phase and the
amplitude mean are characterized by a linear parametric model,
while the covariance of the amplitude function is parameterized
in some general manner. This model encompasses signals that
are commonly used in communications, radar, sonar, and other
engineering systems. We derive the Cramér-Rao bound (CRB)
for the estimates of the amplitude and phase parameters, and
of functions of these parameters, such as the instantaneous
frequencies of the signal components.

I. INTRODUCTION

ANY signals used in communications, sonar, radar and

other engineering systems, as well as various natural
signals, involve amplitude and/or frequency modulation of a
carrier. The complex representation of such signals is given by
s(t) = a(t)e’*), where a(t) and $(t) are the amplitude and
phase functions. Signals with a more complicated structure can
be represented by a combination of signals of this type. In the
following, we refer to signals as being either single-component
or multicomponent signals, where the word ‘“component”
refers to a term of the form a(t)e/*(*).

We are interested in developing parametric models for such
signals, and in using these models to detect, estimate, and
classify the signals. The amplitude and phase functions of
these signals can be modeled as either deterministic functions
with some unknown parameters or as stochastic processes
whose statistics are specified parametrically. In a previous
paper [2], we considered the case where both the amplitude
and phase are deterministic functions of time. In this paper,
we study the case where the phase is deterministic but the
amplitude is random. More precisely, we assume that the phase
function is a linear combination of some known functions
of time (basis functions), where the coefficients associated
with each function are unknown constants. The amplitude
function is a stationary Gaussian process with a possibly
time varying mean, which is also characterized by a linear
parametric model. The covariance matrix of the amplitude
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is assumed to have some arbitrary parameterization. As an
example, we may assume that it is the covariance matrix of a
finite dimensional autoregressive (AR) process, parameterized
by the AR coefficients.

Having specified a parametric model for the signals of
interest, we want to estimate the model parameters given a
finite number of possibly noise-corrupted measurements of the
signal. The estimated parameters can then be used for signal
estimation/reconstruction, classification, or another purpose.
In this paper, we focus on the achievable accuracy of the
estimated parameters, using the Cramér—Rao bound (CRB) as
the principal tool for our investigation. We do not address here
the question of how to estimate the model parameters, which
is treated elsewhere [3].

While modulated signals of the type considered here are
widely used in engineering applications, parametric modeling
of such signals seems to have received relatively little attention
in the literature, until very recently. The case of constant mod-
ulus components with a phase function that is a polynomial
function of time has been studied in [9]-[13]. Signals with de-
terministic amplitude and phase functions have been studied in
[2]. The case of signals with random non-Gaussian amplitudes
and polynomial phase has been addressed in [14] and [15].

The structure of this paper is as follows. In Section II, we
define the problem studied in this paper and introduce some
necessary notations. In Section III, we derive the CRB for
the general case where the signal is a multicomponent signal
and the measurements are corrupted by additive complex
Gaussian white noise. In Section IV, we specialize the general
results of Section III for the case in which the signal is a
monocomponent signal. We consider separately the case where
the amplitude function has zero mean and when it has a
nonzero time varying mean.

In the case of a single component signal we are able to
make some interesting observations: i) The CRB for the phase
and amplitude parameters are decoupled. ii) The CRB for
the parameters of the random component of the amplitude
is independent of the phase function and of the mean of
the amplitude function. In fact, the CRB is the same as the
CRB for the random component observed directly (without
the modulating function or an additive mean). iii) The CRB
for the phase parameters does not depend on the parametric
model used for the amplitude process. iv) The CRB on the
parameters of the amplitude mean depends on the general class
of functions to which the time-varying mean function belongs
and the covariance of the random component of the amplitude
but is independent of the signal phase. Moreover, the bound
on the mean parameters is decoupled from the bounds on the
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random component of the amplitude, the noise variance, and
the phase. It is therefore identical to the bound that is obtained
when the modulation is not present.

Section V presents some numerical examples illustrating
the behavior of the bounds derived in this paper as function
of signal-to-noise ratio (SNR) and various signal parameters.
Section VI contains some concluding remarks.

II. PROBLEM FORMULATION

In this section, we describe the problem to be treated in this
paper and introduce the necessary notations.

N-1

We assume that the observed process {y(t)};_," is given by

I
y(t) = sz(t) +n(t), t=0,A,---,(N-1)A (D

i=1
where I is the number of signal components. Each of the
components has the form

zi(t) = s;(t)e?®® 2)

where s;(t) is the amplitude of the ith component and ¢;(t)
is its phase. The amplitudes of the different components are
assumed to be independent random processes. The amplitude
of the ¢th component is the sum of a real, zero-mean, stationary
Gaussian process and a real time-varying mean. The time-
varying mean is assumed to obey the linear parametric model

P,
mi(t) =Y cik pik(t) ©)
k=0

where {p; r(t)} is some arbitrary set of real basis functions
that may be different from component to component, the c; ;s
are the model parameters, and P; is the model order. Hence,
the mean of x;(¢) is given by

,U,,,(t) = mi(t)ej¢'(t) 4)
and the mean of y(t) is given by
I
u(t) = Z i(t). &)
i=1

Let p; be an N x (P;+ 1) matrix whose columns contain
the samples of the ith component basis functions over the
observation interval. In other words

pi = [pio()pia(t) - pip.(t)] ©6)
where
pie(t) = [Pik(0), pik (D), -, pip (N = AT, (7)
The vector ¢ contains the sampling times, i.e.
t=[0,A,-- (N -1)A]". ®)

The random part of the amplitude function s;(¢) is character-
ized by its covariance matrix, which is denoted by R,,. We
assume that the covariance matrix has some known parametric
form, where a; is the parameter vector. At the moment, we
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will not specify the functional dependence of R, on a; but
rather leave it implicit.
The phase of the ith signal is given by the linear model

Q:
$it) =D bietie(t) ©)

=0

where {t; ¢(t)} is some arbitrary set of real basis functions,
which may be different for each component, the b; ¢’s are the
model parameters, and @; is the model order. The vector of
phase values of the ith component is denoted by ¢, (t). Also,
let

Yie = [$1,0(0), ¥ e(A), -+ i e (N = DAY (10)

and

Tiw = diag {4, ;}- (11)

The observation noise n(t) is an additive, complex-valued,
zero-mean, white Gaussian noise of unknown variance o2. It
is assumed that the noise process can be written as n(t) =
ni(t) + jna(t), with ny(¢) and na(t) being independent, iden-
tically distributed, real-valued white Gaussian noise processes,
with variance 02/2 each. Both n;(t) and ns(t) are assumed
to be independent of the amplitude functions s;(t).

Let the data, noise, and signal vectors be

¥ =[y(0),y(A), -, y((N - 1)A)" (12)
n=[n(0),n(4A), -, n((N - 1)A)" (13)

and
s=[s{,85,--,81]" (14)

where
s = [85(0), 5:(A), -+, s:((N = DAL 15)
Also, let

b = [bio,bit, - bi0]T (16)
b=1[6].by, - b7]" a7
¢ =[cio,City s cip)T (18)
e=lef, ¢, ef]” 19

and
a= [af’a;r"'"a?]T' (20)

Finally, we collect all of the unknown parameters into a
single vector 6, such that

0 = {b,a,c}. (21)

The problem considered in this paper can now be stated as

follows. Given the measurements {y(t)}/ o', how accurately
can the parameter vector 8 be estimated?
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III. THE CRB FOR SIGNAL PLUS NOISE

The CRB provides a lower bound for the covariance matrix
of any unbiased estimator. As is well known, the bound is
given by the inverse of the so-called Fisher information matrix

(FIM) [1], [4], which will be denoted by J. Let
A; =diag {cos ¢:(t)}
B; =diag {sin¢;(t)}
be N x N diagonal matrices. Also, let
A=[A A, A
=[B1B; - - Bj]
and

I
u= ZA,‘Si + n;
i=1

I
v= ZBisi+n2

=1

22)
(23)

24
(25)

(26)

(27)

where u,v are N-dimensional column vectors. Using this
notation, we can now rewrite the measurement equation using

real quantities only, as

= [0 =[5 [z

(28)

Since m;.,n9, and all s;’s are Gaussian and independent, 2 is

Gaussian as well. Its covariance matrix I is of the form

_ Ruu Ruv
r N [Rvu RUU] (29)
with
Ry, = Z;AiRSiAi + oIy (30)
I
RUI,-.ZBR B, +——IN 31
=1
R, = ZAiRsi.Bi, 32)
I
R.. =Y BiR, A (33)
=1
where R, is the covariance matrix of s;, and Iy is N-

dimensional identity matrix. It follows that

d Al (7'2
r=% B, |BolABi] + < Loy
i=1

A;
o [t]

Hence, we can rewrite (34) in the form

Let

I 2
T=Y xR X7+ Z Iy,
; A+ g l2N
Rewriting the mean (5) using real quantities, we have

I A I I
= [BZ}pch =) Xipici =Y u,
i=1 i=1 =1

(34)

(35)

(36)

(37
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where
R
B
o= | 38
and uf = A;p,c;, ! = Bip;c;. The FIM of the process y(t)
is given by
out _op 1 181’ -10r
—TI ~t —7rI
Ted) = 55T 5, + 0. o0,)

where @ is a real valued parameter vector [1].

To evaluate (39), we need to compute the derivatives of I"
with respect to the various parameters of interest. Taking the
partial derivatives of I" we get

or
Ob; 1
0A; 0A; 0A; 0B;
s s, B; + A;R,,
_ | O B Ai+ AR50 Bs B, e Bi AR
- a 0B;
B; s
ab,,kR At R“abl,c i SR, + Bik. 55
(40)
oR,, oR,,
or _ Aiaai,kAl A’Z)ai’kB’
dai | p OB 4 BB p
'aai,k * ’Baik *
A, | OR, aRs T
= ~|A;B;| = - 4
{Bi]aa,,k[AB] X @D
or 1

Note also that since the process covariance function I' is
independent of the components’ means

or

Beir =0. (43)

Hence, the $tr{-} term in (39) vanishes for all the FIM entries
that correspond to parameters of the components’ means.
Taking the partial derivatives w.r.t. the phase parameters yields

0A; .
8b = —dlag {'/"L,k}Bl = —Ti’kBi = —BiT,‘yk (44)
ik
0B; .
ET =diag {"I’i,k}Ai =T;rA; = AT, . 45)
ik
Substituting (44), (45) into (40) we have
or _ [-T;yB:R, A; -T:.B:R, B;
Obir | TixAiR,,A;  Ti AR, B;
n —A;R, B;T;x, AR, AT,
—-B,R, BTy B;R;, AT,
_[Tix O [[-B: B,
P A
A; AT 0
el )
=H; VR, X] + X;R, VTH, (46)
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where we define the notations

|Tix O
His —{ . Tk] C2)
-B;

V.= [ A; ] (48)

Taking the partial derivatives of u yields

op [Ty 0 |[-B; o
Bbir { 0 Ti,k] [ A ]piq =H. Vipiei (49

and

Beie {Bi]p"e"] =Xip;y (50)

where e, is a column vector whose /th element is one, and all
its other elements are zero. p; , is the {th column of p;. Since
p is independent of the white noise process
op
do?
The mean g does not depend on the parameters character-
izing the covariance matrix and, therefore

=0. 51)

Op
Bair 0. (52)
Substituting (43) and (52) into (39), we conclude that
Jrr = 0. (53)

Similarly, substituting (43) and (51) yields

Jeot =, (54)

In the following, we use the. notation J le’" for the FIM matrix
entry that corresponds to the kth element of b; and the /th
element of b,,. Thus

e = g
I
T (0) = %tr{r‘l e o B
Jhe(0) = 3{,‘ Tk . ;Z 58)
s = 2 O &)
R
T (0) = itr{l’_l%l"l} (61)
I

Note that bounds for the special case in which the amplitudes
have only a deterministic mean component, i.e., R, = 0, were
studied in [2].
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IV. THE CRB FOR A MONOCOMPONENT SIGNAL

In this section, we specialize the general results that were
derived in the previous section for the case where the signal
is a monocomponent signal. Hence, in the following, we omit
the subindex notation ¢ that refers to the component index. In
this case, we have from (36)

2

r'=XR,XT + %Iw (63)

In the following, we use the following identities:
XTv=vTXx =0 (64)
XTX =vVTv=A+B*=1Iy (65)
Iy - XXT =vvT (66)
XTH,V=VTH,X=0 67
VIH,V =T (68)
VIH.H,V =T,T,. (69)

Now, using the matrix inversion lemma (e.g., [5]), we find
that

2 2 2 I )

=y - ﬁx(ﬁxTtzs 1) X'
2 2 o2 N\7! T
ZEIZN_ 0—2X IN+7RS X

2 2 _
= ;IgN - ?XD 1xT (70)

where the second equality results from (65), and we define

o
D=1IyN+ TRS . an
A. The Zero Mean Case

Note that the first term in (39) is a function of both the mean
and the covariance function of the observed vector z, where
as the last term is a function of only the covariance function
and is independent of the mean of 2. Hence, for a zero mean
process, only this last term is nonzero.

Using (70) and (46), we have that

or (2 2
71_: . _ —1 T
o (UZIW SXD X>

- (HiVR,XT + XR,VTHy)

= %HkVRsXT + %XRSVTH,C
- %XD*XT H. VR, XT
- %XD"XTXRSVTHk

= %HkVRSXT + %XRSVTHk

2
- §XD*IRSVTH,C 72)



FRANCOS AND FRIEDLANDER: ESTIMATION OF MULTICOMPONENT SIGNALS WITH RANDOM AMPLITUDE AND DETERMINISTIC PHASE 1165

where the last equality results from (67) and (65). Hence

or
y - -1
JI;C’ 2 {F 3bk[‘ abg}

1/ 2
- §(ﬁ) w{H,VRX"TH VR, X"}
e —"
1/ 2 T 1 T
-5l tr{HkVR XTXD'RVTH,}
1/2\° T T
+5( 5 ) {XRVTHHVRXT)
1/ 2 2 T T
+§ = tr{XRSV H.XR,V Hf}
1 2 2 T —1 T
-5(= w{XR,VTH, XD 'R.V'H,}
g
1 2 2 —1 T T
-5(=) W XD RV HH VR XT}
1/ 2 2 -1 T T
-5\ =) A XDV RVIHXRVTH
1/2\? -1 T -1 T
+5\ 2z ) w{XD'RVTH XD RV Hi}
= ;Ztr{HkVRSRSVTHz}

- Zu{HVRDTRVTH}

+ Zu{RVTHH VR

_ %tr{ D'R,VTH.H,VR,)
- %tr{HkVRs (In-D)R,V"H/}
-D7)}

4
= —u{H:VR,(In - D' )R,V'H,} @3)

+ %tr{RSVTHngVRS (In

where we have used (65) and (67), the commutative property
of the trace operator, the fact that the trace operator is invariant
to transposition, and the symmetric property of Hy, H,, and
R..

Using (41) and (70), we also have that

F_lar ( IZN-EXD 1XT)( aR )

day Bak
_ IR, 2 _10R,
= ?X Dar XT - —XD Dar

——XxT 74)

where the last equality follows from (65). Hence, using (56),
(65), the trace operator commutative property, and the sym-
metric property of OR,/dax, D™", we obtain

ea 1( 2\ [, OR, 1 OR, .1
JH-§<§) n{xa kx Xaan }

2
%) tr{X%XTXD—I%xT}
o Oay

|
Nl = N = N =

N TN N
~— 9 |0

+

Il

N =

QLN

o OR, OR,
aak day
dag

o

2 2 _la 5 718RS

il — 5. 75
<02> tr{D aakD Bag} a3

Using (72), (74), and (57) we have

+

|
N = N
L[ v
N—
)

=

=
—
Ol @
s ::

ba _ L[ 2 T T
Jk,fzi(?) tr{HkVRX Xa X }

172\’ ron 10R, 1
- 5(;) tT{HkVRSX XD aa X
172\’ r 8Rs T
2
RN XRSVTHkXD‘laR xT
2\ o2 Jday
2
_ %(%) tr{XD RVTHX O XT}
ag
2
+1 2Vulxp D 'R,VTH, XD_laR xT
2\ o2 Oay
=0 (76)

where we have again made use of (67) and the trace operator
commutative property.

Finally, substituting (70) and (72) into (60) while using (67)
and the commutativity of the trace operator, gives

2
5T = Z(%) w{HVR, X"}

— %(%) w{H,VR,X"XD'X"}
g

1/2\* r
+ Z 0—2' tr{XRsV Hk}

1/ 2 2 T —-1yT
-ilz w{XR,V H, XD X }

1 2 2 M oT

12 —1 T _1yT
+4(5 ) w{XDRVTHXDIXT)

=0. an
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Substituting (70) and (74) into (61) while using (65),
the commutativity of the trace operator, and the symmetric
property of Rs, gives

o 102 AR, 1
T —Z(;;) o XX }

- %(%)%{X‘Zf: XTXD—IXT}

_ %(%YU{XD*%%XT}

3 (&) efromgiprmon)
~seo{ e} - ol

+ }ZH{D‘I%D*}. (78)
o day

The FIM entry that corresponds to the noise parameter is
given by

o2

N 1 _ 1 —1p-
;‘I_gn{p 1}+—2?tr{D Ip~'}. a9

2
—) w{XD ' XTXD' X"}

From (75)—(79), we conclude that for a monocomponent
signal, the bounds on the amplitude parameters and the noise
variance are both independent and decoupled of the phase,
while the bound on the phase parameters is decoupled from
the bounds on the amplitude and noise parameters. Hence,
the CRB for the phase is obtained by inverting (73). Note
that the FIM block that corresponds to parameters of the
random component of the amplitude and the observation noise
is identical to the block we would have obtained if this
component was not modulated by eI (i.e., the case that is
obtained by repeating the above derivation for A= B = In).

We can now summarize our observations regarding the CRB
for a zero-mean single component signal. The CRB for the
phase and amplitude parameters are decoupled. Furthermore,
the CRB for the amplitude parameters is the same as if the
modulation by ei¢(*) was not present, and it is a function
only of the amplitude covariances and the noise variance.
The CRB for the phase parameters is a function of the basis
functions {1»(t)}, the phase waveform, the covariances of the
amplitude process s(t), and the observation noise variance a2,
but it does not depend on the parametric model used for the
amplitude process. Similarly, the bound on the noise variance
is decoupled from the bound on the phase and it is identical
to the bound that is obtained when the modulation by e/¢®
is not present.
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B. Nonzero Mean Case

We now extend the results of the previous section to the
case in which the observed signal has a nonzero mean, whose
parametric representation is given by (37). Using (49) and
(70), we have that

opT 1 0m
e b
2

2 _
(HVpe)” ((—ﬁlw - 5XD 1XT)IIngc

2
= ﬁchTVTHkH[VpC
- %cT pTVTH, XD ' XTHVpc

(80)

2
?chTTkTgpc

where the last equality is due to (69) and (67).
Substituting (73) and (80) into (55) yields

2
Jie= FCTPTTszPC
+ (—;—lztr{HkVRs(IN D YR VTH,}.

(81)

Substituting (49), (50), and (70) into (58), we have

c 2 2 _
Jl;c’,e = (HkVpC)T ((—7—2121\7 - ?XD 1XT)X[)e
2
= ?chTVTHkXpe
2 pTVTH XD ' X" Xp,
o2

=0 (82)

where we have used (67).
Using (50), (70), and (59) we have

e 2 2 _

Iy = (Xpi)* (ﬁlw — ;XD 1XT) Xp,
2 2 _

= ;EprTng - ;EpszXD ‘X7 Xp,

2 _
= ;2‘1’5(11\1 - D Y)p, (83)

where we have used (65).
An important special case is the case where the mean is
parameterized by sinusoidal basis functions, i.e.

L L
u(t) = (AO + Z Agcoswet + Z Bysin wd) ei*®

£=1 £=1

(84)
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where the frequencies w, are known. This parameterization
arises, for example, if we expand the mean in a trigonometric
Fourier series. In this case

p=11 coswit---coswrtsinwit - --sinwri] (85)

and ¢ = [A07A17 o '7AL9B].1 e 7BL]T~

Finally, combining the results of Sections IV-A and B with
(53) and (54), we conclude that for a single component signal,
the FIM has the block diagonal form

Job 0 0
0 Jo° 0 0
J _ 0 0 Ju‘a Ja.,n' (86)
0 0 (Ju)T JoT

Using (86), we conclude that the bounds on the parameter
estimates of the phase, the random component of the ampli-
tude, and the mean of the amplitude are mutually decoupled.

We can now summarize our observations regarding the CRB
for the nonzero mean single component case.

Similarly to the zero-mean case, we conclude that the
elements of the FIM are independent of the specific model
of the random component of the amplitude since those of
them that depend on the random component are functions of
its covariance matrix R, only. Thus, the random part of the
amplitude can be any stationary zero-mean Gaussian process
whose covariance matrix is R,. The CRB for the parameters
of the random component of the amplitude is independent of
the phase function and of the mean of the amplitude function,
but it is a function of the observation noise variance. In fact,
the bound on the random component of the amplitude signal
is the same as the CRB for the random component when it
is observed directly (without the modulating function or an
additive mean). )

The CRB for the phase parameters does not depend on the
parametric model used for the amplitude process, but rather
on the amplitude mean waveform, the phase waveform, the
covariance of the random component of the amplitude, the
observation noise variance, and the phase basis functions. It is
independent of the phase parameters.

The CRB on the parameters of the mean of the amplitude
component is a function of the mean basis functions {p,,(t)}
(i.e., of the general class of functions to which the time varying
mean function belongs), and the covariance of the random
component of the amplitude, but is independent of the phase.
Moreover, the bound on the mean parameters is decoupled
from the bounds on the random component of the amplitude,
the noise variance, and the phase. It is therefore identical to
the bound that is obtained when the modulation by e/¢(*) is
not present.

C. The CRB for a Monocomponent Signal at High SNR

In this section, we specialize the general results that were
derived in the previous sections for the case where the signal is
a monocomponent signal and the measurements of the signal
are known to be at a high SNR. In other words, we assume

1167

here that 6> — 0. Hence, a first-order approximation of D!
yields

2
D l~Iy-Z R

7 @7
Thus, (70) can be approximated by
‘ 2
r! leQN - %X(IN - LRS—1>XT
a? o 2
%(Im XXT)+ XR'xT
= ?vvf +XR;'Xx7T. (88)

Substituting (87) and (88) into the equations of the nonzero
elements of the FIM (86) yields the monocomponent signal
FIM for the case in which the measurements of the signal are
known to be at a high SNR. In particular, substituting (87)
into (73) we have that for the zero-mean case

g A g VR R RVTH
Kt — F T k sy Mt s 13
2
= ;tr{VTHfHk.VRS}

2
= ﬁtr{TkRsTp} (89)

where we have used (69) and the commutativity property of
the trace operator. For the nonzero mean case we have, using
(80) and (89)
Ji'} = ;72—20 pTTkTppc+ tr{TkR Te}. 90)

We therefore conclude that in contrast with the general case
in which the bound on the phase parameters is a function of
both the phase waveform and basis functions, when the SNR
is high this bound is independent of the phase waveform. It
depends on the general class of functions to which the phase
function belongs (through the phase basis functions {1, (t)}),
but not on the specific values of the phase parameters. For
example, if we represent the phase as a polynomial function
of time, all signals whose phase is a (1th order polynomial of
time, and whose amplitude have the same covariance function
and time varying mean, will have the same values for the
CRB of the phase parameters.

Using (41) and (88), we also have that

r-! f’r - 3VVT+XR:1XT x B g
day, o? h 8
= —VVTXaR xT +XR'1XTX8R xT
day, Oay
=XR! 19K, o1
dak

where the last equality follows from (64) and (65). Hence,
using (65) and the trace operator commutative property, we
1OR,

obtain
.a —_— 1 —_— laR
Jyle —2tr{XRs Dar g }

1 f._OR, ,_,0R,
_2tr{Rs 8akRs 8(1[}.

92)
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Note that the elements of the FIM that correspond to parame-
ters of the random component of the amplitude are identical to
the expressions we would have obtained if this component was
measured directly (i.., if the modulation by e7¢®) did not take
place and the observations were noise free). Thus, we can use
here any available expressions for the FIM of real stationary
Gaussian processes. For example, if the amplitude was known
to be a zero-mean AR or ARMA process, we could use the
expressions presented in [7] and [6].

Substituting (88) and (91) into (61) while using (64), (65),
and the commutativity of the trace operator gives

1 _10R,
—4tr{XRs B

+ ltr XR—laR"XTXR-le
4 day,

1 _10R,
= 4tr{Rs Dar R, }
_ L OR;!

- 4 8ak '

The FIM entry that corresponds to the noise parameter is
given by

2
5 St

93)

252 1 2 T 2 T
Ja 7 = gtr{ﬁVV —2VV }
+ ;tr{ VVTXR‘lXT}

+ i XR;IXT—2—VVT
8 o2
1

+ gtr{XRs"lXTXRs’lXT}

- itr{(VVT)“‘} +u(RRSY)
N

=551 tr{R 1R;1Y. 94)
Finally, substituting (87) into (83), we have
J3o =i R py. 95

Note that as 02 — 0, J*® becomes singular, and hence,
the phase of the signal can be perfectly estimated, regardless
of the structure of amplitude covariance matrix R, or the
amplitude mean waveform. This result is due to the fact that
in the absence of observation noise, the phase of the measured
monocomponent signal y(¢) can be easily obtained by dividing
the imaginary part of the measured signal by its real part.

D. Bounds for Functions of the Parameters

In most cases, we are interested not in the phase or ampli-
tude parameters themselves but in estimating some function
of these parameters. For example, we may be interested in
estimating the signal or its individual components. Having
estimated the model parameters a, b, ¢, the signal mean, spec-
tral density, and phase functions can be computed using their
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known functional dependence on the (estimated) parameters.
Other quantities of considerable practical interest are the
instantaneous frequencies of the signal components, which can
be computed in a straightforward manner by evaluating the
derivative of the phase function.

In this section, we derive the CRB for the signal mean,
spectral density, phase, and instantaneous frequency. Since all
of these quantities are functions of the estimated parameters,
we will use the following generalized form of the CRB.

Let 3 be a continuous and differentiable function of the
parameter vector 8, ie., 3 = f(0). Then, the CRB for § is
related to the CRB of 6 by

CRB(f) = (f))"CRB(0)f’ (96)
where the column vector f' is defined by
1 9f
J'= 20 on

(see, e.g., [1]). Using this formula, the CRB for the desired
functions can be computed in a straightforward manner.

The instantaneous phase is defined in (9) as a linear vector
function of b. The CRB on the phase of the ith component
is, therefore, given by

CRB(¢;(t)) = g7 CRB(b;) g (98)
where
T_ [% %]
9 T By Bbig,
= [i0(t), i1 (t), - -+, ¥i,Q. (t)]. 99)

The instantaneous frequency is the time derivative of the
instantaneous phase

ilt) = 52040 = - sz Wt)  (100)
and therefore
CRB(w;(t)) = h{ CRB(b;) h; (101)
where
hf:[?.‘fi_,...,ﬂ]
Bbio’ " Obig,
= %W’;,o(t)» Vi), YoM (102)

Similarly, the CRB on the mean of the ¢th signal amplitude is

CRB(m(t)) = f{ CRB(c) f; (103)
where
fT= [ami _?_"L_i]
¢ Bc,-,o’ ! 8ci,pi
=[pi,o(t), pin(t), -+, pi,p.(1)]. (104)

Finally, the CRB for the spectral density function S;(e’*) of
the amplitude of the :th component, is given by

CRB(S;(e’*)) = WT CRB(a;) W; (105)
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where
_ 35,’ (ej“’)
- 8ai,0

Si(e’™)

w7t
8aiyoi

13

(106)

and O; is the number of parameters of the ith signal random
component model.

E. Example: Single AR Component

So far, we have not specified the functional dependence of
the covariance matrix R on the parameters a. In this section,
we consider a special case in which the amplitude function
is a zero-mean K'th-order autoregressive process. In this case,
the covariance matrix R, is given as an explicit and relatively
simple function of the AR parameters. Thus, we can derive
closed-form formulas for the CRB. These formulas will be
used in Section V to illustrate by means of numerical examples
the results derived in this paper.

A real Gaussian AR process s(t) obeys the recursion

K
s(t) = = ags(t — k) + u(t) (107)
k=1
where {u(t)} is a stationary, zero-mean Gaussian white noise
with variance a% R
It can be shown [8] that the inverse covariance matrix R;l
of a K'th-order AR process (N > K) is given by

_ 1
R;' = UT(AlAlT ~ A247)
AR

where A; and A, are lower triangular Toeplitz matrices such
that

1, i=j
(A)ij =S iy, i>3; (109)
0, 1<
(Ag)i; = {ON=i+i 12 (110)
i 0, i<j

and o = 0 for k< 0 and £>K. Hence
R, = 03 h(A AT — A,AT) L. a1

Substituting (111) into (81) (or (90) for the high SNR case),
we obtain a closed-form expression for J 23(0) in terms of the
observed signal parameters. Similar substitution into (79) (or
(94)) results in a closed-form expression for Jote?,

In the present case, the parameter vector defining the covari-
ance matrix of the amplitude is the K41 dimensional vector
a=[o4p, a1, 00, -, ag]|T. Taking the partial derivatives of

R;l using (108), we have
OR7! 1 1
= ——— (A1 AT — ApA) = - R?
07y o, A T =R
OR;! 1
= ——(Z,A] + M\ZL — Zy_ AT - A,Z5, )
dan  o4p "
n=1,---,K (113)
where Z,, is the down shift matrix
_JL i-j=mn
(Zn)ij = {0, otherwise. a14)

(108) ‘
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Since

-1
OR, __o R,

8ak N 8ak

(115)

we obtain by substituting (115), (108), (112), amd2 (113) into
the general expressions of J*“(6) in (75) and J* (@) in (78)
closed-form exact expressions for J**(#) and I (9.

In particular, for the case in which the observations are
known to be at a high SNR, substituting (108), (112), (113),
and (115) into (92) yields

(116)

and

(117)

1 R;!
Jii= "—2“{? ° Rs}
? 2UAR 0Otk_1

for k > 2. Note that J}’7(0) is given by the expression of the
exact FIM of a statiorfary Gaussian autoregressive process,
as if the modulation by exp j¢(¢) did not take place. This
expression was previously derived in [7]. Substituting (108),
(112), and (113) into (93) yields

2
a,0 —_—
Ji1 =

)

1 -1
1
4UiRtr{RS } (118)

and

2 1 (8R!
QA0 - __ 'S 1
I 4tr{8ak_l} (119)
for £ > 2.

The CRB on the spectral density function of the amplitude
is given by (105), where

. je(P-1)
W7 = —25(e’*)Re [— 1 e

jw(P~2)
ea(ej“’) ""’a(elf'“)} =
and
a(e?) = &P 4 01 P-D L. 4 gp. (121)

V. NUMERICAL EXAMPLES

To gain more insight into the behavior of the bound, we
resort to numerical evaluation of specific examples. In these
examples, we restrict our attention to the case of a single
component signal whose measurements are known to be at
a high SNR. In all of the examples presented in this section,
the white Gaussian observation noise is of variance o2 = 0.01,
the time axis shows the sampling time, and the samples are
equispaced.
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Fig. 1. CRB on the instantaneous phase of a chirp signal whose amplitude

is a zero-mean Gaussian AR process. We consider narrowband, medium
bandwidth, and wideband AR processes.
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Fig. 2. CRB on the instantaneous frequency of a chirp signal whose ampli-
tude is a zero-mean Gaussian AR process. We consider narrowband, medium
bandwidth, and wideband AR processes.

TABLE [
THREE TEST CASES OF ZERO MEAN AR COMPONENTS
Test Case A a) ag
Narrow Band AR 1 -1.378 0.95
Medium Bandwidth AR 1 -1.183 0.7
Wideband AR 1 -0.447 0.1

Example 1: Consider the case of three chirp signals,
such that for all three, the signal amplitude is a zero-mean
second-order Gaussian AR processes and the phase is a
second-order time polynomial, whose parameter vector is
b = [r/3,0.047,0.0017]. The phase is the same for all
three signals. The first amplitude signal is a narrowband AR
process, the second is of medium bandwidth, and the third is a
wideband AR process. The parameters of the three amplitude
components are given in Table 1.

As can be seen from Figs. 1 and 2, the bounds on the error
variance for estimating the instantaneous phase and frequency
of the signal are inversely proportional to the bandwidth of
the signal amplitude.
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Fig. 3. CRB on the instantaneous phase of a chirp signal whose amplitude
function is the sum of a time-varying mean and a zero-mean Gaussian AR
process (Example 2)—narrowband, medium bandwidth, and wideband AR
processes.
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Fig. 4. CRB on the instantaneous frequency of a chirp signal whose ampli-
tude function is the sum of a time-varying mean and a zero-mean Gaussian
AR process (Example 2)—narrowband, medium bandwidth; and wideband
AR processes.

Example 2: The second set of examples involves three non-
zero-mean chirp signals. For all three, the mean of the signal
amplitude is a second-order time polynomial whose parameter
vector is ¢ = [0.02672, 0.05343, —0.0005343].The amplitude
parameters were chosen such that the amplitude energy in
the observed time interval is equal to one. The amplitude
random components are the zero-mean second-order Gaussian
AR processes of Example 1. The time-varying phase is the
same as in Example 1, i.e., b = [r/3,0.047,0.001x].

Note that for the case in which the amplitude function is the
sum of a time-varying deterministic mean and a wideband AR
process, the CRB on the instantaneous frequency and phase
of the signal is slightly lower than in the zero-mean case.
However, the presence of the low-energy deterministic mean
had little or no effect at all on the bounds for estimating the
phase and frequency in the case of spectrally narrower random
components.
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Fig. 5. CRB on the mean of the instantancous amplitude. The signal is

a chirp whose amplitude function is the sum of a time-varying mean
and a zero-mean Gaussian AR process (Example 2)—narrowband, medium
bandwidth, and wideband AR processes.
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Fig. 6. CRB on the instantaneous phase of a chirp signal whose amplitude
function is the sum of a time-varying mean and a zero-mean Gaussian AR
process (Example 3)—narrowband, medium bandwidth, and wideband AR
processes.

Example 3: Consider the same scenario as that of Example
2. However, in the present case the energy of the time-varying
mean in the observed interval is 100 instead of one. In this
case, the bounds on both the phase and frequency. functions
(Figs. 6 and 7), are considerably lower than in the case of a
low energy time-varying mean, while the bound on the time-
varying mean of the signal amplitude is unchanged since it is
independent of the mean parameters (see (83) and (86)).

For examples that involve deterministic amplitude and phase
function, i.e., with no random component for the amplitude
function, we refer the interested reader to [2].

VI. CONCLUSIONS

In this paper, we presented a study of the achievable
accuracy in estimating the phase and amplitude parameters
of a class of nonstationary multicomponent signals. In the
case of a single component signal, we were able to make
some observations regarding the decoupling of the estimation
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Fig. 7. CRB on the instantaneous frequency of a chirp signal whose ampli-

tude function is the sum of a time-varying mean and a zero-mean Gaussian
AR process (Example 3)—narrowband, medium bandwidth, and wideband
AR processes.

of the phase and amplitude parameters. In general, the phase
and amplitude estimation are coupled, and the expressions are
difficult to interpret without numerical evaluation.

Parametric modeling appears to be a promising approach
to the analysis of nonstationary signals. The results presented
here and in [2] and [3] represent some preliminary steps in
the development of new techniques for estimation, detection,
and classification of multicomponent amplitude and frequency
modulated signals.
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