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Abstract—This paper presents a maximum-likelihood solution
to the general problem of fitting a parametric model to ob-
servations from a single realization of a two—dimensional (2-D)
homogeneous random field with mixed spectral distribution. On
the basis of a 2-D Wold-like decomposition, the field is represented
as a sum of mutually orthogonal components of three types:
purely indeterministic, harmonic, and evanescent. The suggested
algorithm involves a two-stage procedure. In the first stage, we
obtain a suboptimal initial estimate for the parameters of the
spectral support of the evanescent and harmonic components.
In the second stage, we refine these initial estimates by iterative
maximization of the conditional likelihood of the observed data,
which is expressed as a function of only the parameters of the
spectral supports of the evanescent and harmonic components.
The solution for the unknown spectral supports of the harmonic
and evanescent components reduces the problem of solving for the
other unknown parameters of the field to linear least squares. The
Cramer-Rao lower bound on the accuracy of jointly estimating
the parameters of the different components is derived, and it
is shown that the bounds on the purely indeterministic and
deterministic components are decoupled. Numerical evaluation
of the bounds provides some insight into the effects of various
parameters on the achievable estimation accuracy. The perfor-
mance of the maximum-likelihood algorithm is illustrated by
Monte Carlo simulations and is compared with the Cramer-Rao
bound.

Index Terms—ML estimation of 2-D random fields, 2-D Wold
decomposition, 2-D mixed spectral distributions, purely indeter-

ministic fields, harmonic fields, evanescent fields, Cramer-Rao
bound.

1. INTRODUCTION

N THIS PAPER, we consider the problem of fitting a
parametric model to observations from a single realiza-
tion of a two-dimensional (2-D) complex-valued discrete and
homogeneous random field with mixed spectral distribution.
This fundamental problem is of great theoretical and practical
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importance. It arises in several areas of radar and sonar
processing, and the special case of real-valued 2-D random
fields arises quite naturally in terms of the texture estimation
of images [9].

The general problem of random fields’ parameter estimation
has received considerable attention. Most approaches reported
to date fall into one of two categories. They either try
to fit noise-driven linear models (2-D autoregressive (AR),
moving average (MA), or autoregressive moving average
(ARMA)) to the observed field, or they treat the special case
of estimation of the parameters of sinusoidal signals in white
noise. Noise-driven linear models have absolutely continuous
spectral distribution functions, and hence, are inappropriate
for the general problem considered here. Parameter estimation
techniques of sinusoidal signals in additive white noise include
the periodogram-based approximation (applicable for widely
spaced sinusoids) to the maximum-likelihood (ML) solution
[2], extensions to the Pisarenko harmonic decomposition [3],
or the singular value decomposition [5]. These methods rely
heavily on the white noise assumption, and are therefore not
applicable here, since in our more general setting, the noise is
colored, and a priori unknown. Note that covariance-based
estimation procedures must assume knowledge of the true
covariances. If these are unknown, substituting them with the
sample covariances is incorrect, since it is well known [6] that
even under the Gaussian assumption, the sample covariances
are not consistent estimates of the covariance function if the
spectral distribution function has discontinuities.

The 2-D Wold-like decomposition [1] implies that any 2-
D regular discrete and homogeneous random field can be
represented as a sum of two mutually orthogonal components:
A purely indeterministic field and a deterministic one. The
deterministic component is further orthogonally decomposed
into a half-plane deterministic field and a countable number
of mutually orthogonal evanescent fields. This decomposi-
tion results in a corresponding decomposition of the spectral
measure of the regular random field into a countable sum of
mutually singular spectral measures. The spectral distribution
function of the purely indeterministic component is absolutely
continuous, while the spectral measure of the deterministic
component is singular with respect to the Lebesgue measure,
and therefore it is concentrated on a set of Lebesgue measure
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zero in the frequency plane. For practical applications, the
“spectral density function” of the regular field’s deterministic
component can be assumed to have the form of a countable
sum of one-dimensional (1-D) and two-dimensional (2-D)
delta functions. The 1-D delta functions are singular functions
supported on curves in the 2-D spectral domain. The 2-D delta
functions are singular functions supported on discrete points
in the spectral domain.

In this paper, we consider the problem of estimating the
parameters of the different components of the decomposition
from a single realization of the field. In general, an unbiased
estimator of the field parameters will require joint estimation
of the parameters of the harmonic, evanescent, and purely in-
deterministic components. We present a conditional maximum-
likelihood solution to this simultaneous parameter estimation
problem, for the case in which the purely indeterministic
component is a complex-valued Gaussian random field. The
algorithm is a two-stage procedure. In the first stage, we obtain
suboptimal initial estimates for the parameters of the spectral
support of the evanescent and harmonic components. The
initial estimates are obtained by solving the set of overdeter-
mined 2-D normal equations for the parameters of a high-order
linear predictor of the observed data. In the second stage, we
refine these initial estimates by iterative maximization of the
conditional likelihood of the observed data. This maximization
requires the solution of a highly nonlinear least squares prob-
lem. By introducing appropriate parameter transformations the
nonlinear least squares problem is transformed into a separable
least squares problem [11], [12]. In this new problem, the
solution for the unknown spectral supports of the harmonic and
evanescent components reduces the problem of solving for the
other unknown parameters of the field to linear least squares.
Hence, the solution of the original least squares problem
becomes much simpler. The proposed method is useful even
when the separation between the spectral supports of any two
deterministic components is less than 1/N in each dimension
(for an N x N observed field). We also present the Cramer—Rao
lower bound (CRB) for this estimation problem. We show
that the bounds on the deterministic and purely indeterministic
components are decoupled, and derive closed-form CR bounds
on the accuracy of estimating the parameters of the harmonic
and evanescent components of the field.

An early discussion on the problem of analyzing 2-D homo-
geneous random fields with discontinuous spectral distribution
functions can be found in [7]. There, harmonic analysis is
employed to analyze the long-lag sample covariances, since
for such lags the contribution of the purely indeterministic
component is assumed to be insignificant. In this framework,
the detection problem for a special case of evanescent fields is
also discussed. The idea in [7] is to first test for the existence
of the deterministic components. If such components are
detected, their parameters are estimated and their contribution
to the sample covariances is removed. Next, the spectral
density function of the purely indeterministic component can
be estimated from the “corrected” sample covariances. In [9],
a similar periodogram-based approach was used.

The paper is organized as follows. In Section II we briefly
summarize the results of the 2-D Wold-like decomposition,

which establish the theoretical basis for the suggested solution.
Then, in Section III, assuming that the purely indeterminis-
tic component is a complex-valued Gaussian AR field, we
formalize the parameter estimation problem and derive the
conditional maximum-likelihood estimator in the presence of
a single evanescent field. In Section IV we elaborate on
the problem of estimating the parameters of the evanescent
random field. Section V describes an iterative solution for
the parameters of the spectral support of the evanescent
and harmonic components and its initialization algorithm. In
Section VI the Cramer-Rao bound is derived, and in Section
VII we present some numerical examples to illustrate the
performance of the suggested algorithm, and the behavior of
the derived bounds.

[I. THE HOMOGENEOUS RANDOM FIELD MODEL

The presented random field model is derived based on the
results of the Wold-type decomposition of 2-D regular and
homogeneous random fields [1]. In this section we briefly
summarize the results of [1]. Let {y(n,m),(n,m) € 2%}
be a complex-valued homogeneous random field. Let §i(n, m)
be the projection of y(n,m) on the Hilbert space spanned by
those samples of the field that are in the “past” of the (n, m)th
sample, where the “past” is defined with respect to the fotally
ordered, nonsymmetrical-half-plane support, i.e.

(i,7) < (s,t)iff (4,5) € {(k, £)|k = s,£ <t}
U{(k, Ok < s,—o0<l<oo}. (1)

The innovation with respect to the defined support and total
order is given by u(n, m) = y(n, m)—4(n,m) and its variance
is denoted by 2. If E|y(n, m)—4(n,m)|? = a2 > 0, the field
{y(n,m)} is called regular. The field is called deterministic
if Ely(n,m) — §(n,m)|> = 0. A regular field {y(n,m)} is
called purely indeterministic if y(n,m) € Sp{u(s,t)|(s,t) =<
(n,m)}, where Sp{-} denotes the closure of the span. These
definitions result in the following decomposition theorem:

Theorem 1 [8]: Let {y(n,m),(n,m) € Z2} be a 2-D
regular and homogeneous random field. Then there exist a
deterministic random field {v(n,n)} and an innovations field
{u(n,m)} such that {y(n,m)} can be uniquely represented
by the orthogonal decomposition

y(n,m) = w(n,m) + v(n, m) 2)
where
w(n,m) = Z alk,)u(n —k,m — ) 3)
(0,0)=%(k,4)
and
> lak, 0)) <oo,  a(0,0) = 1.
(0,0)=%(k,€)

The field {w(n,m)} is purely indeterministic and regular. The
fields {w(n,m)} and {v(s,t)} are mutually orthogonal for all
(n,m) and (s,t).
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Definition 1: A 2-D deterministic random field {e,(n,m)}
is called evanescent w.r.t. the NSHP total-order o if it spans
a Hilbert space identical to the one spanned by its column-to-
column innovations at each coordinate (n,m) (w.r.t. the total
order o).

The concept of column-to-column innovations of determin-
istic fields is best illustrated using the following example.
Let {£(i)| — oo <i<oo} be an infinite two-sided sequence
of i.i.d. Gaussian random variables with zero mean and unit
variance. Let also the 2-D random field {y(k,{)} be defined by
y(k, 1) = (k). Tt is clear that §(k, 1) = y(k,l — 1) = &(k) =
y(k,1). Therefore, the field {y(k,{)} is deterministic. On the
other hand, it is obvious that y(k,!) is not a vector in the
Hilbert space spanned by the field samples y(s.t) for s <k
since this Hilbert space is spanned by {£(¢)] — oo <i <k}
and contains no information about £(k). The innovation of
y(k,1) with respect to the Hilbert space spanned by the field
samples y(s, ) for s < k is what we call the column-to-column
innovation of the deterministic field y at the coordinate (k.1).
Hence, in this example the field {y(k,!), (k1) € Z%} is an
evanescent field. v

It can be shown that it is possible to define a family of NSHP
total-order definitions such that the boundary line of the NSHP
has rational slope. Let «, 8 be two coprime integers, such that
a # 0. The angle ¢ of the slope is given by tanf = 3/c.
(See, for example, Fig. 1.) Each of these supports is called
rational nonsymmetrical half-plane (RNSHP). We denote by
O the set of all possible RNSHP definitions on the 2-D lattice
(i.e., the set of all NSHP definitions in which the boundary line
of the NSHP has rational slope). For the special case in which
6 = /2 the NSHP total order is defined by interchanging the
roles of columns and rows. The introduction of the family of
RNSHP total-ordering definitions results in a corresponding
‘decomposition of the deterministic component of the random
field:

Theorem 2 [1]: Let {v(n,m)} be the deterministic com-
ponent of a 2-D regular and homogeneous random field.
Then {v(n,m)} can be uniquely represented by the following
countably infinite orthogonal decomposition:

v(n,m) = p(n,m) + Z e(a,3) (1, m).
(2,8)€0

“)

The random field {p(n, m)} is half-plane deterministic, i.e., it
has no column-to-column innovations w.r.t. any RNSHP total-
ordering definition. The field {e(, gy(n,m)} is the evanescent
component which generates the column-to-column innovations
of the deterministic field w.r.t. the RNSHP total-ordering
definition («,3) € O.

Hence, if {y(n,m)} is a 2-D regular and homogeneous
random field, then y(n,m) can be uniquely represented by
the orthogonal decomposition

y(n,m) = w(n,m) + p(n,m) + Z e(a,)(n,m). (5)
(«,8)€0

In the following, all spectral measures are defined on the
square region K = [-1/2,1/2] x [-1/2,1/2]. The spectral
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Fig. 1.

RNSHP support.

representation of y(n,m) is given by
y(n,m) = / exp [27j(nw + mv)] dZ(w, v)
K

where Z(w,v) is a doubly orthogonal increments process,
such that dfy,(w,v) = EldZ(w,v) dZ*(w,v)]. Fy(w,v) is
the specrral distribution function of {y(n,m)}. Let f(w,v) be
the corresponding spectral density function, which is the 2-D
derivative of Fy(w,v). F'*(w,v) denotes the singular part in
the Lebesgue decomposition of F(w,v). Let L be a set of
Lebesgue measure zero in K, such that the measure defined
by F®(w.v) is concentrated on L.

Theorem 3 [1]: The spectral measures of the decomposi-
tion components in (5) are mutually singular. The spectral .
distribution function of the purely indeterministic component
is absolutely continuous, while the spectral measure of the
deterministic component is concentrated on the set L of
Lebesgue measure zero in /. Moreover, since both the half-
plane deterministic field and all the evanescent fields in
the decomposition (5) are components of the deterministic
component of the regular field, their spectral measures are
concentrated on subsets of the set L.

The definition of the evanescent field and Theorem 3
imply that the spectral measure of the evanescent compo-
nent that generates the column-to-column innovations of the
deterministic component for (e, ) = (1,0) is a linear com-
bination of spectral measures of the form dF,, , (w,v) =
k(w) dw dF*(v), where F*(v) is a 1-D singular spectral
distribution function and k(w) is a 1-D spectral density func-
tion. In other words, the spectral distribution function of each
evanescent component is separable: it is absolutely continuous
in one dimension and singular in the orthogonal one (or a linear
combination of such separable distribution functions).

From Theorem 3 we have that the spectral measure of each
evanescent component of the regular field is concentrated on
a set of Lebesgue measure zero. For practical applications we
can exclude singular-continuous spectral distribution functions
from the framework of our treatment. Hence, the “spectral den-
sity function” of the evanescent field e(; o) has the countable
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sum form,
(1,0)
- )

Z kR (w)6(v

where §(+) is a Dirac delta function. A model for this evanes-
cent field is given by [1]

Jer .0 (Ws V)

7(1.0)

Z 8(1 0)

where the 1-D purely indeterministic processes {sglm(n)},
{s](.l’o) (n)} are mutually orthogonal for all ¢ s j, and the spec-

eq,0)(n,m) ]2""”’ ) (6)

tral density function of the process {sgl’o)(n)} is kgl’o)(w).
More generally, a model for the evanescent field which cor-
responds to the RNSHP defined by («,3) € O is given
by

[(B)
€a,)(n,m) = Z (sz(a”@)(n(x —mg)
i=1
| i2m (P [(@P48%)) (nB4ma) )

where the 1-D purely indeterministic processes {s( @.f) (no
mﬁ)}.,{sga P (no — mB)} are mutually orthogonal for all
i # j, and I(®#) is infinite in general. Hence, the “spectral
density function” of each evanescent field has the form of a
countable sum of 1-D delta functions which are supported on
lines of rational slope in the 2-D spectral domain.

In the following we assume that each of the 1-D purely inde-
terministic processes sga’ﬁ) obeys a finite-order autoregressive
(AR) model. Thus for example, the purely indeterministic
modulating process of ey gy is given by

y{(1.0)

t=1

s (m)y == 3 a"@s

n—t)+ Fgl’o)(n) (8)

where FZ(»I’O) (n) is a 1-D white innovations process.

One of the half-plane-deterministic field components, which
is often found in physical problems, is the harmonic random
field

P .
Z Cpe]27r(nwp+m1/p) 9)

p=1

h{n,m) =

where the C s are mutually orthogonal random variables,
E|C,)? = ap7 and (wyp, ;) are the spatial frequencies of the
pth harmonic. In general, P is infinite. The parametric model-
ing of deterministic random fields whose spectral measures are
concentrated on curves other than lines of rational slope, or
discrete points in the frequency plane, is still an open question
to the best of our knowledge.

Theorem 1 implies that the most general model for the
purely indeterministic component of a regular homogeneous
random field is the MA model (3). However, if its spectral
density function is strictly positive on the unit bicircle and
analytic in some neighborhood of it, a 2-D AR representation
for the purely indeterministic field exists as well [10]. In the
following, we assume that the above requirements are satisfied.

" Hence the purely indeterministic component autoregressive

model is given by

bk, O)w(n — k,m — £) + u(n,m)

>

(0,0)=<(k,£)

w(n,m) =—

10

where {u(n,m)} is the 2-D white innovations field whose
variance is oZ.

III. THE CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATOR

A. Problem Definition and Assumptions

The orthogonal decompositions of the previous section
imply that if we exclude from the framework of our model
those 2-D random fields whose spectral measures are singular
continuous, or are concentrated on curves other than lines of
rational slope, y(n,m) is uniquely represented by

y(n,m) = w(n,m) + h(n,m) + Z
(a,8)€0

€(a,g)(nym).

The problem of estimating the (o, 3) pairs of the different
evanescent components is beyond the scope of the present
paper. In order to keep the notations as simple as possible,
we restrict our attention to the case in which it is a priori
known that (a, /) (1,0) for all the evanescent com-
ponents. The more general problem of estimating the field
parameters in the presence of evanescent fields which are
characterized by unknown («, ) parameters, will be discussed
in a forthcoming paper. Hence, the problem faced here is
the parameter estimation of the harmonic and evanescent
components (those of (a,3) = (1,0)) of the field in the
presence of an unknown colored noise generated by the purely
indeterministic component, jointly with estimating the purely
indeterministic component parameters.

When expressed in the general form (9), the coefficients
{C}} of the harmonic component are complex-valued, mutu-
ally orthogonal random variables. However, since in general,
only a single realization of the random field is observed we
cannot infer anything about the variation of these coefficients
over different realizations. The best we can do is to estimate
the particular values which the C,’s take for the given real-
ization; in other words, we might just as well treat the C,’s
as unknown constants.

Finally, we note that a maximum-likelihood solution to our
parameter estimation problem involves maximization of the
exact likelihood function. However, this is a formidable task
due to the complexity in representing the field covariance
matrix in terms of the model parameters of the different
components. For large enough data records the exact likelihood
function can be approximated by the conditional likelihood
function. Since this approach results in a more tractable
solution, we have chosen it for the above parameter estimation
problem.

We next state our assumptions and introduce some necessary
notations. Let {y(n,m)}, (n,m) € D where

D={(i,)0<i<S-1,0<j<T-1}
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be the observed random field. Note, however, that the observed
field just as well could have any arbitrary shape.

Assumption 1: The purely indeterministic component is a
complex-valued Gaussian AR field, whose model is given by
(10) with (k,£) € Sy, \{(0,0)}, where

U@, ))I1<i< N,—M < j < M}

and N, M are a priori known. The driving noise of the AR
model is a complex-valued Gaussian field such that its real and
imaginary components are independent real Gaussian white
noise fields each with zero mean and variance o2 /2.

Assumption 2: The number P of harmonic components in
(9), as well as the number 79 of evanescent components in
(6), are a priori known.

Assumption 3: The 1-D purely indeterministic processes
{351’0) }, of the type (8) are all assumed to be complex-valued
Gaussian AR processes of known orders Vi(l’o). The driving
noise of each of the AR models is an independent, zero-
mean, complex-valued Gaussian process, such that its real and
imaginary components are independent real Gaussian white
noise processes each with zero mean and variance (a§1=°))2 /2.

In the proposed algorithm we take the approach of first
estimating a nonparametric representation of the 1-D purely
indeterministic processes {351’0)}, and only in the second stage
the AR models of these processes are estimated. Hence, in
the first stage we estimate the particular values which the
processes {sgl’o)(n) S28, i=1---I take for the given
realization, i.e., we treat these as unknown constants.

To simplify the presentation of this section, we shall
describe the solution for I(M® = 1, je, in (6), 7 = 1.
Hence in the following we omit all the subindices .
Further, since we shall only deal with the case where
(a,8) = (1,0), we shall omit the notation (1,0) as
superscripts and subscripts from our derivation, up to
Section VII. Thus the parameters to be estimated are
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Define
w2 [u(N, M), u(N,T—1=M),u(N+1,M), -,
w(N+1,T—-1-M), -,u(S—-1,T-1-M)".
(11)

The vector y is similarly defined. Define (12) (at the bottom of
this page). Also, we set (see (13) at the top of the following
page)

r ej27rM1/
A | erzrary
w2 : (14)
¢i2m(T—1-M)v
W
w 0
E. 2 W (15)
0
L w

and

b2 —[b(0,1), -, b(0, M), b(1, — M), -, b(1, M), -,

b(N,—M),---,b(N,M)|*. (16)

B. Conditional ML Estimation in the Presence of a Single
Evanescent Component

Since u(n,m) is assumed to be Gaussian,

p(Y;0,D\ D) = m
1 S—1 T—1-M
.exp{—; PEDY |u<n,m>|2}'
n=N m=M

an

The conditional MLE of # is found by maximizing (17), or
equivalently by minimizing

(Cprwpr v}ty v {8(0)}52L, {6(k, )} hyesy v 02 We IO = > |u(n,m)?
denote this vector of unknown parameters by 6. (n;m)eD;
T oy(N, M —1) y(N,0) y(N —1,2M) y(N —1,0)
y(N, M) y(N, 1) y(N —1,2M + 1)
Y2 | yNT-M-2) y(N,T—1-2M) y(N-1,7-1) y(N — 1,7 —1—2M)

y(N+1,M - 1) y(N +1,0)

ly(S — 1,7 — M —2)
y(0,2M)

y((): T— 1)
y(1,2M)

y(S—1—-N,T-1)

y(N,2M) y(N,0)

y(S —1,T —1—2M)

y(0,T — 1 — 2M)
y(1,0)

(12)

y(S—1-N,T—1-2M)]
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r ejZTr[Nw1+Mx/1]

6j27r[Nw1+(T—1—M)V1]

ej27r[Nw:+MV2]

ej27r[wa+(T—1—M)V7]

€j2TF[NwF+Ml/P] B

E, é ej27r[(N+l)w1+MV1] ej27r[(N+1)w2+MVg] (13)
_Cﬂr[(sq)wl#(T—l_M)yl] (i2x[(S=Dwp H(T=1-M)vp] |
where Dy = {(4, H)IN <1< S—-1,M<j<T-1-M}, Define now the following transformations:
and D\ D; is the set of required initial conditions. Thus only A e (bt
actually occurring values of the observed field are used in the pp = Cp Z b(k, £)e 2m(kwptlip) (19)
estimation procedure. Using this method we sum the squares of (k,0)€SN 1t
only | D] values of u(n,m), but this slight lost of information LN —j2mty
. . A , n) = b(k,0)s(n — k)e™? . 20
will be unimportant if the size of the observed field | D| is large n(n) ok l)ezs (k. D)s( ) 20
) N, M

enough. Using (10), u(n,m) is given by

2.

(k,0)ESN, M

u(n,m) =

bk, O)w(n —k,m —{)

with 5(0,0) = 1. Since w = y — h — e, we have

)y

(k,0)ESN M
—hn—km—¥0)—e(n—km—4£)}

= > b(k,é){y(n —k,m —{)
(k£)ESN, M
P
— Z Cp6j2'”[("_k)wp +(m*5)"p]

p=1

u(n, m) =

bk, O){y(n — k,m —£)

_ 8(71, . kl,)ejZm/(m—Z)}

(k,é)GSNYM

r
_Zcp Z b(k7g)eﬂﬂ[("—k)wpﬂm—l)l/p]
(k,0)ESN, M
- 3 bk, 0)s(n — k)em 0

bk, O)y(n — k,m — 1)

p=1

(R L)ESN M
= Z b(k,f)y(n —k,m— g)
(k) €SN, M
P
- Z Cp Z b(k, £)e 12m(kpttyy)
p=l (k,£)ESN, m
. ej27r(nw,,+m,,p)
. Z b(k, Z)s(n — k)e—j27l'll€ ej27rum'
(k,O)€SN, M

(18)

Let

B((ij%w7 ej27r1/) — b(k_7€)6—j2ﬂ(wk+u1).

D

(k.L)ESN, M

The assumptions made in Section II as to the properties of
the spectral density function of the purely indeterministic
field imply that the field AR model is such that B(z1, 23)
is minimum-phase. (We implicitly assume here that the finite
support B(z1,22) defined above retains this property of the
infinite support filter which corresponds to the AR model (10)).
Since B(e/2™ e7%™) is nonzero on the unit bicircle, and in
particular at the frequencies of the harmonic components, the
transformation (19), of the Cp’s to pu,’s is one-to-one. The
transformation (20) is also one-to-one since given N initial
values of the process {s(n)}, each newly introduced s(n)
results in a unique 7(n). The idea of using a transformation
of the type (19) was developed in one dimension for estimat-
ing the parameters of harmonic signals in colored noise by
Chatterjee er al. [14], as well as by Kay and Nagesha [15].

Let Sy pr = Sn.ar\{(0,0)}. We can therefore rewrite (18)
in the following form:

>

(k,£)ES!,

N.M

w(n,m) = y(n,m) + b(k,O)y(n — k,m — £)

P
- Z pped T TIYE) (eI 2T (n ) € Dy, (21)
p=1

Let
w2, e o )T (22)

and
n(s -]’

Since J(0) = ufu, we obtain by writing (21) for all
(n,m) € Dy, the following matrix representation for J(@):

J(6) = |ly — Yb— Epp— Een|*.

n 2 MN), 9(N+1), (23)

(24)
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Thus the transformations (19) and (20) allow us to min-
imize the objective function J(@) with respect to b, pu,7,
and the deterministic component spectral support parameters,
{wp,up}zf':l, v, instead of minimizing it with respect to the
original problem parameters. The properties of the above
transformations guarantee that both minimizations will re-
sult in the same minima for J. Define D = [YE,LE,] and

0; 2 " uTnT|T. Then we can rewrite (24) as

J(8) = |ly — DOy |*. (25)
Because of the fact that the objective function is a quadratic
function of 1, the minimization over #; can be carried out
analytically for any given value of D. Using the well-known
solution to the least squares problem we have that

b = (DFD)"' Dy (26)
will minimize J(@) over ¢,. By inserting (26) into (25) we
find that the minimum value of J(#) is given by

Tuain({wp, vp Y1, v) = 7 (I = DD D)™ D)y, (27)
Here D is assumed to be full rank so that (D¥ D)~ exists.

Thus maximization of the likelihood function is achieved by
minimizing the new objective function Juin({wp, vp} -1, 1),
which is a function only of the deterministic component
spectral support parameters. We have thus shown that the
minimization problem (24) which is obtained after taking
the transformations (19), (20) is separable since its solution
can be reduced to a minimization problem in the nonlin-
ear deterministic component’s spectral support parameters,
{wp,yp};;l,y, only, while b,p, 7 can then be determined
by solving a linear least squares problem. This new mini-
mization problem is of a considerably lower complexity. A
broad discussion on the subject of separable, nonlinear, least
squares minimization problems can be found in [11] and
[12]. Since Jmm({wp,yp}p 1,v) is a nonlinear function of
{wp,yp}pzl,l/, this optimization problem cannot be solved
analytically and we must resort to numerical methods. In order
to avoid the enormous computational burden of an exhaustive
search, we use the two-step procedure which is described in
Section V.

In the discussion above we assumed that the noise variance
o? is known. If it is not known, it can be estimated. The
maximum-likelihood estimate of o2 is derived by maximizing
(17) with respect to o?. Using the estimated frequencies and
(27) we have that

~2 jmin
= SNy T =M 28)

Thus (26) and (28) establish the estimate for the autore-
gressive model of the purely indeterministic component of
the field. Using the estimated frequencies of the harmonic
component and the transformation (19), a complete estimate
for the parameters of the harmonic component is obtained.
The solution for the parameters of the evanescent field is more
involved and it is given in the next section.
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IV. ESTIMATING THE PARAMETERS OF THE
EVANESCENT COMPONENT
Define
M
Z b(07€)6—j27rl1/’
B(k) 2 3
> bk, eI, 1< E<N.
t=—M

k=0
(29)

Let us rewrite (20)

M .
Z b(0,£)s(n)e 92"

£=0
N M

+ >0 bk, 0)s(

k=1 {=—M

+Z B(k)s(n — )]

Z B(k)s(n — k),
k=0

Note, that as a result of the preceding stages of the algorithm,
the estimated values of the n(n)’s and B(k)’s are available,
rather than the rrue values. We next present two different
approaches for estimating the parameters of the 1-D purely
indeterministic process {s(n)}.

Following (8) and Assumption 3, we have that

n— ) —j21r€1/:|

s(n)B

n=~nN,---,8~1. (30)

%

s(n) = — Z a(t)s(n —1t) + T(n). 3D
t=1

Substituting (31) into (30), we obtain
.

n(n) = ZB(k Z )s(n—k —1t)+D(n —k)
Za B(k)s(n—k— t)—i—ZBk)I‘n k)
t=1 k=0 k=0
v

== a(t)n(n —t) + Z B(k)T(n — k)
t=1 k=0
n=N,--,5-1. (32

Hence, (32) implies that solving the problem of estimating the
unknown parameters of the 1-D purely indeterministic process
associated with the evanescent component, is equivalent to
solving the above 1-D ARMA equation. In the equivalent
problem, the MA parameters {B(k)}_ have previously been
estimated, the driving Gaussian noise source is of an unknown
variance (o(10))2, and the “observations” are the {n(n)}, for
n =N, --,5—1 In [17, pp. 205-208] it is shown how
the exact likelihood function of an ARMA process can be
computed, from the ARMA model parameters, by using the
Kalman filter. Hence, maximization of the likelihood function
with respect to the unknown parameters {a(t)}y_;, "% will
result in an ML estimate of the ARMA parameters.
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The alternative approach is simple to implement, but sub-
optimal. Moreover, this solution can be used to initialize the
above ML algorithm. Define the 1-D function

N
B(z) =Y B(k)z*.

k=0
Note that the parameters of this function were previously
estimated. Hence, if this estimated function is minimum-phase
then, instead of solving (30), we can solve the equivalent
problem obtained by deconvolving the sequence {B(k)}1_,
out of the sequence {7(n)}>Z\. The result of this decon-
volution is the sequence {s(n)}>_;. However, the system
(30) is clearly an underdetermined system having S unknowns
with only S — N equations. Hence, we obtain a solution for
the required unknown sequence {s(n)}>_J} by filtering the
sequence {7(n)}:_} through the IR filter B—(z;) with zero
initial conditions. Since {s(n)} is an AR process, a standard
AR model parameter estimation algorithm can now be applied
to estimate its parameters. (In the present paper we use the
conditional maximum-likelihood estimator [18]).

V. THE SOLUTION FOR THE SPECTRAL SUPPORT
PARAMETERS OF THE DETERMINISTIC COMPONENT

In Section III we concluded that the minimization prob-
lem (24) which is obtained after taking the transformations
(19), (20) is separable since its solution can be reduced
to a minimization problem in the nonlinear deterministic
component’s spectral support parameters {wp, up}]{}:'l, v only,
while b, u,m can then be determined by solving a linear
least squares problem. Hence, the first step in solving the
presented estimation problem is the minimization of Jy,i, with
respect to the unknown spectral support parameters of the
deterministic component. Since Jy,;, is a nonlinear function
of the deterministic component’s spectral support parameters
this optimization problem cannot be solved analytically and
we must resort to numerical methods.

In general, J,i, has a complicated multimodal shape.
Hence, in order to avoid the enormous computational burden
of an exhaustive search, we used the following two-step
procedure. In the first stage, we obtain a suboptimal initial
estimate for the parameters of the spectral support of the
deterministic component. This stage is implemented by solving
the system of overdetermined 2-D normal equations for the
parameters of a high-order linear predictor of the observed
data. In the second stage, we refine these initial estimates by
an iterative numerical minimization of the objective function
Jmin- In our experiments we used the conjugate gradient
method of Fletcher and Reeves [19, p. 253]. Note that only
for the case of a quadratic objective function, the conjugate
gradient procedure is guaranteed to converge in at most
N steps. For our problem, we simply restart the algorithm
using new gradients, until the objective function becomes
appreciably small. As is well known, this type of iterative
optimization procedure converges to a local minimum, and
does not guarantee global optimality, unless the initial estimate
is sufficiently close to the global optimum. As we show in
Section VII, the initial estimates provided by the solution

of the overdetermined high-order normal equations appear to
provide a good initial starting point (i.e., one which leads
to convergence to the global minimum) as long as the local
signal-to-noise ratio is sufficiently high, and the frequencies of
the different deterministic components are not too close. We
next describe the initialization algorithm.

Formalizing the 2-D linear prediction problem for some
NSHP predictor with support

S={(k,)]k=0,0<£< L}
U{(k, |l <k<K,-L<{¢{<L}
results in the following linear system of equations:

Z U’(k7l),"(i - k7] - Z) = —7,(2'7]') (L/J) - (070)
(k,0)eSs
(33)

where {a(k,£)}(x es are the linear predictor coefficients.
Rewriting the system (33) in a matrix form for all (i,7) €
S results in the well-known 2-D Yule-Walker equations.
Including in this system additional equations for (4, 7) > (0, 0)
such that (z,7) ¢ S results in an overdetermined system.
The overdetermined Yule—Walker method is a modification
of the basic Yule-Walker method, which was reported [4]
to lead to a considerable increase in the estimation accuracy
of the frequencies of harmonic signals in white noise for 1-
D signals. It is further concluded in [4], that the asymptotic
accuracy of the estimates will increase with the number of
Yule-Walker equations used and with the model support.
Intuitively, it can be expected that increasing the predictor
support (i.e., increasing K and L), will improve the accuracy
of the estimates of the deterministic component’s spectral
support, since the covariances for large lags contain “useful
information” about the deterministic component. In order to
solve (33) for the linear predictor parameters, the covariances
of the observed field must be available. Since the covariance
functions of the observed field are unknown they must be
estimated from the data itself. Hence, in (33) we replace
the true covariances by their estimates. However, as noted
earlier, the ergodic property of the sample covariances does
not generally hold in the present case. This is due to the result
[6], that the sample covariances of a Gaussian process are
consistent estimates of the covariance function if and only
if the spectral distribution function of the process has no
discontinuities. Clearly, this requirement does not hold in the
present case. Nevertheless, since in practice the above method
produces accurate estimates of the spectral support of the
deterministic component, and since these estimates are used
only to initialize the iterative minimization of the cost function
Jmin, the above theoretical problem is avoided.

Since (33) is an overdetermined system, it is solved in
the least squares sense for the linear predictor coefficients.
We then look for the peaks of 1/|A(e/2™ e/2™)|? to obtain
the required initial estimates of the deterministic component
spectral support parameters.

VI. THE CRAMER-RAO LOWER BOUND

A conditional ML algorithm for estimating the parameters
of the harmonic and evanescent components in the presence
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of a 2-D circular Gaussian AR noise, jointly with estimating
the AR model parameters, was suggested in the previous
sections. In this section we derive the performance bound
for this algorithm. As is well known, the Cramer—Rao Bound
(CRB) provides a lower bound for the covariance matrix of
any unbiased estimator of the model parameters. The bound
is given by the inverse of the so-called Fisher Information
Matrix (FIM) [16]. In the following derivation, the number of
components of the evanescent field is (9, the number of
harmonic components is P, and the 2-D AR model support
is S N,M-

The conditional CRB is derived from the conditional proba-
bility density function of the observed process. Rewriting (17)
we obtain

p(Y;0,D\ D) =

>

1
 expd
2D 2
(mo?)iPal 9" (n,myeD;

Z bk, O)[y(n —k,m —£)

(k,L)ESN, M
2

— d(n—k,m—{)] (34)

were we define

d(n,m) £ h(n,m) + e(n, m). (35)

Note that in the present framework {d(n,m)} is the mean
component of {y(n,m)}.

Collecting the parameters of the harmonic component into
vector representations, we have

c=[Cy,---,Cpl" (36)
fi=lwi,vi]" 37
wr=[f1, - Fp (38)

The parameter vectors of the evanescent components are
defined by

Ve =102, vp00]t (39)
87 =[5:(0),8:(1),- -, 8 (N = 1)]F (40)
si =[8:(N),s:(N +1),---,5(5 — 1)]" 41
z =[s) 8] 42)
s :[3?’357”.’3%}110)]? (43)
Also let
d =[d(0,0),---,d(0,T - 1),d(1,0),---,d(1,T - 1),---,
d(S —1,0),---,d(S — 1, T - DT (44
h =[n(0,0),---, (0, T —1),h(1,0),---,A(1, T~ 1),---,
h(S ~1,0),---,h(S—1,T = ]F 45
e; =[e;(0,0),---,e;(0,T—1),e,(1,0),---,e; (1, T—1),- -,
ei(S~1,0),--,e(S—1,T - 1], (46)
Rewriting (35) in vector form we have
(1.0
d=h+ ) e. (47)
=1
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Let d% = Re{d},d = Im{d},d = [d® & |7. In a
similar way we define the vectors % kY, h,el, el &zl
zl, 3, el el e s 8T 5 Also let bR(k,£) = Re{b(k,£)},
bl (k,£) = Im{b(k,£)}. Let us denote by @ the mean com-
ponent parameter vector, ie., § = [¢'w] s vT]T. Note that
the initial conditions vectors s{,i = 1,---,1(:0)  are not
parameters to be estimated, as they are assumed known. Taking
now the partial derivatives of the conditional log-likelihood

function w.r.t. the elements of 8, we have

b(k, 0) Bd(n;;(,i;n—é)_

>

== 3
o00) o (k. 5n

(n,m)eDy

>

(k,L)ESN, M

b(k>£)['y(n - kam - K)
—d(n —k,m—{)]

S

(n,m)€Dy

2

(k,£)€SN, 1

bk, O)[y(n — k,m — {)

— d{n —k,m — £)]

ad*(n — k,m — £)

b*(k, £) 0 . (48)

| ( 5
(k,8)ESN 1

Taking the partial derivative w.r.t. the AR process driving
noise variance parameter yields

8InP 1
{80280@)} o4 Z

(n,m)cD;
A1 bk p2dn=km=10))
(k) €SN at 96(7)

>

(k,£)€SN, M

b(k, €)ly(n — k,m — ©)

—d(n - k,m — )]

+ 3 ( > bk Oly(n ~ k,m 1)

(n,m)eDy (k)ESN, M
—d(n—k,m—10)]
) i G i)
00(1)

(B0)ESN, M
(49)
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Similarly, taking the partial derivatives w.r.t. the real and
imaginary parts of the AR process parameters we find that

E{m}

_ 7%E Z ad(n —_k,'m—f)
7 (n,m)eD; 80(Z)
> bk, Oly(n —kym —£)
(k,0)ESN M
—d(n —k,m — ¢)]

1
—;E Z

(n,m)ED,

>

(k&)ESN M

ad(n — k,m —1{)

bk ) 90(3)

“y(n — k,m —£) —d(n — k,m — £)]*

1
- FE Z [y(n —k,m —¥£)

(n,m)eD,

—d(n—k,m— 1))

>

(k,€) €SN, a

1
AﬁE Z

(n,m)eD;

b (k. ) dd*(n (;al(ﬂi,)m -1

>

(k,&)ESN, M

b(k, £)

y(n = kym —£) — d(n — k,m — £)]

od*(n—k,m —1{)

90(i) =0

(50)

Similar derivation w.r.t. b7 (k, £), yields

2
—p{ il (51)
90(1)ob! (k, ¢)
Thus the conditional FIM is block-diagonal. Hence, the con-
ditional CRB on the harmonic and evanescent components
parameters is decoupled from the bound on AR process
parameters. Therefore, the conditional CRB’s on the deter-
ministic component, and on the AR component parameters are
obtained by inverting the FIM blocks which correspond to the
deterministic and the AR parameters, respectively. Asymptotic
CRB on the parameters of an AR field with an NSHP support

is given in [13]. In the following we concentrate on deriving
the conditional CRB on the parameters of the harmonic and
evanescent components. Taking the partial derivatives w.r.t.
the mean component parameters we find that

1
T o2

bk, £)

~ { a?mp
90(1)00(j

>

(n,m)eD,

od(n — k,m —{)
00(i)

(k, i)eSN M

ad*(n — k,m —¥£)

"EOTG)

(k, Z)GSN M

+
(n m)GDl

ad(n — k,m —{)

b, ) 2k
(k, E)ESN M 80(])
ad*(n — k,m — £)

ok 1) 90(i)

(k, E)ESN M

>

(n,m)eD,

ad*(n

2
= —Re
o2

>

(k,0)ESN, M

—kym —{)

bk 6 o0(i)

ad(n — k,m —¢)

- . (52
a00)) o

D

(k,)ESN M

b(k, )

Thus the above derivation of the conditional FIM reveals
that the bounds on both the amplitude and the frequency
parameters of the harmonic components, as well as the bounds
on the parameters of the evanescent components, are functions
of the frequency response of the colored noise model at
the frequencies of the spectral support of the deterministic
components, and of the derivative of the frequency response
at these frequencies.
Let d be the “flipped-around” version of d, i.e.,

d=[d(S—1,T—1),---,d(S —1,0),---,
d(1,T —1),---,d(1,0),d(0,T — 1),---,d(0,0)]".
(53)
Note that d = Kd, where
0 0 1
0 1 0
K=1. . (54)
1 00



926

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 3, MAY 1996

b0 0 | Or Orp Or | | Or(s—N-1)]
0 b | & 0 0 | | 0
0 0 0| o & C |
I b | 0 0 | l (57)
0 | b l
Do 0 | |
o : AN 0
LO O 0] 0 0 0 | | b |
is the exchange matrix. Let 04 denote a k-dimensional column  where
vector of zeros. Let also R I
E, -E,
. . . PG BE 61)
bO :[OM717b(071)a'">b<0>M)a0T—(2M+1)] h h
— J— PR - T T —_ —— o —_
by _[b(ly M)a 7b(170)3 yb(l7M)$0T—(2M+1)] and Ef — RQ{E’ILEi — Im {Eh} Taking the partial

by_1 =[N -1,—-M),---,b(N ~1,0), - -,
b(N_ 1>M)v0§—(2M+1)}T7

by = [b(N,—M),---,b(N,0),---,b(N, M)|* (55)

and

—6: [bg7b?a>b1{7]T (56)
Let b denote the conjugate of b. Define the following S - T X
(S = N)- (T — 2M) matrix (see (57) at the top of this page)
where each of the S — NV blocks is an §-T x (T —2M ) matrix.

Using these notations (52) can be written in the following
matrix form:

92In P 2 8d" — _u 8d

We next evaluate 9d/90(i) for each of the parameters of
the deterministic component. We begin with the harmonic
components. Let (see (59) at the bottom of this page), i.e., the
ith column of Ej, consists of the values of the ith harmonic
component evaluated for all (s,t) € D. We therefore have

g

h = pé (60)

derivatives of d with respect to the harmonic component

amplitude parameters we find that
od
— = 62
FE0) () (62)

where ¢(£) is the /th element of €, and p, is the fth column
of p. Hence

ad  ad® y ad’
ae(0) ~ aet) 7 de(r)
=pi +jpi (63)
where
Pt =1pe(0), -, po(ST — 1)]T
pl =[p(ST), -, p(25T — )T (64)
Let
T1 :[01177(5_1)T®1T
72:1S®[0717"'7(T—1)]T (65)

where 17 and 1g are T-dimensional and S-dimensional col-
umn vectors of ones, respectively, and ® is the Kronecker
product. In other words, 7 is the vector of the first indices of

Ep =

LE

6]'27r [Ow1+0vq]
ej27r[0w1+1111]

327 [0w1 +(T—1)v1]
ej27r[1w1 +0v,]

j27r[(S——1)u:11+(T—1)V1]

ej27r[0w2+01/2]
ej?ﬂ[0w2+ll/2]

ejZTr[Owg+(T—l)U2]
ej?ﬂ[lwz +0vs]

€j27r[0wp+0up] B
€y2ﬂ'[0wp +1vp]

ejZ'/'r[pr+(T—1)1/p}
ejZﬂ[lwp+Ovp]

27 [(S—1)wp+(T—1)wp] |

(59
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the elements of d in (44), and 75 is the vector of the second
indices of the elements of d. Taking now the partial derivatives
w.r.t. the harmonic frequencies yields

on™ . you E"

8—wp = 27 diag ('rl)(cR(p)E;,p + CI(p)Eh,,)

OR* . w1 i

5= —27 diag (72)(0R(p)Ehp + CI(P)EhP)
P

oh! . = %

5o =7 diag (r1)(~¢! (0) B, + ™ (p) By )

oh! . 1w L RTR

v =2r diag (12)(—~¢" (p) By, + ¢ (p)Ey))  (66)
D

where diag (1), (diag (72)) is an ST x ST matrix whose
diagonal is the vector 71, (12). ¢f(p),(c!(p)), is the pth
element of cg,(c!), and Ehp,(ﬁhp) is the pth column of

By, (Ep). Hence

od _oh"™  on'
By~ By By
od _on"  on'
= o, T (67)

Similarly, for the parameters of the ith evanescent compo-
nent, we first define

€j27r0u7_v
271y
_Wi - ej?rr?z/i (68)
ej27r(’i“-l)m
Ee1 :ISxS®Wi (69)
where Igxs is an S x S identity matrix.
We therefore have
€ =P,xT;, (70)
where
—R —I
E -FE
Y= | R (71)
E, E.

—R — — —
and I/, = Re {E,,}, Ei, = Im {F,, }. Taking now the partial
derivatives w.r.t. the ith evanescent component frequency
yields

gelt _ _
Y — o diag(rz)(Eé:vf{ + Ef:z;{)
ayei i %
= —2r diag (12)e!
ae{ . -8R R = 7
= 2w diag (12)(E, z;" — B, ;)

=2x diag (13)eR. (72)

Hence
od oelt el
Ovg; - Ve; o %,
= j27T diag (Tz)@z‘. (73)
Because the initial conditions vectors s,i = 1,..., (0

are not parameters to be estimated (as they are assumed
known), we find that taking the partial derivatives of d with
respect to elements of §; yields

od od

dsfi(t)  om(t+N) Viern (74)
od od

9sl(6)  0%,(S+{+N) =Y 514N (75)

where ), , is the /Zth column of ;,s%(¢) denotes the /th
element of Re{s;}, and s/(f) denotes the fth element of
Im {s;}. Hence

od  ad" L od’
asi(0) ~ asF(e) " ' asF(0)

= T/’fuN + j’/’{,HN (76)
and
5% = ils epn +IVisioin (77
where
T/’fz = [1/11,2(0)7 Tt 7¢i,Z(ST - 1)]T
Yie =, (ST), - 9,,25T - D", (78)

Note that the bound on the variance of estimating the param-
eters of the 1-D modulating purely indeterministic processes
is given in terms of their nonparametric representation.

Substituting (63), (67), (73), (76), and (77) into (58), we ob-
tain the FIM block which corresponds to the parameters of the
deterministic component. Since the conditional FIM is block-
diagonal, the lower bound on the accuracy of estimating the
deterministic component parameters is obtained by inverting
(58), after the above substitutions have been made.

VII. NUMERICAL EXAMPLES

In this section, we investigate the behavior of the conditional
CRB and the performance of the suggested ML algorithm
using some specific examples. First, we investigate the CRB as
a function of the spectral support parameters of the harmonic
and evanescent components, and the shape of the purely
indeterministic component spectral density. In the second
part of this section we illustrate the performance of the
ML algorithm by Monte Carlo simulations, and compare the
variance of the ML algorithm estimation errors with the lower
bound given by computing the CRB for these examples.
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Fig. 2. The CRB on the parameters of a single exponential in a wideband 2-D AR field.

TABLE I
PURELY INDETERMINISTIC COMPONENTS PARAMETERS
o? b(0,1) b(1,-1) b(1,0) b(1,1)
Narrowband AR | 1 | 0.9 exp(j270.4) 0 0.9 - exp(7270.3) | 0.81 - exp(—7270.3)
Wideband AR | 1 | —0.4 - exp(j270.4) 0 —0.3 - exp(j270.3) | 0.12 - exp(—j270.3)

A. The Bounds as Functions of the Harmonic
and Evanescent Frequencies

In this section we first investigate the bound on the harmonic
component parameters, as a function of frequency, for a
fixed data size of 16 x 16 samples. The harmonic component
comprises a single exponential of unit amplitude, and no
evanescent components are present. For each of the two
different AR models of the purely indeterministic component
listed in Table I, the frequency of the exponential is varied
in the square region K = [—1/2,1/2] x [-1/2,1/2], and the
bound on the estimation error variance of each of the harmonic
component parameters is computed for each spatial frequency
the exponential assumes. The results are illustrated in Figs. 2
and 3. Note that both for the narrowband AR field, and the
wideband AR field, the shape of the bound as a function of
frequency matches the shape of the spectral density of the
AR field. In other words, the lower bound on the estimation
error variance of any of the exponential parameters becomes
higher, and hence the estimation more difficult, as the local
SNR given by

|C|?

SNR (Wes ) = Grmmargrzmmy
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decreases. Here

2
2 j2my _ o
S(e?*™ eI = |B(eiZme, ei2mv)[2

denotes the spectral density function of the 2-D AR field.

In the next example, we investigate the bound on the fre-
quency parameter of a single evanescent component embedded
in the above wideband, and narrowband AR modeled purely
indeterministic components, as a function of the evanescent
component frequency parameter, for a fixed data size of 16 x
16 samples. The evanescent component has spectral support
parameters («, ) = (1,0), and its modulating 1-D process
is a zero-mean, unit-variance Gaussian white noise process.
No harmonic component is present. For each of the two
different AR models of the purely indeterministic component
listed in Table I, the frequency parameter of the evanescent
component v(1:%) is varied in the interval [—1/2,1/2], and
the bound on its estimation error variance is computed for
each value v(9) assumes. The results are depicted in Fig. 4.
Note that both for the narrowband AR field, and the wideband
AR field, the shape of the bound as a function of frequency
matches the spectral density of the AR field. In other words,
the lower bound on the estimation error variance of »(1:0)
becomes higher as the power of the purely indeterministic
component increases relative to the power of the evanescent
field embedded in it.

B. Performance Examples of the ML Algorithm

In this section, we illustrate the performance of the ML
algorithm by Monte Carlo simulations, and by comparing
the variance of its estimation errors with the CRB. The
experimental results are based on 100 independent realizations
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of the purely indeterministic component, and of the modulating
1-D purely indeterministic process of each evanescent field.
Similar results were obtained when a single realization of the
modulating 1-D purely indeterministic process of each evanes-
cent field was used in all 100 experiments. We consider two
sets of test data, represented as 32 x 32 realizations of the fields.

Example 1: Consider a field which consists of the sum
of a purely indeterministic component modeled by the nar-
row bandwidth-2-D AR model with support S;; whose
parameters are listed in Table I, two exponentials of equal
amplitudes, and two evanescent components. The frequencies
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field in wideband and narrowband AR fields.

of the two harmonic components are (wy,v1) = (0.15,0.25)
and (w2,v2) = (0.16,0.26), which are far away from the
peak of the spectral density of the purely indeterministic
component. The frequencies of the two evanescent components
are v(®V = 0.1 and »9 = —0.4. The modulating 1-D
purely indeterministic process s(L0)(n) is a first-order AR
process with parameter 0.9-exp (j270.4), whose input is a unit
variance Gaussian white noise process. The process 5% (m)
is a unit variance Gaussian white noise.

Example 2: Consider the following case. The purely inde-
terministic component is the wideband AR field with support
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TABLE 1I
DETERMINISTIC COMPONENTS ESTIMATION RESULTS
Parameters Ezample 1 Ezample 2
Orig. CRB Bias Var Orig. CRB Bias Var.

First w1 0.15 | 6.9865e-08 | 5.408e-05 | 7.6399e-08 0.25 | 3.3129e-05 | 1.210e-03 | 3.9733e-05
harmonic | vy 0.25 | 7.4476e-08 | 5.477e-05 | 7.8123e-08 || 0.35 | 3.3636e-05 | 1.234e-03 | 3.9882¢-05
component | Real 1 6.2165e-04 | 5.412e-03 | 1.0022e-03 || 0.3 | 3.3353e-02 | 1.960e-03 | 4.3187e-02
Imag 0 3.6350e-03 | 9.799e-03 | 5.4130e-03 0 1.6959-01 | 1.001e-01 | 3.5453e-01
Second wo 0.16 | 6.9287e-08 | 5.478e-05 | 7.8378e-08 || 0.26 | 1.2598e-05 | 7.828e-04 | 1.6616e-05
harmonic | v 0.26 | 6.7335e-08 | 5.463e-05 | 7.7931e-08 || 0.36 | 1.2853e-05 | 7.998e-04 | 1.7350e-05
component | Real 1 6.4339e-04 | 5.632e-03 | 1.0662e-03 0.5 | 3.2483e-02 | 1.915e-04 | 4.5418e-02
Imag 0 3.4100e-03 | 1.052e-02 | 5.7620e-03 0 1.7993e-01 | 1.002¢-01 | 3.0118e-01

First « 0 - - - 1 - - -

Evanescent | 1 - - - 0 - - -
component | (&P I 0.1 [ 4.56160e-08 [ 4.292¢-05 [ 4.8076e-08 [| -0.4 | 2.3338¢-07 | 6.217e-05 | 3.0158e-07

Second o 1 - - - - - - -

Evanescent | 0 - - - - - - B

component | 1P | 0.4 | 5.9676e-08 | 4.418e-05 | 6.1000e-08 - - - -
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