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Bounds on the Accuracy of Estimating the
Parameters of Discrete Homogeneous Random
Fields with Mixed Spectral Distributions

Joseph M. Francosylember, IEEE

Abstract— This paper considers the achievable accuracy spectral measures. The spectral distribution function of the
in jointly estimating the parameters of a real-valued two- purely indeterministic component is absolutely continuous,
dimensional (2-D) “homogeneous random field with mixed \ypije the spectral measure of the deterministic component is
spectral distribution, from a single observed realization of it. . | ith t to the Leb d theref
On the basis of a 2-D Wold-like decomposition, the field is TSIn_gu ar with respect 1o the Lebesgue measure, an ere Qre
represented as a sum of mutually orthogonal components of it iS concentrated on a set of Lebesgue measure zero in
three types: purely indeterministic, harmonic, and evanescent. the frequency plane. For practical applications, the “spectral
An exact form of the Cramer—Rao lower bound on the error density function” of the regular field’s deterministic compo-
variance in jointly estimating the parameters of the different nent can be assumed to have the form of a countable sum

components is derived. It is shown that the estimation of the . ) .
harmonic component is decoupled from that of the purely of one-dimensional (1-D) and 2-D delta functions. The 1-D

indeterministic and the evanescent components. Moreover, the delta functions are singular functions which are supported on
bound on the parameters of the purely indeterministic and curves in the 2-D spectral domain. The 2-D delta functions are
the evanescent components is independent of the harmonicsingular functions which are supported on discrete points in
component. Numerical evaluation of the bounds provides some y,, spectral domain. In [27], [29] the 2-D Wold-like decom-
insight into the effects of various parameters on the achievable o . .
estimation accuracy. position, a_nd the resu_ltmg random flelq model, are employed
for modeling, analysis, and synthesis of natural textures.
We refer the interested reader to [27], [29] for examples
that demonstrate the identification and parameterization of
the decomposition components in images of natural textures.
lllustrative synthetic examples can be found in [28].
. INTRODUCTION This paper is devoted to the analysis of the achievable ac-
N this paper, we consider the problem of fitting a parametrfd!racy in estimating the parameters of a regular homogeneous
model to observations from a single realization of a twgandom field, based on the parametric model derived in [1]. In
dimensional (2-D) real-valued discrete and homogeneous r@a'ticular, we concentrate here on establishing the lower bound
dom field with mixed spectral distribution. This fundamentz@n the error variance ijointly estimating the parameters of the
problem is of great theoretical and practical importance. purely indeterministic, harmonic, and evanescent components
arises quite naturally in terms of the texture estimation &f the field, based on dinite-dimension, single observed
images [26], [27], [29], as well as in several areas of raddgalization of this field. Assuming that the observed field is
sonar, and seismic signal processing. a Gaussian random field, we derive closed-form expressions
From the 2-D Wold-like decomposition [1], we have thafor the lower bound on the error variance of any unbiased
any 2-D regular and homogeneous discrete random figgtimator of the field parameters. We show that the lower
can be represented as a sum of two mutually orthogorgund on the parameters of the harmonic component is de-
components: gurely indeterministidield and adeterministic coupled from the bound on the parameters of the purely
one. The purely indeterministic component has a unigiRdeterministic and the evanescent components. Moreover, the
white innovations driven moving average representation. TReund on the parameters of the purely indeterministic and
deterministic component is further orthogonally decompos#de evanescent components is independent of the harmonic
into a harmonic field and a countable number of mutuallicomponent. These results hold regardless of the paramet-
orthogonalevanescentields. This decomposition results in afic models of the purely indeterministic and the evanescent
corresponding decomposition of the spectral measure of ggmponents. Next, by assuming a moving average model,
regular random field into a countable sum of mutually singul@F alternatively an autoregressive model, for the modulating
purely indeterministic processes of each evanescent field, we
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exact Cramer—Rao Bound (CRB) on the achievable accuracyaimexactCramgr—Rao bound on the parameters of essentially
jointly estimating the parameters of the harmonic, evanesceay real-valued regular and homogeneous Gaussian field,
and purely indeterministic components of the field, from @ahere the field may contain all of the 2-D Wold decomposition
finite dimension observed realization of it. components.

The general problem of random fields’ parameter estimationThe paper is organized as follows. In Section Il we briefly
has received considerable attention. Many of the works addressnmarize the results of the 2-D Wold-like decomposition,
the problem of the statistical inference of Markov randomhich establish the theoretical basis for the suggested solution.
fields (MRF's), and its applications in image processing (sel, Section Il we define the problem considered in this paper
e.g., [3], [4], and the references therein). A special class afid introduce some necessary notations. In Section IV a
MRF's is that of Gauss—Markov random fields (GMRF’s)general form of the CRB for the estimation problem considered
It is shown in [6] that a GMRF may be defined in théiere is derived. It is shown that the estimation problem of
form of a 2-D autoregressive (AR) field driven by correlatethe harmonic component is decoupled from that of the purely
noise. This definition is equivalent to specifying the fielihdeterministic and the evanescent components. In Section V
joint probability density function, through the Gibbs potentialsve derive closed-form expressions for the lower bound on the
A maximume-likelihood (ML) algorithm for estimating the achievable estimation accuracy of the field parameters both for
parameters of a GMRF is derived in [5]. A large numbehe case in which the modulating 1-D purely indeterministic
of the existing parameter estimation algorithms are concerngcesses of each evanescent field are MA processes, as
with the parameter estimation of 2-D AR fields (see, e.g., [2)ell as for the case in which the modulating 1-D purely
[7]-[10]). Parameter estimation of 2-D moving average (MAndeterministic processes of each evanescent field are AR
random fields is addressed in [25]. Autoregressive, movifgocesses. In Section VI we present some numerical examples
average (ARMA) models are introduced in [13]. In generain order to get further insight into the properties of the bound.
most of these works implicitly assume the observed random
field is purely indeterministic and try to fit it with white- II. THE HOMOGENEOUSRANDOM FIELD MODEL

or correlated-noise-driven linear model. A different family of 16 considered random field model is based on the Wold-
algorithms addresses the problem of estimating the parameg gecomposition (of 2-D regular and homogeneous random
of sinusoidal signals in white noise. Note, however, that in thg,|4s) presented in [1] and briefly summarized in this section.
Gaussian case all of the foregomg problems are onI)_/ speqigh {y(n, m), (n,m) € 22}, be a real-valued, regular,
cases of the general problem which we address in this Papggmogeneous random field. Thettin, m) can be uniquely

The asymptotic Cramer—Rao bound (CRB) on the paramepresented by the orthogonal decomposition
ters of a Gaussian purely indeterministic field was derived by

Whittle [2]. More recently, this general derivation was special- y(n, m) = w(n, m) +v(n, m). (1)
ized for the case of noncausal AR models, and nonsymmetriggle field {w(n, m)} is purely indeterministic and has a
half plane (NSHP) AR models in [11]. Parameter estimatiqihique white innovations driven MA representation. The field
technigques of sinusoidal signals in additive white noise inclu%(m m)} is a deterministic random field.
the periodogram-based approximation (applicable for widely\ye call a 2-D deterministic random fielde,(n, m)}
spaced sinusoids) to the ML solution [20], extensions to th&anescent with respect to the NSHP total ordéf it spans
Pisarenko .h.armonic decomposition [15], or the singular valyeniipert space identical to the one spanned bydsimn-to-
decomposition [16]. More recently, a matrix enhancemegbjumn innovationsit each coordinatén, m) (with respect to
and matrix pencil method for estimating the parameters gfe total ordero). The deterministic field column-to-column
2-D superimposed, complex-valued exponential signals Wasovation at each coordinatér, m) € 22 is defined as
suggested in [17], and analyzed in [18]. Assuming the noigge difference between the actual value of the field, and its
field is white, the Cramer—Rao lower bound for this problergrojection on the Hilbert space spanned by the deterministic
was derived as well. The problem of ML estimation of 2-Ojg|q samples in all previous columns.
superimposed, complex-valued exponential signals has beeg js possible to define [1] a family of NSHP total-order
recently considered in [19]. definitions such that the boundary line of the NSHP is of
An early discussion on the problem of analyzing 2-Dational slope. Letn and 3 be two coprime integers, such
homogeneous random fields with discontinuous spectral digat ., # 0. The angle of the slope is given byan 6 = 3/a.
tribution functions can be found in [21]. In [22] we havesee, for example, Fig. 1.) Each of these supports is called
developed a conditional ML algorithm for jointly estimatingational nonsymmetrical half-planéRNSHP). We denote by
the parameters of the harmonic, evanescent, and purely ifithe set of all possible RNSHP definitions on the 2-D lattice
deterministic components of a complex-valued homogeneqys  the set of all NSHP definitions in which the boundary
random field from a single observed realization of it. In [28]jne of the NSHP is of rational slope). The introduction of
this algorithm is generalized for the case where the randafe family of RNSHP total-ordering definitions results in the
field is real-valued, and has multiple evanescent componefiowing countably infinite orthogonal decomposition of the

of unknown spectral support parameters. In [22] we also deriy@terministic component of the random field:
the conditional Cramer—Rao lower bound on the covariance

matrix of the conditional estimates for a complex-valued field v, m) =p(n, M)+ Y @ pnm). ()
with a special type of evanescent component. Here, we derive (a, B)EO
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m/3)} are mutually orthogonal for all j, &, £ such that # j
andk # ¢; also for alli the processe{zsga"@)(na—mﬁ)} and
{tg‘l"a)(na—mﬁ)} have an identical autocorrelation function.
Hence, the “spectral density function” of each evanescent field
has the form of a countable sum of 1-D delta functions which
are supported on lines of rational slope in the 2-D spectral
domain.
One of the half-plane deterministic field components, which
n is often found in physical problems, is the harmonic random
field

r
m h(n, m) = Z (Cp cos 2r(nwp + mip)
p=1
+ D, sin 27 (nwy, +mup)) (5)

where theC,’s and D,’s are mutually orthogonal random
variables E[C,]* = E[D,]* = 02, and(w,, 11,) are the spatial
frequencies of theth harmonic. In general? is infinite. This
component generates the 2-D delta functions of the “spectral
The random field{p(n, m)} is half-plane deterministici.e., density.” The parametric modeling of deterministic random
it has no column-to-column innovations with respect to arfields whose spectral measures are concentrated on curves,
RNSHP total-ordering definition. The fieldle.,, 5)(n, m)} other than lines of rational slope, or discrete points in the
is the evanescent component which generates the columnfteguency plane, is still an open question to the best of our
column innovations of the deterministic field with respect teknowledge.
the RNSHP total-ordering definitiofw, 3) € O.

Hence, if {y(n, m)} is a 2-D regular and homogeneous m
random field, thery(n, m) can be uniquely represented by
the orthogonal decomposition

Fig. 1. RNSHP support. Example with = 2 and3 = 1.

. PROBLEM DEFINITION

The orthogonal decompositions of the previous section
imply that if we exclude from the framework of our model
y(n, m) = wln, m)+p(n, m)+ Z e(a, 3)(n, m). (3) those 2-D random fields whose spectral measures are concen-
(a, )0 trated on curves other than lines of rational slog@, m) is

In this paper, all spectral measures are defined on the Sqdérpjguely represented by

region K = [-1/2,1/2] x [-1/2, 1/2]. It is shown in [1 _
thgt the spe(EtraI/ meféeres[ of/the ée]composition comE)(lner‘ﬁgn’ m) = w(n, m)+h(n, m)+ Z (e (1, m)- (6)
in (3) are mutually singular. The spectral distribution func- (2, 7)o
tion of the purely indeterministic component is absolutelpence, in this paper, we study the problem of the achievable
continuous, while the spectral measures of the half-plaagcuracy inointly estimating the parameters of the harmonic,

deterministic component and all the evanescent componegi@nescent, and purely indeterministic components using a
are concentrated on a set of Lebesgue measure zefo. infinite-size, single observed realization of the field. In this

Since for practical applications we can exclude singulagroblem the purely indeterministic component can be viewed
continuous spectral distribution functions from the frameworks an unknown colored noise field.

of our treatment, a model for the evanescent field which When expressed in the general form (5), the coefficients
corresponds to the RNSHP defined y, 3) € O is given {C,, D,} of the harmonic component are real-valued, mutu-

by ally orthogonal, random variables. However, since in general,
only a single realization of the random field is observed, we

(e p) (7 ™) cannot infer anything about the variation of these coefficients

e (@ ) over different realizations. The best we can do is to estimate
= Z ¢ (n, m) the particular values which th€,’s and D,’s take for the

=1 given realization; in other words we might just as well treat

rel (@) (@, 6) the C,’s and D,’s as unknown constants, and the harmonic
= Z s; " (no—mp3) cos <27T m (nB +m04)> component as the unknown mean of the observed realization.

=1 5 We next state our assumptions and introduce some necessary

£ (e — mB) sin <27r ’/Qi(a" 3)2 » +ma)> @ notations. Let{y(n, m)}, (n, m) € D where

s D={(,)0<i<S-10<j<T-1)

where the 1-D purely indeterministic process{eé‘x"@)(na -

(. ) (. ) ) be the observed random field. Note, however, that the observed
mpB)} s (na—mpB) " (na—mpB)}, {7 (na—

field could just as well have argrbitrary shape.
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Assumption 1:The purely indeterministic component is d.et

tzeerr:];rr:;;?lcnéézal—valueq Gaussian .f|eld. Hgnce the' purely |nq%(ia,,a) _ [Sga,,ﬁ)(0)7 Sga,,ﬁ)(_ﬁ)’ . Sga,,a)(_(T_ 1)8),

ponent is characterized by its covariance matrix p 8

which is denoted b¥'p;. We assume that the covariance matrix sE‘“ )(Oé), sE‘“ )(Oé —B), -,

has some known parametric form, whdrés the parameter Sz(am@)(a —(T=13), -,

vector. At the moment we will not specify the functional (o, B) (o, B)

dependence dFp; on b, but rather leave it implicit. s; (S = Da), 5777 (S = Da=f), -,
Assumption 2:The numberP of harmonic components in #7‘”((5 —Da— (T - (15)

(5) is a priori known. The values of théx, 3) pairs, as well
as the numbei(®: %) of evanescent components in (4), are be the vector composed of the observed samples from the 1-D

priori known for all the evanescent components. modulating procesgs(*”} of the evanescegt fielgiej™ 7.
Assumption 3:The 1-D purely indeterministic processedn a similar way we define the vect(ﬁa”) of the 1-D
{s*®} and{t{**?} are all assumed to be zero-mean Gausgiodulating procesgt(* '} Also let
ian processes. Hence each p@é&“"a)}, {t§“~">} is charac- (. 9) =0, -, (T, B, B+a, -
terized by its covariance matrix which is denotedRSfx"a . Lo o 7
(Note that{s{* ¥ and{¢{**®1 have the same autocorrelation (T =La, -, (S =1, T
function.) We assume that the covariance matrix has some (S=Df+a, - (S=DF+(T~1al". (16)
known parametric form, wherg® ) is the parameter vector. ~Given a scalar functiorf(v), we will denote the matrix, or
At the moment we will not specify the functional dependenceolumn vector, consisting of the values pfv) evaluated for
of R§°‘~"> on a§°‘7 ) but rather leave it implicit, as well. Thusall the elements of, wherew is a matrix, or a column vector,
the parameter vector of each of the evanescent componetsf(v). Using this notation, we define

(a,,@) . .
{e;""’} is given by (e, 9) e B) 5
I = cos | 2w — v 9

sy

i = 1, (@) o +
(o, 8)
Therefore, the parameter vector of the evanescent field 7 = sin <27r ’2i > ,,(am@)) 17)
{e(*M} is obtained by collecting the vecto!™? into @+
a single column vector, i.e., Thus using (4), we can rewrite (14)
«a a, | a, | a, | ~(a, | ~(a, 8) ~(c, 8 ~(a, |
¢ = (g™, o (BT (7 Y CNOF AT e NOY (L I T
Let where® denotes an element by element product of the vectors.
Note that whenevena — m 3 = ka — £3 for some integers
c=[Cy, -,Cp, Dy, -+, Dp]* (8) mn,m, k,£suchthad <n, k< S—1and0 <m, < T -1,
w=[wy, -, wp]’ (9) the same element cﬁga"@) (and iﬁ“"‘”) appears more than
o T once in the vector. It can be shown that for a rectangular
v=[v, -, vp| . (20)

observed field of dimensionS x T the number ofdistinct

a, 8 a, 8
Thus the parameter vector of the observed figjth, m)} Samples from the random procefésg b (7)), that
is given by are found in the observed field is

(S = Dla|+ (T = DIB+1 = (laf = D)(B] - 1).

6=[c"w v B {(# ) Ym0l (A1)
This is becauséS — 1)|a| +(T'— D)|B]+1— (Ja| = 1)(|B| - 1)
Let is the number of different “columns” one can define on such
a rectangular lattice for an RNSHP defined @y, 3). We
y=1[y0,0), -, y(0, T=1), y(1, 0), -, therefore define theoncentrated versigns!® ™ (¢(*?)) of
y(1L, T =1), -, y(S=1,0), -, #5717 to be an(S—1)|a|+(T = D)|B]+1—(|a|-1)
y(S—1, T -1 (12) -(]B]—1) column vector of nonrepeating samples of the process
h =[h(0, 0), ---, h(0, T — 1), h(L, 0), ---, {1 ({#l*?)}). More specifically, for the case in which
A1, T—=1), -, h(S=1,0), -, a>0andg >0, 5% #*?)is given by
S =1, T-DI" (13) g™ = [T = 1)B), -, o (S = D)
(19)
et =[ef*7(0,0), -, ™70, T - 1), while for the case in whichy > 0 and 8 < 0, 8{* " (#(* %))
SN, 0), e, S T =), is given by
(S =1,0), -, S -1, T f D= [5(0), - SO (S = Da—pT -1

(14) (20)
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Note, however, that due to boundary effects, the vec{&sd) Using (4), (18), and the orthogonality o{fsga"@)} and
andtga“a) are not composed of consecutive samples from tr{egaw‘*)} we find that

processeg s\ ”} and {+{**1, respectively, unlesg| < 1

or || < 1. In other words, for some arbitrary and 3 there ‘™" = E[¢!* (e (“"8))T]

are missing samples i#*’ ® andt!“?. _ prralen 8) 58 o Fe M
Thus for any(a, f3) \T/Le have that =El(3, o ®)f (a)g) o ZD)f o )8)]
3o = gl P gl ) (21) Tl o8 T 869 5 "]
B | =BG o (13
where 4,7 is rectangular matrix of zeros and ones which +E[( (a 8)(~(a a)) )o@ (a,,ﬁ)(~(a,,ﬁ))T)]
replicates rows ofs{™ . (0 8) (. B) g
We note that the covariance matrB&"B) which character- :R olfi (i) +a ~(a ? (gga 8)) ]
izes the pair of processés{™ ¥}, {¢{* ?V is defined in terms _R(“ Y

T

of the concentrated version vectcn{é*“"@) andtga"a), ie.,

= (AR (AN 0 B (28)
R = Els™ (s = Bt V@ ") (22)
) ) ) where
and not in terms of the covariance matrix
~(x ~( ~( ~(ax (o, 8) «@
R7 = B @@y = BESTVE)T) (23) B = cos <27r — » K' "‘”) (29)
of the vectorséga"a) and iﬁ““‘”. The matrix RE‘““‘” is a 5
singular matrix, which is also given by and f((““ ) is the ST x ST matrix given by
5@ 8) (@, 8) pla, B) 7 4@, ONT
R; = A R; (4; )" -~ (@, k-1
5 [K( ' )]k,z = <{TJ B+((k-1) modT)a])
In terms of the Fisher information botREa” ! and RE“"G) 11
represent the same information on the proce$s§’é '8)} and - QTJ B+ [((£ = 1)mod T)a]). (30)

{7},
Define H (see (24) at the bottom of this page) where the

ith column of H consists of the values of thigh-harmonic

component evaluated for &b, t) € D. We therefore have

A compact matrix representation Fl(i“"a) for any («, 3)
cannot be derived due to the dependence of the matrix structure
n (e, 3). However, for the case in whictw, 38) = (1, 0),

h=pc (25) (and similarly, for(«, 8) = (0, 1)), a more compact repre-
sentation is possible. More specifically, for this special case
where (18) can be expressed in the form
p=[H" H'] (26)

~(1,0 (1, N
and H" = Re(H}, H' = Im {H) e =500 1 i @ gt
= J = : _(1,0) (1,0) (1,0) (1,0)

Since the evanescent componemé“ 8)} are mutually =87 0Tt 0y (31)
orthogonal, and since all the evanescent components are

of-
thogonal to the purely indeterministic component, we conclu&mere@ is the Kronecker product

thatI’, the covariance matrix has the form
% F80 = Re{[1, exp {j27r1/(1’0)}
7l B)
P=Tet Y 3 T 27) exp {j2m °>< -0 (32)
(a,8)€0 =1 (e, 8) : :
and g; is the imaginary part of the same vector. Hence,
whereFE““@) is the covariance matrix 0&5“"8). using the orthogonality of{sgl’o)} and {t§17°>}, and the
r 327 [0w1+0v1 ] 327 (002 +0vs2] .. 327 [0wp+0vp] 7
6j27r[0w1+lz/11 6]’277[04«;2-1—11/21 . ej27r[0wp+lz/p]
G 2r 0 HT—Dn]  gi2wlOwat(T—Lws] .. gs2e[0wp+(T—Lyve]
H = i 271w +0m] 27 Lwa+00s] i2xllwp+0vp] (24)

| i2rl(S— Dt +(T 1] . c eal(S=Der (T -1ve]
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i 7‘51’ (0 7‘51’ (1 7‘51’ 0)(5 -1
R (VR () rin (s - 2)
RO — : _ f i~
: 7‘51’ 0 1)
P25 -1 rm0(s -2) r2(0)
| 1 cos (—2mv{H ) cos (=2m(T — 1))
cos (27”/1‘(17 0)) 1 cos (=2n (T — 2)1/51’ 0))
B = : (35)
: cos (=2 b )
[cos (2m(T = D) cos (2r(T - 2)pi ) 1

properties of the Kronecker product

rY =pls” o £20) s o £10)]
+ B 08" 07N
=El(s{"” @ £ ) (") @ (7))
+ Bl @ gt (") @ (g 7))
= El(s{" """ @ (F- 7 (1))

+E[ V) e (6 V(g )]

9;
(1, 0))T]

=RV o [fH U + gl ]
(33)

_ RO o g0

whereREl’O) andEEl’O) are Toeplitz matrices, given by (34)
and (35) (see the top of this page).

IV. A GENERAL FORM OF THE CRB

Note also that since the field covariance function is indepen-
dent of the mean

or
a =0 (40)
or
@ =0 (41)
and
or
Wk =0. (42)

Hence, the} tr {-} term in (36) vanishes for all the FIM entries
that correspond to parameters of the harmonic mean. There-
fore, J¥¢ =0, J** = 0, J>¥ = 0, and for the evanescent
components we have that for dlk, 3) andz, J¢5w>’° =0,
JH e 0, J*"” % _ 0. Hence we conclude that the
estimation problem of the harmonic component is decoupled
from that of the purely indeterministic and the evanescent
components.

The general expression for the Fisher Information Matrix Using (37) and (40) we conclude that the FIM elements

(FIM) of a real Gaussian process is given by (e.g., [23])

/T
IOk =5 T 5
1 o __,ar

where g is the mean of the observation vectd?, is the
observation vector covariance matrix, apt{8)]; , denotes
the (k, ¢) entry of the matrixJ. In our casey = h.

Taking the partial derivatives di we get

oh
(96[ o
where p, is the fth column of p. Since the evanescent
components, as well as the purely indeterministic compone

Py (37)

are zero-mean fields, the mean vector is independent of their

parameters. Hence

oh _
oby,

L

a[@(a’ﬂ)]k -

0 (38)

(39)

which correspond to the amplitude parameters of the harmonic
component are given by

[Tl c = oA T " py. (43)

Let
71 =00,1,---,(S-1]" @1r (44a)
Ty =15®[0,1, -, (T —1)]* (44b)

wherelr and1s are7- andS-dimensional column vectors of
ones, respectively. In other words, is the vector of the first
indices of the elements dfin (13), andr is the vector of the
second indices of the elements kf Taking now the partial
derivatives with respect to the harmonic frequencies yields

nt, oh .
5o, = disg(r)(DH ~ G Hy)  (459)
oh . R I
= 2n diag (12)(DpH,; — C,H ) (45b)

wherediag (11), (diag(72)), is an ST x ST matrix whose
diagonal is the vectory, (r2), and HY, (H1), is the pth
column of H®, (H").
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Substituting (37), (40), (41), and (45a) into (36) We have previously concluded that the estimation problem
ewl o Trel g R I of the harmonic component is decoupled from the estimation

V" T, e = 2npp I diag (11)(DeH " — CeHp). (46) problem of the purely indeterministic and the evanescent
components. Using (53)—(55) we find that the bound on

. R , the purely indeterministic and the evanescent components is
[Tk, ¢ =2mpi L™ diag (12)(DH; — C;H;) (47) found by inverting the FIM block which corresponds to the

[J 1. ¢ = 4n*(DLHY — CrH) )T diag (1)T' ™" parameters of the purely indeterministic and the evanescent

’ components, and it is independent of the harmonic component

In a similar way we obtain

. R I

) diag (r)(DeHy ; CeHy) (48) parameters. Therefore, this bound is identical to the one

[J |k, e =4n*(DyHy — CHy)" diag (1,)T™! obtained for the case in which no harmonic component exists.
-diag (12)(DH — C HY) (49) From the Wold-type decomposition (1), it is known that

T ] e :47r2(DkH§ _ CkHi)T diag (,,_2)1-\—1 the purely indeterministic component of the field has a unique
’ ) R 7 white innovations-driven MA representation. In [25] we con-

~diag (12)(DeHy — CcHy). (50)  sider the representation of the covariance matrix of a 2-D MA

@]ndom field in terms of the MA model parameters, for finite-

Using the orthogonality of the evanescent components, th et X ;
der MA models. The derivatives of the covariance matrix,

orthogonality to the purely indeterministic component, andf

(27), we find that I'rr, with respect to the MA model parameters are derived as
' well. Hence, in this paper we consider only a simple special
@ — olpr (51) Ccase of the general derivation, and assume that the purely
Oby, Oby, indeterministic component is a zero-mean, white Gaussian
and for all (o, 8) € O andi field with variances?. Thereforeb = [+2], and
ar arte Lpr = 0*Isryst (58)
= L . 52
™M 9™ Vi (52) whereIsyy s is anST x ST identity matrix. Also,
Substituting (38) and (39) into (36), we conclude that, dl'p = Tspysy (59)
for all the FIM entries that correspond to parameters of the b, i

purely indeterministic and the evanescent components, H§s for the case in which the purely indeterministic com-

mean dependent term of (36) vanishes. In particular ponent is a Gaussian white noise field, substitution of (27)
o] 1 _1 0lpr 1 0pp and (59) into (53), followed by substitution of (27) into
[J ’ i ¥ {P aby, aby } (53) (46)—(50), (54), (55), provides an expression of the exact CRB
) (@, 8) I on the parameters of the observed homogeneous random field.
[Jr,z%f-“””:b I oL, ~190pr (54) Similar substitution of the expressions Bp and al'pr /by,
ke 2 8[¢§“"ﬁ)]k by of an MA modeled purely indeterministic component [25]
and provides an expression of the exact CRB on the parameters
[ O I 1 { . aI‘E“"B) . 81“57’6) } of essentially any Gaussian homogeneous random field.
a, 8
ke 2 8[¢§ : )]k 8[¢§”” 6)]‘ A. The Case of a Nil Purely Indeterministic Component
(55) In this section we specialize the foregoing general results
where (v, §) € O, and1 < j < T 8), for the special case of a homogeneous random field with
Using (29) and the separability of (28) we find that a nil purely indeterministic component. In particular, we
(o, 8) concentrate on the case of an observed field which is composed
8[‘5“"8) _R(a,,ﬁ) oE, " of only a single evanescent componéef®> @ }. In this special
gl g @B casel’ = T,
‘ o0 ‘ (e 8) p(e ) 4(ct, BT Recall that wheneveia—mg3 = ka—£3, for some integers
= - Er AT RTTATT)) n, m, k, £ such that0 < n, k < §~1and0 < m, ¢ <
(o, B) T — 1, the same element cﬁg““@) (andtga” )) appears more
@f((a’ﬂ) @ sin | 272 f((“"ﬁ) (56) than once in the vector. For a rectangular observed field of
a? + 32 dimensionsS x 1" the number of distinct samples from the
while random procesgs{™ P}, ({t{*™1), that are found in the
. 5) (. 5) observed field is
o™ R, ~(a,B)
L = t : S —1)|a T-Dp|+1- (o —-1)(|38] - 1).
o]~ oy, O F (S = Dla] + (T = 1|8l + 1= (Ja| = 1)(I8] - 1)

(e, 8) Using (18) we have that the elements of the observed vector
= <A(a~8) OR; " (A(‘lir@))T> @Ega”a)_ el 9 are linear combinations of the elementssét:#) and

B (> %) weighted by deterministic cosinusoidal functions of a
(57) single parametep(« ),
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Since the 1-D modulating processgg® #} and {¢(*#}  A. Evanescent Components with Gaussian
are independent, the elements of the veetr® in (18) form MA Modulating Processes

a linear space whose dimension is at most Let n(®® = na—mg. Assume that the modulating 1-D

20(S = Dlal + (T = DB +1 - (o] — (|8 —1)].  processes{s;™ ?(n(=7)} and {£™” (n(*)} of each
evanescent field can be modeled by a finite-order MA model,
In other words, all other elements ef*:#) can be expressedj g

asdeterministidinear combinations of these elements. Hence,

H H . . Q(_(\vﬁ)
in this present casd;, the covariance matrix of the observed , g (o 8) : (@, 8) (@ B)/ (o)
field, is a singular matrix. Therefore, a straightforward sub-5 (") = o P @ES (M — 1) (61)
stitution into the general expression for the FIM of a real T(=?3>
Q™

Gaussian process (36) is impossible. (o 6) 5 (o 6) (o 6) 5
In terms of the Fisher information, the information contents ;" ”(n(*?) = >~ ai*P(r);* P (n(* P —7) (62)

of a vector is equivalent to that of any linear transformation =0

thereof. Hence we define thmncentrated versiqre(®:# of Where

el ?) as follows: From every column of the observed field, (o, 5) _ { -(T-18,--,(—Da, a>0andB>0
where “column” is defined with respect to the NSHP total 0,-,(S—Da—-(T'-1)8, a>0and8 <0
ordering denoted by, 3), we arbitrarily choose two samples (63)
of {e(*-?}. Note that it is possible that for some combinationg 4 d®9(©) = 1. The driving noise processes

of lattice dimensions and_ an NSHP total ordering definitio Sga,,g)(n(ayyg))} and {C(a,,g)(n(ajyﬁ))} are independent

(a, B), some columns will contain only one sample of the> : ¢ . N

. . : zero-mean, white, and Gaussian, and each has variance
field. Hence the dimension of the constructed column vector ., s).,

€@ is less or equal t@[(S — 1)|a| + (T — 1)|5| + 1 — ;") We fu(rthée)r assume that the MA processes are of
(la| = 1)(8| = 1)]. The elements o&(*# are guaranteed KNown orders,Q;™"" where

to be linearly independent, and hence its covariance matrix @ga,,ﬁ) < (S =Dla|+ (T =13+ 1 - (o] = 1)(|B] - 1).

. . . . . T 7,8) .
invertible. Let us denote this covariance matrixIBy- 7, i.e., For the case in whichy > 0 and 8 > 0, define the

8 = plel> 9 @ 7], (S = Dla| + (T - 1|8 + 1 + QP -dimensional vector of

. . , consecutivesamples
Thus the FIM for the case in which the observed field is

a, 8 a, 8 a, 8
composed of a single evanescent component is given by 55 )= [52‘( )(—(T -1)p- QE ))7
@y L e sy 0D £ =@ =1)B= QD 4 1), o,
e b T or ™08 - D)l (64)

a[¢(0{,,@)]k - - -
while for the case in whicky > 0 and /3 < 0

_ o )
. (e, 8)y—1 22~ a, 8 a, 8 a, 8 a, 8 a, 8
E e, [ € &7 =[P, €= 1),
(@85 - 1)a— BT - 1. 65

The derivation of the derivatives of the covariance matrix with & ( yoo = B )] (65)
respect to the evanescent component parameters is similaFggice for both cases we have
that which leads to (56), (57), and hence is omitted. s ® = (WA ple-Aygle. 5) (66)
where D{*?) is the
V. THE FIM FOR EVANESCENT COMPONENTS WITH
GAUSSIAN MA AND AR MODULATING PROCESSES (S =Dlal + (T =D)I|Bl+1)

In the previous sections we have derived an expression for x((8 = Dlal + (I = DI+ 1+ Q)
the exact CRB on the parameters of a homogeneous randweplitz matrix as seen in (67) (see the top of the following
field with mixed spectral distribution. In this derivation itpage) and/VEO‘“B) is a rectangular matrix of zeros and ones
was assumed that for each evanescent field the 1-D purgi¥t eliminates rows which correspond to the| —1)(|5] - 1)
indeterministic processes{*”} and{t{**} are zero-mean samples that are missing frosd®™? due to the edge effects.
Gaussian processes whose covariance matrix has some knopage missing samples result hg]a,,@) being composed of
but unspecified parametric form, Whetgz-‘f“"a) is the parameter nonconsecutive samples in its top and bottom.
vector. In this section we specialize the results of the previoustp s the covariance matrig'® ? of theQ(“"@)—order MA
section. We consider two different parametric models for “}ﬁ*ocess is given by ! !
modulating 1-D purely indeterministic processes of the evanes-
cent field. First we con_sider the case in which the modulatin_g (e, 8) _ (O_(a,,8))2W(a,,8)D(a,,8)(D(a,,8))T(W(Oé,,8))T'
1-D processes are moving average processes. Next we consider ¢ ¢ ¢ ¢ ¢
the case in which these processes are autoregressive. Using this (68)
derivation we finally obtain a closed-form exact expression of
the CRB on the error variance in estimating the parametersTdfe parameter vector of the 1-D purely indeterministic mod-
the homogeneous random field. ulating MA processesz(a"a) is the Q§°‘~"> + I-dimensional

)
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a, 8 a, 8 a, 8
W@ e e
a Sk a7 (1 1 0
Dga,,ﬁ) _ % (Qz ) . % ( ) . (67)
0 . "
a, 8 a, 8 a, B
ai ™ (Q) (1) 1
vector samples of the corresponding processes. Note, however, that in
29 generak!®® andt{*?) are of a lower dimensiofS—1)|c|+

L@

(ol )2, af™ P (1), o™ (2), -

Taking the partial derivatives QRE‘X"@) using (68) we have

IR 1
oo~ (o)
OR™
aaga’ A (n)

(69)

R(a, 3)
g Y

_ (O_(a, ,8))2[W(oz, ,B)Un(D(a, ,8))T(W(a, ,8))T

T

+ W(a, ,B)D(oz, ,B)UT(W(Q, ,8))T]’
n= 17 R} anm@) (70)

where U, is the up-shift matrix
_f1, —k=QP —n
Unle.e = ’ L i 71
Ul e {0, otherwise. (1)

Substituting (68)—(71) into (57) we obtain a closed-form

expression fo@PE“”B)/a[aEQ"G)]k. Using (68), a closed-form

a, 8
expression for (28) is obtained. Thus for the case in whicwz( )]W
the modulating 1-D processes of the evanescent fields are MA
processes, we have obtained a closed-form exact expression for
the CRB on the error variance in estimating the parameters [@BE“"’)]k,z

the homogeneous random field.

B. Evanescent Components with Gaussian
AR Modulating Processes

In the following, we assume that the modulating 1-D projector
cesseqs'™ D (n(@ M)} and {t{* ) (n(* )} of each evanes-

cent field can be modeled by a finite-order AR model, i.e.,

yle ®)

Sga,,ﬁ)(n(a“@)) _ _ Z aga,,ﬁ)(,,_)sga,,ﬁ)(n(a,,ﬁ) —7)
7=1
+ &P (e 0 (72)
and

)
Z aga"8)(T)t§a”8)(n(a“ﬁ) —7)

T=1

+ (P )

t§a7 3) (n(a, ,8)) - _

(73)

where the range of(* 9 is given by (63). The driving
noise processe$¢™ ™ (n(@ M1 and {¢{* P (nlM)} are

independent, zero-mean, white, and Gaussian, and each has

variance(o{® )2, In this section it is assumed thgff” > and
t§“7 ) are composed afS —1)|a| +(T'—1)| 8|+ 1 consecutive

(T =18 +1=(|Ja| = 1)(|3| = 1) due to the boundary effects
that result is missing data samples. Thus the exact bound on
the parameters of the observed homogeneous random field,
for the case in whic{s!* @ (n(@ )} and {¢{* ) (n( D)}

are finite-order AR processes, is tight only for those cases in
which |o] € 1 or |8] £ 1. We further assume that the AR
processes are of known ordeﬁsfa"a) where

VD < (S = Dol + (T = DIB + 1 = (o - 1)(|8] - 1).

It can be shown L24] that the inverse covariance matrix
(RE“”@))—1 of a Vi(“" ) order AR process is given by

L (GO Dy p Bl T

(o, B)y—1_
RO

(74)

where C'Ea"a) and BE“"B) are lower triangular Toeplitz ma-
trices such that

1, k=1¢

=3k —0), k>t (75)
0, k<t
Al (S = D+ (T = 1|

= +1-k+4), k>¢ (76)
0, k<t

anda*? (k) =0 for k < 0 andk > V(9.

The parameter vector of the 1-D purely indeterministic
modulating processea!®? is the Vi(‘l"@) + l-dimensional

()

a(a,,@)
= [0, ™ (), P(@), o, a P
Taking the partial derivatives ofR\®™)~1 using (74) we
have
a, 8)y—
a(RE )) 1 _ _ 1 (C(amﬁ)(C(a,,@))T
S N O
- B(aﬂﬁ)(B(a:ra))T)
1 a, B)\—1
— o (R (77)
(of™ )2
AR ) 1

S1Z.(C ) 10z

00V (m) (o)

a, 8

—Z(s—l)a+(T—1)|,a|+1—n(B§ ))T
a, 8) T

- B! )Z(S—l)a+(T—1)|,8|+l—n]7

LV (78)

n=1, -



FRANCOS: ESTIMATING THE PARAMETERS OF RANDOM FIELDS WITH MIXED SPECTRAL DISTRIBUTIONS 917

where Z,, is the down-shift matrix Note that
1, k—f=n 9B (1,0) (1,0)
[Znlk,e = {0, otherwise. (79) PO —2rK> 7 O N, (85)
Using the identity where
aR(a,,@)/a[a(a,,a)]k 0 1 e T =1
RO OUES )l R Co
i i P K®0 = | SRS (86)
we can now substitute (74)—(79) into (57) in order to obtain : 1
a closed-form expression f@rI‘Ea"B)/a[aga"a)]k. Using (74), T—1 T—=2 ... 0

closed-form expressions for (28) and (56) are obtained.

Finally, using the well-known relation between the CR@nd
of some parameter vector and any differentiable function of N = gin 2m/ MO KGO, (87)
it (see, e.g., [31] or [32]), we have that the CRB of the

spectral density functios'® ) (e/) of the evanescent field USing (68)(71) for the case of MA modulating processes,
modulating AR process iZS given by or alternatively (74)—(79) for AR modulating processes, com-

’ pact closed-form expressions for the CRB are obtained.
CRB(S{"?(¢/)) = (Y| 7)) CRB(a;™ V)Y{™?  (80)

VI. NUMERICAL EXAMPLES
where

(@8) o (@8) 7 To _gain more insight into the behavior of t_he bound on

y(ef) 95, (ef) 95T (e) the different components, we resort to numerical evaluation
g Aol M2 T gg Ay T of some specific examples. In this section, we present several
such examples which illustrate the dependence of the bound

a,3 Jw . .
S (e1) on various parameters of the field.
dal™ P (v (*F)) Example 1: Consider a 2-D homogeneous random field
IV 1) consisting of a sum of two harmonic components, a single
:255“"8)(&“) %7 —Re 37 evanescent field(; o)(n, m), and a zero-mean, unit variance,
2(a§a” ))2 AE““ )(eﬂ“‘) white Gaussian purely indeterministic component. The fre-

(VP —2) 1 T quencies of the two harmonic components &g, ;) =
Re{W} . ’_Re{WH (0.15, 0.25) and (w3, 12) = (0.16, 0.26). The evanescent
A0 (edw) A (edw) field frequency parameter 89 = 0.1. The evanescent
(81) component modulating 1-D purely indeterministic processes
are narrowband second-order AR processes whose parameters

(0 8) Gy _ Vi P (0, 8) 1y (VD 1) are al>9(1) = —1.378, a(%9(2) = 0.95. In this example,
A (/%) =e J(raa;) ((al);; we investigate the bounds as a function of the variance of the
+ota (V) (82) AR model driving noise.

The results indicate that varying the variance of the AR
model driving noise frond.5 to 5 has almost no effect on the
CRB for the parameters of the harmonic components, as well

and 5, 7(er) = (o] V) |4 D ).

C. The FIM for Homogeneous Fields with Evanescent as on the bound on the noise variance of the purely indeter-
Components ofw, 3) = (1, 0) ministic component. For example, the boundwnhas risen

As noted in Section IIIT{**® has a different structure for ffom 4.4022-1077 t0 4.4024-10~7, and similarly the bound on
any value ofa and 3; only for (o, 8) = (1, 0) and(qa, 3) = the noise variance of the purely indeterministic component has

(0, 1), can the matrisd{™” be compactly represented as théisen from1.312 - 1072 to 1.316 - 10~°. This slight increase
Kronecker product of two smaller Toeplitz matrices. Hence, '3 due to the presence of the evanescent component whose

more compact closed-form expression for the exact CRB c&RETOY increases from experiment to experiment.
On the other hand, varying the variance of the AR model

beF((:)I?r(t/%e(;}.) = (1, 0), (56) and (57) can be rewritten USingdriving noise has a significant influence on the CRB for
(33) in the form the evanescent component frequency parametér?), as
illustrated in Fig. 2. We also note that the bounds on estimating
oro o) . OE&Y the parameters of the modulating AR processes decrease with
o0 k76 90 (83) the increase in the evanescent component energy.
¢ ¢ Example 2: Consider a 2-D homogeneous random field
while consisting of a sum a single-harmonic component, a single
8I‘§1’0) aREl,O) w0 evanescent field(,, o(n, m), and a zero-mean, unit variance,

o = o) E (84) white Gaussian purely indeterministic component. The
da; "k Ola; ]k harmonic component frequency is given Wy, 1) =
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—8 —4
1_2x10 ] 10_2x10

1r E 101 E
T
S 0.8} ] 10 1
=3
g
b =
= <
Q - - — - -
§ 0.6 g 9.9
S [&]
-
LER
@D 0.4 1 9.8 1
[&]

0.2 R 9.7} 1
o] A 0.6 .
107" 10° 10’ 107" 10° 10’
AR Input Noise Variance AR Input Noise Variance

Fig. 2. CRB’s on the evanescent field frequency parametér®, and on the evanescent field modulating 1-D AR processes paran{ét@ﬁ(l),
as a function of(c(1:9))2,

(0.15, 0.25), while its amplitude parameters ar€; = = 10°
D, = 1. The evanescent component modulating 1-D purely
indeterministic processes are medium-bandwidth secong- |
order AR processes whose parameters afe®(1) 510
—1.183, a(1:9(2) = 0.7. The peak of the spectral density §
function of these processes isat= w/4. In this example, £10°
the frequency parameter of the evanescent figl® is ©
changed from experiment to experiment, and we investigate10_7 o7
the bounds on the error variance in estimating the parameters 0.1 02 03 04 01 02 03
of the harmonic component. Evanescent Comp. Freq. Evanescent Comp. Freq.

The results, Fig. 3, indicate that as the frequency parameter 1"
of the evanescent field gets closerot@5, which is ther-axis
spatial frequency of the harmonic component, the estimation of
the harmonic component parameters becomes more dif'ficu[;’.10
Note that wheny(:® = 0.25, i.e., 1(1:9 = p;, the error o
variance onw, C1, D;, becomes maximal, while the error 810‘2
variance on estimating,, is getting smaller due to the fact
that both the harmonic and the evanescent components have , o
their energies concentrated at the sarraxis frequency. Note 0.1 02 03 04 0.1 02 03 0.4
also that as long as the harmonic and evanescent components ~ Cvanescent Comp. Freq. Evanescent Comp. Freq.
are well-separated, the bounds on the harmonic compongigt3. CRB'’s on the parameters of the harmonic component, as a function
parameters remain almost constant. of the evanescent component spectral support paramétef) .

Example 3: Consider a 2-D homogeneous random field
consisting of a sum of two closely spaced harmonic 1,0) _
components, two evanescent components of parallel spectrat378; a;” 7 (2) = 0.95. The peak of the spectral density
supports,egl’o)(n, m), 651,0)(71’ m), and a zero-mean, unit function of these processes is at= 7 /4. The modulating

variance, white Gaussian purely indeterministic componedtD purely indeterministic processes of the second evanescent
The first-harmonic component frequency {1, »,) = Ccomponentare medium-bandwidth second-order AR processes
(0.15, 0.25), while its amplitude parameters afg = D, = 1. whose parameters arg" (1) = —1.183, a" % (2) = 0.7.

The second-harmonic component frequency(ds, 1») = The peak of the spectral density function of these processes
(0.16, 0.26), while its amplitude parameters afg = D, = 1. is also atw = 7 /4. In this example, the frequency parameter,
The frequency parameter of the first evanescent componenztfgé’ 0), of the second evanescent component is changed from
1/51’0) = 0.2. The modulating 1-D purely indeterministicexperiment to experiment, and we investigate the bounds on
processes of this evanescent component are narrowb#melerror variance in estimating the parameters of the harmonic
second-order AR processes whose parametersgﬁlpé(l) = components, and the first evanescent component.

CRB (nhut)

0.4

! 10

CRB (D1)
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107 107 o0 10?
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2nd Evan. Comp. Freq. 2nd Evan. Comp. Freq. 2nd Evan. Comp. Freq. 2nd Evan. Comp. Freq.

Fig. 4. CRB’s on the parameters of the first-harmonic component, asFa. 5. CRB’s on the parameters of the first evanescent component, as a
function of the second evanescent component spectral support paramétection of the second evanescent component spectral support parameter,

1/5170). The dashed line denotes the value of the bound when no evanesegdt”). The dashed line denotes the value of the bound when the second
component exists in the observed field. evanescent component does not exist.

Modulating AR Process Bound

The results in Fig. 4 indicate that as the frequency parameter4 T T ; T T T
of the second evanescent component gets clogeRio which
is therv-axis spatial frequency of the first-harmonic component,
the estimation of the harmonic component parameters becomes
more difficult. Whenz/él’o) = 0.25, i.e, 1/51’0) = vy, the
error variance onw,, C1, D1, becomes maximal, while the
error variance on estimating, is getting smaller due to the
fact that both the harmonic component and the evanesc
component have their energies concentrated at the seames
frequency. Note that Whepél’o) = v, = 0.26, the bounds on
all the parameters of the first-harmonic component are slight
lower than their corresponding values fof® = 0.265.
This phenomenon is due to the fact that Whéh 9 = 0.26,
egl’o)(n, m) “masks” the second-harmonic component, and
thus the error variance in estimating the parameters of the1
first-harmonic component becomes smaller.

On the other hand, when the frequency parameter of the
second evanescent component is far from the frequencies

@nsity)
- N

T

o
T

CRB (logSpectral

K ] 1 ! L 1 1 1
of the harmonic components, the bounds on the harmonic "o 1 2 3 4 5 8 7
components parameters remain almost constant, and are almost Frequency [rad/sec]
identical to their values when no evanescent component exists 6. CRB's on the log of the spectral density function of the first
in the observed field (dashed lines). evanescent component modulating 1-D AR processes.

The results in Fig. 5 (solid lines) illustrate the behavior of

the CRB’s on the parameters of the first evanescent compongnthe two components coincide, the bound ,q(#o) drops

as a function of the second evanescent component specif@rply due to the fact that both evanescent components have
support parameteryél’o). It is clear that as long as thetheir energies concentrated on the same spectral support. On
spectral supports of two evanescent components are not vigily other hand, it is clear that when the spectral supports
close, the bounds on borzhfl’o), and the parameters of theof the two evanescent components coincide, the problem of
modulating 1-D AR processes of the evanescent componesgiimating the parameters of the modulating 1-D AR processes
are essentially constant. Moreover, the bounds are identiohthe two evanescent components is much more difficult since
to their values for the case in which no second evanescéntequires the separation of these 1-D processes from their
component is present (dashed line). When the spectral suppetis.
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TABLE |

THE CRB FOR A FIELD WITH EVANESCENT COMPONENTS OF INTERSECTING SPECTRAL SUPPORTS

CRB: Case I CRB: Case II | CRB: Case II1
First w1 0.15 || 4.8289741e-07 | 4.8289741e-07 | 4.8289741e-07
karmonic vy 0.25 || 2.9088584¢-06 | 2.9088584¢-06 | 2.9088584e-06
component | Cy 1 7.3123960e-02 | 7.3123960e-02 | 7.3123960e-02
D, 1 1.4620095e-01 | 1.4620095e-01 | 1.4620095e-01
Second w2 0.16 || 1.0354122¢-06 | 1.0354122¢-06 | 1.0354122¢-06
harmonic 7 0.26 4.9685502¢-07 | 4.9685502e-07 | 4.9685502e-07
component | Ca 1 9.1014727¢-02 | 9.1014727e-02 | 9.1014727¢-02
D, 1 1.3842889¢-02 | 1.3842889¢-02 | 1.3842889¢-02
First p(1:0) 0.2 6.2839028¢-09 | 6.2839019e-09 -
evanescent | (o(1:0))2 1 3.4523854e-02 | 3.4521763e-02 -
component | albO)(1) [ -1.378 || 1.0040566e-03 | 1.0039962¢-03 -
e (n,m) |[a®%(2) | 0.95 || 6.9080041e-04 | 6.9080036e-04 -
Second p(0:1) 0.15 || 3.2693599e-08 - 3.2693589¢-08
evanescent (o{®1))2 1 3.4749677e-02 - 3.4746507e-02
component | a'®1)(1) | -1.183 || 7.2832486e-03 - 7.2829150e-03
e®V(n,m) [ a®I(2) | 0.7 | 6.7680943¢-03 - 6.7680872¢-03
Purely
indeterministic | o2 1 1.3827854¢-03 | 1.3816976e-03 1.3817262¢-03
component

Example 4: Next, we investigate the bound on the spectraif the different components. Furthermore, the CRB’s for
density function of the modulating 1-D AR processes of theach component become almost the same as in the single-
first evanescent component, in two cases. In the first case, teponent case.
observed field has only a single evanescent component, witfOn the other hand, as the distance between the parallel
,,fLO) = 0.2. In the second case, there are two evanescéiectral supports of the two evanescent components decreases,
components in the observed field such that the spectral supgrivhen the spectral support of any of the evanescent com-

of the second evanescent component is parallel and végnents is close to the frequency of a harmonic component,
close to that of the first component. Henegl’o) — 0.205. the bounds become much higher than in the corresponding

The harmonic and purely indeterministic components are tﬁ@gle—compqnent cases. _ _
same as in Example 3, for both cases. The parameters of thEX@mple 5:Here, we consider a case in which the ob-

modulating 1-D AR processes of both evanescent componeﬁ%\/ed random field has two evanescent components whose

are also the same as in Example 3. Fig. 6 depicts the Igggctg ngzos?r?;?;ersgg' f'\é\(g ng&a;tir;he thﬁqeorc];ége
spectral density function of the first evanescent componeT uracy imating ' P r Wi

modulating AR processes. The mean value of the log spectru(r)rr] the same field, when only one of the two evanescent

(dashed line) and the mean plus and minus the standco ponents is present. More specifically, we consider a 2-

- omogeneous random field consisting of a sum of two
QeV|at|on computed from the CRB, are shown. The SO“_oser spaced harmonic components, two evanescent com-
line denotes the bound on the log spectrum for the case

hich the ob 4 field h | Bnentsc®:9(n, m), e (n, m), and a zero-mean, unit
which the observed field has only one evanescent compon triance, white Gaussian purely indeterministic component.

while the dashed-dotted line denotes the bound for the Cag, arameters of the different components of the field are
in which the observed field has two evanescent componeni§eq in Table I. The modulating 1-D purely indeterministic
As the distance between the parallel spectral supports pf?f)cesses Oé(l,o)(m m) are narrowband second-order AR

the two evanescent components increases, the bound onghgesses. The modulating 1-D purely indeterministic pro-
spectral density of the first component modulating AR presesses 0fe®V(n, m) are medium-bandwidth second-order
cesses becomes identical to its value for the case in which AR processes.

second evanescent component exists. In fact, in the presentor the case ofa, ) = (0, 1), (28) can be expressed in
example the bounds for the single evanescent component GRsE form
and the two-components case become essentially identical
for relatively small differences of the components’ spectral
support parameterg|v$t? — 9| > 0.01). whereR"" Y and E*V) are Toeplitz matrices, given by (89)
We therefore conclude that as the distance between #red (90) (see the top of the following page). Hence,
parallel spectral supports of the two evanescent components ar 0D gD
becomes larger the FIM tends to a block-diagonal structure, in EO T = (ZO 5
which separate diagonal blocks correspond to the parameters v~ ov;

T = g1 g ROV (88)

® R\"Y (91)
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r (01)0 (01)1 (01)T
R I () T LR 2)
RV = : : (89)
: (1)
Oy Yoy A
[ 1 cos (— 27r1/(0 1)) - cos(=2m(S — 1)1/(0 1))
cos (27”/( 1)) 1 oo cos (=2 (S — 2)1/50’ 1))
E™Y = : ; . (90)
cos (— 27r1/(0 1))
Lcos (27 (S — l)l/i(o’ 1)) cos (2r(S — 2)1/50’ 1)) e 1
while the parameters of the different components was derived. It
311(071) (0 1 aR(O D was shown that the estimation of the harmonic component
a[a(O,l)] ® ala’ (0, 1)] 92) s decoupled from that of the purely indeterministic and the

evanescent components; furthermore, the bound on the purely

Here 0,1) indeterministic and the evanescent components is independent
OE; " _ _ on KOV o NOD (93) of the harmonic component.
81/50’1) ‘ We have specialized this derivation and derived closed-form

expressions of the CRB for the case where the modulating 1-D
where K and N{**) are given by (86) and (87) with all purely indeterministic processes of each evanescent field are
T's replaced byS’s. moving average or autoregressive processes, and the purely

We consider three cases: Case | is the case in whigfleterministic component of the field is a white noise field.
both evanescent components exist in the observed field, Casg25], a derivation of a closed-form exact CRB on the
Il is the case in which the only evanescent component parameters of 2-D moving average random fields, and hence
the observed field is:(*:%(n, m), Case Ill is the case in of essentially any purely indeterministic random field, is
which the only evanescent component of the observed figigesented. Thus together with the derivation of the closed-form
is (%Y (n, m). In Table | we list the bounds on the errofexact CRB on the parameters of 2-D moving average random
variance in estimating the parameters of the observed field figlds, the derivation in this paper provides a closed-form
the three cases. The results indicate that the lower bourggct CRB on the parameters of essentially any homogeneous
on the error variance in estimating the parameters of thendom field.
different components are essentially unaffected by the presencelsing numerical evaluation of specific examples we have
of multiple evanescent components with intersecting spectfalind that as the distance between the spectral supports of any
supports. two evanescent components with parallel spectral supports is

Using this example we conclude that in general, the presenggye enough, or when the spectral supports of the evanescent
of evanescent random fields with intersecting spectral suppastsmponents intersect, the FIM block that corresponds to the
has only a negligible effect on the CRB of each componesvanescent components’ parameters, tends to a block-diagonal
parameters, compared with the case in which this componetructure. In this structure, separate diagonal blocks correspond
is the only evanescent component of the field. Using the the parameters of the different evanescent components.
conclusions of Examples 3 and 4, we finally conclude th&urthermore, the values of the CRB’s on the parameters of
the presence of an evanescent component in the field leagh component are essentially unaffected by the presence
essentially no effect on the lower bound on the accuracy of other evanescent components. On the other hand, as the
estimating the parameters of the other components of the fieliktance between the spectral supports of any two evanescent
unless the spectral support of the evanescent component is pamponents with parallel supports decreases, or when the
allel and very close to that of another evanescent componesgectral support of any of the evanescent components is close
or if the spectral support of the evanescent component is vesythe frequency of a harmonic component, the bounds become
close to the spectral support of a harmonic component.  much higher than in the corresponding single-component

cases.
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