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Bounds on the Accuracy of Estimating the
Parameters of Discrete Homogeneous Random

Fields with Mixed Spectral Distributions
Joseph M. Francos,Member, IEEE

Abstract— This paper considers the achievable accuracy
in jointly estimating the parameters of a real-valued two-
dimensional (2-D) homogeneous random field with mixed
spectral distribution, from a single observed realization of it.
On the basis of a 2-D Wold-like decomposition, the field is
represented as a sum of mutually orthogonal components of
three types: purely indeterministic, harmonic, and evanescent.
An exact form of the Cramer–Rao lower bound on the error
variance in jointly estimating the parameters of the different
components is derived. It is shown that the estimation of the
harmonic component is decoupled from that of the purely
indeterministic and the evanescent components. Moreover, the
bound on the parameters of the purely indeterministic and
the evanescent components is independent of the harmonic
component. Numerical evaluation of the bounds provides some
insight into the effects of various parameters on the achievable
estimation accuracy.

Index Terms—Cramer–Rao bound, Fisher information, evanes-
cent fields, harmonic fields, purely indeterministic fields, 2-D
Wold decomposition, 2-D mixed spectral distributions.

I. INTRODUCTION

I N this paper, we consider the problem of fitting a parametric
model to observations from a single realization of a two-

dimensional (2-D) real-valued discrete and homogeneous ran-
dom field with mixed spectral distribution. This fundamental
problem is of great theoretical and practical importance. It
arises quite naturally in terms of the texture estimation of
images [26], [27], [29], as well as in several areas of radar,
sonar, and seismic signal processing.

From the 2-D Wold-like decomposition [1], we have that
any 2-D regular and homogeneous discrete random field
can be represented as a sum of two mutually orthogonal
components: apurely indeterministicfield and adeterministic
one. The purely indeterministic component has a unique
white innovations driven moving average representation. The
deterministic component is further orthogonally decomposed
into a harmonic field and a countable number of mutually
orthogonalevanescentfields. This decomposition results in a
corresponding decomposition of the spectral measure of the
regular random field into a countable sum of mutually singular
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spectral measures. The spectral distribution function of the
purely indeterministic component is absolutely continuous,
while the spectral measure of the deterministic component is
singular with respect to the Lebesgue measure, and therefore
it is concentrated on a set of Lebesgue measure zero in
the frequency plane. For practical applications, the “spectral
density function” of the regular field’s deterministic compo-
nent can be assumed to have the form of a countable sum
of one-dimensional (1-D) and 2-D delta functions. The 1-D
delta functions are singular functions which are supported on
curves in the 2-D spectral domain. The 2-D delta functions are
singular functions which are supported on discrete points in
the spectral domain. In [27], [29] the 2-D Wold-like decom-
position, and the resulting random field model, are employed
for modeling, analysis, and synthesis of natural textures.
We refer the interested reader to [27], [29] for examples
that demonstrate the identification and parameterization of
the decomposition components in images of natural textures.
Illustrative synthetic examples can be found in [28].

This paper is devoted to the analysis of the achievable ac-
curacy in estimating the parameters of a regular homogeneous
random field, based on the parametric model derived in [1]. In
particular, we concentrate here on establishing the lower bound
on the error variance injointly estimating the parameters of the
purely indeterministic, harmonic, and evanescent components
of the field, based on afinite-dimension, single observed
realization of this field. Assuming that the observed field is
a Gaussian random field, we derive closed-form expressions
for the lower bound on the error variance of any unbiased
estimator of the field parameters. We show that the lower
bound on the parameters of the harmonic component is de-
coupled from the bound on the parameters of the purely
indeterministic and the evanescent components. Moreover, the
bound on the parameters of the purely indeterministic and
the evanescent components is independent of the harmonic
component. These results hold regardless of the paramet-
ric models of the purely indeterministic and the evanescent
components. Next, by assuming a moving average model,
or alternatively an autoregressive model, for the modulating
purely indeterministic processes of each evanescent field, we
find for both cases, closed-form expressions for the Fisher
Information Matrix (FIM) entries which correspond to the
parameters of the evanescent components. For the case where
the 2-D moving average model of the purely indeterministic
component is of finite dimensions we derive a closed-form
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exact Cramer–Rao Bound (CRB) on the achievable accuracy in
jointly estimating the parameters of the harmonic, evanescent,
and purely indeterministic components of the field, from a
finite dimension observed realization of it.

The general problem of random fields’ parameter estimation
has received considerable attention. Many of the works address
the problem of the statistical inference of Markov random
fields (MRF’s), and its applications in image processing (see,
e.g., [3], [4], and the references therein). A special class of
MRF’s is that of Gauss–Markov random fields (GMRF’s).
It is shown in [6] that a GMRF may be defined in the
form of a 2-D autoregressive (AR) field driven by correlated
noise. This definition is equivalent to specifying the field
joint probability density function, through the Gibbs potentials.
A maximum-likelihood (ML) algorithm for estimating the
parameters of a GMRF is derived in [5]. A large number
of the existing parameter estimation algorithms are concerned
with the parameter estimation of 2-D AR fields (see, e.g., [2],
[7]–[10]). Parameter estimation of 2-D moving average (MA)
random fields is addressed in [25]. Autoregressive, moving
average (ARMA) models are introduced in [13]. In general,
most of these works implicitly assume the observed random
field is purely indeterministic and try to fit it with white-
or correlated-noise-driven linear model. A different family of
algorithms addresses the problem of estimating the parameters
of sinusoidal signals in white noise. Note, however, that in the
Gaussian case all of the foregoing problems are only special
cases of the general problem which we address in this paper.

The asymptotic Cramer–Rao bound (CRB) on the parame-
ters of a Gaussian purely indeterministic field was derived by
Whittle [2]. More recently, this general derivation was special-
ized for the case of noncausal AR models, and nonsymmetrical
half plane (NSHP) AR models in [11]. Parameter estimation
techniques of sinusoidal signals in additive white noise include
the periodogram-based approximation (applicable for widely
spaced sinusoids) to the ML solution [20], extensions to the
Pisarenko harmonic decomposition [15], or the singular value
decomposition [16]. More recently, a matrix enhancement
and matrix pencil method for estimating the parameters of
2-D superimposed, complex-valued exponential signals was
suggested in [17], and analyzed in [18]. Assuming the noise
field is white, the Cramer–Rao lower bound for this problem
was derived as well. The problem of ML estimation of 2-D
superimposed, complex-valued exponential signals has been
recently considered in [19].

An early discussion on the problem of analyzing 2-D
homogeneous random fields with discontinuous spectral dis-
tribution functions can be found in [21]. In [22] we have
developed a conditional ML algorithm for jointly estimating
the parameters of the harmonic, evanescent, and purely in-
deterministic components of a complex-valued homogeneous
random field from a single observed realization of it. In [28],
this algorithm is generalized for the case where the random
field is real-valued, and has multiple evanescent components
of unknown spectral support parameters. In [22] we also derive
the conditional Cramer–Rao lower bound on the covariance
matrix of the conditional estimates for a complex-valued field
with a special type of evanescent component. Here, we derive

an exactCramér–Rao bound on the parameters of essentially
any real-valued regular and homogeneous Gaussian field,
where the field may contain all of the 2-D Wold decomposition
components.

The paper is organized as follows. In Section II we briefly
summarize the results of the 2-D Wold-like decomposition,
which establish the theoretical basis for the suggested solution.
In Section III we define the problem considered in this paper
and introduce some necessary notations. In Section IV a
general form of the CRB for the estimation problem considered
here is derived. It is shown that the estimation problem of
the harmonic component is decoupled from that of the purely
indeterministic and the evanescent components. In Section V
we derive closed-form expressions for the lower bound on the
achievable estimation accuracy of the field parameters both for
the case in which the modulating 1-D purely indeterministic
processes of each evanescent field are MA processes, as
well as for the case in which the modulating 1-D purely
indeterministic processes of each evanescent field are AR
processes. In Section VI we present some numerical examples
in order to get further insight into the properties of the bound.

II. THE HOMOGENEOUSRANDOM FIELD MODEL

The considered random field model is based on the Wold-
type decomposition (of 2-D regular and homogeneous random
fields) presented in [1] and briefly summarized in this section.
Let , be a real-valued, regular,
homogeneous random field. Then can be uniquely
represented by the orthogonal decomposition

(1)

The field is purely indeterministic and has a
unique white innovations driven MA representation. The field

is a deterministic random field.
We call a 2-D deterministic random field

evanescent with respect to the NSHP total orderif it spans
a Hilbert space identical to the one spanned by itscolumn-to-
column innovationsat each coordinate (with respect to
the total order ). The deterministic field column-to-column
innovation at each coordinate is defined as
the difference between the actual value of the field, and its
projection on the Hilbert space spanned by the deterministic
field samples in all previous columns.

It is possible to define [1] a family of NSHP total-order
definitions such that the boundary line of the NSHP is of
rational slope. Let and be two coprime integers, such
that . The angle of the slope is given by .
(See, for example, Fig. 1.) Each of these supports is called
rational nonsymmetrical half-plane(RNSHP). We denote by

the set of all possible RNSHP definitions on the 2-D lattice
(i.e., the set of all NSHP definitions in which the boundary
line of the NSHP is of rational slope). The introduction of
the family of RNSHP total-ordering definitions results in the
following countably infinite orthogonal decomposition of the
deterministic component of the random field:

(2)
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Fig. 1. RNSHP support. Example with� = 2 and� = 1.

The random field is half-plane deterministic, i.e.,
it has no column-to-column innovations with respect to any
RNSHP total-ordering definition. The field
is the evanescent component which generates the column-to-
column innovations of the deterministic field with respect to
the RNSHP total-ordering definition .

Hence, if is a 2-D regular and homogeneous
random field, then can be uniquely represented by
the orthogonal decomposition

(3)

In this paper, all spectral measures are defined on the square
region . It is shown in [1]
that the spectral measures of the decomposition components
in (3) are mutually singular. The spectral distribution func-
tion of the purely indeterministic component is absolutely
continuous, while the spectral measures of the half-plane
deterministic component and all the evanescent components
are concentrated on a set of Lebesgue measure zero in.
Since for practical applications we can exclude singular-
continuous spectral distribution functions from the framework
of our treatment, a model for the evanescent field which
corresponds to the RNSHP defined by is given
by

(4)

where the 1-D purely indeterministic processes
, , ,

are mutually orthogonal for all such that
and ; also for all the processes and

have an identical autocorrelation function.
Hence, the “spectral density function” of each evanescent field
has the form of a countable sum of 1-D delta functions which
are supported on lines of rational slope in the 2-D spectral
domain.

One of the half-plane deterministic field components, which
is often found in physical problems, is the harmonic random
field

(5)

where the ’s and ’s are mutually orthogonal random
variables, , and are the spatial
frequencies of theth harmonic. In general, is infinite. This
component generates the 2-D delta functions of the “spectral
density.” The parametric modeling of deterministic random
fields whose spectral measures are concentrated on curves,
other than lines of rational slope, or discrete points in the
frequency plane, is still an open question to the best of our
knowledge.

III. PROBLEM DEFINITION

The orthogonal decompositions of the previous section
imply that if we exclude from the framework of our model
those 2-D random fields whose spectral measures are concen-
trated on curves other than lines of rational slope, is
uniquely represented by

(6)

Hence, in this paper, we study the problem of the achievable
accuracy injointly estimating the parameters of the harmonic,
evanescent, and purely indeterministic components using a
finite-size, single observed realization of the field. In this
problem the purely indeterministic component can be viewed
as an unknown colored noise field.

When expressed in the general form (5), the coefficients
of the harmonic component are real-valued, mutu-

ally orthogonal, random variables. However, since in general,
only a single realization of the random field is observed, we
cannot infer anything about the variation of these coefficients
over different realizations. The best we can do is to estimate
the particular values which the ’s and ’s take for the
given realization; in other words we might just as well treat
the ’s and ’s as unknown constants, and the harmonic
component as the unknown mean of the observed realization.

We next state our assumptions and introduce some necessary
notations. Let , where

be the observed random field. Note, however, that the observed
field could just as well have anyarbitrary shape.



FRANCOS: ESTIMATING THE PARAMETERS OF RANDOM FIELDS WITH MIXED SPECTRAL DISTRIBUTIONS 911

Assumption 1:The purely indeterministic component is a
zero-mean, real-valued Gaussian field. Hence the purely inde-
terministic component is characterized by its covariance matrix
which is denoted by . We assume that the covariance matrix
has some known parametric form, whereis the parameter
vector. At the moment we will not specify the functional
dependence of on , but rather leave it implicit.

Assumption 2:The number of harmonic components in
(5) is a priori known. The values of the pairs, as well
as the number of evanescent components in (4), area
priori known for all the evanescent components.

Assumption 3:The 1-D purely indeterministic processes
and are all assumed to be zero-mean Gauss-

ian processes. Hence each pair , is charac-
terized by its covariance matrix which is denoted by .
(Note that and have the same autocorrelation
function.) We assume that the covariance matrix has some
known parametric form, where is the parameter vector.
At the moment we will not specify the functional dependence
of on , but rather leave it implicit, as well. Thus
the parameter vector of each of the evanescent components

is given by

Therefore, the parameter vector of the evanescent field
is obtained by collecting the vectors into

a single column vector, i.e.,

(7)

Let

(8)

(9)

(10)

Thus the parameter vector of the observed field
is given by

(11)

Let

(12)

(13)

(14)

Let

(15)

be the vector composed of the observed samples from the 1-D
modulating process of the evanescent field .

In a similar way we define the vector of the 1-D
modulating process . Also let

(16)

Given a scalar function , we will denote the matrix, or
column vector, consisting of the values of evaluated for
all the elements of , where is a matrix, or a column vector,
by . Using this notation, we define

(17)

Thus using (4), we can rewrite (14)

(18)

where denotes an element by element product of the vectors.
Note that whenever for some integers

such that and ,

the same element of (and ) appears more than
once in the vector. It can be shown that for a rectangular
observed field of dimensions the number ofdistinct
samples from the random process , , that
are found in the observed field is

This is because
is the number of different “columns” one can define on such
a rectangular lattice for an RNSHP defined by . We
therefore define theconcentrated version, of

to be an
column vector of nonrepeating samples of the process
, . More specifically, for the case in which

and , is given by

(19)

while for the case in which and ,
is given by

(20)
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Note, however, that due to boundary effects, the vectors
and are not composed of consecutive samples from the
processes and , respectively, unless
or . In other words, for some arbitrary and there
are missing samples in and .

Thus for any we have that

(21)

where is rectangular matrix of zeros and ones which
replicates rows of .

We note that the covariance matrix which character-
izes the pair of processes , is defined in terms
of the concentrated version vectors and , i.e.,

(22)

and not in terms of the covariance matrix

(23)

of the vectors and . The matrix is a
singular matrix, which is also given by

In terms of the Fisher information both and
represent the same information on the processes and

.
Define (see (24) at the bottom of this page) where the

th column of consists of the values of theth-harmonic
component evaluated for all . We therefore have

(25)

where

(26)

and Re , Im .
Since the evanescent components are mutually

orthogonal, and since all the evanescent components are or-
thogonal to the purely indeterministic component, we conclude
that , the covariance matrix of, has the form

(27)

where is the covariance matrix of .

Using (4), (18), and the orthogonality of and
we find that

(28)

where

(29)

and is the matrix given by

(30)

A compact matrix representation of for any
cannot be derived due to the dependence of the matrix structure
on . However, for the case in which ,
(and similarly, for ), a more compact repre-
sentation is possible. More specifically, for this special case
(18) can be expressed in the form

(31)

where is the Kronecker product

Re

(32)

and is the imaginary part of the same vector. Hence,
using the orthogonality of and , and the

...
...

...
...

...
...

...
...

...
...

...
...

(24)
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...
...

...
...

...

(34)

...
...

...
...

...

(35)

properties of the Kronecker product

(33)

where and are Toeplitz matrices, given by (34)
and (35) (see the top of this page).

IV. A GENERAL FORM OF THE CRB

The general expression for the Fisher Information Matrix
(FIM) of a real Gaussian process is given by (e.g., [23])

(36)

where is the mean of the observation vector, is the
observation vector covariance matrix, and denotes
the entry of the matrix . In our case .

Taking the partial derivatives of we get

(37)

where is the th column of . Since the evanescent
components, as well as the purely indeterministic component,
are zero-mean fields, the mean vector is independent of their
parameters. Hence

(38)

(39)

Note also that since the field covariance function is indepen-
dent of the mean

(40)

(41)

and

(42)

Hence, the term in (36) vanishes for all the FIM entries
that correspond to parameters of the harmonic mean. There-
fore, , , , and for the evanescent
components we have that for all and , ,

, . Hence we conclude that the
estimation problem of the harmonic component is decoupled
from that of the purely indeterministic and the evanescent
components.

Using (37) and (40) we conclude that the FIM elements
which correspond to the amplitude parameters of the harmonic
component are given by

(43)

Let

(44a)

(44b)

where and are - and -dimensional column vectors of
ones, respectively. In other words, is the vector of the first
indices of the elements of in (13), and is the vector of the
second indices of the elements of. Taking now the partial
derivatives with respect to the harmonic frequencies yields

(45a)

(45b)

where , , is an matrix whose
diagonal is the vector , , and , , is the th
column of , .
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Substituting (37), (40), (41), and (45a) into (36)

(46)

In a similar way we obtain

(47)

(48)

(49)

(50)

Using the orthogonality of the evanescent components, their
orthogonality to the purely indeterministic component, and
(27), we find that

(51)

and for all and

(52)

Substituting (38) and (39) into (36), we conclude that,
for all the FIM entries that correspond to parameters of the
purely indeterministic and the evanescent components, the
mean dependent term of (36) vanishes. In particular

(53)

(54)

and

(55)

where , and .
Using (29) and the separability of (28) we find that

(56)

while

(57)

We have previously concluded that the estimation problem
of the harmonic component is decoupled from the estimation
problem of the purely indeterministic and the evanescent
components. Using (53)–(55) we find that the bound on
the purely indeterministic and the evanescent components is
found by inverting the FIM block which corresponds to the
parameters of the purely indeterministic and the evanescent
components, and it is independent of the harmonic component
parameters. Therefore, this bound is identical to the one
obtained for the case in which no harmonic component exists.

From the Wold-type decomposition (1), it is known that
the purely indeterministic component of the field has a unique
white innovations-driven MA representation. In [25] we con-
sider the representation of the covariance matrix of a 2-D MA
random field in terms of the MA model parameters, for finite-
order MA models. The derivatives of the covariance matrix,

, with respect to the MA model parameters are derived as
well. Hence, in this paper we consider only a simple special
case of the general derivation, and assume that the purely
indeterministic component is a zero-mean, white Gaussian
field with variance . Therefore, , and

(58)

where is an identity matrix. Also,

(59)

Thus for the case in which the purely indeterministic com-
ponent is a Gaussian white noise field, substitution of (27)
and (59) into (53), followed by substitution of (27) into
(46)–(50), (54), (55), provides an expression of the exact CRB
on the parameters of the observed homogeneous random field.
Similar substitution of the expressions for and
of an MA modeled purely indeterministic component [25]
provides an expression of the exact CRB on the parameters
of essentially any Gaussian homogeneous random field.

A. The Case of a Nil Purely Indeterministic Component

In this section we specialize the foregoing general results
for the special case of a homogeneous random field with
a nil purely indeterministic component. In particular, we
concentrate on the case of an observed field which is composed
of only a single evanescent component . In this special
case .

Recall that whenever , for some integers
such that and

, the same element of (and ) appears more
than once in the vector. For a rectangular observed field of
dimensions the number of distinct samples from the
random process , , that are found in the
observed field is

Using (18) we have that the elements of the observed vector
are linear combinations of the elements of and
weighted by deterministic cosinusoidal functions of a

single parameter .
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Since the 1-D modulating processes and
are independent, the elements of the vector in (18) form
a linear space whose dimension is at most

In other words, all other elements of can be expressed
asdeterministiclinear combinations of these elements. Hence,
in this present case,, the covariance matrix of the observed
field, is a singular matrix. Therefore, a straightforward sub-
stitution into the general expression for the FIM of a real
Gaussian process (36) is impossible.

In terms of the Fisher information, the information contents
of a vector is equivalent to that of any linear transformation
thereof. Hence we define theconcentrated version, of

as follows: From every column of the observed field,
where “column” is defined with respect to the NSHP total
ordering denoted by , we arbitrarily choose two samples
of . Note that it is possible that for some combinations
of lattice dimensions and an NSHP total ordering definition

, some columns will contain only one sample of the
field. Hence the dimension of the constructed column vector

is less or equal to
The elements of are guaranteed

to be linearly independent, and hence its covariance matrix is
invertible. Let us denote this covariance matrix by , i.e.,

Thus the FIM for the case in which the observed field is
composed of a single evanescent component is given by

(60)

The derivation of the derivatives of the covariance matrix with
respect to the evanescent component parameters is similar to
that which leads to (56), (57), and hence is omitted.

V. THE FIM FOR EVANESCENT COMPONENTS WITH

GAUSSIAN MA AND AR MODULATING PROCESSES

In the previous sections we have derived an expression for
the exact CRB on the parameters of a homogeneous random
field with mixed spectral distribution. In this derivation it
was assumed that for each evanescent field the 1-D purely
indeterministic processes and are zero-mean
Gaussian processes whose covariance matrix has some known,
but unspecified parametric form, where is the parameter
vector. In this section we specialize the results of the previous
section. We consider two different parametric models for the
modulating 1-D purely indeterministic processes of the evanes-
cent field. First we consider the case in which the modulating
1-D processes are moving average processes. Next we consider
the case in which these processes are autoregressive. Using this
derivation we finally obtain a closed-form exact expression of
the CRB on the error variance in estimating the parameters of
the homogeneous random field.

A. Evanescent Components with Gaussian
MA Modulating Processes

Let . Assume that the modulating 1-D
processes and of each
evanescent field can be modeled by a finite-order MA model,
i.e.,

(61)

(62)

where
and
and

(63)

and . The driving noise processes
and are independent,

zero-mean, white, and Gaussian, and each has variance
. We further assume that the MA processes are of

known orders, where

For the case in which and , define the
-dimensional vector of

consecutivesamples

(64)

while for the case in which and

(65)

Hence for both cases we have

(66)

where is the

Toeplitz matrix as seen in (67) (see the top of the following
page) and is a rectangular matrix of zeros and ones
that eliminates rows which correspond to the
samples that are missing from due to the edge effects.
These missing samples result in being composed of
nonconsecutive samples in its top and bottom.

Thus the covariance matrix of the -order MA
process is given by

(68)

The parameter vector of the 1-D purely indeterministic mod-
ulating MA processes is the -dimensional
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...
...

(67)

vector

Taking the partial derivatives of using (68) we have

(69)

(70)

where is the up-shift matrix

otherwise.
(71)

Substituting (68)–(71) into (57) we obtain a closed-form
expression for . Using (68), a closed-form
expression for (28) is obtained. Thus for the case in which
the modulating 1-D processes of the evanescent fields are MA
processes, we have obtained a closed-form exact expression for
the CRB on the error variance in estimating the parameters of
the homogeneous random field.

B. Evanescent Components with Gaussian
AR Modulating Processes

In the following, we assume that the modulating 1-D pro-
cesses and of each evanes-
cent field can be modeled by a finite-order AR model, i.e.,

(72)

and

(73)

where the range of is given by (63). The driving
noise processes and are
independent, zero-mean, white, and Gaussian, and each has
variance . In this section it is assumed that and

are composed of consecutive

samples of the corresponding processes. Note, however, that in
general and are of a lower dimension

due to the boundary effects
that result is missing data samples. Thus the exact bound on
the parameters of the observed homogeneous random field,
for the case in which and
are finite-order AR processes, is tight only for those cases in
which or . We further assume that the AR
processes are of known orders, where

It can be shown [24] that the inverse covariance matrix
of a order AR process is given by

(74)

where and are lower triangular Toeplitz ma-
trices such that

(75)

(76)

and for and .
The parameter vector of the 1-D purely indeterministic

modulating processes is the -dimensional
vector

Taking the partial derivatives of using (74) we
have

(77)

(78)
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where is the down-shift matrix

otherwise.
(79)

Using the identity

we can now substitute (74)–(79) into (57) in order to obtain
a closed-form expression for . Using (74),
closed-form expressions for (28) and (56) are obtained.

Finally, using the well-known relation between the CRB
of some parameter vector and any differentiable function of
it (see, e.g., [31] or [32]), we have that the CRB of the
spectral density function e of the evanescent field
modulating AR process is given by

CRB CRB (80)

where

(81)

(82)

and

C. The FIM for Homogeneous Fields with Evanescent
Components of

As noted in Section III, has a different structure for
any value of and ; only for and

, can the matrix be compactly represented as the
Kronecker product of two smaller Toeplitz matrices. Hence, a
more compact closed-form expression for the exact CRB can
be derived.

For , (56) and (57) can be rewritten using
(33) in the form

(83)

while

(84)

Note that

(85)

where

...
...

...
...

...

(86)

and

(87)

Using (68)–(71) for the case of MA modulating processes,
or alternatively (74)–(79) for AR modulating processes, com-
pact closed-form expressions for the CRB are obtained.

VI. NUMERICAL EXAMPLES

To gain more insight into the behavior of the bound on
the different components, we resort to numerical evaluation
of some specific examples. In this section, we present several
such examples which illustrate the dependence of the bound
on various parameters of the field.

Example 1: Consider a 2-D homogeneous random field
consisting of a sum of two harmonic components, a single
evanescent field , and a zero-mean, unit variance,
white Gaussian purely indeterministic component. The fre-
quencies of the two harmonic components are

and . The evanescent
field frequency parameter is . The evanescent
component modulating 1-D purely indeterministic processes
are narrowband second-order AR processes whose parameters
are . In this example,
we investigate the bounds as a function of the variance of the
AR model driving noise.

The results indicate that varying the variance of the AR
model driving noise from to has almost no effect on the
CRB for the parameters of the harmonic components, as well
as on the bound on the noise variance of the purely indeter-
ministic component. For example, the bound onhas risen
from to , and similarly the bound on
the noise variance of the purely indeterministic component has
risen from to . This slight increase
is due to the presence of the evanescent component whose
energy increases from experiment to experiment.

On the other hand, varying the variance of the AR model
driving noise has a significant influence on the CRB for
the evanescent component frequency parameter, , as
illustrated in Fig. 2. We also note that the bounds on estimating
the parameters of the modulating AR processes decrease with
the increase in the evanescent component energy.

Example 2: Consider a 2-D homogeneous random field
consisting of a sum a single-harmonic component, a single
evanescent field , and a zero-mean, unit variance,
white Gaussian purely indeterministic component. The
harmonic component frequency is given by
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Fig. 2. CRB’s on the evanescent field frequency parameter�
(1; 0), and on the evanescent field modulating 1-D AR processes parametera

(1; 0)(1),
as a function of(�(1; 0))2.

, while its amplitude parameters are
. The evanescent component modulating 1-D purely

indeterministic processes are medium-bandwidth second-
order AR processes whose parameters are

. The peak of the spectral density
function of these processes is at . In this example,
the frequency parameter of the evanescent field is
changed from experiment to experiment, and we investigate
the bounds on the error variance in estimating the parameters
of the harmonic component.

The results, Fig. 3, indicate that as the frequency parameter
of the evanescent field gets closer to , which is the -axis
spatial frequency of the harmonic component, the estimation of
the harmonic component parameters becomes more difficult.
Note that when , i.e., , the error
variance on , becomes maximal, while the error
variance on estimating , is getting smaller due to the fact
that both the harmonic and the evanescent components have
their energies concentrated at the same-axis frequency. Note
also that as long as the harmonic and evanescent components
are well-separated, the bounds on the harmonic component
parameters remain almost constant.

Example 3: Consider a 2-D homogeneous random field
consisting of a sum of two closely spaced harmonic
components, two evanescent components of parallel spectral
supports, , , and a zero-mean, unit
variance, white Gaussian purely indeterministic component.
The first-harmonic component frequency is

, while its amplitude parameters are .
The second-harmonic component frequency is

, while its amplitude parameters are .
The frequency parameter of the first evanescent component is

. The modulating 1-D purely indeterministic
processes of this evanescent component are narrowband
second-order AR processes whose parameters are

Fig. 3. CRB’s on the parameters of the harmonic component, as a function
of the evanescent component spectral support parameter,�

(1; 0).

. The peak of the spectral density
function of these processes is at . The modulating
1-D purely indeterministic processes of the second evanescent
component are medium-bandwidth second-order AR processes
whose parameters are .
The peak of the spectral density function of these processes
is also at . In this example, the frequency parameter,

, of the second evanescent component is changed from
experiment to experiment, and we investigate the bounds on
the error variance in estimating the parameters of the harmonic
components, and the first evanescent component.
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Fig. 4. CRB’s on the parameters of the first-harmonic component, as a
function of the second evanescent component spectral support parameter,
�
(1; 0)
2 . The dashed line denotes the value of the bound when no evanescent

component exists in the observed field.

The results in Fig. 4 indicate that as the frequency parameter
of the second evanescent component gets closer to, which
is the -axis spatial frequency of the first-harmonic component,
the estimation of the harmonic component parameters becomes
more difficult. When , i.e., , the
error variance on , becomes maximal, while the
error variance on estimating is getting smaller due to the
fact that both the harmonic component and the evanescent
component have their energies concentrated at the same-axis
frequency. Note that when , the bounds on
all the parameters of the first-harmonic component are slightly
lower than their corresponding values for .
This phenomenon is due to the fact that when ,

“masks” the second-harmonic component, and
thus the error variance in estimating the parameters of the
first-harmonic component becomes smaller.

On the other hand, when the frequency parameter of the
second evanescent component is far from the frequencies
of the harmonic components, the bounds on the harmonic
components parameters remain almost constant, and are almost
identical to their values when no evanescent component exists
in the observed field (dashed lines).

The results in Fig. 5 (solid lines) illustrate the behavior of
the CRB’s on the parameters of the first evanescent component
as a function of the second evanescent component spectral
support parameter, . It is clear that as long as the
spectral supports of two evanescent components are not very
close, the bounds on both , and the parameters of the
modulating 1-D AR processes of the evanescent component,
are essentially constant. Moreover, the bounds are identical
to their values for the case in which no second evanescent
component is present (dashed line). When the spectral supports

Fig. 5. CRB’s on the parameters of the first evanescent component, as a
function of the second evanescent component spectral support parameter,
�
(1; 0)
2 . The dashed line denotes the value of the bound when the second

evanescent component does not exist.

Fig. 6. CRB’s on the log of the spectral density function of the first
evanescent component modulating 1-D AR processes.

of the two components coincide, the bound on drops
sharply due to the fact that both evanescent components have
their energies concentrated on the same spectral support. On
the other hand, it is clear that when the spectral supports
of the two evanescent components coincide, the problem of
estimating the parameters of the modulating 1-D AR processes
of the two evanescent components is much more difficult since
it requires the separation of these 1-D processes from their
sum.
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TABLE I
THE CRB FOR A FIELD WITH EVANESCENT COMPONENTS OFINTERSECTING SPECTRAL SUPPORTS

Example 4: Next, we investigate the bound on the spectral
density function of the modulating 1-D AR processes of the
first evanescent component, in two cases. In the first case, the
observed field has only a single evanescent component, with

. In the second case, there are two evanescent
components in the observed field such that the spectral support
of the second evanescent component is parallel and very
close to that of the first component. Here, .
The harmonic and purely indeterministic components are the
same as in Example 3, for both cases. The parameters of the
modulating 1-D AR processes of both evanescent components
are also the same as in Example 3. Fig. 6 depicts the log
spectral density function of the first evanescent component
modulating AR processes. The mean value of the log spectrum
(dashed line) and the mean plus and minus the standard
deviation computed from the CRB, are shown. The solid
line denotes the bound on the log spectrum for the case in
which the observed field has only one evanescent component,
while the dashed–dotted line denotes the bound for the case
in which the observed field has two evanescent components.
As the distance between the parallel spectral supports of
the two evanescent components increases, the bound on the
spectral density of the first component modulating AR pro-
cesses becomes identical to its value for the case in which no
second evanescent component exists. In fact, in the present
example the bounds for the single evanescent component case
and the two-components case become essentially identical
for relatively small differences of the components’ spectral
support parameters, .

We therefore conclude that as the distance between the
parallel spectral supports of the two evanescent components
becomes larger the FIM tends to a block-diagonal structure, in
which separate diagonal blocks correspond to the parameters

of the different components. Furthermore, the CRB’s for
each component become almost the same as in the single-
component case.

On the other hand, as the distance between the parallel
spectral supports of the two evanescent components decreases,
or when the spectral support of any of the evanescent com-
ponents is close to the frequency of a harmonic component,
the bounds become much higher than in the corresponding
single-component cases.

Example 5: Here, we consider a case in which the ob-
served random field has two evanescent components whose
spectral supports intersect. We compare the CRB on the
accuracy of estimating the field parameters, with the CRB
for the same field, when only one of the two evanescent
components is present. More specifically, we consider a 2-
D homogeneous random field consisting of a sum of two
closely spaced harmonic components, two evanescent com-
ponents , , and a zero-mean, unit
variance, white Gaussian purely indeterministic component.
The parameters of the different components of the field are
listed in Table I. The modulating 1-D purely indeterministic
processes of are narrowband second-order AR
processes. The modulating 1-D purely indeterministic pro-
cesses of are medium-bandwidth second-order
AR processes.

For the case of , (28) can be expressed in
the form

(88)

where and are Toeplitz matrices, given by (89)
and (90) (see the top of the following page). Hence,

(91)
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...
...

...
...

...

(89)

...
...

...
...

...

(90)

while

(92)

Here

(93)

where and are given by (86) and (87) with all
’s replaced by ’s.
We consider three cases: Case I is the case in which

both evanescent components exist in the observed field, Case
II is the case in which the only evanescent component of
the observed field is , Case III is the case in
which the only evanescent component of the observed field
is . In Table I we list the bounds on the error
variance in estimating the parameters of the observed field for
the three cases. The results indicate that the lower bounds
on the error variance in estimating the parameters of the
different components are essentially unaffected by the presence
of multiple evanescent components with intersecting spectral
supports.

Using this example we conclude that in general, the presence
of evanescent random fields with intersecting spectral supports
has only a negligible effect on the CRB of each component
parameters, compared with the case in which this component
is the only evanescent component of the field. Using the
conclusions of Examples 3 and 4, we finally conclude that
the presence of an evanescent component in the field has
essentially no effect on the lower bound on the accuracy of
estimating the parameters of the other components of the field,
unless the spectral support of the evanescent component is par-
allel and very close to that of another evanescent component,
or if the spectral support of the evanescent component is very
close to the spectral support of a harmonic component.

VII. CONCLUSIONS

In this paper we have investigated the achievable accuracy
in jointly estimating the parameters of a real-valued 2-D
homogeneous random field with mixed spectral distribution,
from a single observed realization of it. An exact form of the
Cramer–Rao lower bound on the accuracy of jointly estimating

the parameters of the different components was derived. It
was shown that the estimation of the harmonic component
is decoupled from that of the purely indeterministic and the
evanescent components; furthermore, the bound on the purely
indeterministic and the evanescent components is independent
of the harmonic component.

We have specialized this derivation and derived closed-form
expressions of the CRB for the case where the modulating 1-D
purely indeterministic processes of each evanescent field are
moving average or autoregressive processes, and the purely
indeterministic component of the field is a white noise field.
In [25], a derivation of a closed-form exact CRB on the
parameters of 2-D moving average random fields, and hence
of essentially any purely indeterministic random field, is
presented. Thus together with the derivation of the closed-form
exact CRB on the parameters of 2-D moving average random
fields, the derivation in this paper provides a closed-form
exact CRB on the parameters of essentially any homogeneous
random field.

Using numerical evaluation of specific examples we have
found that as the distance between the spectral supports of any
two evanescent components with parallel spectral supports is
large enough, or when the spectral supports of the evanescent
components intersect, the FIM block that corresponds to the
evanescent components’ parameters, tends to a block-diagonal
structure. In this structure, separate diagonal blocks correspond
to the parameters of the different evanescent components.
Furthermore, the values of the CRB’s on the parameters of
each component are essentially unaffected by the presence
of other evanescent components. On the other hand, as the
distance between the spectral supports of any two evanescent
components with parallel supports decreases, or when the
spectral support of any of the evanescent components is close
to the frequency of a harmonic component, the bounds become
much higher than in the corresponding single-component
cases.
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