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Cramér—Rao Bound on the Estimation Accuracy
of Complex-Valued Homogeneous
Gaussian Random Fields

Joseph M. Franco$enior Member, IEEE

Abstract—This paper considers the problem of the achievable one. The purely indeterministic component has a unique
accuracy in jointly estimating the parameters of a complex-valued white innovations driven nonsymmetrical half-plane (NSHP)
two-dimensional (2-D) Gaussian and homogeneous random field moving average representation. In general, the support of the

from a single observed realization of it. Based on the 2-D Wold de- NSHP . del has infinite di . Th
composition, the field is modeled as a sum of purely indetermin- _m_o‘('”g average mo el has infinite dimensions. e
istic, evanescent, and harmonic components. Using this parametric deterministic component is further orthogonally decomposed

model, we first solve a key problem common to many open prob- into a harmonic field and a countable number of mutually
lems in parametric estimation of homogeneous random fields: that orthogonalevanescenfields. This decomposition results in a
of expressing the field mean and covariance functions in terms of corresponding decomposition of the spectral measure of the
the model parameters. Employing the parametric representation . . .
regular random field into a countable sum of mutually singular

of the observed field mean and covariance, we derive a closed-form St )
expression for the Fisher information matrix (FIM) of complex- ~Spectral measures. The spectral distribution function of the

valued homogeneous Gaussian random fields with mixed spectral purely indeterministic component is absolutely continuous.
distribution. Consequently, the Cramér—Rao lower bound on the Furthermore, since the random field is regular, the spectral
error variance in jointly estimating the model parameters is eval- density of the purely indeterministic component is zero at most

uated.
on a set of Lebesgue measure zero [2]. The spectral measure of
Index Terms—Cramér—Rao bounds, Fisher information, homo-  the deterministic component, which is singular with respect to
geneous random fields, 2-D Wold decomposition. the spectral measure of the purely indeterministic component,

is therefore concentrated on a set of Lebesgue measure zero in
the frequency plane. It is shown in [1] that under some mild

. assumptions (that always hold in practice), each evanescent
I N THIStpaper, (;N(la consu(:ijer t\;yo thJ_ndan}ePtal g.mblems Igomponent can be modeled by a separable model, given by
5 [p))aramelrlc mcl) ed'?lg and estima |ondo 1:Ncl)d |m$rr]13|c_>n e product of a one-dimensional (1-D) purely indeterministic
(2-D) compiex-vajued homogeneous random elds with MiXeg, cog in one dimension and an exponential in the orthogonal
spectral distribution. Emp_loymg the parametric model that fo imension (or a linear combination of such separable random
lows from the 2-D Wold-like decomposition of homogeneou]g,elds)_ Hence, the spectral supports of the different evanescent

randpm fields, [1], we flrgt obtain cIo_sed-form expressians f Cfmponents have the form of lines, where the slope of each line
the field mean and covariance functions in terms of the mo

; S 1€'a rational number. In [16], the 2-D Wold-like decomposition,
parameters. As.summg the observed random.fleld is Gausagﬂd the resulting random field model, are employed for mod-
we t_hen mv_estlg_ate the problem of the agh|evable accur ng, analysis, and synthesis of natural textures. Illustrative
in jointly estimating the parameters of the field model. The nthetic examples can be found in [17]

fundamental p“’b'e'fns are O.f great theoretical _and pr acti_c IIt is shown in [9] that the same parametric model that results
|mpt())lrtance. TE €y arse in vantpus wg\ve tpropagatlon.estm]:natl%m the above orthogonal decomposition naturally arises as the
problems such as in space-time acaplive processing o r%ﬁ{/sical model in the problem of space—time processing of air-

. INTRODUCTION

glgnals .[6] and.the speC|aI.case of real-valued 2-D.rand rne radar data. In this problem, the target model is that of an
f'EI(.jS arises qwte naturally in terms of texture modeling a rmonic component. The purely indeterministic component of

es::'mat'(iﬂ m;rgasisld[llﬁk]. d i h that the space—time field is the sum of a white noise field due to
5 Drom Ie i d r? like ecompd95| 'O?’ we dave f &Td aMe internally generated receiver amplifier noise and a colored
b- regu artag omogenefOLtjs |sc;e e” ranﬂ:)m Iel ABise field due to the sky noise contribution. The presence of
€ reprgsen €d as a sum ot o mutually orthogona .Corg]ammer is modeled by an evanescent component whose 1-D
ponents: apurely indeterministicfield and a deterministic modulating process is a white noise. In the angle-Doppler do-
main, the ground clutter produces a “clutter ridge,” supported

on a diagonal line (that generally wraps around). This ground
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the 1-D purely indeterministic process of each evanescehé evanescent component is of a special type. In this paper,
component is a finite-order moving average process, we derive derive arexactCramér—Rao lower bound on the error vari-
closed-form expressions for the mean and covariance functi@me in jointly estimating the parameters of essentially any com-
of the field in terms of the model parameters. Due to thg@lex-valued homogeneous Gaussian random field that can be
generality of this modeling, the derivation provides a solutiomodeled by a finite-order model. In this derivation, the field may
to the problem of expressing the mean and covariance functimmntain all of the 2-D Wold decomposition components.
of essentially any complex-valued homogeneous randomThe paper is organized as follows. In Section I, we briefly
field in terms of the model parameters. This result opens theview the results of the 2-D Wold-like decomposition. In Sec-
way for parametric solutions that can simplify and improvetion Ill, we employ the parametric model that follows from the
existing methods of space—time adaptive processing. In [9], @D Wold-like decomposition to obtain a general expression for
exploit the correspondence between the parametric model ttreg covariance matrix of the field in terms of its model parame-
follows from the 2-D Wold-like decomposition and the STARers. In Section 1V, it is assumed that the 1-D purely indetermin-
physical model to derive a computationally efficient algorithristic processes of the evanescent fields are MA processes. Using
for parametric estimation and mitigation of the jamming antthis assumption, we derive closed-form expressions for the co-
clutter fields. variance matrix of the evanescent field in terms of its parametric
Assuming the observed field is Gaussian, the parametrapresentation. Section V presents a derivation of a closed-form
representation of the field mean and covariance is employexpression of the covariance matrix for a finite-support NSHP
in this paper to derive a closed-forexactexpression for the moving average purely indeterministic component in terms of
Fisher information matrix (FIM) of complex-valued homogethe MA model parameters. Assuming a nil harmonic compo-
neous Gaussian random fields with mixed spectral distributioment and that the purely indeterministic and evanescent com-
Consequently, we obtain an expression for the Cramér—Raonents of the field are Gaussian, we derive in Section VI a
lower bound on the error variance jointly estimating the closed-form expression for the FIM of the observed field. Sec-
parameters of the harmonic, evanescent, and purely indetérn VIl generalizes the derivation of Section VI to include the
ministic components of the field fromfanite dimension single case where an harmonic component exists in the observed field.
observed realizatiorof it. It is further shown that regardlesslt is shown that the lower bound on the error variance in esti-
of the parametric models of the purely indeterministic anaiating the parameters of the harmonic component is decoupled
evanescent components, the lower bound on the error variaffégn the bound on the parameters of the purely indeterministic
in estimating the parameters of the harmonic componentagd evanescent components. In Section VIlI, we present some
decoupled from the bound on the parameters of the purely indetmerical examples in order to get further insight into the prop-
terministic and evanescent components. Moreover, the bowgidies of the bound. Additional examples can be found in [18],
on the parameters of the purely indeterministic and evanescéere the bound derived in this paper is employed to evaluate
components is independent of the harmonic component.  the performance of a computationally efficient algorithm for es-
The asymptotic Cramér—Rao bound (CRB) on the paraniéhating the parameters of the evanescent and purely indeter-
ters of a Gaussian purely indeterministic field was derived Byinistic components of the field.
Whittle [3]. In [5], a matrix enhancement and matrix pencil
method for estimating the parameters of 2-D superimposed, Il. HOMOGENEOUSRANDOM FIELD MODEL

complex-valued exponential signals was suggested. ASsumingrpe considered random field model is based on the Wold-type
the noise field iswhite, the Cramér—Rao lower bound for thisyecomposition of 2-D regular and homogeneous random fields,
problem was derived as well. The problem of ML estimatiopresented in [1], and briefly summarized in this section. Let
of 2-D superimposed, complex-valued exponential signals h n, m), (n, m) € 22} be a complex-valued, regular, ho-
been recently considered in [8]. However, most of the literatugogeneous random field. Thep(n, m) can be uniquely rep-
on parametric modeling and estimation of 2-D random fieldgsented by the orthogonal decomposition
is concerned with the parameter estimation of real-valued 2-D
AR fields, (see, e.g., [3], [4], and [10]-[12]), and the statistical y(n, m) = w(n, m) +v(n, m). (1)
inference of Markov random fields (MRFs) (see, e.g., [13]r . ) o ] ]
[14], and the references therein). The underlying assumptionfiR€ field {¢(n, m)} is a deterministic random field. The field
these papers is that the random field is purely indeterministi¢’(7; m)} is purely indeterministic and has a unique white in-
and hence, it can be fit with a white- or correlated-noigdovations driven moving-average representation given by
driven linear model. In the Gaussian case, all of the foregoing w(n, m) = Z bk, Duln =k, m—1)  (2)
problems are only special cases of the general problem, which
; (0,0)=<(k, £)
is addressed here.
In [17], we have developed a conditional ML algorithm fowhere the relation< is defined with respect to some NSHP
jointly estimating the parameters of the harmonic, evanescetatal-order definition,{«(n, m)} is the innovations field of
and purely indeterministic components of a complex-valued hfy(n, m)}, b(0, 0) = 1, and}_ q o) < ¢ [b(; H]? < cc.
mogeneous random field from a single observed realization oflt is possible to define [1] a family of NSHP total-order
it. The conditionalCramér—Rao lower bound on the covariancdefinitions such that the boundary line of the NSHP has a
matrix of the estimates was derived as well, assuming the puredyional slope. Letx and 3 be two coprime integers, such that
indeterministic component is a circular Gaussian field, and that 0. The angle of the slope is given byan § = 3/«. Each
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of these supports is calledtional nonsymmetrical half-plane  Ill. PARAMETRIC REPRESENTATION OF THECOVARIANCE
(RNSHP). We denote by the set of all possible RNSHP MATRIX OF A REGULAR AND HOMOGENEOUSRANDOM FIELD
definitions on the 2-D lattice (i.e., the set of all NSHP defini-
tions in which the boundary line of the NSHP has a ration%lr
slope). The introduction of the family of RNSHP total-orderingn
definitions results in a countably infinite orthogonal decom-
position of the deterministic component of the random fie&
v(n, m) = p(n, m) + 3 (o, gyeo €a, g)(n, m). The random
field {p(n, m)} is calledhalf-plane deterministicThe fields
{e(a, 3(n, m)} are the evanescent components of the fie
{u(n, m)}.

Itis shown in [1] that the model for the evanescent field whic
corresponds to the RNSHP defined(ay, 3) € O is given by

To simplify the presentation, we consider first the problem
estimating the parameters of an observed field where no har-
onic component is present. In Section VI, this derivation is
eneralized to include the case where the deterministic compo-
ent of the field comprises both harmonic and evanescent com-
ponents. In this section, we employ the 2-D Wold decomposi-
tion-based parametric random field model to obtain closed-form
Ig(pression of the field covariance matrix in terms of the para-
Wetric models of the decomposition components.

We next state our assumptions and introduce some necessary
notations. Le{y(n, m)}, (n, m) € D,whereD = {(¢, )|0 <

) 1t < S85-1,0 <j<T-1} be the observed random field.

e (n, m) = Z e(a,,@)(n m) Note, however, that the observed field could just as well have
(o OV — ¢ ’ any arbitrary shape.
If: 8 Assumption 1:The values of thé«, 3) pairs, as well as the
_ s(“"@)(na —mp) numberI(® 9 of evanescent components in (3), agriori
P ¢ known for all the evanescent components.

(@) Assumption 2:The real and imaginary components of the
cexp| jor l; _ (nf+ma) (3) Ppurely |ndeterm|n|st|c_component are zero mean, jointly vv_lde
ot + 3 sense homogeneous fields. I[gt denote the covariance matrix
of the purely indeterministic component. We assume that the
where the 1-D purely indeterministic, complex-valued prosgyariance matrix has some known parametric form, where
cesseqsi™ " (nor—mp)}, {57 (na—mp)} are zero-mean s the parameter vector. At the moment, we will not specify the
and mutually orthogonal for all # j. Hence, the “spectral functional dependence &f>; onb but, rather, leave it implicit.
density function” of each evanescent field has the form of aossumption 3:For each evanescent fiel@ega"a)}, the
a sum of 1-D delta functions supported on lines of rationghodulating complex-valued 1-D purely indeterministic process
slope in the 2-D spectral domain. Since interchanging tr{gga,,ﬁ)} is a zero-mean process such that its real and imagi-

roles of past and future in any total-order definition results iHary components are jointly wide sense stationaryR&’t’ 8)
identical evanescent components, it is sufficient to considgr '

i i Bgle @
only 0 < 6 < =. We therefore assume without limiting the énote the covariance matrix gf; * " }. We assume that the

enerality of the derivation that > 0, whereas? can assume covariance matrix has some known parametric form, where
g y ' al™? is the parameter vector. At the moment, we will not
any integer value. i : '

: . a, 8) (o, 8)
One of the half-plane-deterministic field components, whictPecify the functional dependence B onai™? but

is often found in physical problems, is the harmonic randofther, leave itimplicit as well.
field Thus, the parameter vector of each of the evanescent com-
ponents{ega"@)} is given byqbga"@) = [1/5“"8), (a§“7ﬁ>)T]T.

i : ‘ Therefore, the parameter vector of the evanescentfiétd ©) }
h(n, m) = Z Cpe/2rtnentms) (4)  is obtained by collecting the vectags™ ? into a single column
=t vector, i.e.¢® = [>T, ..., (877", The pa-
where theC,s are mutually orthogonal random variables, an@meter vector of the observed fielg(n, m)} is given by

(wp, ) are the spatial frequencies of tih harmonic. In

general P is infinite. The parametric modeling of deterministic 0— T {(qs(% @))T} T ©
random fields whose spectral measures are concentrated on - ’ (o, B)€O )
curves other than lines of rational slope, or discrete points in
the frequency plane, is still an open question, to the best of our_et
knowledge.
Thus, if we exclude from the framework of our model those ¥y =[%(0, 0),...,4(0, T — 1), (1, 0),. ..
2-D random fields whose spectral measures are concentrated on y(1, T—1),...,y9(5S—1,0), ...
curves other than lines of rational slopgn, m) is uniquely y(S—1,T -1 @)

represented by
ol _ [Cz(aﬂ@)(o’ 0),...,et* (0, T - 1),

y(n, m) = w(n, m)+ hin, m) + Z €(a, gy(n, m) (5) ‘ o o
(- Do 10y, e, T - 1),

(, &) (, &) T
where{w(n, m)}, {e(a, g (n, m)}, and{h(n, m)} are given e (5 —=1,0)....¢ (S -1 T~ 1)] :
by (2)—(4), respectively. (8)
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Let whereas for the case in whieh> 0 andj < 0, s(“ s given
b
€0 = [ P(0), s (=p), SO @)
[y a, | a @ @ T
st W@wi“m—mpn S0P = [50(0), S (S - Dam BT 1)
s Na— (T -1)p), ... 17)
s — Do), s&((S = D= ), ...
) .
(8o o T Note, however, that due to boundary effects, the veg(fbfi is
% (5 = Da = (T 1)/3)} ©) not composed of consecutive samples from the probé%s@)}

be the vector whose elements are the observed samples front4gsSie| < 1 or |3 < 1. In other WOde for some arbitrary
1- Dmodulatlng process.™ 8)} In addition, lety® = Re{y}, ands, there are missing samplessii* . Thus, for anya, 3),

=Im{y}, ¥ = [(yR)T( )T]T In a similar way, we de- we have thaf(“ f = Aga a)sga #) whereA(a 2 is rectan-
fine the vectorge!™ )2, (el )1 &(* " and(£l™?)R, gular matrix of zeros and ones that replicates rows(8f”,
(&> gl pefine Similarly to the foregoing definitions, we defir@{™ 8))

R (a 8) (a BINT | (a 3)
vie 8 =0,c,..., T—Da, B, B+a, ... el(s; M (s )t =Im{(s; )} and

BH(T—1Da, ..., ..., (S—1)8,

T
(S DB+ (S-DA+T-Daf". a0) 57 = K(SE““‘”)R)T<(55a”@))I>T] W

Given a scalar functiory(v), we will denote the matrix, or
column vector, consisting of the values ffv) evaluated for

_ _ We note that the covariance matﬁb{a ?) that characterizes
all the elements of, wherev is a matrix, or a column vector

' the proces$s(“" )} is defined in terms of the concentrated ver-

by f(v). Using this notation, we define sion vectors(" ? e
HauB) _ (a fe)) (9
fi 27r 2 + [32 . (11) Rg(y“@) _ E |:§i((y7,8) (51(07’8))T:| (19)
(8 _ g [ 2 v (0 (12)
‘ I 32 ’ and not in terms of the covariance matrix
Thus, using (3), we have that ~ (o (o —(a T
96 RO =B (€)' (20)
e((y,,@) _ é.((y,,ﬁ) o d((y,,@) (13)

where® denotes an element-by-element product of the vectots, the vectoré; (8 The matrlxR(“" )isa singular matrix,
andd(a A = f(a Dy, 'gga 8 . Rewriting (13) using real quan- which is also given by
tities, we obtaln

(ega”8)>R _ (gg""@))R@f‘gaﬂa) B (55"75))’ @gga“@) R(a 8) _ E(a B)R(a 8) (X(Q 8)) (21)
@Y Z (o) o gl d | (g ~<a,,@(>14) where
() = (7)o g + (g07) o E. ABD g
(15) Ega“a):[ 0 Aﬁ‘l?"’)}' 2

Note that wheneveta — mf3 = ka — £3 for some mtegers Interms of the Fisher information, boR](“ 8) andR(“ 8) rep-

n,m, k, £suchthab < », k < 5 — ](;%ndo <m, LS T =1, agent the same information on the proc{aég 8)}.
the sam(e sa?mple from the proce{sé } is duplicated in the Since the evanescent compone{*ri%a”a)} are mutually or-
vector{; ™. It can be shown that for a rectangular ObserVelﬂogonal and since all the evanescent components are orthog-

field of dimensionss z<(y];,)the number oﬁi;tinctsamples from onal to the purely indeterministic component, we conclude that
the random proceds;”” "’ } that are found in the observed field |\ hich is the covariance matrix of. has the form
is N = (S — Dla| + (T = || +1 - (Jo| — 1)(|8] - 1). We

therefore define theoncentrated versiorsi““@ of gi““@ to e
be anN.-dimensional column vector of nonrepeating samples T =Tp + Z Z ris (23)
of the proces$s§“’ '8)}. More specifically, for the case in which (. pre0 i1 ‘
a > 0andgs > 0, s§°‘~"> is given by
(07 ,@) 1 1 1 (07 ,@)
(.8 [ () (a,8) T whereT; is the covariance matrix Gi; .
Si - [Sz ((T=1)B),- ooy s ((S_l)o‘)} In the following, we use a 2x 2 partitioned matrix notation

(16) forthe covariance matrix of any complex-valued random vector



714 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

\t,r\;gtlgstexpressed using real quantities only. Hence, for exampl I‘Ea”ﬁ))Q 2 _E (e§a7'8))1 < e§a7f8>)I)T]
T ;
i - [@f%@) (ézﬂa,,a)) } (R”"”) . {4@,@ (a 8))T:|
(e, 8) (e, 8) I b
_ (Fi )1,1 (Fi )1,2 5 (o, 8) ~(a 3 (e, O\
(e, 8) (e, 8) (24) +(R57), @ |8 (577 }
(), (), S SO
where all four sub-blocks of the matrix are of identical dimen- * (Ri | )2, 1 © f ( ) }

sions.
Using (3) and (13), we find that the four blocks of the sym-
metric matrixI‘i""B) are given by

), = (6 ()
¢ 1,1 ‘ ‘

() (€)))
o (@) )

R (2, 8) ~(a,ﬁ) #(, 8)
+ (R )27 o i (£ } . (@7)
A i ion &>
compact matrix representation &t for any («, )
cannot be derived due to the dependence of the matrix structure
n («, ). However, for the case in whictwy, 5) = (1, 0)
[and similarly for(«, ) = (0, 1)], a somewhat more compact
representation is possible, using Kronecker products instead of
the Hadamard products. This special case is beyond the scope
of the paper.

T
_E <(€§a”@))R <(€§a”8))1> ) IV. COVARIANCE MATRIX OF EVANESCENT FIELDS WITH MA
MODULATING PROCESSES
<f(“ 8) “’ ) In the previous section, we have derived a general expres-
_ sion for the covariance matrix of a complex-valued evanescent
B <(£(a a))f ( gl R)T> random field. It was assumed that each of the 1-D purely in-
deterministic processe{s )} is a zero mean process whose
(,) (s covariance matrix has some known, but unspecified, parametric
< ( ) form, wherea(“ 7 is the parameter vector. In this section, we
specialize the results of the previous section. We consider the
+E < §<a "> <(§<a "> ) ) case in which the modulating 1-D processes are moving average
processes. Using this derivation, we obtaiolesed-formex-

o <g§a 3)

7))

pression of the evanescent field covariance matrix in terms of
its model parameters.

Let n{®® = na — m/3. Assume that the modulating 1-D
process{sga’ ’8)(71(“’ A1)} of each evanescent field can be mod-

1 eled by a finite-order MA model, i.e.,
B (ﬁ(a,,a)) o |§le ) (g(a,@))T}
7 1,2 | 7 7 ng s
_ (ﬁ(a,,@)) o |g*? ('f.(a7’8))T:| Sga,,a) (n(a,,a)) _ Z aga,,a)(T)Ci(a,,a) |:n(a“g) _ T}
7 27 1 | ? ? =
) r T (28)
(e, B) ~(,8) [ ~(a,8)
+ (Ri )27 ) © _gf, (gi ) } where
- (25)
and similarly . (. 5) { —(T-DS,..., (5=, a>0and8 >0
ns =
(rgw) _E (ega,m)R <(e7(a,,a))’> 0,....(§—Da—(I'-1)3, a>0ands <0
’ 1,2 ’ ’ (29)
~ ~ T
_ (Rga,a)> o [ ( (a a)) }
Lt ) . and a\*?(0) 1. The driving noise processes
+ (REQ,Q)) o |Fl® (ﬂ(a,,@)) {¢{ P (ple M)} are mutually orthogonal, complex-valued
Lz L processes such that the real and imaginary components of each
B (Rga,,a)) ® g(a,,a) (g(a,,ﬁ))T:| process are orthogonal real-valued white noise processes with
! 2,1 | ! zero mean and variancés.™ )2, and(p{* *)2, respectively.
 (a8) [, 8) (ala\T We further assume that the MA processes are of known orders
(Ri )272 ® _gi (fi ) } (26) an,,a), whereQEa"B) <N,
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For the case in whickx > 0 and3 > 0, define the(S — (Rga,,ﬁ))
Do +(T—=D)|B]+1+ QE“ 7 _dimensional vector ofonsec- 2,2 ) . ,
utive samples — (az(m,@)) we Dol (CE“"B)) (WE“"‘”)
@, @, | &, a 2 a a a T a T
= () (7w e (w7 ()
(O (~@-1s- QP +1) (36)
T (a, B) o (e, B)
N R (R ) @30) and®{)a 1 = (R 7)1,2)"
whereas for the case in which> 0 andj3 < 0 V. COVARIANCE MATRIX OF AN MA PURELY
(. 5) 5 @) 5 ) INDETERMINISTIC FIELD
a,8) a, 8 a, 8 a, 8 a, 8
i - [Ci (_Qi ) ) G (_Qi + 1) v From the Wold-type decomposition (1), it is known that the

purely indeterministic component of the field has a unique
white innovations-driven NSHP moving average representa-
tion. In practice, the observed field is of finite dimensions.
Hence, we restrict our attention to NSHP MA models with

L DS — 1o - BT - 1))}T. (31)

Hence, for both cases, we have

sg""@ — (WE““‘”DE““")) CE“"") (32) finite-dimensional support. More specifically, we assume that
the purely indeterministic field is a complex-valued MA field,
whereD®? is the whose model is given by (2) witk, £) € S s, Where
(S = Dla|+ (T =18 +1) Sn,m =A{( f)li=0,0< 7 < M}

% ((S—l)|a|—|—(T—1)|/3|+1+Q5a”8)) U{(Lv DI<i<N, -M<j< M} (37)

. . . N, M iori k . Th ivi i f the MA
Toeplitz matrix, shown in (33) at the bottom of the page, ana(‘fd " area priori known . € dpvmg noise of t e'

(o, B) - ) 2~ ~ model is a complex-valued white noise field such that its real
W, is arectangular matrix of zeros and ones that eliminat

&Rd imaginary components are orthogonal real-valued white
rows that correspond to théx| — 1)(|3| — 1) samples that are gnary ’ g

. (o, 8) o noise fields, each with zero mean and variaade and o2,
missing froms;™ "/ due to the edge effects. These missing Safsspectively. Thus, (2) is replaced by
ples result irsg"’ ) being composed of nonconsecutive samples

in its top and bottom. win,m)= > bk Oun—k m—-10). (38
Let B{*” = Re{D!*”} andC{*” = Im{D{*”}. (k, €S, 10
Thus, the four blocks of the covariance matR>§“"8) of the

Q(""a)-order MA process are given by In this section, we consider the representation of the covari-

ance matrix of a complex-valued 2-D MA random field in terms
(R(a, ,a)) of the MA model parameters for finite-order MA models. Let
¢ 1,1

b= [0, 1), ..., b(0, M), b(1, —M), ...

= (05“”8))2W5“”8)B§“”8) (BE,"”B))T (Wga”@))T b(1, M), ..., b(N, —M), ..., b(N, M)]*. (39)

a, 8 2 a, 8 a, 8 a, 8 T a, 8 T . L.
+ (pg )> w2l (CE )) (Wz( )) Thus, the parameter vector of the purely indeterministic com-
(34) ponent of the field is given by

(Rga’m)l,fz b= [02, 2 Re(bT}, |m{BT}]T . (40)
= (A7) W IBE (o) (W) g

— (M) W (BE ) (W) f0,0), w0, 1), w1, 0), .. w(1, T~ 1)

(35) vy w(S—=1,0), ..., w(S—1,T-1D]". (41)
_ag(y,,a) (Qg(y,@)) o ag(y”ﬁ)(l) 1 -
(e, B) (e, B) . (oz, 8)
Dga,,ﬁ) — a; (Qz ) a; (1) 1 0 (33)

T T

gl (é(a,ﬂ)) . a(a”;.)(l) 1
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Similarly, let the driving noise vector be defined by wherelir oy s4n) isa(T+2M)(S+N)x (T+2M)(S+N)
identity matrix.
u=[u(-N, -M), ..., u(-N,T+M-1), ... Substituting (21), (22), (25)—(27), (34)—(36), and (50) into
w0, —=M), ..., w0, T+M-1), ... (23), we obtain a closed-form expression for the covariance ma-

wS—1,-M), ..., uw(S—1,T+M-1|T. (42) trix of the observed homogeneous random field in terms of the
parametric models of its components.
Let 0, denote &-dimensional row vector of zeros. In addition,

let VI. GENERAL FORM OF THECRB
bo =[b(0, M), ..., b(0, 1), 1, Oz_14] Assume that the real and imaginary components of the purely
by =[b(1, M), ..., b(1,0), ..., (1, —M), Or_4] indeterministic component are jointly Gaussian and that for

each evanescent ﬁe{qu‘* '8)}, the modulating complex-valued
1-D purely indeterministic proces{gga’ﬂ)} is an independent
by =[b(N, M),...,b(N, 0),...,b(N, =M), 0r_1] (43) zero-mean process such that its real and imaginary components
are jointly Gaussian. Hence, the observed figldn, m)} is
Gaussian as well.
b=[by, by_1.....bg]. (44) The general expression for the Fisher information matrix of
a real Gaussian process is given by (e.g., [20])

and

Note thatb is a(7 4 2M) - (N + 1)-dimensional row vector.

Define the followindg?l’ x (T'+2M)- (N +1) banded Toeplitz T
tri o (T+2M)-(N+1) P [J(o)]ké:—a” —1%+1tr L (51)
matrix ' a6, a0, 2 aoy, a6,
— B 7 — Z + 1 ) j Z Z
[B]i,j - { v ) J : (45)  where
0, t< i mean of the observation vector;
whereb(i) = 0fori < 0, andi > (T+2M)- (N +1). Finally, r observation vector cov_ariance matrix;
we define the followingST x (T'+ 2M)(S + N) block matrix,  [J(@)]xc (k,¢) entry of the matrixJ.
shown in (46) at the bottom of the page. Since the purely indeterministic and evanescent components of
Thus we can rewrite the observations equation (38) in mattixe 2-D Wold-like decomposition (5) have zero mean, we have
form as p = 0. Hence, the first term of (51) vanishes. Thus, in this sec-

tion, we study the problem of the achievable accuragwiintly
estimating the parameters of the evanescent and purely indeter-
ministic components using a finite-size, single observed realiza-
tion of the field. In this framework, the purely indeterministic
w = B (48) component can be viewed as an unknown colored noise field.
Note from (21), (22), and (25)—(27) that dependence of the
wherew = [(w)"(w/)T]", w? = Re{w}, w/ = Im{w}, observed field covariance function on tke, 3) parameters

w = Bu. (47)

Rewriting (47) using real quantities, we have

u = [(u®)T(u!)T]7, uf = Re{u}, u’ = Im{u}, and exists both through the dependence of the exponential fre-
) BE _BI guency on these parameters as well as through the dependence
B= [BI —BR } (49) of the indices of the modulating procesgy"a)(na — mf3)

on « and 3. Therefore, we must assume that the 3) pair
Here,BE = Re{B}, andB’ = Im{B}. Thus, the covariance ©f €ach evanescent component is known and derive the CRB
matrix of the purely indeterministic component is given in termignder this assumption. Indeed, since in the space—time adaptive
of the MA model parameters by radar problem the interference-to-background noise ratio is

quite high [6] and since the dimensions of the observed field

Lo =B "QI(T+2M)(S+N) 0 BT (50) are limited, the integer paiky, 3) can be estimated with very
e 0 PPl oy (SN low probability of error.
B O x(r+20) e O x(r+2n)
O7 s (1+211) B O7 s (1+201) e O7 s (1+211)
B = (46)
O7 s (1+211) e B O7 s (1+211)

Op s (r42m e Op (w42 B
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Using the orthogonality of the evanescent components, th8imilar derivations produce expressions for
orthogonality to the purely indeterministic component, and (23) (o) (@ 8)
we find that ( i )1 , a(ri B )2 ,
ar Il'pr o) and ™ ®
dby _ b (52) ' '
b b as well. Finally
and for all(«, ) € O and: (I‘(“"")) ) (R(a,,a)) ]
or orte® L1 _ LLg Fla. ) (f-(a,,@))
@A = g 63 ofa?] " o] TLt U
o[ o9 R L
9 Ria,,ﬁ _
Substituting (52) and (53) into (51), we find that the FIM en- _ ( >172 o |flP (g(a,,ﬁ))T}
tries that correspond to parameters of the purely indeterministic 9 [aZ(‘L r")} | ’
and evanescent components are given by k
b, b g (Rga 8)> [ (e, AT
s 2,1 ~(c, | rla,
[J ]k,é —WQ gg )(fg )) }
1 r r a; " -
S e oy
k ¢ a(R;™ - T
¢501/3)7b + 2,2 o - (a, 8) ~(a,,@) :| ]
[J :|k,é 9 [a(a: 3)} gz (g” )
‘ k
~ L1y {rl o ar”} (55) (58)
2 a8 b - _ .
[¢§, )} X e Similar derivations produce expressions for
and
s ., I‘(a,,ﬁ) I‘(a,,ﬁ)
{quf. ’”,qﬁ;‘”} ( ¢ )1,2 and ( ¢ )2,2.
o[ ] o]
k k
arg(y,,ﬁ) . aI‘EE: n)

= %tr {I‘—l . [qu(aw")h r

} (56)
£
where(e, 7) € O, andl < j < I,

Using (25)—(27), and sincﬁg‘”"@) is independent oyf/i(“mﬁ),
we find that

(7).

81/@’ 2

- a22-|7-r/32 { (Rga ’8))1, 1

ey

0 (v o) - ()
ey

st ot - ()
o[(emmone ) )’
g (Ve o gl ) } + (R
o[teore )@y

+g@@(<%m@ﬁ%@f}}

oW

1,2

2

2,1

2,2

(67)

A. FIM for Evanescent Components With Gaussian MA
Modulating Processes

The parameter vector of the 1-D purely indeterministic mod-
ulating MA processa!™” is the 2(Q{**? + 1)-dimensional
vector

o= () () mefet )
Re{c“ ), ... Re{a™ (@17
|m{ (0 9)(1 )} |m{ (@, 9) (9 )},

|m{ o) (Qm a))}r

Assume that the real and imaginary components of the
driving noise proces$¢® ® (n(> )}, which are defined in
Section 1V, are also Gaussian. Thus, taking the partial deriva-

(59)

tives ofRE“’ '8), we have (60) and (61), shown at the bottom of
the next page, and forail = 1, ..., Q7
8R(0:,8) _ |:A171 A172:| (62)
ol )] T Lass 2

T

(s7) (W)’

T
+ W OB Ul (W) } (63)

N (a<“7'@>)2 [WE““")Un
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Az = ( (e, 8)) 5“"">Un (Cga,,ﬁ))T(Wga“@))T B. FIM for an MA Purely Indeterministic Component
2 T Assume that the real and imaginary components of the MA
— (pga*’)) WE“"@)CE“"@UZ (WE“"B)) (64) model driving noise field«(n, m)} defined in Section V are
also Gaussian. Thus, taking the partial derivatives with respect

(pga,,ﬁ))Q to the MA model parameters, we get
NAgo=— LS A 65 _
2,2 w2 1,1 (65) o5
(Oi ) SRe(b(k, O] = e(N_B)(T+2M)+M+1—¢ (71)
andA, ; = AT ,, whereU, is the up shift matrix wheree n_gyrt2m)+r+1—¢ 1S (T4 2M) - (N 4 1)-dimen-

sional row vector whos@V — k)(1T+2M )+ M +1— £ element

1 /—k— Q(a,,@) " equals one, whereas all its other elements are zero. Hence
Unlee=9 0 “ V7 =i - 66
[Unli. < {0, otherwise. (66) oBE G 72
- . SRe[b(Fk O] - 2
In a similar way, we have foralt =1, ..., Q7' .
whereUy;, () is the upshift matrix
(e, )
B [B B e o (1 i (e
8[Im {ai““ (n)H 2,1 %22 ®.0li,; = 0, otherwise.
(73)
where Slmllarly
n7’
(e, 9) (e, 9) @\ (e DY __ 9B g
B (57 {Wi U (C?) (W) am{b(k, £y~ %0 (74)

I Wga,,a) CE“”B)UZ (Wzga,,a))T} (68) Taking the partial derivatives df p; with respect to the MA
model parameters, we have f@r, £) € Sy, \ {(0, 0)}

P10 = (Uz( )) Wga”a)Bga”a)Uf (Wga,,a))T Al'pr . {UQU(k,z) 0 } B

2

2 T T O[Re{b(k, )} — 0 P*Ug
o (@.B) (e, 8) (e, 8) (,08) ’ (%, )
() Wi (5 () R .
69
, ( ) 0 pQU(kJ)
(o—g““@)) whereUy (), in (76), shown at the bottom of the next page, is
Py 9 = ( - a))2 P11 (70)  a ST x (T +2M)(S + N) matrix. Similarly
pi
orpr [ 0 —pQUwq BT
and®, ; = &7 ,. oim{v(k, O)}]  Lo?Up, g 0
Substltutlng (21) and (22), (25)—(27) and (60)—(70) into (57) . 0 —pQU(k7 0 T
and (58), we obtain closed-form expressions for +B LQU(k Y 0 } (77)
orie? orie? In addition, let
o] T afe? B
7, g B, = [BI} (78)
for the case in which the modulating 1-D processes of the B, — -B/ 79
evanescent fields are MA processes. 27 | BR (79)
(0. 8) [ Wi gl ) (B((y,,a))T (W((y,,a))T wAged (C((y,a) T W(“ a)
aRz v _ % % % % % % % (60)
P (O_Z(a,,a))Q WA e ) (BZ(@,,@))T (WZ@,,@))T WD) e ) (CE“’B) ( Wi a)
r T T T
(o, 8) W(a,,@)cga,,ﬁ) (C(a,,ﬁ)) (W(a,,ﬁ)) W(a B)C(a 8) (B(a 8)) W(a 8)
IR} B i : i ‘ (61)
N 27 T T T
9 (pg ,,a)) _Wzga,,a)BZ(a,,a) (Cga,,a)) (Wzga,,a)) W(a B)B(a 8 (B(a a)) (Wga,,ﬁ))
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Then as unknown constants and the harmonic component as the
unknown mean of the observed realization. In the following,
IT'pr —B.R? (80) We assume that the numbgrof harmonic components in the
do2 L observed field is priori known.
Il pr Let
92 =B,B!. (81)
h =1[r(0,0),..., (0, T —-1), h(1,0), ..., R(1, T—1)
Substituting (23), (24), (50), (75), (77), (80), and (81) into (54), o h(S—=1,0), ..., (S—1,T-D]F. (82)

we obtain a closed-form expression for the FIM block that corre-
sponds to the 2-D Gaussian MA random field. In the case where T T
the observed field comprises only a moving-average purely i addition, IetcT: O, Op]T w = oy, oo wp]y
deterministic component, inversion of (54) after the above suf-= [V1+ -+ 7r]"- Slrgllagly_to t}r;e dff'”'t'o_”s of Section I,
stitutions have been made provides the exact CRB on the eff6t define the vectors™, ¢, €, h™, h*, andh. Hence, in this
variance in jointly estimating the parameters of the purely ifASeH = h_ in (51). _The parameter vector of the observed field
deterministic field. When evanescent components are preséﬁ( b m)} is now given by

substituting (21), (22), (25)—(27) and (60)—(70) into (57) and

(58), we obtain closed-form expressions for N
0= |cT TVTbT{(qs(a:r ) } (83)
(e, 8) (o, 8) (e, B)€O
aI‘ 24 d aI‘ 24
- _ an __r
a [a§a7f8>]k 81/5“”8) Define (84), shown at the bottom of the next page, where

the ith column ofH consists of the values of thiéh harmonic

for the case in which the modulating 1-D processes of tﬁgmponent evaluated for dl, ¢) € D. We therefore have

evanescent fields are MA processes. A final substitution into _

(54)—(56) provides the CRB on the error variance in estimating h=Ac (85)
the parameters of essentially any homogeneous Gaussian

random field with nil harmonic component. In the next sectiogyhere

we extend this derivation and consider the problem of the

achievable estimation accuracy of both the harmonic, evanes- A= {H}; —Iy} (86)
cent, and purely indeterministic components of a homogeneous H H
random field.

andH?® = Re{H}, H! = Im{H}. Taking the partial deriva-

VII. FISHERINFORMATION MATRIX IN THE PRESENCE OF THE tives ofh, we get

HARMONIC COMPONENT oh

In this section, we extend the derivation of the previous Je, A (87)

sections and address the problem of the achievable estimation ) ]
accuracy of both the harmonic, evanescent, and purely indef¥PereA is theéth column ofA. Since the evanescent compo-

ministic components of a homogeneous Gaussian random figlg"ts; @s well as the purely indeterministic component, are zero
Note that when expressed in the general form (4), the coeffiean fields, the mean vector is independent of their parameters.

cients {C,} of the harmonic component are complex-valued; €"¢€
mutually orthogonal random variables. However, in general,

only a single realization of the random field is available. ﬁ -0 (88)
Hence, we cannot infer anything about the variation of these by,
coefficients over different realizations. The best we can do is to oh
estimate the particular values that tbg’s take for the given N =0. (89)
realization; in other words, we might just as well treat €f)gs d [¢i : L
U o) Orx(T420m) o Orx(r42a) ]
O7 s (1+211) U, o) O7 s (1+201) e O7 s (1+211)
U, o = (76)
Orx(T42M) e U o) Orx(T42M)
LOrx (7 q2n) O (T42M) Upo |
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In addition, note that since the field covariance functlbris where diagr, ), (diag(72)) is aST x ST matrix whose diagonal

independent of the mean

is the vectorry, (72), andH}, (HY) is thepth column ofH,
(H7).

gTI‘ -0 (90) Substituting (87)—(92), (96), and (97) into (51)
Ck
ar oh
_— = C,w _ ATp-—1
o =" (91) [J }H =Afr o o (98)
and oh
or c,V Trn—1
- = J AT —— 99
v =0 (92) [ ]H W (99)
— T —
Hence, the(1/2)tr{-} term in (51) vanishes for all the FIM w, w Jh 1 dh
. a . o9l = | 52— — (100)
entries that correspond to parameters of the harmonic mean. dwy, Jwy
ThereforeJ®:¢ = 0, J»« = 0, J*¥ = 0, and for trze evanes- - _
cent components, we have that for(ail 3) andi, J#." "+ = Jer]  — oh 1 6h 101
(o, ) (o, 8) [ ]k,é P P) ( )
0,J% "« =0,J% ¥ = 0. Hence, we conclude that the Wi Ve
lower bound on the error variance in estimating the parameters on\7© on
of the harmonic component is decoupled from the bound on the %], 0 = <a—> r e (102)
’ Vi vy

parameters of the purely indeterministic and evanescent compo-

nents.

Using (87) and (90), we conclude that the FIM elements that e have previously concluded that the lower bound on the
correspond to the amplitude parameters of the harmonic coRfIOF variance in estimating the parameters of the harmonic

ponent are given by

[JE: EL = AITA (93)

Let
r=[0,1,....,(S—1D]e1r (94)
Ta=15®[0,1, ..., (T - D" (95)

wherelr andls areT’-dimensional and-dimensional column
vectors of ones, respectively. In other words,is the vector
of the first indices of the elements &f in (82), andr; is the
vector of the second indices of the elementhofaking now
the partial derivatives w.r.t. the harmonic frequencies yields

oh —diagr) o ][ e Hp+cHT ]

T o diag(r1) IHI 4 RHE

P - Sty oy
(96)

oh [—diagms) 0 ][ ciHy+c H ]

o, 2| 0 diagrs) | | _olHI 4 cRHP

Yp - T =ty + e Hy |
97)

component is decoupled from the bound on the parameters of
the purely indeterministic and evanescent components. Using
(51), (54)—(56), and (88)—(92), we further conclude that the
bound on the purely indeterministic and evanescent compo-
nents is found by inverting the FIM block that corresponds to
the parameters of these components, and independentbf

the harmonic component parameters. Therefore, this bound is
identical to the one obtained for the case in which no harmonic
component exists. We have thus completed the derivation
of closed-form expressions for trexact Cramér—Rao lower
bound on the error variance in jointly estimating the parameters
of essentially any complex-valued homogeneous Gaussian
random field that can be modeled by a finite-order model.
In this derivation, the field may contain all of the 2-D Wold
decomposition components.

Finally, in [19], the large sample Cramér-Rao bound on the
parameters of the harmonic component in the presence of the
purely indeterministic field has been recently derived. This
model is a special case of the general model considered in this
paper. Assuming that the covariance sequence of the purely
indeterministic component satisfies certain conditions on its
rate of decay, it is shown that the large sample CRB on the
parameters of each exponential is decoupled from the bound

_ ej27r[0w1 +0u4]
Cj27r[0w1 +1u4]

ej27r[0w1 +(T—1)11]
Cj?ﬂ'[lwl +0u4]

| i2ml(5— D +H(T— L]

ej27r[0w2 +0u1s]
Cj27r[0w2 +1ws]

ej27r[0w2 F+(T—1)ws]
Cj?ﬂ'[lwz +0vs]

ej27r[0wp+0up] -
Cj27r[0wp+lz/p]

ej27r[0wp+(T—l)z/p1
Cj?ﬂ'[lwp+01/p]

(84)

i 27(S - Dewp+(Twe] |
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TABLE | is relatively less accurate in frequency regions where the spec-
CRBON THE PARAMETERS OF THEMA FIELD FOREXAMPLE 1AND EXAMPLE 2 41| density function is close to zero than in regions of higher
Parameters | Ex.1: CRB | Ex.2: CRB spectral density.
P 1 0.00885 0.00891 Example 2: Consider a 2-D homogeneous random field con-
o 1 0.12204 0.12216 sisting of a sum of a purely indeterministic component and a
Re{b(0,1)} -0.6364 0.00143 0.00143 single evanescent component. The purely indeterministic com-
Im{(0,1)} -0.6364 0.00124 0.00124 ponentis the same NSHP MA field with suppsit ; whose pa-
Re{t(1,-1)} 0.0309 0.00156 0.00156 rameters are listed in Table |. The evanescent component spec-
Im{b(1,-1)} | 0.0951 0.00112 0.00113 tral support parameters afe, 3) = (1, 1), v~ = 0.1. The
Re{b(1,0)} | 04045 0.00210 0.00211 modulating 1-D purely indeterministic process of this evanes-
Ezgg(l);i 'g'f:;: g:ggi;g g:ggigg cent component is a second-order Gaussian MA process such
(bl 1)} | 0281 0.00129 0.00129 thato -1 = 2, (1) = 1, al- V(1) = —0.55 exp(j/4), and

a1 (2) = 0.1exp(jn/4).

In this example, we evaluate the CR lower bound on the error
on the parameters of the other exponentials. It is further sho)(@ance in estimating the two components of the field. Note
that asymptotically _from Tab_le_ I _tha}t the bou_nds on the pgram_eters of the purely

indeterministic field remain essentially identical to their values
1 68 (6j27rw,,7 GJ'QW,,) for the case in which no evanescent component was present in

CRB(w,) = T35 TeAE the field (Example 1). Next, we investigate the bound on the
P spectral density function of the modulating 1-D MA process of
1 68 (e/2™r el2mr) the evanescent field. Fig. 2 depicts the spectral density function
CRB(1;) = TS3 IC, 2 of the modulating MA process. The mean value of the spec-
2o i P tral density (dashed line) and the mean plus and minus the stan-
CRB(|C, ) = 1S (c72mer, eP2m) dard deviation computed from the CRB (dashed-dotted line) are
Ts 2 shown. As a reference, the solid line denotes the mean value of
1 78 (Cﬂmup’ Cj?mxp) the spectral density plus and minus the standard deviation com-
CRB(¢;,) = TS 21C, 2 puted from the CRB of the same 1-D MA process for the case
p

in which this MA process is observed directly as a 1-D process,
d(i.e., a standard 1-D problem). It is concluded that the presence
of the 2-D purely indeterministic field causes the bound on the
spectral density of the evanescent field 1-D MA process to be
higher than in the standard 1-D case. However, its shape (as a
function of frequency) remains similar to its shape in the stan-
To gain more insight into the behavior of the bound on the diftard 1-D case.
ferent components, we resort to numerical evaluation of someExample 3: Consider a 2-D homogeneous random field con-
specific examples. In this section, we present several such sisting of a sum of a purely indeterministic component, a single
amples that illustrate the dependence of the bound on vari@nescent component, and an harmonic component. The purely
parameters of the field. In all of the examples, the dimensiomgleterministic component is the same NSHP MA field with
of the observed field are relatively sma#l:= 7" = 20. supportS; ; whose parameters are listed in Table |. The evanes-
Example 1: Consider a 2-D homogeneous, purely indetecent componentis the same asin Example 2. The harmonic com-
ministic random field modeled by a NSHP MA model withponent comprises a single exponential whose frequency varies
supportS;, 1. The model parameters are listed in Table I. [from experiment to experiment. In this example, we investigate
this example, we evaluate the Cramér—Rao lower bound on the bound on the error variance in estimating the parameters of
error variance in estimating the model parameters, as well as the exponential as a function of its frequency. Since the estima-
bound on the error variance in estimating the spectral densitytai problem of the purely indeterministic and evanescent com-
the field. The values of the CRB on the 2-D MA model paranponents is independent of the estimation problem of the har-
eters are also listed in Table I. monic component, the bounds on the parameters of both these
The spectral density function of this purely indeterministicomponents are not affected by the presence of the harmonic
field, and the CR lower bound on the error variance in estimatimgmponent. These bounds are therefore identical to the bounds
it, are depicted in Fig. 1. Note that the shape of the bound as@nputed in Example 2.
function of frequency matches the shape of the MA field spec-Note using Figs. 1 and 2 that the bound on the frequency pa-
tral density function. It can be further shown by considering tirameter of the harmonic component, which is depicted in Fig. 3,
normalized CRB, i.e., the ratio of the squared root of the CRBatches the shape of the spectral density of the purely indeter-
to the spectral density function of the MA field, that the loweministic component as well as the shape of the spectral den-
bound on the error variance in estimating the MA field spectraity of the modulating 1-D MA process of the evanescent field.
density function is relatively higher in those frequency regioria other words, the bound is higher at those frequencies where
where the MA model transfer function is close to zero. In othéne spectral density of the 2-D MA field is higher and at those
words, the estimation of the MA field spectral density functiofrequencies along the spectral support of the evanescent field

where S(e/?™ | ¢/27) is the spectral density of the colore
noise field, andp,, denotes the phase 6f,.

VIIl. N UMERICAL EXAMPLES
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Fig. 1. Spectral density function of the MA field and the CR lower bound on the error variance in estimating it.
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Fig. 3. CRB on the frequency parameter of the exponential as a function
Fig. 2. CRBs on the spectral density function of the evanescent componehthe exponential’s frequency.
1-D MA process.

We consider three cases.

where the spectral density of the modulating 1-D purely inde- Case 1) Both evanescent components exist in the observed
terministic process is higher. The effect of the wraparound of the field.
spectral support of the evanescent field is clearly seen in Fig. 3Case 2) The only evanescent component of the observed
Similar results are obtained for the other parameters of the ex- field is e& D (n, m).
ponential as well. Case 3) The only evanescent component of the observed
Example 4: Here, we consider a case in which the observed field is ¢ D (n, m).
random field has two evanescent components whose spedtnalable 11, we list the bounds on the error variance in estimating
supports intersect. We compare the CRB on the accuracytloé parameters of the observed field for the three cases. The re-
estimating the field parameters with the CRB for the sansailts indicate that the lower bounds on the error variance in es-
field, when only one of the two evanescent components tinating the parameters of the different components are essen-
present. More specifically, we consider a 2-D homogeneotially the same in all three cases being considered here.
random field consisting of a sum of two evanescent componentdJsing this example, we conclude that in general, the presence
e Y(n, m), e (n, m) and a Gaussian purely indetermin-of evanescent random fields with intersecting spectral supports
istic component whose real and imaginary components dras only a negligible effect on the CRB of each component pa-
independent zero mean white Gaussian fields with variatice rameters, compared with the case in which this component is the
and p?, respectively. The parameters of the different compenly evanescent component of the field. Using the conclusions
nents of the field are listed in Table II. of Examples 2 and 3, we finally conclude that the presence of an
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TABLE I
CRB FOR A FIELD WITH EVANESCENT COMPONENTS OFINTERSECTINGSPECTRAL SUPPORTS
CRB: Case I | CRB: Case II | CRB: Case II1
D 0.1 9.1314565e-07 | 9.1313922e-07 -

First (eD)? 4 1.0352698 1.0346625 -
evanescent (pTIH? 1 9.6123217e-02 | 9.6031324e-02 -
component Re{a"P (1)} | -0.3889 || 2.0063218¢-02 | 2.0038275¢-02 -
et V(n,m) | Im{a®D(1)} | -0.3889 || 9.5612309e-03 | 9.5578983e-03 -

Re{a™"(2)} | 0.0707 || 1.6381512¢-02 | 1.6375244e-02 -

Tm{a®(2)} | 0.0707 | 1.1910025¢-02 | 1.1895710e-02 -
Second @D 0.25 || 4.4280236e-06 - 4.4276767e-06
evanescent (c®D)? 2.25 || 2.6050751e-01 - 2.6041051e-01
component | (p®V)2 1 7.1620562e-02 - 7.1538973e-02
e®V(n,m) | Re{la®V(1)} | 0.3536 || 1.2907384e-02 - 1.2890388e-02
Im{a®V (1)} | 0.3536 || 1.0290456e-02 - 1.0290081e-02

Purely o’ 1 8.0427776e-03 | 7.9775468¢-03 | 8.0199510e-03

indeterministic | p* 4 0.4522371e-02 | 9.4419934e-02 | 9.4491849e-02

evanescent component in the field has only a negligible effect ors]
the lower bound on the accuracy of estimating the parameters of
the other components of the field, unless the spectral support 0{6
the evanescent component is very close to the spectral support
of a harmonic component. (7]

IX. CONCLUSIONS (8]

In this paper, we have elaborated on two fundamental prob-
lems in parametric modeling and estimation of 2-D complex- (9]
valued homogeneous random fields with mixed spectral distri-
bution. Employing the parametric model that follows from the
2-D Wold-like decomposition of homogeneous random fields[10]
we have obtained closed-form expressions for the field meapy)
and covariance functions in terms of the model parameters. As-
suming the observed random field is Gaussian, we have then
investigated the problem of the achievable accuracy in jointly; ]
estimating the field parameters from a single observed real-
ization of it. It is shown that the estimation of the harmonic[13]
component is decoupled from that of the purely indetermin-
istic and evanescent components; furthermore, the bound di¥]
the purely indeterministic and evanescent components is inde-
pendent of the harmonic component. Due to the generality qfis
the Wold decomposition-based field model, the derivation in
this paper provides a closed-form expression of the Fisher irf26l
formation matrix of essentially any complex-valued homoge-
neous Gaussian random field and, hence, of the corresponding
Cramér—Rao lower bound. [17]
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